Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050234468 A1
Publication typeApplication
Application numberUS 11/098,209
Publication dateOct 20, 2005
Filing dateApr 4, 2005
Priority dateFeb 27, 2001
Also published asCA2439249A1, CA2439249C, DE60232315D1, DE60232316D1, EP1372516A2, EP1372516B1, EP1372517A2, EP1372517B1, EP1379188A2, US6827723, US6923817, US20020133175, US20020147455, US20020198451, US20110071528, US20110071529, US20110071530, US20110071531, US20110071532, US20120226198, US20120226481, WO2002067783A2, WO2002067783A3, WO2002067783A9, WO2002067784A2, WO2002067784A3, WO2002067800A2, WO2002067800A3
Publication number098209, 11098209, US 2005/0234468 A1, US 2005/234468 A1, US 20050234468 A1, US 20050234468A1, US 2005234468 A1, US 2005234468A1, US-A1-20050234468, US-A1-2005234468, US2005/0234468A1, US2005/234468A1, US20050234468 A1, US20050234468A1, US2005234468 A1, US2005234468A1
InventorsChristopher Carson
Original AssigneeCarson Christopher P
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Total knee arthroplasty systems and processes
US 20050234468 A1
Abstract
Systems and processes for tracking anatomy, instrumentation, trial implants, implants, and references, and rendering images and data related to them in connection with surgical operations, for example total knee arthroplasties (“TKA”). These systems and processes are accomplished by using a computer to intraoperatively obtain images of body parts and to register, navigate, and track surgical instruments.
Images(65)
Previous page
Next page
Claims(20)
1. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to structure of a femur, wherein the locator and the femur are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store data corresponding to the structure of the femur and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the femur;
(d) an extramedullary rod adapted to be attached to a femur using an impactor, said impactor attached to a fiducial, whereby the position of the extramedullary rod is capable of being tracked by said sensor and the position and orientation of the rod is capable of being tracked by said computer; and
(e) a monitor adapted to receive information from the computer in order to display a representation of said extramedullary rod positioned and oriented relative to a representation of the femur for navigation and positioning of the rod on the femur.
2. The system of claim 1 wherein the locator comprises a probe.
3. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to structure of a femur, wherein the locator and the femur are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store the data corresponding to the structure of the femur and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the femur;
(d) a medullary rod adapted to be attached to a femur using an impactor, said impactor attached to a fiducial, whereby the position of the medullary rod is capable of being tracked by said sensor and the position and orientation of the rod is capable of being tracked by said computer; and
(e) a monitor adapted to receive information from the computer in order to display a representation of the medullary rod positioned and oriented relative to a representation of the femur for navigation and positioning of the rod on the femur.
4. The system of claim 3 wherein the representation of the femur comprises at least one mechanical axis of the femur.
5. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to the structure of bone, wherein the locator and the bone are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store data relating to structure of the bone and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the bone;
(d) a total knee arthroplasty surgical instrument adapted to be associated with a fiducial which is attached to bone, whereby the position and orientation of the instrument is capable of being tracked by said sensor; and
(e) a monitor adapted to receive information from the computer in order to display a representation of the instrument and a total knee arthroplasty implant component corresponding to said instrument, positioned and oriented relative to a representation of the knee joint for navigation and positioning of the instrument on the bone.
6. The system of claim 5 wherein the locator comprises a probe.
7. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to structure of a femur, wherein the locator and the femur are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store the data corresponding to structure of the femur and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the femur;
(d) a femoral trial implant whose position is capable of being tracked by said sensor and whose position and orientation is capable of being tracked by said computer; and
(e) a monitor adapted to receive information from the computer in order to display a representation of said femoral trial implant positioned and oriented relative to a representation of the femur for navigation and positioning of the trial implant on the femur.
8. The system of claim 7 wherein the locator comprises a probe.
9. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to structure of a tibia, wherein the locator and the tibia are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store the data corresponding to the structure of the tibia and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the tibia;
(d) a tibial trial implant whose position is capable of being tracked by said sensor and whose position and orientation is capable of being tracked by said computer; and
(e) a monitor adapted to receive information from the computer in order to display a representation of said tibial trial implant positioned and oriented relative to a representation of the tibia for navigation and positioning of the trial implant on the tibia.
10. The system of claim 9 wherein the representation of the tibia comprises at least one mechanical axis of the tibia.
11. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to structure of a femur, wherein the imager and the femur are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store the data corresponding to the structure of the femur and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the femur;
(d) a femoral implant capable of being mounted on a tool, said tool attached to a fiducial, whereby the position of the femoral implant is capable of being tracked by said sensor and the position and orientation of the implant is capable of being tracked by said computer; and
(e) a monitor adapted to receive information from the computer in order to display a representation of said femoral implant positioned and oriented relative to a representation of the femur for navigation and positioning of the implant on the femur.
12. The system of claim 11 wherein the representation of the femur comprises at least one mechanical axis of the femur.
13. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to structure of a tibia, wherein the imager and the tibia are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store the data corresponding to the structure of the tibia and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the tibia;
(d) a tibial implant capable of being mounted on an impactor, said impactor attached to a fiducial, whereby the position of the tibial implant is capable of being tracked by said sensor and the position and orientation of the implant is capable of being tracked by said computer; and
(e) a monitor adapted to receive information from the computer in order to display a representation of said tibial implant positioned and oriented relative to a representation of the tibia for navigation and positioning of the implant on the tibia.
14. The system of claim 13 wherein the locator comprises a probe.
15. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to structure of a femur, wherein the locator and the femur are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store the data corresponding to the structure of the femur and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the femur;
(d) a total knee arthroplasty surgical instrument whose position is capable of being tracked by said sensor and whose position and orientation is capable of being tracked by said computer;
(e) a femoral trial implant capable of being mounted on a tool, said tool attached to a fiducial, whereby the position of the femoral trial implant is capable of being tracked by said sensor and the position and orientation of the trial implant is capable of being tracked by said computer;
(f) a femoral implant capable of being mounted on a tool, said tool attached to a fiducial, whereby the position of the femoral implant is capable of being tracked by said sensor and the position and orientation of the implant is capable of being tracked by said computer; and
(g) a monitor adapted to receive information from the computer in order to display a representation of said instrument, said femoral trial implant and said femoral implant positioned and oriented relative to a representation of the femur for navigation and positioning of the instrument, the trial implant, and the implant on the femur.
16. The system of claim 15 wherein the locator comprises a probe.
17. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to structure of a tibia, wherein the locator and the tibia are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store data corresponding to the structure of the tibia and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the tibia;
(d) a total knee arthroplasty surgical instrument whose position is capable of being tracked by said sensor and whose position and orientation is capable of being tracked by said computer;
(e) a tibial trial implant capable of being mounted on a tool, said tool attached to a fiducial, whereby the position of the tibial trial implant is capable of being tracked by said sensor and the position and orientation of the trial implant is capable of being tracked by said computer;
(f) a tibial implant capable of being mounted on a tool, said tool attached to a fiducial, whereby the position of the tibial implant is capable of being tracked by said sensor and the position and orientation of the implant is capable of being tracked by said computer; and
(g) a monitor adapted to receive information from the computer in order to display a representation of said instrument, a representation of said tibial trial implant and a representation of said tibial implant positioned and oriented relative to a representation of the tibia for navigation and positioning of the instrument, the trial implant and the implant on the tibia.
18. The system of claim 17 wherein the representation of the tibia comprises at least one mechanical axis of the tibia.
19. A system for performing total knee arthroplasty surgical operations on portions of a knee joint comprising:
(a) a locator for obtaining data corresponding to the structure of bone, wherein the locator and the bone are each attached to a fiducial capable of being tracked by a position sensor;
(b) at least one position sensor adapted to track position of said fiducials;
(c) a computer adapted to store data relating to structure of the bone and to receive information from said at least one sensor in order to track position and orientation of said fiducials and thus the bone;
(d) a total knee arthroplasty surgical instrument adapted to be associated with a fiducial, whereby the position and orientation of the total knee arthroplasty instrument is capable of being tracked by said sensor; and
(e) a monitor adapted to receive information from the computer in order to display a representation of a projected position and orientation of a total knee arthroplasty implant or trial implant based on the tracked position and orientation of the total knee arthroplasty instrument positioned and oriented relative to the knee joint for navigation and positioning of the instrument on the bone.
20. The system of claim 19 wherein the locator comprises a probe.
Description
    RELATED APPLICATION DATA
  • [0001]
    This application is a continuation of U.S. Ser. No. 10/084,012, filed Feb. 27, 2002 and entitled “Total Knee Arthroplasty Systems and Processes,” which claims the benefit of U.S. Ser. No. 60/271,818, filed Feb. 27, 2001 and entitled “Image Guided System for Arthroplasty” and U.S. Ser. No. 60/355,899, filed Feb. 11, 2002 and entitled “Surgical Navigation Systems and Processes,” all of which are incorporated herein by this reference.
  • FIELD OF INVENTION
  • [0002]
    Systems and processes for tracking anatomy, implements, instrumentation, trial implants, implant components and virtual constructs or references, and rendering images and data related to them in connection with orthopedic, surgical and other operations, for example Total Knee Arthroplasty (“TKA”). Anatomical structures and such items may be attached to or otherwise associated with fiducial functionality, and constructs may be registered in position using fiducial functionality whose position and orientation can be sensed and tracked by systems and according to processes of the present invention in three dimensions in order to perform TKA. Such structures, items and constructs can be rendered onscreen properly positioned and oriented relative to each other using associated image files, data files, image input, other sensory input, based on the tracking. Such systems and processes, among other things, allow surgeons to navigate and perform TKA using images that reveal interior portions of the body combined with computer generated or transmitted images that show surgical implements, instruments, trials, implants, and/or other devices located and oriented properly relative to the body part. Such systems and processes allow, among other things, more accurate and effective resection of bone, placement and assessment of trial implants and joint performance, and placement and assessment of performance of actual implants and joint performance.
  • BACKGROUND AND SUMMARY
  • [0003]
    A leading cause of wear and revision in prosthetics such as knee implants, hip implants and shoulder implants is less than optimum implant alignment. In a Total Knee Arthroplasty, for example, current instrument design for resection of bone limits the alignment of the femoral and tibial resections to average values for varus/valgus, flexion/extension, and external/internal rotation. Additionally, surgeons often use visual landmarks or “rules of thumb” for alignment which can be misleading due to anatomical variability. Intramedullary referencing instruments also violate the femoral and tibial canal. This intrusion increases the risk of fat embolism and unnecessary blood loss in the patient. Surgeons also rely on instrumentation to predict the appropriate implant size for the femur and tibia instead of the ability to intraoperatively template the appropriate size of the implants for optimal performance. Another challenge for surgeons is soft tissue or ligament balancing after the bone resections have been made. Releasing some of the soft tissue points can change the balance of the knee; however, the multiple options can be confusing for many surgeons. In revision TKA, for example, many of the visual landmarks are no longer present, making alignment and restoration of the joint line difficult. The present invention is applicable not only for knee repair, reconstruction or replacement surgery, but also repair, reconstruction or replacement surgery in connection with any other joint of the body as well as any other surgical or other operation where it is useful to track position and orientation of body parts, non-body components and/or virtual references such as rotational axes, and to display and output data regarding positioning and orientation of them relative to each other for use in navigation and performance of the operation.
