Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050237504 A1
Publication typeApplication
Application numberUS 11/147,373
Publication dateOct 27, 2005
Filing dateJun 8, 2005
Priority dateDec 10, 2002
Also published asCN1723539A, CN1723539B, EP1571698A1, EP1571698A4, US7466392, US7515246, US20060098178, US20060132736, US20060274294, US20070035710, US20070258063, US20090002655, US20090079950, WO2004053956A1
Publication number11147373, 147373, US 2005/0237504 A1, US 2005/237504 A1, US 20050237504 A1, US 20050237504A1, US 2005237504 A1, US 2005237504A1, US-A1-20050237504, US-A1-2005237504, US2005/0237504A1, US2005/237504A1, US20050237504 A1, US20050237504A1, US2005237504 A1, US2005237504A1
InventorsHiroyuki Nagasaka, Nobutaka Magome
Original AssigneeNikon Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Exposure apparatus, exposure method, and method for producing device
US 20050237504 A1
Abstract
In an exposure apparatus, an exposure of a substrate (P) is carried out by filling at least a portion of the space between a projection optical system (PL) and the substrate (P) with a liquid (50) and projecting the image of a pattern onto the substrate (P) via the projection optical system (PL). An optical element (60) and a barrel (PK), which are in contact with the liquid (50) when the substrate (P) is moved, are surface-treated for adjusting the affinity with the liquid (50). Consequently, generation of bubbles in the liquid between the projection optical system and the substrate is suppressed and the liquid is always retained between the projection optical system and the substrate, thereby creating a good immersion state.
Images(10)
Previous page
Next page
Claims(43)
1. An exposure apparatus which exposes a substrate by transferring an image of a pattern through a liquid onto the substrate, the exposure apparatus comprising:
a projection optical system which projects the image of the pattern onto the substrate, wherein:
a portion of the projection optical system, which makes contact with the liquid, is surface-treated to adjust affinity for the liquid.
2. The exposure apparatus according to claim 1, wherein the substrate is exposed while being moved in a scanning direction.
3. The exposure apparatus according to claim 1, wherein the surface treatment is performed depending on polarity of the liquid.
4. The exposure apparatus according to claim 3, wherein the liquid is water, and the surface treatment is applied to the portion to make contact with the liquid by forming a thin film with a substance having a molecular structure of large polarity.
5. The exposure apparatus according to claim 3, wherein the liquid is fluorine-based liquid, and the surface treatment is applied to the portion to make contact with the liquid by forming a thin film with a substance having a molecular structure of small polarity.
6. The exposure apparatus according to claim 1, wherein the portion of the projection optical system to make contact with the liquid includes a surface of an optical element disposed at a tip of the projection optical system and at least a part of a surface of a holding member which holds the optical element, and the surface of the optical element and at least the part of the surface of the holding member are surface-treated so that affinity for the liquid is increased.
7. The exposure apparatus according to claim 1, wherein at least a part of the portion of the projection optical system to make contact with the liquid, through which an exposure light beam passes, is surface-treated so that affinity for the liquid is increased.
8. An exposure apparatus which exposes a substrate by transferring an image of a pattern through a liquid onto the substrate, the exposure apparatus comprising:
a projection optical system which projects the image of the pattern onto the substrate, wherein:
the projection optical system has a first surface area which includes a surface of an optical element disposed at a tip of the projection optical system, and a second surface area which is disposed around the first surface area; and
affinity of the first surface area for the liquid is higher than affinity of the second surface area for the liquid.
9. The exposure apparatus according to claim 8, wherein the liquid is retained in the first surface area owing to the affinity of the first surface area for the liquid which is higher than the affinity of the second surface area for the liquid.
10. The exposure apparatus according to claim 1, wherein a conditional expression (vĚdĚρ)/μ≦2,000 is satisfied provided that d represents a thickness of the liquid between the projection optical system and the substrate, v represents a velocity of a flow of the liquid between the projection optical system and the substrate, ρ represents a density of the liquid, and μ represents a coefficient of viscosity of the liquid.
11. The exposure apparatus according to claim 8, wherein a conditional expression (vĚdĚρ)/μ≦2,000 is satisfied provided that d represents a thickness of the liquid between the projection optical system and the substrate, v represents a velocity of a flow of the liquid between the projection optical system and the substrate, ρ represents a density of the liquid, and μ represents a coefficient of viscosity of the liquid.
12. The exposure apparatus according to claim 1, further comprising a liquid immersion unit which makes the liquid to flow through at least a part of a space between the projection optical system and the substrate, wherein the liquid flows as a laminar flow.
13. The exposure apparatus according to claim 8, further comprising a liquid immersion unit which makes the liquid to flow through at least a part of a space between the projection optical system and the substrate, wherein the liquid flows as a laminar flow.
14. An exposure apparatus which exposes a substrate by illuminating a pattern with an exposure beam and transferring an image of the pattern through a liquid onto the substrate, the exposure apparatus comprising:
a projection optical system which projects the image of the pattern onto the substrate; and
a liquid immersion unit which fills, with the liquid, at least a part of a space between the projection optical system and the substrate, wherein:
a conditional expression (vĚdĚρ)/μ≦2,000 is satisfied provided that d represents a thickness of the liquid, v represents a velocity of a flow of the liquid between the projection optical system and the substrate, ρ represents a density of the liquid, and μ represents a coefficient of viscosity of the liquid.
15. The exposure apparatus according to claim 14, further comprising a supply unit which supplies the liquid to the space between the projection optical system and the substrate, and a recovery unit which recovers the liquid from the space between the projection optical system and the substrate, wherein an amount of the liquid to be supplied by the supply unit and an amount of the liquid to be recovered by the recovery unit are determined so that the conditional expression is satisfied.
16. The exposure apparatus according to claim 15, wherein the substrate is scanning-exposed while being moved in a scanning direction, and a velocity of movement of the substrate during the scanning exposure is determined so that the conditional expression is satisfied.
17. The exposure apparatus according to claim 14, wherein the substrate is scanning-exposed while being moved in a scanning direction, and a velocity of movement of the substrate during the scanning exposure is determined so that the conditional expression is satisfied.
18. The exposure apparatus according to claim 16, wherein a direction, in which the liquid flows, is parallel to the scanning direction.
19. The exposure apparatus according to claim 14, wherein the space between the projection optical system and the substrate is filled with the liquid, and the thickness d of the liquid is a spacing distance between the projection optical system and the substrate.
20. The exposure apparatus according to claim 14, wherein a cover glass is placed over the substrate during the exposure, and the thickness d of the liquid is a spacing distance between the projection optical system and the cover glass.
21. An exposure apparatus which exposes a substrate by illuminating a pattern of a mask with an exposure beam and transferring an image of the pattern through a liquid onto the substrate, the exposure apparatus comprising:
a projection optical system which projects the image of the pattern onto the substrate; and
a liquid immersion unit which fills, with the liquid, at least a part of a space between the projection optical system and the substrate, wherein:
the liquid flows as a laminar flow in parallel to a scanning direction of the substrate.
22. The exposure apparatus according to claim 21, wherein a velocity of movement of the substrate in the scanning direction during the exposure for the substrate is determined so that the liquid flows as the laminar flow.
23. The exposure apparatus according to claim 22, wherein the liquid immersion unit has a supply unit which supplies the liquid and a recovery unit which recovers the liquid.
24. The exposure apparatus according to claim 23, further comprising a control unit which controls an amount of the liquid to be supplied by the supply unit and an amount of the liquid to be recovered by the recovery unit so that the liquid flows as the laminar flow.
25. The exposure apparatus according to claim 21, wherein the liquid immersion unit has a supply unit which supplies the liquid and a recovery unit which recovers the liquid, and the exposure apparatus further comprises a control unit which controls an amount of the liquid supplied by the supply unit and an amount of the liquid recovered by the recovery unit so that the liquid flows as the laminar flow.
26. The exposure apparatus according to claim 14, wherein the liquid is water.
27. The exposure apparatus according to claim 21, wherein the liquid is water.
28. The exposure apparatus according to claim 14, wherein the liquid is fluorine-based liquid.
29. The exposure apparatus according to claim 21, wherein the liquid is fluorine-based liquid.
30. The exposure apparatus according to claim 21, wherein the liquid immersion unit has a supply unit which supplies the liquid and a recovery unit which recovers the liquid, and the supply unit includes a nozzle which has a slit or a porous member provided for the nozzle.
31. An exposure apparatus which exposes a substrate by illuminating a pattern with an exposure beam and transferring an image of the pattern through a liquid onto the substrate, the exposure apparatus comprising:
a projection optical system which projects the image of the pattern onto the substrate;
a liquid immersion unit which supplies the liquid onto only the substrate; and
a control unit which controls the liquid immersion unit, wherein:
the control unit controls the liquid immersion unit so that the supply of the liquid is stopped during the exposure of the substrate.
32. The exposure apparatus according to claim 31, wherein a thickness of the liquid supplied onto the substrate is thinner than a working distance of the projection optical system, and the liquid is retained by surface tension on the substrate.
33. A method for producing a device, comprising using the exposure apparatus as defined in claim 1.
34. A method for producing a device, comprising using the exposure apparatus as defined in claim 8.
35. A method for producing a device, comprising using the exposure apparatus as defined in claim 14.
36. A method for producing a device, comprising using the exposure apparatus as defined in claim 21.
37. A method for producing a device, comprising using the exposure apparatus as defined in claim 31.
38. An exposure method for exposing a substrate by projecting an image of a pattern onto the substrate by using a projection optical system, the exposure method comprising:
applying a surface treatment to a surface of the substrate before the exposure in order to adjust affinity for the liquid;
filling at least a part of a space between the projection optical system and the substrate with the liquid; and
projecting the image of the pattern onto the substrate through the liquid.
39. The exposure method according to claim 38, wherein the exposure is performed for the substrate while moving the substrate in a scanning direction.
40. The exposure method according to claim 38, wherein the surface treatment is performed depending on polarity of the liquid.
41. The exposure method according to claim 40, wherein the liquid is water, and a thin film is formed with a substance having a molecular structure of large polarity on a portion which makes contact with the liquid.
42. The exposure method according to claim 40, wherein the liquid is fluorine-based liquid, and a thin film is formed with a substance having a molecular structure of small polarity on a portion which makes contact with the liquid.
43. A method for producing a device, comprising using the exposure method as defined in claim 38 to produce the device.
Description
    CROSS-REFERENCE
  • [0001]
    This application is a Continuation Application of International Application No. PCT/JP03/015735 which was filed on Dec. 9, 2003 claiming the conventional priority of Japanese patent Application No. 2002-357931 filed on Dec. 10, 2002.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates to an exposure apparatus and an exposure method for performing the exposure with an image of a pattern projected by a projection optical system in a state in which at least a part of a space between the projection optical system and a substrate is filled with a liquid. The present invention also relates to a method for producing a device.
  • [0004]
    2. Description of the Related Art
  • [0005]
    Semiconductor devices and liquid crystal display devices are produced by the so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate. The exposure apparatus, which is used in the photolithography step, includes a mask stage for supporting the mask and a substrate stage for supporting the substrate. The pattern on the mask is transferred onto the substrate via a projection optical system while successively moving the mask stage and the substrate stage. In recent years, it is demanded to realize the higher resolution of the projection optical system in order to respond to the further advance of the higher integration of the device pattern. As the exposure wavelength to be used is shorter, the resolution of the projection optical system becomes higher. As the numerical aperture of the projection optical system is larger, the resolution of the projection optical system becomes higher. Therefore, the exposure wavelength, which is used for the exposure apparatus, is shortened year by year, and the numerical aperture of the projection optical system is increased as well. The exposure wavelength, which is dominantly used at present, is 248 nm of the KrF excimer laser. However, the exposure wavelength of 193 nm of the ArF excimer laser, which is shorter than the above, is also practically used in some situations. When the exposure is performed, the depth of focus (DOF) is also important in the same manner as the resolution. The resolution R and the depth of focus 6 are represented by the following expressions respectively.
    R=k 1 Ěλ/NA  (1)
    δ=▒k 2 Ěλ/NA 2  (2)
    In the expressions, λ represents the exposure wavelength, NA represents the numerical aperture of the projection optical system, and k1 and k2 represent the process coefficients. According to the expressions (1) and (2), the following fact is appreciated. That is, when the exposure wavelength λ is shortened and the numerical aperture NA is increased in order to enhance the resolution R, then the depth of focus δ is narrowed.
  • [0006]
    If the depth of focus δ is too narrowed, it is difficult to match the substrate surface with respect to the image plane of the projection optical system. It is feared that the margin is insufficient during the exposure operation. Accordingly, the liquid immersion method has been suggested, which is disclosed, for example, in International Publication No. 99/49504 as a method for substantially shortening the exposure wavelength and widening the depth of focus. In this liquid immersion method, the space between the lower surface of the projection optical system and the substrate surface is filled with a liquid such as water or any organic solvent to utilize the fact that the wavelength of the exposure light beam in the liquid is 1/n as compared with that in the air (n represents the refractive index of the liquid, which is about 1.2 to 1.6 in ordinary cases) so that the resolution is improved and the depth of focus is magnified about n times.
  • [0007]
    When the exposure is performed while making the liquid to flow through the space between the projection optical system and the substrate, or when the exposure is performed while moving the substrate with respect to the projection optical system in a state in which the space between the projection optical system and the substrate is filled with the liquid, then there is such a possibility that the liquid may be exfoliated from the projection optical system and/or the substrate. An inconvenience arises such that the pattern image, which is to be transferred to the substrate, is deteriorated. In other cases, the pattern image is deteriorated as well when any turbulence appears in the liquid flow when the exposure is performed while making the liquid to flow through the space between the projection optical system and the substrate.
  • SUMMARY OF THE INVENTION
  • [0008]
    The present invention has been made taking the foregoing circumstances into consideration, an object of which is to provide an exposure apparatus, an exposure method, and a method for producing a device, in which a pattern can be transferred accurately by arranging a liquid in a desired state when an exposure process is performed while filling a space between a projection optical system and a substrate with the liquid. It is noted that parenthesized numerals or symbols affixed to respective elements merely exemplify the elements by way of example, with which it is not intended to limit the respective elements.
  • [0009]
    In order to achieve the object as described above, the present invention adopts the following constructions corresponding to FIGS. 1 to 9 as illustrated in embodiments.
  • [0010]
    According to a first aspect of the present invention, there is provided an exposure apparatus (EX) which exposes a substrate (P) by transferring an image of a pattern through a liquid (50) onto the substrate, the exposure apparatus comprising:
      • a projection optical system (PL) which projects the image of the pattern onto the substrate, wherein:
      • a portion (60, PK) of the projection optical system (PL), which makes contact with the liquid (50), is surface-treated to adjust affinity for the liquid (50).
  • [0013]
    In the exposure apparatus of the present invention, the surface treatment is applied to the portion of the projection optical system (hereinafter appropriately referred to as “liquid contact portion”) which makes contact with the liquid in order to adjust the affinity for the liquid. Therefore, the liquid is maintained in a desired state between the projection optical system and the substrate. For example, if the affinity of the liquid contact portion for the liquid is too low, any phenomenon, in which any harmful influence is exerted on the liquid immersion exposure, arises, for example, such that the liquid is exfoliated from the contact portion, and/or any bubble is generated. On the other hand, if the affinity of the liquid contact portion for the liquid is too high, any inconvenience arises in some cases, for example, such that the liquid is spread while causing excessive wetting with respect to the contact portion and the liquid outflows from the space between the projection optical system and the substrate. On the contrary, in the case of the exposure apparatus of the present invention, the affinity is adjusted with respect to the liquid disposed at the liquid contact portion of the projection optical system. Therefore, the liquid immersion state is reliably maintained between the substrate and the projection optical system even in the case of the full field exposure in which the substrate stands still with respect to the exposure light beam during the exposure as well as in the case of the scanning type exposure apparatus in which the substrate is moved by a movable stage during the exposure.
  • [0014]
    According to a second aspect of the present invention, there is provided an exposure apparatus (EX) which exposes a substrate (P) by transferring an image of a pattern through a liquid (50) onto the substrate, the exposure apparatus comprising:
      • a projection optical system (PL) which projects the image of the pattern onto the substrate, wherein:
      • the projection optical system (PL) has a first surface area (AR1) which includes a surface of an optical element (60) disposed at a tip of the projection optical system, and a second surface area (AR2) which is disposed around the first surface area (AR1); and
      • affinity of the first surface area (AR1) for the liquid (50) is higher than affinity of the second surface area (AR2) for the liquid (50).