  • [0004]
    Several providers have developed and marketed various forms of imaging systems for use in surgery. Many are based on CT scans and/or MRI data or on digitized points on the anatomy. Other systems align preoperative CT scans, MRIs or other images with intraoperative patient positions. A preoperative planning system allows the surgeon to select reference points and to determine the final implant position. Intraoperatively, the system calibrates the patient position to that preoperative plan, such as using a “point cloud” technique, and can use a robot to make femoral and tibial preparations.
  • [0005]
    Systems and processes according to one embodiment of the present invention use position and/or orientation tracking sensors such as infrared sensors acting stereoscopically or otherwise to track positions of body parts, surgery-related items such as implements, instrumentation, trial prosthetics, prosthetic components, and virtual constructs or references such as rotational axes which have been calculated and stored based on designation of bone landmarks. Processing capability such as any desired form of computer functionality, whether standalone, networked, or otherwise, takes into account the position and orientation information as to various items in the position sensing field (which may correspond generally or specifically to all or portions or more than all of the surgical field) based on sensed position and orientation of their associated fiducials or based on stored position and/or orientation information. The processing functionality correlates this position and orientation information for each object with stored information regarding the items, such as a computerized fluoroscopic imaged file of a femur or tibia, a wire frame data file for rendering a representation of an instrumentation component, trial prosthesis or actual prosthesis, or a computer generated file relating to a rotational axis or other virtual construct or reference. The processing functionality then displays position and orientation of these objects on a screen or monitor, or otherwise. Thus, systems and processes according to one embodiment of the invention can display and otherwise output useful data relating to predicted or actual position and orientation of body parts, surgically related items, implants, and virtual constructs for use in navigation, assessment, and otherwise performing surgery or other operations.
  • [0006]
    As one example, images such as fluoroscopy images showing internal aspects of the femur and tibia can be displayed on the monitor in combination with actual or predicted shape, position and orientation of surgical implements, instrumentation components, trial implants, actual prosthetic components, and rotational axes in order to allow the surgeon to properly position and assess performance of various aspects of the joint being repaired, reconstructed or replaced. The surgeon may navigate tools, instrumentation, trial prostheses, actual prostheses and other items relative to bones and other body parts in order to perform TKA's more accurately, efficiently, and with better alignment and stability. Systems and processes according to the present invention can also use the position tracking information and, if desired, data relating to shape and configuration of surgical related items and virtual constructs or references in order to produce numerical data which may be used with or without graphic imaging to perform tasks such as assessing performance of trial prosthetics statically and throughout a range of motion, appropriately modifying tissue such as ligaments to improve such performance and similarly assessing performance of actual prosthetic components which have been placed in the patient for alignment and stability. Systems and processes according to the present invention can also generate data based on position tracking and, if desired, other information to provide cues on screen, aurally or as otherwise desired to assist in the surgery such as suggesting certain bone modification steps or measures which may be taken to release certain ligaments or portions of them based on performance of components as sensed by systems and processes according to the present invention.
  • [0007]
    According to a preferred embodiment of systems and processes according to the present invention, at least the following steps are involved:
  • [0008]
    1. Obtain appropriate images such as fluoroscopy images of appropriate body parts such as femur and tibia, the imager being tracked in position via an associated fiducial whose position and orientation is tracked by position/orientation sensors such as stereoscopic infrared (active or passive) sensors according to the present invention.
  • [0009]
    2. Register tools, instrumentation, trial components, prosthetic components, and other items to be used in surgery, each of which corresponds to a fiducial whose position and orientation can be tracked by the position/orientation sensors.
  • [0010]
    3. Locating and registering body structure such as designating points on the femur and tibia using a probe associated with a fiducial in order to provide the processing functionality information relating to the body part such as rotational axes.
  • [0011]
    4. Navigating and positioning instrumentation such as cutting instrumentation in order to modify bone, at least partially using images generated by the processing functionality corresponding to what is being tracked and/or has been tracked, and/or is predicted by the system, and thereby resecting bone effectively, efficiently and accurately.
  • [0012]
    5. Navigating and positioning trial components such as femoral components and tibial components, some or all of which may be installed using impactors with a fiducial and, if desired, at the appropriate time discontinuing tracking the position and orientation of the trial component using the impactor fiducial and starting to track that position and orientation using the body part fiducial on which the component is installed.
  • [0013]
    6. Assessing alignment and stability of the trial components and joint, both statically and dynamically as desired, using images of the body parts in combination with images of the trial components while conducting appropriate rotation, anterior-posterior drawer and flexion/extension tests and automatically storing and calculating results to present data or information which allows the surgeon to assess alignment and stability.
  • [0014]
    7. Releasing tissue such as ligaments if necessary and adjusting trial components as desired for acceptable alignment and stability.
  • [0015]
    8. Installing implant components whose positions may be tracked at first via fiducials associated with impactors for the components and then tracked via fiducials on the body parts in which the components are installed.
  • [0016]
    9. Assessing alignment and stability of the implant components and joint by use of some or all tests mentioned above and/or other tests as desired, releasing tissue if desired, adjusting if desired, and otherwise verifying acceptable alignment, stability and performance of the prosthesis, both statically and dynamically.
  • [0017]
    This process, or processes including it or some of it may be used in any total or partial joint repair, reconstruction or replacement, including knees, hips, shoulders, elbows, ankles and any other desired joint in the body.
  • [0018]
    Such processes are disclosed in U.S. Ser. No. 60/271,818 filed Feb. 27, 2001, entitled Image Guided System for Arthroplasty, which is incorporated herein by reference as are all documents incorporated by reference therein.
  • [0019]
    Systems and processes according to the present invention represent significant improvement over other previous systems and processes. For instance, systems which use CT and MRI data generally require the placement of reference frames pre-operatively which can lead to infection at the pin site. The resulting 3D images must then be registered, or calibrated, to the patient anatomy intraoperatively. Current registration methods are less accurate than the fluoroscopic system. These imaging modalities are also more expensive. Some “imageless” systems, or non-imaging systems, require digitizing a large number of points to define the complex anatomical geometries of the knee at each desired site. This can be very time intensive resulting in longer operating room time. Other imageless systems determine the mechanical axis of the knee by performing an intraoperative kinematic motion to determine the center of rotation at the hip, knee, and ankle. This requires placement of reference frames at the iliac crest of the pelvis and in or on the ankle. This calculation is also time consuming as the system must find multiple points in different planes in order to find the center of rotation. This is also problematic in patients with a pathologic condition. Ligaments and soft tissues in the arthritic patient are not normal and thus will give a center of rotation that is not desirable for normal knees. Robotic systems require expensive CT or MRI scans and also require pre-operative placement of reference frames, usually the day before surgery. These systems are also much slower, almost doubling operating room time and expense.
  • [0020]
    None of these systems can effectively track femoral and/or tibial trials during a range of motion and calculate the relative positions of the articular surfaces, among other things. Also, none of them currently make suggestions on ligament balancing, display ligament balancing techniques, or surgical techniques. Additionally, none of these systems currently track the patella.
  • [0021]
    An object of certain aspects of the present invention is to use computer processing functionality in combination with imaging and position and/or orientation tracking sensors to present to the surgeon during surgical operations visual and data information useful to navigate, track and/or position implements, instrumentation, trial components, prosthetic components and other items and virtual constructs relative to the human body in order to improve performance of a repaired, replaced or reconstructed knee joint.
  • [0022]
    Another object of certain aspects of the present invention is to use computer processing functionality in combination with imaging and position and/or orientation tracking sensors to present to the surgeon during surgical operations visual and data information useful to assess performance of a knee and certain items positioned therein, including components such as trial components and prosthetic components, for stability, alignment and other factors, and to adjust tissue and body and non-body structure in order to improve such performance of a repaired, reconstructed or replaced knee joint.
  • [0023]
    Another object of certain aspects of the present invention is to use computer processing functionality in combination with imaging and position and/or orientation tracking sensors to present to the surgeon during surgical operations visual and data information useful to show predicted position and movement of implements, instrumentation, trial components, prosthetic components and other items and virtual constructs relative to the human body in order to select appropriate components, resect bone accurately, effectively and efficiently, and thereby improve performance of a repaired, replaced or reconstructed knee joint.
  • [0024]
    Other objects, features and advantages of the present invention are apparent with respect to the remainder of this document.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0025]
    FIG. 1 is a schematic view of a particular embodiment of systems and processes according to the present invention.
  • [0026]
    FIG. 2 is a view of a knee prepared for surgery, including a femur and a tibia, to which fiducials according to one embodiment of the present invention have been attached.
  • [0027]
    FIG. 3 is a view of a portion of a leg prepared for surgery according to the present invention with a C-arm for obtaining fluoroscopic images associated with a fiducial according to one embodiment of the present invention.
  • [0028]
    FIG. 4 is a fluoroscopic image of free space rendered on a monitor according to one embodiment of the present invention.
  • [0029]
    FIG. 5 is a fluoroscopic image of femoral head obtained and rendered according one embodiment of the present invention.
  • [0030]
    FIG. 6 is a fluoroscopic image of a knee obtained and rendered according to one embodiment of the present invention.
  • [0031]
    FIG. 7 is a fluoroscopic image of a tibia distal end obtained and rendered according to one embodiment of the present invention.
  • [0032]
    FIG. 8 is a fluoroscopic image of a lateral view of a knee obtained and rendered according to one embodiment of the present invention.
  • [0033]
    FIG. 9 is a fluoroscopic image of a lateral view of a knee obtained and rendered according to one embodiment of the present invention.
  • [0034]
    FIG. 10 is a fluoroscopic image of a lateral view of a tibia distal end obtained and rendered according to one embodiment of the present invention.
  • [0035]
    FIG. 11 shows a probe according to one embodiment of the present invention being used to register a surgically related component for tracking according to one embodiment of the present invention.
  • [0036]
    FIG. 12 shows a probe according to one embodiment of the present invention being used to register a cutting block for tracking according to one embodiment of the present invention.
  • [0037]
    FIG. 13 shows a probe according to one embodiment of the present invention being used to register a tibial cutting block for tracking according to one embodiment of the present invention.
  • [0038]
    FIG. 14 shows a probe according to one embodiment of the present invention being used to register an alignment guide for tracking according to one embodiment of the present invention.