  • [0018]
    According to the present invention, the affinity for the liquid of the first surface area including the optical element disposed at the tip of the projection optical system is made higher than that of the second surface area disposed therearound. Accordingly, the liquid is stably arranged on the optical path for the exposure light beam owing to the first surface area. Further, the liquid is not spread with the wetting to the surroundings owing to the second surface area, and thus does not outflow to the outside. Therefore, the liquid can be stably arranged on the optical path for the exposure light beam even in the case of the full field exposure in which the substrate stands still with respect to the exposure light beam during the exposure as well as in the case of the scanning type exposure in which the substrate is moved with respect to the exposure light beam during the exposure.
  • [0019]
    According to a third aspect of the present invention, there is provided an exposure apparatus (EX) which exposes a substrate (P) by illuminating a pattern with an exposure beam (EL) and transferring an image of the pattern through a liquid (50) onto the substrate (P), the exposure apparatus comprising:
      • a projection optical system (PL) which projects the image of the pattern onto the substrate; and
      • a liquid immersion unit (1, 2) which fills, with the liquid (50), at least a part of a space between the projection optical system (PL) and the substrate (P), wherein:
      • a conditional expression (vĚdĚρ)/μ≦2,000 is satisfied provided that d represents a thickness of the liquid (50), v represents a velocity of a flow of the liquid (50) between the projection optical system (PL) and the substrate (P), ρ represents a density of the liquid (50), and μ represents a coefficient of viscosity of the liquid (50).
  • [0023]
    According to the present invention, the condition, under which the liquid is maintained in at least the part of the space between the projection optical system (PL) and the substrate (P), is set so that the conditional expression described above is satisfied. Accordingly, no turbulence arises in the liquid. Therefore, it is possible to suppress any inconvenience which would be otherwise caused, for example, such that the pattern image to be projected onto the substrate is deteriorated due to the turbulence of the liquid.
  • [0024]
    According to a fourth aspect of the present invention, there is provided an exposure apparatus (EX) which exposes a substrate (P) by illuminating a pattern of a mask (M) with an exposure beam (EL) and transferring an image of the pattern through a liquid (50) onto the substrate, the exposure apparatus comprising:
      • a projection optical system (PL) which projects the image of the pattern onto the substrate; and
      • a liquid immersion unit (1, 2) which fills, with the liquid, at least a part of a space between the projection optical system (PL) and the substrate (P), wherein:
      • the liquid (50) flows as a laminar flow in parallel to a scanning direction of the substrate (P).
  • [0028]
    According to the present invention, the liquid immersion state is controlled by various methods, and thus the liquid flows while forming the laminar flow in parallel to the scanning direction of the substrate during the exposure. Therefore, it is possible to avoid the deterioration of the pattern image to be projected onto the substrate. Further, no unnecessary vibration is generated, for example, in the projection optical system which makes contact with the liquid as well as in the wafer and the substrate stage which holds the wafer. The flow of the liquid can be made into the laminar flow, for example, by controlling the amount of supply (recovery) of the liquid by the liquid immersion unit, adjusting the structure of the liquid supply nozzle of the liquid immersion unit, and/or adjusting the velocity when the substrate is moved during the exposure.
  • [0029]
    According to a fifth aspect of the present invention, there is provided an exposure apparatus (EX) which exposes a substrate (P) by illuminating a pattern with an exposure beam (EL) and transferring an image of the pattern through a liquid (50) onto the substrate, the exposure apparatus comprising:
      • a projection optical system (PL) which projects the image of the pattern onto the substrate;
      • a liquid immersion unit (1, 2) which supplies the liquid (50) onto only the substrate (P); and
      • a control unit (CONT) which controls the liquid immersion unit (1, 2), wherein:
      • the control unit (CONT) controls the liquid immersion unit (1, 2) so that the supply of the liquid (50) is stopped during the exposure of the substrate (P).
  • [0034]
    According to the present invention, the liquid immersion unit is controlled such that the liquid is not supplied during the exposure for the substrate. Accordingly, the photosensitive material, which has been applied onto the substrate, is not damaged. It is possible to avoid the deterioration of the pattern to be formed on the substrate. Further, the positional relationship between the projection optical system and the substrate can be stably maintained in a desired state.
  • [0035]
    According to a sixth aspect of the present invention, there is provided an exposure method for exposing a substrate (P) by projecting an image of a pattern onto the substrate by using a projection optical system (PL), the exposure method comprising:
      • applying a surface treatment to a surface of the substrate (P) before the exposure in order to adjust affinity for the liquid (50);
      • filling at least a part of a space between the projection optical system (PL) and the substrate (P) with the liquid (50); and
      • projecting the image of the pattern onto the substrate (P) through the liquid (50).
  • [0039]
    According to the present invention, the surface treatment is applied to the surface of the substrate depending on the affinity for the liquid before performing the liquid immersion exposure. Accordingly, the liquid can be maintained on the substrate in a state preferable for the liquid immersion exposure. For example, if the affinity for the liquid is too low, any inconvenience arises, for example, such that the liquid is exfoliated from the surface of the substrate, and/or any bubble is generated. On the other hand, if the affinity for the liquid is too high, any inconvenience arises in some cases, for example, such that the liquid is spread excessively while causing wetting on the substrate. On the contrary, when the appropriate surface treatment is applied to the substrate surface in consideration of the affinity for the liquid as in the exposure method of the present invention, then the liquid can be maintained in a desired state on the substrate, and it is possible to appropriately perform the recovery and the removal of the liquid on the substrate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0040]
    FIG. 1 shows a schematic arrangement illustrating an embodiment of the exposure apparatus of the present invention.
  • [0041]
    FIG. 2 shows an exemplary arrangement of supply nozzles and recovery nozzles.
  • [0042]
    FIG. 3 shows an exemplary arrangement of supply nozzles and recovery nozzles.
  • [0043]
    FIG. 4 schematically illustrates areas in which a projection optical system and a substrate are surface-treated.
  • [0044]
    FIGS. 5A to 5C schematically illustrates situations in which the liquid flows between a substrate and a projection optical system which are not surface-treated.
  • [0045]
    FIGS. 6A to 6C schematically illustrates situations in which the liquid flows between a substrate and a projection optical system which are surface-treated.
  • [0046]
    FIG. 7 illustrates another embodiment of the present invention.
  • [0047]
    FIGS. 8A and 8B show other embodiments of supply nozzles.
  • [0048]
    FIG. 9 shows a cover glass provided over a substrate.
  • [0049]
    FIG. 10 shows a flow chart illustrating exemplary steps for producing a semiconductor device.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
  • [0050]
    An explanation will be made below about the exposure apparatus and the method for producing the device according to the present invention with reference to the drawings. However, the present invention is not limited thereto. FIG. 1 shows a schematic arrangement illustrating an embodiment of the exposure apparatus of the present invention.
  • [0051]
    With reference to FIG. 1, an exposure apparatus EX includes a mask stage MST which supports a mask M, a substrate stage PST which supports a substrate P, an illumination optical system IL which illuminates, with an exposure light beam EL, the mask M supported by the mask stage MST, a projection optical system PL which performs projection exposure for the substrate P supported by the substrate stage PST with an image of a pattern of the mask M illuminated with the exposure light beam EL, and a control unit CONT which collectively controls the overall operation of the exposure apparatus EX.
  • [0052]
    The embodiment of the present invention will now be explained as exemplified by a case of the use of the scanning type exposure apparatus (so-called scanning stepper) as the exposure apparatus EX in which the substrate P is exposed with the pattern formed on the mask M while synchronously moving the mask M and the substrate P in mutually different directions (opposite directions) in the scanning directions. In the following explanation, the Z axis direction is the direction which is coincident with the optical axis AX of the projection optical system PL, the X axis direction is the synchronous movement direction (scanning direction) for the mask M and the substrate P in the plane perpendicular to the Z axis direction, and the Y axis direction is the direction (non-scanning direction) perpendicular to the Z axis direction and the Y axis direction. The directions about the X axis, the Y axis, and the Z axis are designated as θX, θY, and θZ directions respectively. The term “substrate” referred to herein includes those obtained by applying a resist on a semiconductor wafer, and the term “mask” includes a reticle formed with a device pattern to be subjected to the reduction projection onto the substrate.
  • [0053]
    The illumination optical system IL is used so that the mask M, which is supported on the mask stage MST, is illuminated with the exposure light beam EL. The illumination optical system IL includes, for example, an exposure light source, an optical integrator which uniformizes the illuminance of the light flux radiated from the exposure light source, a condenser lens which collects the exposure light beam EL supplied from the optical integrator, a relay lens system, and a variable field diaphragm which sets the illumination area on the mask M illuminated with the exposure light beam EL to be slit-shaped. The predetermined illumination area on the mask M is illuminated with the exposure light beam EL having a uniform illuminance distribution by the illumination optical system IL. Those usable as the exposure light beam EL radiated from the illumination optical system IL include, for example, emission lines (g-ray, h-ray, i-ray) in the ultraviolet region radiated, for example, from a mercury lamp, far ultraviolet light beams (DUV light beams) such as the KrF excimer laser beam (wavelength: 248 nm), and vacuum ultraviolet light beams (VUV light beams) such as the ArF excimer laser beam (wavelength: 193 nm) and the F2 laser beam (wavelength: 157 nm). In this embodiment, the ArF excimer laser beam is used.
  • [0054]
    The mask stage MST supports the mask M. The mask stage MST is two-dimensionally movable in the plane perpendicular to the optical axis AX of the projection optical system PL, i.e., in the XY plane, and it is finely rotatable in the θZ direction. The mask stage MST is driven by a mask stage-driving unit MSTD such as a linear motor. The mask stage-driving unit MSTD is controlled by the control unit CONT. The position in the two-dimensional direction and the angle of rotation of the mask M on the mask stage MST are measured in real-time by a laser interferometer. The result of the measurement is outputted to the control unit CONT. The control unit CONT drives the mask stage-driving unit MSTD on the basis of the result of the measurement obtained by the laser interferometer to thereby position the mask M supported on the mask stage MST.
  • [0055]
    The projection optical system PL projects the pattern on the mask M onto the substrate P at a predetermined projection magnification β to perform the exposure. The projection optical system PL includes a plurality of optical elements (lenses). The optical elements are supported by a barrel PK formed of a metal member, for example, stainless steel (SUS 403). In this embodiment, the projection optical system PL is a reduction system having the projection magnification β which is, for example, ╝ or ⅕. The projection optical system PL may be any one of the 1Î magnification system and the magnifying system. The plane parallel plate (optical element) 60, which is formed of a glass member such as quartz and calcium fluoride (fluorite), is provided at the tip section 7 on the side of the substrate P of the projection optical system PL of this embodiment. The optical element 60 is provided detachably (exchangeably) with respect to the barrel PK. The tip section 7 of the projection optical system PL includes the optical element 60 and a part of the barrel (holding member) PK for holding the same.
  • [0056]
    The substrate stage PST supports the substrate P. The substrate stage PST includes a Z stage 51 which holds the substrate P by the aid of a substrate holder, an XY stage 52 which supports the Z stage 51, and a base 53 which supports the XY stage 52. The substrate stage PST is driven by a substrate stage-driving unit PSTD such as a linear motor. The substrate stage-driving unit PSTD is controlled by the control unit CONT. When the Z stage 51 is driven, the substrate P, which is held on the Z stage 51, is subjected to the control of the position (focus position) in the Z axis direction and the positions in the θX and θY directions. When the XY stage 52 is driven, the substrate P is subjected to the control of the position in the XY directions (position in the directions substantially parallel to the image plane of the projection optical system PL). That is, the Z stage 51 controls the focus position and the angle of inclination of the substrate P so that the surface of the substrate P is adjusted to match the image plane of the projection optical system PL in the auto-focus manner and the auto-leveling manner. The XY stage 52 positions the substrate P in the X axis direction and the Y axis direction. It goes without saying that the Z stage and the XY stage may be provided as an integrated body.
  • [0057]
    A movement mirror 54, which is movable together with the substrate stage PST with respect to the projection optical system PL, is provided on the substrate stage PST (Z stage 51). A laser interferometer 55 is provided at a position opposed to the movement mirror 54. The angle of rotation and the position in the two-dimensional direction of the substrate P on the substrate stage PST are measured in real-time by the laser interferometer 55. The result of the measurement is outputted to the control unit CONT. The control unit CONT drives the substrate stage-driving unit PSTD on the basis of the result of the measurement of the laser interferometer 55 to thereby position the substrate P supported on the substrate stage PST.
  • [0058]
    In this embodiment, the liquid immersion method is applied in order that the resolution is improved by substantially shortening the exposure wavelength and the depth of focus is substantially widened. Therefore, the space between the surface of the substrate P and the tip section 7 of the projection optical system PL is filled with the predetermined liquid 50 at least during the period in which the image of the pattern on the mask M is transferred onto the substrate P. As described above, the optical element 60 and the part of the barrel PK are arranged at the tip section 7 of the projection optical system PL. The liquid 50 makes contact with the optical element (glass member) 60 and the barrel (metal member) PK. In this embodiment, pure water is used for the liquid 50. The exposure light beam EL, which is not limited to only the ArF excimer laser beam, can be transmitted through pure water, even when the exposure light beam EL is, for example, the emission line (g-ray, h-ray, i-ray) in the ultraviolet region radiated, for example, from a mercury lamp or the far ultraviolet light beam (DUV light beam) such as the KrF excimer laser beam (wavelength: 248 nm).
  • [0059]
    The exposure apparatus EX includes a liquid supply unit (liquid immersion unit, supply unit) 1 which supplies the predetermined liquid 50 to a space 56 between the substrate P and the tip section 7 of the projection optical system PL, and a liquid recovery unit (liquid immersion unit, recovery unit) 2 which recovers the liquid 50 from the space 56. The liquid supply unit 1 is provided to allow the liquid 50 to flow in parallel to the scanning direction of the substrate P to at least a part of the space between the projection optical system PL and the substrate P. The liquid supply unit 1 includes, for example, a tank for accommodating the liquid 50, and a pressurizing pump. One end of a supply tube 3 is connected to the liquid supply unit 1. Supply nozzles 4 are connected to the other end of the supply tube 3. The liquid supply unit 1 supplies the liquid 50 to the space 56 through the supply tube 3 and the supply nozzles 4.
  • [0060]
    The liquid recovery unit 2 includes, for example, a suction pump, and a tank for accommodating the recovered liquid 50. One end of a recovery tube 6 is connected to the liquid recovery unit 2. Recovery nozzles 5 are connected to the other end of the recovery tube 6. The liquid recovery unit 2 recovers the liquid 50 from the space 56 through the recovery nozzles 5 and the recovery tube 6. When the space 56 is filled with the liquid 50, then the control unit CONT drives the liquid supply unit 1 so that the liquid 50, which is in a predetermined amount per unit time, is supplied to the space 56 through the supply tube 3 and the supply nozzles 4, and the control unit CONT drives the liquid recovery unit 2 so that the liquid 50, which is in a predetermined amount per unit time, is recovered from the space 56 through the recovery nozzles 5 and the recovery tube 6. Accordingly, the liquid 50 is retained in the space 56 between the substrate P and the tip section 7 of the projection optical system PL.
  • [0061]
    During the scanning exposure, a pattern image of a part of the mask M is projected onto the rectangular projection area disposed just under an end surface 60A. The mask M is moved at the velocity V in the −X direction (or in the +X direction) with respect to the projection optical system PL, in synchronization with which the substrate P is moved at the velocity βĚB (β is the projection magnification) in the +X direction (or in the −X direction) by the aid of the XY stage 52. After the completion of the exposure for one shot area, the next shot area is moved to the scanning start position in accordance with the stepping of the substrate P. The exposure process is successively performed thereafter for each of the shot areas in the step-and-scan manner. This embodiment is designed so that the liquid 50 is allowed to flow in the same direction as the movement direction of the substrate in parallel to the movement direction of the substrate P.
  • [0062]
    FIG. 2 shows the positional relationship among the tip section 7 of the projection optical system PL, the supply nozzles 4 (4A to 4C) for supplying the liquid 50 in the X axis direction, and the recovery nozzles 5 (5(a), 5(b)) for recovering the liquid 50. In FIG. 2, the tip section 7 (end surface 60A of the optical element 60) has a rectangular shape which is long in the Y axis direction. The three supply nozzles 4A to 4C are arranged on the side in the +X direction, and the two recovery nozzles 5(a), 5(b) are arranged on the side in the −X direction so that the tip section 7 of the projection optical system PL is interposed thereby in the X axis direction. The supply nozzles 4A to 4C are connected to the liquid supply unit 1 through the supply tube 3, and the recovery nozzles 5(a), 5(b) are connected to the liquid recovery unit 2 through the recovery tube 4. Further, the supply nozzles 8(a) to 8C and the recovery nozzles 9A, 9B are arranged at positions obtained by rotating, by substantially 180░, the positions of the supply nozzles 4A to 4C and the recovery nozzles 5(a), 5(b) about the center of the tip section 7. The supply nozzles 4A to 4C and the recovery nozzles 9A, 9B are alternately arranged in the Y axis direction. The supply nozzles 8(a) to 8C and the recovery nozzles 5(a), 5(b) are alternately arranged in the Y axis direction. The supply nozzles 8(a) to 8C are connected to the liquid supply unit 1 through the supply tube 10. The recovery nozzles 9A, 9B are connected to the liquid recovery unit 2 through the recovery tube 11. The liquid is supplied from the nozzles so that no gas portion is formed between the projection optical system PL and the substrate P.