  • [0039]
    FIG. 15 shows a probe according to one embodiment of the present invention being used to designate landmarks on bone structure for tracking according one embodiment of the present invention.
  • [0040]
    FIG. 16 is another view of a probe according to one embodiment of the present invention being used to designate landmarks on bone structure for tracking according one embodiment of the present invention.
  • [0041]
    FIG. 17 is another view of a probe according to one embodiment of the present invention being used to designate landmarks on bone structure for tracking according one embodiment of the present invention.
  • [0042]
    FIG. 18 is a screen face produced according to one embodiment of the present invention during designation of landmarks to determine a femoral mechanical axis.
  • [0043]
    FIG. 19 is a view produced according to one embodiment of the present invention during designation of landmarks to determine a tibial mechanical axis.
  • [0044]
    FIG. 20 is a screen face produced according to one embodiment of the present invention during designation of landmarks to determine an epicondylar axis.
  • [0045]
    FIG. 21 is a screen face produced according to one embodiment of the present invention during designation of landmarks to determine an anterior-posterior axis.
  • [0046]
    FIG. 22 is a screen face produced according to one embodiment of the present invention during designation of landmarks to determine a posterior condylar axis.
  • [0047]
    FIG. 23 is a screen face according to one embodiment of the present invention which presents graphic indicia which may be employed to help determine reference locations within bone structure.
  • [0048]
    FIG. 24 is a screen face according to one embodiment of the present invention showing mechanical and other axes which have been established according to one embodiment of the present invention.
  • [0049]
    FIG. 25 is another screen face according to one embodiment of the present invention showing mechanical and other axes which have been established according to one embodiment of the present invention.
  • [0050]
    FIG. 26 is another screen face according to one embodiment of the present invention showing mechanical and other axes which have been established according to one embodiment of the present invention.
  • [0051]
    FIG. 27 shows navigation and placement of an extramedullary rod according to one embodiment of the present invention.
  • [0052]
    FIG. 28 is another view showing navigation and placement of an extramedullary rod according to one embodiment of the present invention.
  • [0053]
    FIG. 29 is a screen face produced according to one embodiment of the present invention which assists in navigation and/or placement of an extramedullary rod.
  • [0054]
    FIG. 30 is another view of a screen face produced according to one embodiment of the present invention which assists in navigation and/or placement of an extramedullary rod.
  • [0055]
    FIG. 31 is a view which shows navigation and placement of an alignment guide according to one embodiment of the present invention.
  • [0056]
    FIG. 32 is another view which shows navigation and placement of an alignment guide according to one embodiment of the present invention.
  • [0057]
    FIG. 33 is a screen face which shows a fluoroscopic image of bone in combination with computer generated images of axes and components in accordance with one embodiment of the present invention.
  • [0058]
    FIG. 34 is a screen face which shows a fluoroscopic image of bone in combination with computer generated images of axes and components in accordance with one embodiment of the present invention.
  • [0059]
    FIG. 35 is a screen face which shows a fluoroscopic image of bone in combination with computer generated images of axes and components in accordance with one embodiment of the present invention.
  • [0060]
    FIG. 36 is a screen face which shows a fluoroscopic image of bone in combination with computer generated images of axes and components in accordance with one embodiment of the present invention.
  • [0061]
    FIG. 37 is a screen face which shows a fluoroscopic image of bone in combination with computer generated images of axes and components in accordance with one embodiment of the present invention.
  • [0062]
    FIG. 38 is a screen face which shows a fluoroscopic image of bone in combination with computer generated images of axes and components in accordance with one embodiment of the present invention.
  • [0063]
    FIG. 39 is a screen face which shows a fluoroscopic image of bone in combination with computer generated images of axes and components in accordance with one embodiment of the present invention.
  • [0064]
    FIG. 40 is a screen face which shows a fluoroscopic image of bone in combination with computer generated images of axes and components in accordance with one embodiment of the present invention.
  • [0065]
    FIG. 41 is a view showing placement of a cutting block according to one embodiment of the present invention.
  • [0066]
    FIG. 42 is a screen face according to one embodiment of the present invention which may be used to assist in navigation and placement of instrumentation.
  • [0067]
    FIG. 43 is another screen face according to one embodiment of the present invention which may be used to assist in navigation and/or placement of instrumentation.
  • [0068]
    FIG. 44 is a view showing placement of an alignment guide according to one embodiment of the present invention.
  • [0069]
    FIG. 45 is another view showing placement of a cutting block according to one embodiment of the present invention.
  • [0070]
    FIG. 46 is a view showing navigation and placement of the cutting block of FIG. 45.
  • [0071]
    FIG. 47 is another view showing navigation and placement of a cutting block according to one embodiment of the present invention.
  • [0072]
    FIG. 48 is a view showing navigation and placement of a tibial cutting block according to one embodiment of the present invention.
  • [0073]
    FIG. 49 is a screen face according to one embodiment of the present invention which may be used to assist in navigation and placement of instrumentation.
  • [0074]
    FIG. 50 is another screen face according to one embodiment of the present invention which may be used to assist in navigation and placement of instrumentation.
  • [0075]
    FIG. 51 is another screen face according to one embodiment of the present invention which may be used to assist in navigation and placement of instrumentation.
  • [0076]
    FIG. 52 is another screen face according to one embodiment of the present invention which may be used to assist in navigation and placement of instrumentation.
  • [0077]
    FIG. 53 is another screen face according to one embodiment of the present invention which may be used to assist in navigation and placement of instrumentation.
  • [0078]
    FIG. 54 is a view showing navigation and placement of a femoral component using an impactor to which a fiducial according to one embodiment of the present invention is attached.
  • [0079]
    FIG. 55 is a view showing navigation and placement of a tibial trial component according to one embodiment of the present invention.
  • [0080]
    FIG. 56 is a view showing articulation of trial components during trial reduction according to one embodiment of the present invention.
  • [0081]
    FIG. 57 is a screen face according to one embodiment of the present invention which may be used to assist in assessing joint function.
  • [0082]
    FIG. 58 is a screen face according to one embodiment of the present invention which may be used to assist in assessing joint function.
  • [0083]
    FIG. 59 is a screen face according to one embodiment of the present invention which may be used to assist in assessing joint function.
  • [0084]
    FIG. 60 is a screen face according to one embodiment of the present invention which contains images and textural suggestions for assisting in assessing performance and making adjustments to improve performance of a joint in accordance with one aspect of the invention.
  • [0085]
    FIG. 61 is a screen face according to one embodiment of the present invention which contains images and textural suggestions for assisting in assessing performance and making adjustments to improve performance of a joint in accordance with one aspect of the invention.
  • [0086]
    FIG. 62 is a screen face according to one embodiment of the present invention which contains images and textural suggestions for assisting in assessing performance and making adjustments to improve performance of a joint in accordance with one aspect of the invention.
  • [0087]
    FIG. 63 is a screen face according to one embodiment of the present invention which contains images and textural suggestions for assisting in assessing performance and making adjustments to improve performance of a joint in accordance with one aspect of the invention.
  • [0088]
    FIG. 64 is a computer generated graphic according to one embodiment of the present invention which allows visualization of trial or actual components installed in the bone structure according to one embodiment of the invention.
  • DETAILED DESCRIPTION
  • [0089]
    Systems and processes according to a preferred embodiment of the present invention use computer capacity, including standalone and/or networked, to store data regarding spatial aspects of surgically related items and virtual constructs or references including body parts, implements, instrumentation, trial components, prosthetic components and rotational axes of body parts. Any or all of these may be physically or virtually connected to or incorporate any desired form of mark, structure, component, or other fiducial or reference device or technique which allows position and/or orientation of the item to which it is attached to be sensed and tracked, preferably in three dimensions of translation and three degrees of rotation as well as in time if desired. In the preferred embodiment, such “fidicuals” are reference frames each containing at least three, preferably four, sometimes more, reflective elements such as spheres reflective of lightwave or infrared energy, or active elements such as LEDs.
  • [0090]
    In a preferred embodiment, orientation of the elements on a particular fiducial varies from one fiducial to the next so that sensors according to the present invention may distinguish between various components to which the fiducials are attached in order to correlate for display and other purposes data files or images of the components. In a preferred embodiment of the present invention, some fiducials use reflective elements and some use active elements, both of which may be tracked by preferably two, sometimes more infrared sensors whose output may be processed in concert to geometrically calculate position and orientation of the item to which the fiducial is attached.
  • [0091]
    Position/orientation tracking sensors and fiducials need not be confined to the infrared spectrum. Any electromagnetic, electrostatic, light, sound, radiofrequency or other desired technique may be used. Alternatively, each item such as a surgical implement, instrumentation component, trial component, implant component or other device may contain its own “active” fiducial such as a microchip with appropriate field sensing or position/orientation sensing functionality and communications link such as spread spectrum RF link, in order to report position and orientation of the item. Such active fiducials, or hybrid active/passive fiducials such as transponders can be implanted in the body parts or in any of the surgically related devices mentioned above, or conveniently located at their surface or otherwise as desired. Fiducials may also take the form of conventional structures such as a screw driven into a bone, or any other three dimensional item attached to another item, position and orientation of such three dimensional item able to be tracked in order to track position and orientation of body parts and surgically related items. Hybrid fiducials may be partly passive, partly active such as inductive components or transponders which respond with a certain signal or data set when queried by sensors according to the present invention.
  • [0092]
    Systems and processes according to a preferred embodiment of the present invention employ a computer to calculate and store reference axes of body components such as in a TKA, for example, the mechanical axis of the femur and tibia. From these axes such systems track the position of the instrumentation and osteotomy guides so that bone resections will locate the implant position optimally, usually aligned with the mechanical axis. Furthermore, during trial reduction of the knee, the systems provide feedback on the balancing of the ligaments in a range of motion and under varus/valgus, anterior/posterior and rotary stresses and can suggest or at least provide more accurate information than in the past about which ligaments the surgeon should release in order to obtain correct balancing, alignment and stability. Systems and processes according to the present invention can also suggest modifications to implant size, positioning, and other techniques to achieve optimal kinematics. Systems and processes according to the present invention can also include databases of information regarding tasks such as ligament balancing, in order to provide suggestions to the surgeon based on performance of test results as automatically calculated by such systems and processes.