  • [0063]
    As shown in FIG. 3, the supply nozzles 31, 32 and the recovery nozzles 33, 34 may be also provided on the both sides in the Y direction with the tip section 7 intervening therebetween. The supply nozzles and the recovery nozzles can be used to stably supply the liquid 50 to the space between the projection optical system PL and the substrate P even during the movement of the substrate P in the non-scanning direction (Y axis direction) when the stepping movement is performed.
  • [0064]
    The shape of the nozzle is not specifically limited. For example, two pairs of the nozzles may be used to supply or recover the liquid 50 for the long side of the tip section 7. In this arrangement, the supply nozzles and the recovery nozzles may be arranged while being aligned vertically in order that the liquid 50 can be supplied and recovered in any one of the directions of the +X direction and the −X direction.
  • [0065]
    FIG. 4 shows a magnified view illustrating those disposed in the vicinity of the tip section 7 of the projection optical system PL. As shown in FIG. 4, the surface treatment, which depends on the affinity for the liquid 50, is applied to the tip section 7 of the projection optical system PL. The tip section 7 is a portion to make contact with the liquid 50 when the substrate P is moved in the scanning direction (X axis direction) in order to perform the scanning exposure. The tip section 7 includes a lower surface 7A of the projection optical system PL which includes the lower surface 60A of the optical element 60 and a part of the lower surface of the barrel PK, and a side surface 7B of a part of the barrel PK which is adjacent to the lower surface 7A. In this embodiment, the liquid 50 is water. Therefore, the surface treatment, which is in conformity with the affinity for water, is applied to the tip section 7.
  • [0066]
    The surface treatment, which is applied to the tip section 7 of the projection optical system PL, is performed in mutually different manners for a first surface area AR1 which includes the surface (lower surface) 60A of the optical element 60 and the part of the lower surface of the barrel PK, and for a second surface area AR2 which is disposed around the first surface area AR1 and which includes the remaining area of the lower surface of the barrel PK and the side surface of the barrel PK. Specifically, the surface treatment is applied to the first and second surface areas AR1, AR2 respectively so that the affinity of the first surface area AR1 for the liquid (water) 50 is higher than the affinity of the second surface area AR2 for the liquid (water) 50. In this embodiment, a lyophilic or liquid-attracting treatment (hydrophilic or water-attracting treatment) to give the lyophilicity or liquid-attracting property is applied to the first surface area AR1 including the optical element 60, and a lyophobic or liquid-repelling treatment (hydrophobic or water-repelling treatment) to give the lyophobicity or liquid-repelling property is applied to the second surface area AR2. The lyophilic or liquid-attracting treatment refers to a treatment to increase the affinity for the liquid. The lyophobic or liquid-repelling treatment refers to a treatment to decrease the affinity for the liquid.
  • [0067]
    The surface treatment is performed depending on the polarity of the liquid 50. In this embodiment, the liquid 50 is water having large polarity. Therefore, the hydrophilic treatment, which is to be applied to the first surface area AR1 including the optical element 60, is performed by forming a thin film with a substance such as alcohol having a molecular structure of large polarity. Accordingly, the hydrophilicity is given to the first surface area AR1. Alternatively, for example, an O2 plasma treatment, in which the plasma treatment is performed by using oxygen (O2) as a treatment gas, is applied to the barrel PK and the lower surface 60A of the optical element 60 in the first surface area AR1. Accordingly, oxygen molecules (or oxygen atoms), which have strong polarity, are gathered on the surface, and thus it is possible to give the hydrophilicity. As described above, when water is used as the liquid 50, it is desirable to perform the treatment for arranging, on the surface, those having the molecular structure with the large polarity such as the OH group in the first surface area AR1. The first surface area AR1 includes the optical element 60 as a glass member and the barrel PK as a metal member. Therefore, when the hydrophilic treatment is performed, it is possible to perform different surface treatments, for example, such that thin films are formed with different substances for the glass member and the metal member respectively. Of course, the same surface treatment may be applied to the glass member and the metal member in the first surface area AR1 respectively. When the thin film is formed, it is possible to use techniques including, for example, the application and the vapor deposition.
  • [0068]
    On the other hand, the water-repelling treatment is applied to the second surface area AR2 including the surface of the barrel PK. The water-repelling treatment, which is to be applied to the second surface area AR2, is performed by forming a thin film with a substance having a molecular structure of small polarity including, for example, fluorine. Accordingly, the water-repelling property is given to the second surface area AR2. Alternatively, the water-repelling property can be given by applying a CF4 plasma treatment in which the plasma treatment is performed by using carbon tetrafluoride (CF4) as a treatment gas. It is also possible to use techniques including, for example, the application and the vapor deposition when the thin film is formed in the second surface area AR2.
  • [0069]
    In this embodiment, the surface treatment is also applied to the surface of the substrate P in conformity with the affinity for the liquid 50. In this case, the hydrophilic or water-attracting treatment is applied to the surface of the substrate P. As for the hydrophilic treatment for the substrate P, the lyophilicity is given to the surface of the substrate P, for example, by forming a thin film with a substance such as alcohol having a molecular structure of large polarity as described above. When the surface of the substrate P is surface-treated by applying alcohol or the like, it is desirable to provide a washing step of washing the applied film in the step after the exposure and before the subsequent application of the photosensitive material, for example, before transporting the substrate to a developer/coater.
  • [0070]
    When the affinity of the first surface area AR1 for the liquid 50 is higher than the affinity of the second surface area AR2 for the liquid 50, the liquid 50 is stably retained in the first surface area AR1.
  • [0071]
    In this embodiment, the thin film, which is to be used for the surface treatment, is formed of a material which is insoluble in the liquid 50. The thin film, which is formed on the optical element 60, is to be arranged on the optical path for the exposure light beam EL. Therefore, the thin film is formed of a material through which the exposure light beam EL is transmissive. The film thickness is set to such an extent that the exposure light beam EL is transmissive therethrough as well.
  • [0072]
    Next, an explanation will be made about the operation for exposing the substrate P with the pattern of the mask M by using the exposure apparatus EX described above.
  • [0073]
    When the mask M is loaded on the mask stage MST, and the substrate P is loaded on the substrate stage PST, then the control unit CONT drives the liquid supply unit 1 to start the liquid supply operation to the space 56. The liquid supply unit 1 supplies the liquid 50 to the space 56 along with the direction of movement of the substrate P. For example, when the scanning exposure is performed by moving the substrate P in the scanning direction (−X direction) indicated by the arrow Xa (see FIG. 2), the liquid 50 is supplied and recovered with the liquid supply unit 1 and the liquid recovery unit 2 by using the supply tube 3, the supply nozzles 4A to 4C, the recovery tube 4, and the recovery nozzles 5(a), 5(b). That is, when the substrate P is moved in the −X direction, then the liquid 50 is supplied to the space between the projection optical system PL and the substrate P from the liquid supply unit 1 through the supply tube 3 and the supply nozzles 4 (4A to 4C), and the liquid 50 is recovered to the liquid recovery unit 2 through the recovery nozzles 5 (5(a), 5(b)) and the recovery tube 6. The liquid 50 flows in the −X direction so that the space between the lens 60 and the substrate P is filled therewith. On the other hand, when the scanning exposure is performed by moving the substrate P in the scanning direction (+X direction) indicated by an arrow Xb, then the liquid 50 is supplied and recovered with the liquid supply unit 1 and the liquid recovery unit 2 by using the supply tube 10, the supply nozzles 8(a) to 8C, the recovery tube 11, and the recovery nozzles 9A, 9B. That is, when the substrate P is moved in the +X direction, then the liquid 50 is supplied from the liquid supply unit 1 to the space between the projection optical system PL and the substrate P through the supply tube 10 and the supply nozzles 8 (8(a) to 8C), and the liquid 50 is recovered to the liquid recovery unit 2 through the recovery nozzles 9 (9A, 9B) and the recovery tube 11. The liquid 50 flows in the +X direction so that the space between the lens 60 and the substrate P is filled therewith. As described above, the control unit CONT makes the liquid 50 to flow in accordance with the movement direction of the substrate P by using the liquid supply unit 1 and the liquid recovery unit 2. In this arrangement, for example, the liquid 50, which is supplied from the liquid supply unit 1 through the supply nozzles 4, flows so that the liquid 50 is attracted and introduced into the space 56 in accordance with the movement of the substrate P in the −X direction. Therefore, even when the supply energy of the liquid supply unit 1 is small, the liquid 50 can be supplied to the space 56 with ease. When the direction, in which the liquid 50 is made to flow, is switched depending on the scanning direction, then it is possible to fill the space between the substrate P and the tip surface 7 of the lens 60 with the liquid 50, and it is possible to obtain the high resolution and the wide depth of focus, even when the substrate P is scanned in any one of the +X direction and the −X direction.
  • [0074]
    In view of the above, it is now assumed that the surface treatment is not applied to the projection optical system PL and the substrate P. FIG. 5 schematically shows the flow of the liquid 50 in a state in which the surface treatment is not applied. In this case, it is assumed that the surface of the projection optical system PL and the surface of the substrate P have low affinities for the liquid 50.
  • [0075]
    FIG. 5A shows a state in which the substrate stage PST is stopped. The liquid 50 is supplied from the supply nozzles 4, and the liquid 50 is recovered by the recovery nozzles 5. In this situation, the affinity is low between the liquid 50 and the substrate P, and hence the contact angle θ is large. FIG. 5B shows a state in which the substrate P starts the movement in the X axis direction by the aid of the substrate stage PST. The liquid 50 is deformed as if the liquid 50 is pulled by the moving substrate P. The liquid 50 tends to be separated from the surface of the substrate P, because the affinity is low between the liquid 50 and the substrate P. FIG. 5C shows a state in which the movement velocity of the substrate P on the substrate stage PST is further increased. An exfoliation area (bubble) H1 is formed between the substrate P and the liquid 50, and an exfoliation area H2 is also formed between the optical element 60 and the liquid 50. When the exfoliation areas H1, H2 are formed on the optical path for the exposure light beam EL, the pattern of the mask M is not transferred correctly to the substrate P.
  • [0076]
    FIG. 6 schematically shows the flow of the liquid 50 in a state in which the tip section 7 of the projection optical system PL and the surface of the substrate P are surface-treated as explained with reference to FIG. 4.
  • [0077]
    FIG. 6A shows a situation in which the substrate stage PST is stopped. The contact angle θ is small, because the affinity is enhanced between the liquid 50 and the substrate P by applying the surface treatment. FIG. 6B shows a state in which the substrate P starts the movement in the X axis direction by the aid of the substrate stage PST. Even when the substrate P is moved, the liquid 50 is not pulled excessively by the substrate P, because the affinity is high between the liquid 50 and the substrate P. Further, the liquid 50 is not exfoliated from the first surface area AR1, because the affinity of the first surface area AR1 of the projection optical system PL is also high with respect to the liquid 50. In this situation, the circumference of the first surface area AR1 is surrounded by the second surface area AR2 which has the low affinity for the liquid 50. Therefore, the liquid 50 in the space 56 does not outflow to the outside, and the liquid 50 is stably arranged in the space 56. FIG. 6C shows a state in which the movement velocity of the substrate P on the substrate stage PST is further increased. Even when the movement velocity of the substrate P is increased, no exfoliation occurs between the liquid 50 and the projection optical system PL and the substrate P, because the surface treatment is applied to the projection optical system PL and the substrate P.
  • [0078]
    As explained above, the surface treatment, which is in conformity with the affinity for the liquid 50, is applied to the surface of the substrate P and the tip section 7 of the projection optical system PL as the portions to make contact with the liquid 50 during the exposure process based on the liquid immersion method. Accordingly, it is possible to suppress the occurrence of inconveniences including, for example, the exfoliation of the liquid 50 and the generation of the bubble, and it is possible to stably arrange the liquid 50 between the projection optical system PL and the substrate P. Therefore, it is possible to maintain a satisfactory pattern transfer accuracy.
  • [0079]
    The surface treatment, which depends on the affinity for the liquid 50, may be applied to only any one of the tip section 7 of the projection optical system PL and the surface of the substrate P.
  • [0080]
    The foregoing embodiment has been explained such that the surface 60A of the optical element 60 and the part of the lower surface of the barrel (holding member) PK are designated as the first surface area AR1, and the surface treatment is applied to the first surface area AR1 so that the affinity for the liquid 50 is enhanced. That is, the explanation has been made assuming that the boundary between the lyophilic or liquid-attracting treatment area and the lyophobic or liquid-repelling treatment area exists on the lower surface of the barrel PK. However, the boundary may be set on the surface of the optical element 60. That is, it is also allowable that the liquid-attracting treatment is applied to a part of the area of the optical element 60 (at least an area through which the exposure light beam passes), and the liquid-repelling treatment is applied to the remaining area. Of course, it is also allowable that the boundary between the liquid-attracting treatment area and the liquid-repelling treatment area may be coincident with the boundary between the optical element 60 and the barrel PK. That is, it is also allowable that the liquid-attracting treatment is applied to only the optical element 60. Further, there is no limitation to the setting of the boundary on the lower surface 7A of the projection optical system PL. All of the lower surface 7A of the projection optical system PL may be subjected to the liquid-attracting treatment.
  • [0081]
    Further, when the surface treatment is performed, it is also possible to allow the lyophilicity (lyophobicity) to have a distribution. In other words, the surface treatment can be performed such that the contact angle of the liquid has mutually different values for a plurality of areas on the surface subjected to the surface treatment. Alternatively, lyophilic areas and lyophobic areas may be appropriately arranged in a divided manner.
  • [0082]
    The thin film, which is to be used for the surface treatment, may be a single layer film or a film composed of a plurality of layers. As for the material for forming the film, it is possible to use arbitrary materials provided that the material exhibits desired performance, including, for example, metals, metal compounds, and organic matters.
  • [0083]
    For example, the thin film formation and the plasma treatment are effective for the surface treatment for the optical element 60 and the substrate P. However, in relation to the surface treatment for the barrel PK as the metal member, it is possible to adjust the affinity for the liquid by any physical technique including, for example, the rough surface treatment for the surface of the barrel PK.
  • [0084]
    In the embodiment described above, the surface of the substrate P is made lyophilic (subjected to the liquid-attracting treatment) while giving much weight to the stable retention of the liquid between the projection optical system PL and the substrate P. However, when much weight is given to the recovery and the removal of the liquid from the surface of the substrate P, the surface of the substrate P may be made lyophobic (subjected to the liquid-repelling treatment).
  • [0085]
    In the embodiment described above, the surface treatment, which is in conformity with the affinity for the liquid 50, is applied to the tip section 7 of the projection optical system PL and the surface of the substrate P. However, it is also allowable that any liquid, which is in conformity with the affinity for at least one of the tip section 7 of the projection optical system PL and the surface of the substrate P, is supplied from the liquid supply unit 1.
  • [0086]
    As described above, pure water is used as the liquid 50 in this embodiment. Pure water is advantageous in that pure water is available in a large amount with ease, for example, in the semiconductor production factory, and pure water exerts no harmful influence, for example, on the optical element (lens) and the photoresist on the substrate P. Further, pure water exerts no harmful influence on the environment, and the content of impurity is extremely low. Therefore, it is also expected to obtain the function to wash the surface of the substrate P and the surface of the optical element provided at the tip surface of the projection optical system PL.
  • [0087]
    It is approved that the refractive index n of pure water (water) with respect to the exposure light beam EL having a wavelength of about 193 nm is approximately in an extent of 1.44 to 1.47. When the ArF excimer laser beam (wavelength: 193 nm) is used as the light source of the exposure light beam EL, then the wavelength is shortened on the substrate P by 1/n, i.e., to about 131 to 134 nm, and a high resolution is obtained. Further, the depth of focus is magnified about n times, i.e., about 1.44 to 1.47 times as compared with the value obtained in the air. Therefore, when it is enough to secure an approximately equivalent depth of focus as compared with the case of the use in the air, it is possible to further increase the numerical aperture of the projection optical system PL. Also in this viewpoint, the resolution is improved.