  • [0093]
    FIG. 1 is a schematic view showing one embodiment of a system according to the present invention and one version of a setting according to the present invention in which surgery on a knee, in this case a Total Knee Arthroplasty, may be performed. Systems and processes according to the present invention can track various body parts such as tibia 10 and femur 12 to which fiducials of the sort described above or any other sort may be implanted, attached, or otherwise associated physically, virtually, or otherwise. In the embodiment shown in FIG. 1, fiducials 14 are structural frames some of which contain reflective elements, some of which contain LED active elements, some of which can contain both, for tracking using stereoscopic infrared sensors suitable, at least operating in concert, for sensing, storing, processing and/or outputting data relating to (“tracking”) position and orientation of fiducials 14 and thus components such as 10 and 12 to which they are attached or otherwise associated. Position sensor 16, as mentioned above, may be any sort of sensor functionality for sensing position and orientation of fiducials 14 and therefore items with which they are associated, according to whatever desired electrical, magnetic, electromagnetic, sound, physical, radio frequency, or other active or passive technique. In the preferred embodiment, position sensor 16 is a pair of infrared sensors disposed on the order of a meter, sometimes more, sometimes less, apart and whose output can be processed in concert to provide position and orientation information regarding fiducials 14.
  • [0094]
    In the embodiment shown in FIG. 1, computing functionality 18 can include processing functionality, memory functionality, input/output functionality whether on a standalone or distributed basis, via any desired standard, architecture, interface and/or network topology. In this embodiment, computing functionality 18 is connected to a monitor on which graphics and data may be presented to the surgeon during surgery. The screen preferably has a tactile interface so that the surgeon may point and click on screen for tactile screen input in addition to or instead of, if desired, keyboard and mouse conventional interfaces. Additionally, a foot pedal 20 or other convenient interface may be coupled to functionality 18 as can any other wireless or wired interface to allow the surgeon, nurse or other desired user to control or direct functionality 18 in order to, among other things, capture position/orientation information when certain components are oriented or aligned properly. Items 22 such as trial components, instrumentation components may be tracked in position and orientation relative to body parts 10 and 12 using fiducials 14.
  • [0095]
    Computing functionality 18 can process, store and output on monitor 24 and otherwise various forms of data which correspond in whole or part to body parts 10 and 12 and other components for item 22. For example, in the embodiment shown in FIG. 1, body parts 10 and 12 are shown in cross-section or at least various internal aspects of them such as bone canals and surface structure are shown using fluoroscopic images. These images are obtained using a C-arm attached to a fiducial 14. The body parts, for example, tibia 10 and femur 12, also have fiducials attached. When the fluoroscopy images are obtained using the C-arm with fiducial 14, a position/orientation sensor 16 “sees” and tracks the position of the fluoroscopy head as well as the positions and orientations of the tibia 10 and femur 12. The computer stores the fluoroscopic images with this position/orientation information, thus correlating position and orientation of the fluoroscopic image relative to the relevant body part or parts. Thus, when the tibia 10 and corresponding fiducial 14 move, the computer automatically and correspondingly senses the new position of tibia 10 in space and can correspondingly move implements, instruments, references, trials and/or implants on the monitor 24 relative to the image of tibia 10. Similarly, the image of the body part can be moved, both the body part and such items may be moved, or the on screen image otherwise presented to suit the preferences of the surgeon or others and carry out the imaging that is desired. Similarly, when an item 22 such as an extramedullary rod, intramedullary rod, or other type of rod, that is being tracked moves, its image moves on monitor 24 so that the monitor shows the item 22 in proper position and orientation on monitor 24 relative to the femur 12. The rod 22 can thus appear on the monitor 24 in proper or improper alignment with respect to the mechanical axis and other features of the femur 12, as if the surgeon were able to see into the body in order to navigate and position rod 22 properly The computer functionality 18 can also store data relating to configuration, size and other properties of items 22 such as implements, instrumentation, trial components, implant components and other items used in surgery. When those are introduced into the field of position/orientation sensor 16, computer functionality 18 can generate and display overlaid or in combination with the fluoroscopic images of the body parts 10 and 12, computer generated images of implements, instrumentation components, trial components, implant components and other items 22 for navigation, positioning, assessment and other uses.
  • [0096]
    Additionally, computer functionality 18 can track any point in the position/orientation sensor 16 field such as by using a designator or a probe 26. The probe also can contain or be attached to a fiducial 14. The surgeon, nurse, or other user touches the tip of probe 26 to a point such as a landmark on bone structure and actuates the foot pedal 20 or otherwise instructs the computer 18 to note the landmark position. The position/orientation sensor 16 “sees” the position and orientation of fiducial 14 “knows” where the tip of probe 26 is relative to that fiducial 14 and thus calculates and stores, and can display on monitor 24 whenever desired and in whatever form or fashion or color, the point or other position designated by probe 26 when the foot pedal 20 is hit or other command is given. Thus, probe 26 can be used to designate landmarks on bone structure in order to allow the computer 18 to store and track, relative to movement of the bone fiducial 14, virtual or logical information such as mechanical axis 28, medial lateral axis 30 and anterior/posterior axis 32 of femur 12, tibia 10 and other body parts in addition to any other virtual or actual construct or reference.
  • [0097]
    Systems and processes according to an embodiment of the present invention such as the subject of FIGS. 2-64, can use the so-called FluoroNAV system and software provided by Medtronic Sofamor Danek Technologies. Such systems or aspects of them are disclosed in U.S. Pat. Nos. 5,383,454; 5,871,445; 6,146,390; 6,165,81; 6,235,038 and 6,236,875, and related (under 35 U.S.C. Section 119 and/or 120) patents, which are all incorporated herein by this reference. Any other desired systems can be used as mentioned above for imaging, storage of data, tracking of body parts and items and for other purposes. The FluoroNav system requires the use of reference frame type fiducials 14 which have four and in some cases five elements tracked by infrared sensors for position/orientation of the fiducials and thus of the body part, implement, instrumentation, trial component, implant component, or other device or structure being tracked. Such systems also use at least one probe 26 which the surgeon can use to select, designate, register, or otherwise make known to the system a point or points on the anatomy or other locations by placing the probe as appropriate and signaling or commanding the computer to note the location of, for instance, the tip of the probe. The FluoroNav system also tracks position and orientation of a C-arm used to obtain fluoroscopic images of body parts to which fiducials have been attached for capturing and storage of fluoroscopic images keyed to position/orientation information as tracked by the sensors 16. Thus, the monitor 24 can render fluoroscopic images of bones in combination with computer generated images of virtual constructs and references together with implements, instrumentation components, trial components, implant components and other items used in connection with surgery for navigation, resection of bone, assessment and other purposes.
  • [0098]
    FIGS. 2-64 are various views associated with Total Knee Arthroplasty surgery processes according to one particular embodiment and version of the present invention being carried out with the FluoroNav system referred to above. FIG. 2 shows a human knee in the surgical field, as well as the corresponding femur and tibia, to which fiducials 14 have been rigidly attached in accordance with this embodiment of the invention. Attachment of fiducials 14 preferably is accomplished using structure that withstands vibration of surgical saws and other phenomenon which occur during surgery without allowing any substantial movement of fiducial 14 relative to body part being tracked by the system. FIG. 3 shows fluoroscopy images being obtained of the body parts with fiducials 14 attached. The fiducial 14 on the fluoroscopy head in this embodiment is a cylindrically shaped cage which contains LEDs or “active” emitters for tracking by the sensors 16. Fiducials 14 attached to tibia 10 and femur 12 can also be seen. The fiducial 14 attached to the femur 12 uses LEDs instead of reflective spheres and is thus active, fed power by the wire seen extending into the bottom of the image.
  • [0099]
    FIGS. 4-10 are fluoroscopic images shown on monitor 24 obtained with position and/or orientation information received by, noted and stored within computer 18. FIG. 4 is an open field with no body part image, but which shows the optical indicia which may be used to normalize the image obtained using a spherical fluoroscopy wave front with the substantially flat surface of the monitor 24. FIG. 5 shows an image of the femur 12 head. This image is taken in order to allow the surgeon to designate the center of rotation of the femoral head for purposes of establishing the mechanical axis and other relevant constructs relating to of the femur according to which the prosthetic components will ultimately be positioned. Such center of rotation can be established by articulating the femur within the acetabulum or a prosthesis to capture a number of samples of position and orientation information and thus in turn to allow the computer to calculate the average center of rotation. The center of rotation can be established by using the probe and designating a number of points on the femoral head and thus allowing the computer to calculate the geometrical center or a center which corresponds to the geometry of points collected. Additionally, graphical representations such as controllably sized circles displayed on the monitor can be fitted by the surgeon to the shape of the femoral head on planar images using tactile input on screen to designate the centers according to that graphic, such as are represented by the computer as intersection of axes of the circles. Other techniques for determining, calculating or establishing points or constructs in space, whether or not corresponding to bone structure, can be used in accordance with the present invention.
  • [0100]
    FIG. 5 shows a fluoroscopic image of the femoral head while FIG. 6 shows an anterior/posterior view of the knee which can be used to designate landmarks and establish axes or constructs such as the mechanical axis or other rotational axes. FIG. 7 shows the distal end of the tibia and FIG. 8 shows a lateral view of the knee. FIG. 9 shows another lateral view of the knee while FIG. 10 shows a lateral view of the distal end of the tibia.
  • [0000]
    Registration of Surgically Related Items
  • [0101]
    FIGS. 11-14 show designation or registration of items 22 which will be used in surgery. Registration simply means, however it is accomplished, ensuring that the computer knows which body part, item or construct corresponds to which fiducial or fiducials, and how the position and orientation of the body part, item or construct is related to the position and orientation of its corresponding fiducial or a fiducial attached to an impactor or other component which is in turn attached to an item. Such registration or designation can be done before or after registering bone or body parts as discussed with respect to FIGS. 4-10. FIG. 11 shows a technician designating with probe 26 an item 22 such as an instrument component to which fiducial 14 is attached. The sensor 16 “sees” the position and orientation of the fiducial 14 attached to the item 22 and also the position and orientation of the fiducial 14 attached to the probe 26 whose tip is touching a landmark on the item 22. The technician designates onscreen or otherwise the identification of the item and then activates the foot pedal or otherwise instructs the computer to correlate the data corresponding to such identification, such as data needed to represent a particular cutting block component for a particular knee implant product, with the particularly shaped fiducial 14 attached to the component 22. The computer has then stored identification, position and orientation information relating to the fiducial for component 22 correlated with the data such as configuration and shape data for the item 22 so that upon registration, when sensor 16 tracks the item 22 fiducial 14 in the infrared field, monitor 24 can show the cutting block component 22 moving and turning, and properly positioned and oriented relative to the body part which is also being tracked. FIGS. 12-14 show similar registration for other instrumentation components 22.
  • [0000]
    Registration of Anatomy and Constructs
  • [0102]
    Similarly, the mechanical axis and other axes or constructs of body parts 10 and 12 can also be “registered” for tracking by the system. Again, the system has employed a fluoroscope to obtain images of the femoral head, knee and ankle of the sort shown in FIGS. 4-10. The system correlates such images with the position and orientation of the C-arm and the patient anatomy in real time as discussed above with the use of fiducials 14 placed on the body parts before image acquisition and which remain in position during the surgical procedure. Using these images and/or the probe, the surgeon can select and register in the computer 18 the center of the femoral head and ankle in orthogonal views, usually anterior/posterior and lateral, on a touch screen. The surgeon uses the probe to select any desired anatomical landmarks or references at the operative site of the knee or on the skin or surgical draping over the skin, as on the ankle. These points are registered in three dimensional space by the system and are tracked relative to the fiducials on the patient anatomy which are preferably placed intraoperatively. FIG. 15 shows the surgeon using probe 26 to designate or register landmarks on the condylar portion of femur 12 using probe 26 in order to feed to the computer 18 the position of one point needed to determine, store, and display the epicondylar axis. (See FIG. 20 which shows the epicondylar axis and the anterior-posterior plane and for lateral plane.) Although registering points using actual bone structure such as in FIG. 15 is one preferred way to establish the axis, a cloud of points approach by which the probe 26 is used to designate multiple points on the surface of the bone structure can be employed, as can moving the body part and tracking movement to establish a center of rotation as discussed above. Once the center of rotation for the femoral head and the condylar component have been registered, the computer is able to calculate, store, and render, and otherwise use data for, the mechanical axis of the femur 12. FIG. 17 once again shows the probe 26 being used to designate points on the condylar component of the femur 12.
  • [0103]
    FIG. 18 shows the onscreen images being obtained when the surgeon registers certain points on the bone surface using the probe 26 in order to establish the femoral mechanical axis. The tibial mechanical axis is then established by designating points to determine the centers of the proximal and distal ends of the tibia so that the mechanical axis can be calculated, stored, and subsequently used by the computer 18. FIG. 20 shows designated points for determining the epicondylar axis, both in the anterior/posterior and lateral planes while FIG. 21 shows such determination of the anterior-posterior axis as rendered onscreen. The posterior condylar axis is also determined by designating points or as otherwise desired, as rendered on the computer generated geometric images overlain or displayed in combination with the fluoroscopic images, all of which are keyed to fiducials 14 being tracked by sensors 16.
  • [0104]
    FIG. 23 shows an adjustable circle graphic which can be generated and presented in combination with orthogonal fluoroscopic images of the femoral head, and tracked by the computer 18 when the surgeon moves it on screen in order to establish the centers of the femoral head in both the anterior-posterior and lateral planes.
  • [0105]
    FIG. 24 is an onscreen image showing the anterior-posterior axis, epicondylar axis and posterior condylar axis from points which have been designated as described above. These constructs are generated by the computer 18 and presented on monitor 24 in combination with the fluoroscopic images of the femur 12, correctly positioned and oriented relative thereto as tracked by the system. In the fluoroscopic/computer generated image combination shown at left bottom of FIG. 24, a “sawbones” knee as shown in certain drawings above which contains radio opaque materials is represented fluoroscopically and tracked using sensor 16 while the computer generates and displays the mechanical axis of the femur 12 which runs generally horizontally. The epicondylar axis runs generally vertically, and the anterior/posterior axis runs generally diagonally. The image at bottom right shows similar information in a lateral view. Here, the anterior-posterior axis runs generally horizontally while the epicondylar axis runs generally diagonally, and the mechanical axis generally vertically.
  • [0106]
    FIG. 24, as is the case with a number of screen presentations generated and presented by the system of FIGS. 4-64, also shows at center a list of landmarks to be registered in order to generate relevant axes and constructs useful in navigation, positioning and assessment during surgery. Textural cues may also be presented which suggest to the surgeon next steps in the process of registering landmarks and establishing relevant axes. Such instructions may be generated as the computer 18 tracks, from one step to the next, registration of items 22 and bone locations as well as other measures being taken by the surgeon during the surgical operation.
  • [0107]
    FIG. 25 shows mechanical, lateral, anterior-posterior axes for the tibia according to points are registered by the surgeon.
  • [0108]
    FIG. 26 is another onscreen image showing the axes for the femur 12.
  • [0000]
    Modifying Bone
  • [0109]
    After the mechanical axis and other rotation axes and constructs relating to the femur and tibia are established, instrumentation can be properly oriented to resect or modify bone in order to fit trial components and implant components properly according to the embodiment of the invention shown in FIGS. 4-64. Instrumentation such as, for instance, cutting blocks, to which fiducials 14 are mounted, can be employed. The system can then track instrumentation as the surgeon manipulates it for optimum positioning. In other words, the surgeon can “navigate” the instrumentation for optimum positioning using the system and the monitor. In this manner, instrumentation may be positioned according to the system of this embodiment in order to align the ostetomies to the mechanical and rotational axes or reference axes on an extramedullary rod that does not violate the canal, on an intramedullary rod, or on any other type of rod. The touchscreen 24 can then also display the instrument such as the cutting block and/or the implant relative to the instrument and the rod during this process, in order, among other things, properly to select size of implant and perhaps implant type. As the instrument moves, the varus/valgus, flexion/extension and internal/external rotation of the relative component position can be calculated and shown with respect to the referenced axes; in the preferred embodiment, this can be done at a rate of six cycles per second or faster. The instrument position is then fixed in the computer and physically and the bone resections are made.
  • [0110]
    FIG. 27 shows orientation of an extramedullary rod to which a fiducial 14 is attached via impactor 22. The surgeon views the screen 24 which has an image as shown in FIG. 29 of the rod overlain on or in combination with the femur 12 fluoroscopic image as the two are actually positioned and oriented relative to one another in space. The surgeon then navigates the rod into place preferably along the mechanical axis of the femur and drives it home with appropriate mallet or other device. The present invention thus avoids the need to bore a hole in the metaphysis of the femur and place a reamer or other rod into the medullary canal which can cause fat embolism, hemorrhaging, infection and other untoward and undesired effects.
  • [0111]
    FIG. 28 also shows the extramedullary rod being located. FIG. 29 shows fluoroscopic images, both anterior-posterior and lateral, with axes, and with a computer generated and tracked image of the rod superposed or in combination with the fluoroscopic images of the femur and tibia. FIG. 30 shows the rod superposed on the femoral fluoroscopic image similar to what is shown in FIG. 29.
  • [0112]
    FIG. 29 also shows other information relevant to the surgeon such as the name of the component being overlain on the femur image (new EM nail), suggestions or instructions at the lower left, and angle of the rod in varus/valgus and extension relative to the axes. Any or all of this information can be used to navigate and position the rod relative to the femur. At a point in time during or after placement of the rod, its tracking may be “handed off” from the impactor fiducial 14 to the femur fiducal 14 as discussed below.
  • [0113]
    Once the extramedullary rod, intramedullary rod, other type of rod has been placed, instrumentation can be positioned as tracked in position and orientation by sensor 16 and displayed on screen face 24. Thus, a cutting block of the sort used to establish the condylar anterior cut, with its fiducial 14 attached, is introduced into the field and positioned on the rod. Because the cutting block corresponds to a particular implant product and can be adjusted and designated on screen to correspond to a particular implant size of that product, the computer 18 can generate and display a graphic of the cutting block and the femoral component overlain on the fluoroscopic image as shown in FIGS. 33-36. The surgeon can thus navigate and position the cutting block on screen using not only images of the cutting block on the bone, but also images of the corresponding femoral component which will be ultimately installed. The surgeon can thus adjust the positioning of the physical cutting block component, and secure it to the rod in order to resect the anterior of the condylar portion of the femur in order to optimally fit and position the ultimate femoral component being shown on the screen. FIG. 32 is another view of the cutting block of FIG. 31 being positioned. Other cutting blocks and other resections may be positioned and made similarly on the condylar component.
  • [0114]
    In a similar fashion, instrumentation may be navigated and positioned on the proximal portion of the tibia 10 as shown in FIG. 41 and as tracked by sensor 16 and on screen by images of the cutting block and the implant component as shown in FIGS. 37-40. FIGS. 42 and 43 show other onscreen images generated during this bone modification process for purposes of navigation and positioning cutting blocks and other instrumentation for proper resection and other modification of femur and tibia in order to prepare for trial components and implant components according to systems and processes of the embodiment of the present invention shown in FIGS. 4-64.
  • [0115]
    FIGS. 44-48 also show instrumentation being positioned relative to femur 12 as tracked by the system for resection of the condylar component in order to receive a particular size of implant component. Various cutting blocks and their attached fiducials can be seen in these views.
  • [0116]
    FIG. 49 shows a femoral component overlaid on the femur as instrumentation is being tracked and positioned in order for resection of bone properly and accurately to be accomplished. FIG. 50 is another navigational screen face showing a femoral component overlay as instrumentation is being positioned for resection of bone.
  • [0117]
    FIG. 51 is tibial component overlay information on a navigation screen as the cutting block for the tibial plateau is being positioned for bone resection.
  • [0118]
    FIGS. 52 and 53 show femoral component and tibial component overlays, respectively, according to certain position and orientation of cutting blocks/instrumentation as bone resections are made. The surgeon can thus visualize where the implant components will be and can assess fit, and other things if desired, before resections are made.
  • [0000]
    Navigation, Placement and Assessment of Trials and Implants
  • [0119]
    Once resection and modification of bone has been accomplished, implant trials can then be installed and tracked by the system in a manner similar to navigating and positioning the instrumentation, as displayed on the screen 24. Thus, a femoral component trial, a tibial plateau trial, and a bearing plate trial may be placed as navigated on screen using computer generated overlays corresponding to the trials.
  • [0120]
    During the trial installation process, and also during the implant component installation process, instrument positioning process or at any other desired point in surgical or other operations according to the present invention, the system can transition or segue from tracking a component according to a first fiducial to tracking the component according to a second fiducial. Thus, as shown as FIG. 33, the trial femoral component is mounted on an impactor to which is attached a fiducial 14. The trial component is installed and positioned using the impactor. The computer 18 “knows” the position and orientation of the trial relative to the fiducial on the impactor (such as by prior registration of the component attached to the impactor) so that it can generate and display the image of the femoral component trial on screen 24 overlaid on the fluoroscopic image of the condylar component. At any desired point in time, before, during or after the trial component is properly placed on the condylar component of the femur to align with mechanical axis and according to proper orientation relative to other axes, the system can be instructed by foot pedal or otherwise to begin tracking the position of the trial component using the fiducial attached to the femur rather than the one attached to the impactor. According to the preferred embodiment, the sensor 16 “sees” at this point in time both the fiducials on the impactor and the femur 12 so that it already “knows” the position and orientation of the trial component relative to the fiducial on the impactor and is thus able to calculate and store for later use the position and orientation of the trial component relative to the femur 12 fiducial. Once this “handoff” happens, the impactor can be removed and the trial component tracked with the femur fiducial 14 as part of or moving in concert with the femur 12. Similar handoff procedures may be used in any other instance as desired in accordance with the present invention.