  • [0088]
    In this embodiment, the plane parallel plate is attached as the optical element 60 to the tip of the projection optical system PL. However, the optical element, which is attached to the tip of the projection optical system PL, may be an optical plate which is usable to adjust the optical characteristics of the projection optical system PL, for example, the aberration (for example, spherical aberration and comatic aberration), or the optical element may be a lens. On the other hand, when the optical element, which makes contact with the liquid 50, is the plane parallel plate which is cheaper than the lens, it is enough that the plane parallel plate is merely exchanged immediately before supplying the liquid 50 even when any substance (for example, any silicon-based organic matter), which deteriorates the transmittance of the projection optical system PL, the illuminance of the exposure light beam EL on the substrate P, and the uniformity of the illuminance distribution, is adhered to the plane parallel plate, for example, during the transport, the assembling, and/or the adjustment of the exposure apparatus EX. An advantage is obtained such that the exchange cost is lowered as compared with the case in which the optical element to make contact with the liquid 50 is the lens. That is, the surface of the optical element to make contact with the liquid 50 is dirtied, for example, due to the adhesion of scattered particles generated from the resist by being irradiated with the exposure light beam EL or any impurity contained in the liquid 50. Therefore, it is necessary to periodically exchange the optical element. However, when the optical element is the cheap plane parallel plate, then the cost of the exchange part is low as compared with the lens, and it is possible to shorten the time required for the exchange. Thus, it is possible to suppress the increase in the maintenance cost (running cost) and the decrease in the throughput.
  • [0089]
    When the pressure, which is generated by the flow of the liquid 50, is large between the substrate P and the optical element disposed at the tip of the projection optical system PL, it is also allowable that the optical element is tightly fixed so that the optical element is not moved by the pressure, rather than allowing the optical element to be exchangeable.
  • [0090]
    The liquid 50 is water in the embodiment described above. However, the liquid 50 may be any liquid other than water. For example, when the light source of the exposure light beam EL is the F2 laser, the F2 laser beam is not transmitted through water. Therefore, in this case, those preferably usable as the liquid 50 may include, for example, fluorine-based oil (fluorine-based liquid) and perfluoropolyether (PFPE) through which the F2 laser beam is transmissive. In this case, the surface of the substrate P and the portion of the projection optical system PL to make contact with the liquid 50 are subjected to the liquid-attracting treatment by forming the thin film, for example, with a substance having a molecular structure of small polarity including fluorine. Alternatively, other than the above, it is also possible to use, as the liquid 50, those (for example, cedar oil) which have the transmittance with respect to the exposure light beam EL, which have the refractive index as high as possible, and which are stable against the photoresist applied to the surface of the substrate P and the projection optical system PL. Also in this case, the surface treatment is performed depending on the polarity of the liquid 50 to be used.
  • [0091]
    Next, an explanation will be made with reference to FIG. 7 about a second embodiment of the present invention.
  • [0092]
    An exposure apparatus EX of this embodiment is designed such that the following conditional expression is satisfied provided that d represents a thickness of the liquid 50 between the lower surface 7A of the projection optical system PL and the surface of the substrate P (in this case, the spacing distance between the projection optical system PL and the substrate P), v represents a velocity of a flow of the liquid 50 between the projection optical system PL and the substrate P, ρ represents a density of the liquid 50, and μ represents a coefficient of viscosity of the liquid 50:
    (vĚdĚρ)/μ≦2,000  (3)
    Accordingly, the liquid 50 flows as a laminar flow in the space 56. As for the liquid 50, it is also assumed that a plurality of different flow velocities v exist depending on the position in the liquid. However, it is enough that the maximum velocity Vmax thereof satisfies the expression (3).
  • [0093]
    The control unit CONT adjusts at least one of the amount of supply of the liquid per unit time to the space 56 by the aid of the liquid supply unit 1 and the amount of recovery of the liquid per unit time from the space 56 by the aid of the liquid recovery unit 2 so that the conditional expression (3) is satisfied. Accordingly, the velocity v of the liquid 50 to flow through the space 56 is determined, and it is possible to satisfy the conditional expression (3). When the conditional expression (3) is satisfied, the liquid 50 flows through the space 56 while forming the laminar flow.
  • [0094]
    Alternatively, the control unit CONT can also satisfy the conditional expression (3) by adjusting the movement velocity in the scanning direction of the substrate P by the substrate stage PST. That is, the velocity v of the liquid 50 flowing through the space 56 is also determined by the movement velocity of the substrate P in some cases. That is, there is such a possibility that the liquid 50 on the substrate P may flow such that the liquid 50 is pulled by the substrate P in accordance with the movement of the substrate P. In this case, the conditional expression (3) can be satisfied by adjusting the movement velocity of the substrate P. For example, when the substrate P and the liquid 50 flow or move at approximately identical velocities with respect to the projection optical system PL, it is appropriate that the movement velocity of the substrate P may be regarded as the velocity v of the liquid 50 to satisfy the conditional expression (3). Also in this case, the liquid 50 flows through the space 56 while forming the laminar flow. Further, in this case, it is not necessarily indispensable to operate the liquid supply unit 1 and the liquid recovery unit 2 during the exposure for the substrate P. The flow of the liquid 50 can be made to be the laminar flow by adjusting only the movement velocity of the substrate P.
  • [0095]
    In order to satisfy the conditional expression (3), the thickness d of the liquid 50 (i.e., the spacing distance between the projection optical system PL and the substrate P) may be previously set as a designed value for the exposure apparatus, and the velocity v may be determined on the basis of this value. Alternatively, the velocity v may be previously set as a designed value, and the thickness (distance) d may be determined on the basis of this value.
  • [0096]
    In order that the liquid 50 flows while forming the laminar flow in the space 56, for example, slits may be provided at openings of the supply nozzles 4 connected to the liquid supply unit 1 as shown in FIG. 8A, or porous members are provided at openings of the supply nozzles 4 as shown in FIG. 8B. Accordingly, the liquid 50 can be rectified to flow in the laminar flow state.
  • [0097]
    When the liquid 50 flows as the laminar flow, it is possible to suppress inconveniences such as the vibration and the change in the refractive index which would be otherwise caused by the fluctuation of the pressure. Thus, it is possible to maintain a satisfactory pattern transfer accuracy. Further, when the surface treatment is applied to the surface of the substrate P and the portion of the projection optical system PL to make contact with the liquid 50, and the exposure apparatus EX is set so that the conditional expression (3) is satisfied to perform the exposure process, then the liquid 50 in the space 56 is established to be in a more satisfactory state in which no influence is exerted on the pattern transfer accuracy.
  • [0098]
    In the embodiment described above, the exposure apparatus is adopted, in which the space between the projection optical system PL and the substrate P is locally filled with the liquid. However, the present invention is also applicable to a liquid immersion exposure apparatus in which a stage holding a substrate as an exposure objective is moved in a liquid bath, and a liquid immersion exposure apparatus in which a liquid pool having a predetermined depth is formed on a stage and a substrate is held therein. The structure and the exposure operation of the liquid immersion exposure apparatus in which the stage holding the substrate as the exposure objective is moved in the liquid bath are disclosed, for example, in Japanese Patent Application Laid-open No. 6-124873, content of which is incorporated herein by reference within a range of permission of the domestic laws and ordinances of the state designated or selected in this international application. The structure and the exposure operation of the liquid immersion exposure apparatus in which the liquid pool having the predetermined depth is formed on the stage and the substrate is held therein are disclosed, for example, in Japanese Patent Application Laid-open No. 10-303114 and U.S. Pat. No. 5,825,043, contents of which are incorporated herein by reference within a range of permission of the domestic laws and ordinances of the state designated or selected in this international application.
  • [0099]
    In the embodiment described above, the liquid supply unit 1 and the liquid recovery unit 2 are used to continue the supply and the recovery of the liquid 50 during the exposure for the substrate P as well. However, it is also allowable to stop the supply and the recovery of the liquid 50 by the liquid supply unit 1 and the liquid recovery unit 2 during the exposure for the substrate P. That is, a small amount of the liquid 50 is supplied by the liquid supply unit 1 onto the substrate P to such an extent that the liquid immersion portion, which has a thickness of not more than the working distance of the projection optical system PL (about 0.5 to 1.0 mm), is formed between the substrate P and the tip section 7 of the projection optical system PL, or to such an extent that a thin liquid film is formed on the entire surface of the substrate P before the start of the exposure for the substrate P. The tip section 7 of the projection optical system PL and the substrate P are made to tightly contact with each other by the aid of the liquid 50. The spacing distance between the tip section 7 of the projection optical system PL and the substrate P is not more than several mm. Therefore, even when the substrate P is moved without supplying and recovering the liquid by using the liquid supply unit 1 and the liquid recovery unit 2 during the exposure for the substrate P, it is possible to continuously retain the liquid 50 between the projection optical system PL and the substrate P owing to the surface tension of the liquid 50. The resist (photosensitive film), which is disposed on the substrate P, is not damaged by the supply of the liquid from the liquid supply unit 1 as well. In this case, when a coating for repelling the liquid 50 (water-repelling coating when the liquid is water) is applied with a predetermined width to the circumferential edge of the substrate P, it is possible to avoid the outflow of the liquid 50 from the substrate P. It goes without saying that the conditional expression (3) is satisfied to generate no turbulence in the liquid 50 when the substrate P is moved.