  • [0121]
    FIG. 55 shows the tibial plateau trial being tracked and installed in a manner similar to femoral component trial as discussed above. Alternatively, the tibial trial can be placed on the proximal tibia and then registered using the probe 26. Probe 26 is used to designate preferably at least three features on the tibial trial of known coordinates, such as bone spike holes. As the probe is placed onto each feature, the system is prompted to save that coordinate position so that the system can match the tibial trial's feature's coordinates to the saved coordinates. The system then tracks the tibial trial relative to the tibial anatomical reference frame.
  • [0122]
    Once the trial components are installed, the surgeon can assess alignment and stability of the components and the joint. During such assessment, in trial reduction, the computer can display on monitor 24 the relative motion between the trial components to allow the surgeon to make soft tissue releases and changes in order to improve the kinematics of the knee. The system can also apply rules and/or intelligence to make suggestions based on the information such as what soft tissue releases to make if the surgeon desires. The system can also display how the soft tissue releases are to be made.
  • [0123]
    FIG. 56 shows the surgeon articulating the knee as he monitors the screen which is presenting images such as those shown in FIGS. 57-59 which not only show movement of the trial components relative to each other, but also orientation, flexion, and varus/valgus data. During this assessment, the surgeon may conduct certain assessment processes such as external/internal rotation or rotational laxity testing, varus/valgus tests, and anterior-posterior drawer at 0 and 90 degrees and mid range. Thus, in the AP drawer test, the surgeon can position the tibia at the first location and press the foot pedal. He then positions the tibia at the second location and once again presses the foot pedal so that the computer has registered and stored two locations in order to calculate and display the drawer and whether it is acceptable for the patient and the product involved. If not, the computer can apply rules in order to generate and display suggestions for releasing ligaments or other tissue, or using other component sizes or types, such as shown, for example, in FIGS. 60-63. Once the proper tissue releases have been made, if necessary, and alignment and stability are acceptable as noted quantitatively on screen about all axes, the trial components may be removed and actual components navigated, installed, and assessed in performance in a manner similar to that in which the trial components were navigated, installed, and assessed.
  • [0124]
    FIG. 64 is another computer generated 3-dimensional image of the trial components as tracked by the system during trialing.
  • [0125]
    At the end of the case, all alignment information can be saved for the patient file. This is of great assistance to the surgeon due to the fact that the outcome of implant positioning can be seen before any resections have been made to the bone. The system is also capable of tracking the patella and resulting placement of cutting guides and the patellar trial position. The system then tracks alignment of the patella with the patellar femoral groove and will give feedback on issues, such as, patellar tilt.
  • [0126]
    The tracking and image information provided by systems and processes according to the present invention facilitate telemedical techniques, because they provide useful images for distribution to distant geographic locations where expert surgical or medical specialists may collaborate during surgery. Thus, systems and processes according to the present invention can be used in connection with computing functionality 18 which is networked or otherwise in communication with computing functionality in other locations, whether by PSTN, information exchange infrastructures such as packet switched networks including the Internet, or as otherwise desire. Such remote imaging may occur on computers, wireless devices, videoconferencing devices or in any other mode or on any other platform which is now or may in the future be capable of rending images or parts of them produced in accordance with the present invention. Parallel communication links such as switched or unswitched telephone call connections may also accompany or form part of such telemedical techniques. Distant databases such as online catalogs of implant suppliers or prosthetics buyers or distributors may form part of or be networked with functionality 18 to give the surgeon in real time access to additional options for implants which could be procured and used during the surgical operation.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US100602 *Mar 8, 1870 Improvement in wrenches
US4565192 *Apr 12, 1984Jan 21, 1986Shapiro James ADevice for cutting a patella and method therefor
US4566448 *Mar 7, 1983Jan 28, 1986Rohr Jr William LLigament tensor and distal femoral resector guide
US4567885 *Sep 18, 1984Feb 4, 1986Androphy Gary WTriplanar knee resection system
US4567886 *Jan 6, 1983Feb 4, 1986Petersen Thomas DFlexion spacer guide for fitting a knee prosthesis
US4574794 *Jun 1, 1984Mar 11, 1986Queen's University At KingstonOrthopaedic bone cutting jig and alignment device
US4718413 *Dec 24, 1986Jan 12, 1988Orthomet, Inc.Bone cutting guide and methods for using same
US4722056 *Feb 18, 1986Jan 26, 1988Trustees Of Dartmouth CollegeReference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4802468 *Aug 22, 1986Feb 7, 1989Powlan Roy YDevice for cutting threads in the walls of the acetabular cavity in humans
US4803976 *Apr 8, 1988Feb 14, 1989SynthesSighting instrument
US4809689 *Oct 28, 1986Mar 7, 1989Mecron Medizinische Produkte GmbhDrilling system for insertion of an endoprosthesis
US4815899 *Dec 9, 1987Mar 28, 1989No-Ma Engineering IncorporatedTool holder and gun drill or reamer
US4892093 *Oct 28, 1988Jan 9, 1990Osteonics Corp.Femoral cutting guide
US4991579 *Nov 10, 1987Feb 12, 1991Allen George SMethod and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5002545 *Jan 30, 1989Mar 26, 1991Dow Corning Wright CorporationTibial surface shaping guide for knee implants
US5002578 *May 4, 1990Mar 26, 1991Venus CorporationModular hip stem prosthesis apparatus and method
US5078719 *Jan 8, 1990Jan 7, 1992Schreiber Saul NOsteotomy device and method therefor
US5092869 *Mar 1, 1991Mar 3, 1992Biomet, Inc.Oscillating surgical saw guide pins and instrumentation system
US5094241 *Jan 19, 1990Mar 10, 1992Allen George SApparatus for imaging the anatomy
US5097839 *Feb 13, 1990Mar 24, 1992Allen George SApparatus for imaging the anatomy
US5098426 *Feb 6, 1989Mar 24, 1992Phoenix Laser Systems, Inc.Method and apparatus for precision laser surgery
US5190547 *May 15, 1992Mar 2, 1993Midas Rex Pneumatic Tools, Inc.Replicator for resecting bone to match a pattern
US5289826 *Mar 5, 1992Mar 1, 1994N. K. Biotechnical Engineering Co.Tension sensor
US5379133 *Sep 9, 1993Jan 3, 1995Atl CorporationSynthetic aperture based real time holographic imaging
US5383454 *Jul 2, 1992Jan 24, 1995St. Louis UniversitySystem for indicating the position of a surgical probe within a head on an image of the head
US5387218 *Dec 5, 1991Feb 7, 1995University College LondonSurgical instrument for shaping a bone
US5389101 *Apr 21, 1992Feb 14, 1995University Of UtahApparatus and method for photogrammetric surgical localization
US5395376 *Oct 9, 1991Mar 7, 1995Caspari; Richard B.Method of implanting a prosthesis
US5397329 *Feb 26, 1993Mar 14, 1995Allen; George S.Fiducial implant and system of such implants
US5484437 *Jun 10, 1993Jan 16, 1996Michelson; Gary K.Apparatus and method of inserting spinal implants
US5486178 *Feb 16, 1994Jan 23, 1996Hodge; W. AndrewFemoral preparation instrumentation system and method
US5490854 *Aug 17, 1993Feb 13, 1996Synvasive Technology, Inc.Surgical cutting block and method of use
US5491510 *Dec 3, 1993Feb 13, 1996Texas Instruments IncorporatedSystem and method for simultaneously viewing a scene and an obscured object
US5597379 *Nov 18, 1994Jan 28, 1997Hudson Surgical Design, Inc.Method and apparatus for femoral resection alignment
US5598269 *May 12, 1994Jan 28, 1997Children's Hospital Medical CenterLaser guided alignment apparatus for medical procedures
US5603318 *Oct 29, 1993Feb 18, 1997University Of Utah Research FoundationApparatus and method for photogrammetric surgical localization
US5613969 *Feb 7, 1995Mar 25, 1997Jenkins, Jr.; Joseph R.Tibial osteotomy system
US5704941 *Nov 3, 1995Jan 6, 1998Osteonics Corp.Tibial preparation apparatus and method
US5707370 *Dec 1, 1995Jan 13, 1998Orthofix, S.R.L.Accessory device for an orthopedic fixator
US5709689 *Sep 25, 1995Jan 20, 1998Wright Medical Technology, Inc.Distal femur multiple resection guide
US5715836 *Feb 15, 1994Feb 10, 1998Kliegis; UlrichMethod and apparatus for planning and monitoring a surgical operation
US5716361 *Nov 2, 1995Feb 10, 1998Masini; Michael A.Bone cutting guides for use in the implantation of prosthetic joint components
US5720752 *Feb 21, 1996Feb 24, 1998Smith & Nephew, Inc.Distal femoral cutting guide apparatus with anterior or posterior referencing for use in knee joint replacement surgery
US5722978 *Mar 13, 1996Mar 3, 1998Jenkins, Jr.; Joseph RobertOsteotomy system
US5733292 *Sep 15, 1995Mar 31, 1998Midwest Orthopaedic Research FoundationArthroplasty trial prosthesis alignment devices and associated methods
US5860981 *May 29, 1997Jan 19, 1999Dennis W. BurkeGuide for femoral milling instrumention for use in total knee arthroplasty
US5865809 *Apr 29, 1997Feb 2, 1999Stephen P. MoenningApparatus and method for securing a cannula of a trocar assembly to a body of a patient
US5871018 *Jun 6, 1997Feb 16, 1999Delp; Scott L.Computer-assisted surgical method
US5871445 *Sep 7, 1995Feb 16, 1999St. Louis UniversitySystem for indicating the position of a surgical probe within a head on an image of the head
US5879352 *Jun 17, 1997Mar 9, 1999Synthes (U.S.A.)Osteosynthetic longitudinal alignment and/or fixation device
US5879354 *Jul 14, 1997Mar 9, 1999Hudson Surgical Design, Inc.Prosthetic implant
US5885296 *Sep 18, 1997Mar 23, 1999Medidea, LlcBone cutting guides with removable housings for use in the implantation of prosthetic joint components
US5885297 *May 11, 1998Mar 23, 1999Matsen, Iii; Frederick A.Joint replacement method and apparatus
US6010506 *Sep 14, 1998Jan 4, 2000Smith & Nephew, Inc.Intramedullary nail hybrid bow
US6011987 *Dec 8, 1997Jan 4, 2000The Cleveland Clinic FoundationFiducial positioning cup
US6016606 *Apr 23, 1998Jan 25, 2000Navitrak International CorporationNavigation device having a viewer for superimposing bearing, GPS position and indexed map information
US6021342 *Jun 30, 1997Feb 1, 2000Neorad A/SApparatus for assisting percutaneous computed tomography-guided surgical activity
US6021343 *Nov 20, 1997Feb 1, 2000Surgical Navigation TechnologiesImage guided awl/tap/screwdriver
US6022377 *Jan 20, 1998Feb 8, 2000Sulzer Orthopedics Inc.Instrument for evaluating balance of knee joint
US6026315 *Mar 19, 1998Feb 15, 2000Siemens AktiengesellschaftMethod and apparatus for calibrating a navigation system in relation to image data of a magnetic resonance apparatus
US6030391 *Oct 26, 1998Feb 29, 2000Micropure Medical, Inc.Alignment gauge for metatarsophalangeal fusion surgery
US6033410 *Jan 4, 1999Mar 7, 2000Bristol-Myers Squibb CompanyOrthopaedic instrumentation
US6168627 *Jan 18, 2000Jan 2, 2001Acumed, Inc.Shoulder prosthesis
US6174335 *Aug 6, 1998Jan 16, 2001Johnson & Johnson Professional, Inc.Alignment guide for slotted prosthetic stem
US6185315 *Sep 15, 1998Feb 6, 2001Wyko CorporationMethod of combining multiple sets of overlapping surface-profile interferometric data to produce a continuous composite map
US6187010 *Sep 17, 1997Feb 13, 2001Medidea, LlcBone cutting guides for use in the implantation of prosthetic joint components
US6190320 *Sep 28, 1999Feb 20, 2001U.S. Philips CorporationMethod for the processing of medical ultrasound images of bony structures, and method and device for computer-assisted surgery
US6190395 *Apr 22, 1999Feb 20, 2001Surgical Navigation Technologies, Inc.Image guided universal instrument adapter and method for use with computer-assisted image guided surgery
US6195168 *Feb 25, 2000Feb 27, 2001Zygo CorporationInfrared scanning interferometry apparatus and method
US6344853 *Jan 6, 2000Feb 5, 2002Alcone Marketing GroupMethod and apparatus for selecting, modifying and superimposing one image on another
US6347240 *Sep 16, 1997Feb 12, 2002St. Louis UniversitySystem and method for use in displaying images of a body part
US6351639 *Sep 10, 1999Feb 26, 2002Fujitsu LimitedTelephone whose setting details can be changed, and telephone capable of changing settings of called telephone
US6351661 *Dec 14, 1998Feb 26, 2002Sherwood Services AgOptically coupled frameless stereotactic space probe
US6503249 *Jun 13, 2000Jan 7, 2003William R. KrauseTargeting device for an implant
US6503254 *Dec 21, 2000Jan 7, 2003Medidea, LlcApparatus and method for preparing box cuts in a distal femur with a cutting guide attached to an intramedullary stem
US6673077 *Mar 8, 2000Jan 6, 2004Lawrence KatzApparatus for guiding a resection of a proximal tibia
US6675040 *Jan 26, 2000Jan 6, 2004Sherwood Services AgOptical object tracking system
US6685711 *Mar 17, 2001Feb 3, 2004Howmedica Osteonics Corp.Apparatus used in performing femoral and tibial resection in knee surgery
US6690964 *Jul 3, 2001Feb 10, 2004Siemens AktiengesellschaftMethod and device for visualization of positions and orientation of intracorporeally guided instruments during a surgical intervention
US6692447 *Feb 7, 2000Feb 17, 2004Frederic PicardOptimizing alignment of an appendicular
US6694168 *Dec 21, 2000Feb 17, 2004Synthes (U.S.A.)Fiducial matching using fiducial implants
US6695848 *Mar 5, 2001Feb 24, 2004Hudson Surgical Design, Inc.Methods for femoral and tibial resection
US6993374 *Apr 17, 2002Jan 31, 2006Ricardo SassoInstrumentation and method for mounting a surgical navigation reference device to a patient
US7001346 *Nov 14, 2002Feb 21, 2006Michael R. WhiteApparatus and methods for making intraoperative orthopedic measurements
US20020002330 *Apr 5, 2001Jan 3, 2002Stefan VilsmeierReferencing or registering a patient or a patient body part in a medical navigation system by means of irradiation of light points
US20020002365 *Jul 9, 2001Jan 3, 2002Andre LechotSurgical instrumentation system
US20020007294 *Apr 5, 2001Jan 17, 2002Bradbury Thomas J.System and method for rapidly customizing a design and remotely manufacturing biomedical devices using a computer system
US20020011594 *May 29, 2001Jan 31, 2002Desouza JosephPlastic fence panel
US20020016540 *Sep 20, 2001Feb 7, 2002Mikus Paul W.Computer Guided cryosurgery
US20020018981 *Sep 13, 2001Feb 14, 2002Matts AnderssonArrangement and system for production of dental products and transmission of information
US20030006107 *Jun 25, 2001Jan 9, 2003Ming-Ta TsaiDisk for use with a brake system
US20030018338 *Dec 23, 2000Jan 23, 2003Axelson Stuart L.Methods and tools for femoral resection in primary knee surgery
US20030030787 *Mar 8, 2002Feb 13, 2003Agilent Technologies, Inc.Optical measuring device with imaging unit
US20040019382 *Mar 19, 2003Jan 29, 2004Farid AmiroucheSystem and method for prosthetic fitting and balancing in joints
US20040030237 *Jun 4, 2003Feb 12, 2004Lee David M.Fiducial marker devices and methods
US20040030245 *Apr 16, 2003Feb 12, 2004Noble Philip C.Computer-based training methods for surgical procedures
US20050021037 *May 28, 2004Jan 27, 2005Mccombs Daniel L.Image-guided navigated precision reamers
US20050021043 *Oct 3, 2003Jan 27, 2005Herbert Andre JansenApparatus for digitizing intramedullary canal and method
US20060015120 *Apr 30, 2003Jan 19, 2006Alain RichardDetermining femoral cuts in knee surgery
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7764985Jul 23, 2004Jul 27, 2010Smith & Nephew, Inc.Surgical navigation system component fault interfaces and related processes
US7794467Nov 15, 2004Sep 14, 2010Smith & Nephew, Inc.Adjustable surgical cutting systems
US7862570Oct 3, 2003Jan 4, 2011Smith & Nephew, Inc.Surgical positioners
US7983777Aug 18, 2006Jul 19, 2011Mark MeltonSystem for biomedical implant creation and procurement
US8070752Jan 9, 2008Dec 6, 2011Biomet Manufacturing Corp.Patient specific alignment guide and inter-operative adjustment
US8092465May 31, 2007Jan 10, 2012Biomet Manufacturing Corp.Patient specific knee alignment guide and associated method
US8109942Apr 21, 2005Feb 7, 2012Smith & Nephew, Inc.Computer-aided methods, systems, and apparatuses for shoulder arthroplasty
US8133234Feb 20, 2009Mar 13, 2012Biomet Manufacturing Corp.Patient specific acetabular guide and method
US8170641Feb 20, 2009May 1, 2012Biomet Manufacturing Corp.Method of imaging an extremity of a patient
US8177788Feb 22, 2006May 15, 2012Smith & Nephew, Inc.In-line milling system
US8197489Jun 27, 2008Jun 12, 2012Depuy Products, Inc.Knee ligament balancer
US8241293Feb 26, 2010Aug 14, 2012Biomet Manufacturing Corp.Patient specific high tibia osteotomy
US8265949Sep 27, 2007Sep 11, 2012Depuy Products, Inc.Customized patient surgical plan
US8282646Feb 29, 2008Oct 9, 2012Biomet Manufacturing Corp.Patient specific knee alignment guide and associated method
US8298237Feb 4, 2008Oct 30, 2012Biomet Manufacturing Corp.Patient-specific alignment guide for multiple incisions
US8323290 *Mar 2, 2007Dec 4, 2012Biomet Manufacturing Corp.Tensor for use in surgical navigation
US8337426 *Jun 18, 2009Dec 25, 2012Biomet Manufacturing Corp.Method and apparatus for aligning and securing an implant relative to a patient
US8343159Sep 29, 2008Jan 1, 2013Depuy Products, Inc.Orthopaedic bone saw and method of use thereof
US8357111Sep 30, 2007Jan 22, 2013Depuy Products, Inc.Method and system for designing patient-specific orthopaedic surgical instruments
US8357166Sep 29, 2008Jan 22, 2013Depuy Products, Inc.Customized patient-specific instrumentation and method for performing a bone re-cut
US8361076Sep 29, 2008Jan 29, 2013Depuy Products, Inc.Patient-customizable device and system for performing an orthopaedic surgical procedure
US8377066Sep 22, 2010Feb 19, 2013Biomet Manufacturing Corp.Patient-specific elbow guides and associated methods
US8377068Sep 29, 2008Feb 19, 2013DePuy Synthes Products, LLC.Customized patient-specific instrumentation for use in orthopaedic surgical procedures
US8398645Sep 29, 2008Mar 19, 2013DePuy Synthes Products, LLCFemoral tibial customized patient-specific orthopaedic surgical instrumentation
US8398646Nov 23, 2011Mar 19, 2013Biomet Manufacturing Corp.Patient-specific knee alignment guide and associated method
US8407067Aug 31, 2010Mar 26, 2013Biomet Manufacturing Corp.Method and apparatus for manufacturing an implant
US8473305Jun 12, 2009Jun 25, 2013Biomet Manufacturing Corp.Method and apparatus for manufacturing an implant
US8486150Apr 7, 2011Jul 16, 2013Biomet Manufacturing Corp.Patient-modified implant
US8491597Dec 1, 2010Jul 23, 2013Smith & Nephew, Inc. (partial interest)Surgical positioners
US8532807Jun 6, 2011Sep 10, 2013Biomet Manufacturing, LlcPre-operative planning and manufacturing method for orthopedic procedure
US8535387Mar 7, 2011Sep 17, 2013Biomet Manufacturing, LlcPatient-specific tools and implants
US8551023Mar 31, 2009Oct 8, 2013Depuy (Ireland)Device and method for determining force of a knee joint
US8556830Mar 31, 2009Oct 15, 2013DepuyDevice and method for displaying joint force data
US8562617May 23, 2012Oct 22, 2013DePuy Synthes Products, LLCKnee ligament balancer
US8568487Dec 23, 2010Oct 29, 2013Biomet Manufacturing, LlcPatient-specific hip joint devices
US8591516Nov 29, 2010Nov 26, 2013Biomet Manufacturing, LlcPatient-specific orthopedic instruments
US8597210Mar 31, 2009Dec 3, 2013Depuy (Ireland)System and method for displaying joint force data
US8597365Aug 4, 2011Dec 3, 2013Biomet Manufacturing, LlcPatient-specific pelvic implants for acetabular reconstruction
US8603180May 19, 2011Dec 10, 2013Biomet Manufacturing, LlcPatient-specific acetabular alignment guides
US8608748Sep 16, 2008Dec 17, 2013Biomet Manufacturing, LlcPatient specific guides
US8608749Mar 7, 2011Dec 17, 2013Biomet Manufacturing, LlcPatient-specific acetabular guides and associated instruments
US8632547May 12, 2011Jan 21, 2014Biomet Sports Medicine, LlcPatient-specific osteotomy devices and methods
US8668700Apr 29, 2011Mar 11, 2014Biomet Manufacturing, LlcPatient-specific convertible guides
US8715289Apr 15, 2011May 6, 2014Biomet Manufacturing, LlcPatient-specific numerically controlled instrument
US8721568Mar 31, 2009May 13, 2014Depuy (Ireland)Method for performing an orthopaedic surgical procedure
US8740817Mar 31, 2009Jun 3, 2014Depuy (Ireland)Device and method for determining forces of a patient's joint
US8764760Jul 1, 2011Jul 1, 2014Biomet Manufacturing, LlcPatient-specific bone-cutting guidance instruments and methods
US8828087Aug 13, 2012Sep 9, 2014Biomet Manufacturing, LlcPatient-specific high tibia osteotomy
US8858561Jun 18, 2009Oct 14, 2014Blomet Manufacturing, LLCPatient-specific alignment guide
US8864769Mar 7, 2011Oct 21, 2014Biomet Manufacturing, LlcAlignment guides with patient-specific anchoring elements
US8900244Jan 5, 2012Dec 2, 2014Biomet Manufacturing, LlcPatient-specific acetabular guide and method
US8903530Sep 6, 2013Dec 2, 2014Biomet Manufacturing, LlcPre-operative planning and manufacturing method for orthopedic procedure
US8956364Aug 29, 2012Feb 17, 2015Biomet Manufacturing, LlcPatient-specific partial knee guides and other instruments
US8979936Jun 21, 2013Mar 17, 2015Biomet Manufacturing, LlcPatient-modified implant
US9005297Jan 17, 2013Apr 14, 2015Biomet Manufacturing, LlcPatient-specific elbow guides and associated methods
US9017335Nov 19, 2008Apr 28, 2015Blue OrthoHip implant registration in computer assisted surgery
US9060788Dec 11, 2012Jun 23, 2015Biomet Manufacturing, LlcPatient-specific acetabular guide for anterior approach
US9066727Mar 3, 2011Jun 30, 2015Materialise NvPatient-specific computed tomography guides
US9066734Aug 31, 2011Jun 30, 2015Biomet Manufacturing, LlcPatient-specific sacroiliac guides and associated methods
US9084618Jun 11, 2012Jul 21, 2015Biomet Manufacturing, LlcDrill guides for confirming alignment of patient-specific alignment guides
US9113971Sep 29, 2010Aug 25, 2015Biomet Manufacturing, LlcFemoral acetabular impingement guide
US9173661Oct 1, 2009Nov 3, 2015Biomet Manufacturing, LlcPatient specific alignment guide with cutting surface and laser indicator
US9173666Jun 27, 2014Nov 3, 2015Biomet Manufacturing, LlcPatient-specific-bone-cutting guidance instruments and methods
US9204977Mar 8, 2013Dec 8, 2015Biomet Manufacturing, LlcPatient-specific acetabular guide for anterior approach
US9220509 *Jun 29, 2010Dec 29, 2015Blue OrthoAdjustable guide in computer assisted orthopaedic surgery
US9237950Jan 31, 2013Jan 19, 2016Biomet Manufacturing, LlcImplant with patient-specific porous structure
US9241745Dec 13, 2012Jan 26, 2016Biomet Manufacturing, LlcPatient-specific femoral version guide
US9271744Apr 18, 2011Mar 1, 2016Biomet Manufacturing, LlcPatient-specific guide for partial acetabular socket replacement
US9289253Nov 3, 2010Mar 22, 2016Biomet Manufacturing, LlcPatient-specific shoulder guide
US9295497Dec 18, 2012Mar 29, 2016Biomet Manufacturing, LlcPatient-specific sacroiliac and pedicle guides
US9301812Oct 17, 2012Apr 5, 2016Biomet Manufacturing, LlcMethods for patient-specific shoulder arthroplasty
US9339278Feb 21, 2012May 17, 2016Biomet Manufacturing, LlcPatient-specific acetabular guides and associated instruments
US9345548Dec 20, 2010May 24, 2016Biomet Manufacturing, LlcPatient-specific pre-operative planning
US9351743Oct 17, 2012May 31, 2016Biomet Manufacturing, LlcPatient-specific glenoid guides
US9381011Mar 29, 2012Jul 5, 2016Depuy (Ireland)Orthopedic surgical instrument for knee surgery
US9386993Sep 26, 2012Jul 12, 2016Biomet Manufacturing, LlcPatient-specific femoroacetabular impingement instruments and methods
US9393028Aug 10, 2010Jul 19, 2016Biomet Manufacturing, LlcDevice for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9408616May 12, 2014Aug 9, 2016Biomet Manufacturing, LlcHumeral cut guide
US9427320Nov 27, 2013Aug 30, 2016Biomet Manufacturing, LlcPatient-specific pelvic implants for acetabular reconstruction
US9439659Jun 29, 2015Sep 13, 2016Biomet Manufacturing, LlcPatient-specific sacroiliac guides and associated methods
US9445907Sep 16, 2013Sep 20, 2016Biomet Manufacturing, LlcPatient-specific tools and implants
US9451973Oct 17, 2012Sep 27, 2016Biomet Manufacturing, LlcPatient specific glenoid guide
US9456833Jan 20, 2014Oct 4, 2016Biomet Sports Medicine, LlcPatient-specific osteotomy devices and methods
US9468538Nov 12, 2012Oct 18, 2016Biomet Manufacturing, LlcMethod and apparatus for aligning and securing an implant relative to a patient
US9474539Mar 7, 2014Oct 25, 2016Biomet Manufacturing, LlcPatient-specific convertible guides
US9480490Dec 16, 2013Nov 1, 2016Biomet Manufacturing, LlcPatient-specific guides
US9480580Dec 9, 2013Nov 1, 2016Biomet Manufacturing, LlcPatient-specific acetabular alignment guides
US9498233Mar 13, 2013Nov 22, 2016Biomet Manufacturing, Llc.Universal acetabular guide and associated hardware
US9517145Mar 11, 2014Dec 13, 2016Biomet Manufacturing, LlcGuide alignment system and method
US9522010Nov 21, 2013Dec 20, 2016Biomet Manufacturing, LlcPatient-specific orthopedic instruments
US9538953Sep 20, 2013Jan 10, 2017Depuy Ireland Unlimited CompanyDevice and method for determining force of a knee joint
US9539013Apr 13, 2015Jan 10, 2017Biomet Manufacturing, LlcPatient-specific elbow guides and associated methods
US9545459Mar 31, 2012Jan 17, 2017Depuy Ireland Unlimited CompanyContainer for surgical instruments and system including same
US9554910Oct 17, 2012Jan 31, 2017Biomet Manufacturing, LlcPatient-specific glenoid guide and implants
US9561040Jun 3, 2014Feb 7, 2017Biomet Manufacturing, LlcPatient-specific glenoid depth control
US9579107Mar 11, 2014Feb 28, 2017Biomet Manufacturing, LlcMulti-point fit for patient specific guide
US9579112Jun 29, 2015Feb 28, 2017Materialise N.V.Patient-specific computed tomography guides
US9597201Sep 15, 2015Mar 21, 2017Biomet Manufacturing, LlcPatient-specific acetabular guide for anterior approach
US9603613Aug 1, 2016Mar 28, 2017Biomet Manufacturing, LlcPatient-specific sacroiliac guides and associated methods
US9649119Apr 7, 2014May 16, 2017Depuy Ireland Unlimited CompanyMethod for performing an orthopaedic surgical procedure
US9655628May 4, 2010May 23, 2017Blue OrthoReduced invasivity fixation system for trackers in computer assisted surgery
US9662127Dec 13, 2013May 30, 2017Biomet Manufacturing, LlcPatient-specific acetabular guides and associated instruments
US9662216Oct 28, 2013May 30, 2017Biomet Manufacturing, LlcPatient-specific hip joint devices
US9668747Sep 25, 2015Jun 6, 2017Biomet Manufacturing, LlcPatient-specific-bone-cutting guidance instruments and methods
US9675400Apr 19, 2011Jun 13, 2017Biomet Manufacturing, LlcPatient-specific fracture fixation instrumentation and method
US9687261Jul 7, 2015Jun 27, 2017Biomet Manufacturing, LlcDrill guides for confirming alignment of patient-specific alignment guides
US9700325Jan 12, 2017Jul 11, 2017Biomet Manufacturing, LlcMulti-point fit for patient specific guide
US9700329Nov 16, 2016Jul 11, 2017Biomet Manufacturing, LlcPatient-specific orthopedic instruments
US9717510May 5, 2014Aug 1, 2017Biomet Manufacturing, LlcPatient-specific numerically controlled instrument
US9743935Dec 17, 2015Aug 29, 2017Biomet Manufacturing, LlcPatient-specific femoral version guide
US9743940Feb 13, 2015Aug 29, 2017Biomet Manufacturing, LlcPatient-specific partial knee guides and other instruments
US9757238Dec 1, 2014Sep 12, 2017Biomet Manufacturing, LlcPre-operative planning and manufacturing method for orthopedic procedure
US20030181918 *Feb 11, 2003Sep 25, 2003Crista SmothersImage-guided fracture reduction
US20060235290 *Jan 24, 2006Oct 19, 2006Aesculap Ag & Co. KgMethod and apparatus for positioning a cutting tool for orthopedic surgery using a localization system
US20070203605 *Aug 18, 2006Aug 30, 2007Mark MeltonSystem for biomedical implant creation and procurement
US20070244488 *Mar 2, 2007Oct 18, 2007Robert MetzgerTensor for use in surgical navigation
US20080161824 *Dec 27, 2006Jul 3, 2008Howmedica Osteonics Corp.System and method for performing femoral sizing through navigation
US20100249796 *Jun 18, 2009Sep 30, 2010Biomet Manufacturing Corp.Method and Apparatus for Aligning and Securing an Implant Relative to a Patient
US20100261998 *Nov 19, 2008Oct 14, 2010Stiehl James BHip implant registration in computer assisted surgery
US20100332197 *Jul 20, 2010Dec 30, 2010Mark MeltonSystem for biomedical implant creation and procurement
US20120143198 *Jun 29, 2010Jun 7, 2012Blue OrthoAdjustable guide in computer assisted orthopaedic surgery
US20130012807 *Jul 5, 2011Jan 10, 2013King Fahd University Of Petroleum And MineralsSystem and method for tracking position of handheld medical instruments