  • [0100]
    In the embodiment described above, the liquid (50) is supplied on the substrate stage PST. However, the liquid may be supplied onto the substrate P before the substrate P is imported onto the substrate stage PST. In this case, when the liquid, which is supplied to a part or all of the surface of the substrate P, has a thickness of about 0.5 to 1.0 mm, then the substrate P can be imported to the substrate stage PST and the substrate P can be exported from the substrate stage PST while placing the liquid on the substrate P by the surface tension. Also in this case, when a liquid-repelling coating having a predetermined width is applied to the circumferential edge of the substrate P, it is possible to enhance the retaining force for the liquid on the substrate P. When the substrate P is imported to the substrate stage PST and the substrate P is exported from the substrate stage PST while retaining the liquid on the substrate P as described above, it is possible to omit the mechanism for supplying and recovering the liquid on the substrate stage PST.
  • [0101]
    The embodiment described above is constructed such that the space between the projection optical system PL and the surface of the substrate P is filled with the liquid 50. However, for example, as shown in FIG. 9, the space may be filled with the liquid 50 in a state in which a cover glass 65, which is composed of a plane parallel plate, is attached to the surface of the substrate P. In this arrangement, the cover glass 65 is supported over the Z stage 51 by the aid of a support member 66. The space 57, which is formed by the cover glass 65, the support member 66, and the Z stage 51, is a substantially tightly closed or sealed space. The liquid 50 and the substrate P are arranged in the space 57. The cover glass 65 is composed of a material through which the exposure light beam EL is transmissive. The liquid 50 is supplied to and recovered from a space 56′ between the surface of the cover glass 65 and the projection optical system PL by using the liquid supply unit 1 and the liquid recovery unit 2. The setting is made such that the conditional expression (3) described above is satisfied in the space 56′ provided that d represents the spacing distance between the surface of the cover glass 65 and the tip section 7 of the projection optical system PL.
  • [0102]
    The surface treatment, which is in conformity with the affinity for the liquid 50, can be also applied to the surface (upper surface) of the cover glass 65. It is desirable that the liquid-attracting treatment is applied to the surface of the cover glass 65. Therefore, when the liquid 50 is water, a thin film is formed with a substance having a molecular structure of large polarity on the surface of the cover glass 65.
  • [0103]
    The substrate P, which is usable in the respective embodiments described above, is not limited to the semiconductor wafer for producing the semiconductor device. Those applicable include, for example, the glass substrate for the display device, the ceramic wafer for the thin film magnetic head, and the master plate (synthetic quartz, silicon wafer) for the mask or the reticle to be used for the exposure apparatus.
  • [0104]
    As for the exposure apparatus EX, the present invention is also applicable to the scanning type exposure apparatus (scanning stepper) based on the step-and-scan system for performing the scanning exposure for the pattern of the mask M by synchronously moving the mask M and the substrate P as well as the projection exposure apparatus (stepper) based on the step-and-repeat system for performing the full field exposure for the pattern of the mask M in a state in which the mask M and the substrate P are made to stand still, while successively step-moving the substrate P. The present invention is also applicable to the exposure apparatus based on the step-and-stitch system in which at least two patterns are partially overlaid and transferred on the substrate P.
  • [0105]
    The present invention is also applicable to a twin-stage type exposure apparatus. The structure and the exposure operation of the twin-stage type exposure apparatus are disclosed, for example, in Japanese Patent Application Laid-open Nos. 10-163099 and 10-214783 (corresponding to U.S. Pat. Nos. 6,341,007, 6,400,441, 6,549,269, and 6,590,634), Published Japanese Translation of PCT International Publication for Patent Application No. 2000-505958 (corresponding to U.S. Pat. No. 5,969,441), and U.S. Pat. No. 6,208,407, contents of which are incorporated herein by reference within a range of permission of the domestic laws and ordinances of the state designated or selected in this international application.
  • [0106]
    As for the type of the exposure apparatus EX, the present invention is not limited to the exposure apparatus for the semiconductor production apparatus for exposing the substrate P with the semiconductor device pattern. The present invention is also widely applicable, for example, to the exposure apparatus for producing the liquid crystal display device or for producing the display as well as the exposure apparatus for producing, for example, the thin film magnetic head, the image pickup device (CCD), the reticle, or the mask.
  • [0107]
    When the linear motor is used for the substrate stage PST and/or the mask stage MST, it is allowable to use any one of those of the air floating type based on the use of the air bearing and those of the magnetic floating type based on the use of the Lorentz's force or the reactance force. Each of the stages PST, MST may be either of the type in which the movement is effected along the guide or of the guideless type in which no guide is provided. An example of the use of the linear motor for the stage is disclosed in U.S. Pat. Nos. 5,623,853 and 5,528,118, contents of which are incorporated herein by reference respectively within a range of permission of the domestic laws and ordinances of the state designated or selected in this international application.
  • [0108]
    As for the driving mechanism for each of the stages PST, MST, it is also allowable to use a plane motor in which a magnet unit provided with two-dimensionally arranged magnets and an armature unit provided with two-dimensionally arranged coils are opposed to one another, and each of the stages PST, MST is driven by the electromagnetic force. In this arrangement, any one of the magnet unit and the armature unit is connected to the stage PST, MST, and the other of the magnet unit and the armature unit is provided on the side of the movable surface of the stage PST, MST.
  • [0109]
    The reaction force, which is generated in accordance with the movement of the substrate stage PST, may be mechanically released to the floor (ground) by using a frame member so that the reaction force is not transmitted to the projection optical system PL. The method for handling the reaction force is disclosed in detail, for example, in U.S. Pat. No. 5,528,118 (Japanese Patent Application Laid-open No. 8-166475), contents of which are incorporated herein by reference within a range of permission of the domestic laws and ordinances of the state designated or selected in this international application.
  • [0110]
    The reaction force, which is generated in accordance with the movement of the mask stage MST, may be mechanically released to the floor (ground) by using a frame member so that the reaction force is not transmitted to the projection optical system PL. The method for handling the reaction force is disclosed in detail, for example, in U.S. Pat. No. 5,874,820 (Japanese Patent Application Laid-open No. 8-330224), contents of which are incorporated herein by reference within a range of permission of the domestic laws and ordinances of the state designated or selected in this international application.
  • [0111]
    As described above, the exposure apparatus EX according to the embodiment of the present invention is produced by assembling the various subsystems including the respective constitutive elements as defined in claims so that the predetermined mechanical accuracy, the electric accuracy, and the optical accuracy are maintained. In order to secure the various accuracies, those performed before and after the assembling include the adjustment for achieving the optical accuracy for the various optical systems, the adjustment for achieving the mechanical accuracy for the various mechanical systems, and the adjustment for achieving the electric accuracy for the various electric systems. The steps of assembling the various subsystems into the exposure apparatus include, for example, the mechanical connection, the wiring connection of the electric circuits, and the piping connection of the air pressure circuits in correlation with the various subsystems. It goes without saying that the steps of assembling the respective individual subsystems are performed before performing the steps of assembling the various subsystems into the exposure apparatus. When the steps of assembling the various subsystems into the exposure apparatus are completed, the overall adjustment is performed to secure the various accuracies as the entire exposure apparatus. It is desirable that the exposure apparatus is produced in a clean room in which, for example, the temperature and the cleanness are managed.
  • [0112]
    As shown in FIG. 10, the microdevice such as the semiconductor device is produced by performing, for example, a step 201 of designing the function and the performance of the microdevice, a step 202 of manufacturing a mask (reticle) based on the designing step, a step 203 of producing a substrate as a base material for the device, an exposure process step 204 of exposing the substrate with a pattern of the mask by using the exposure apparatus EX of the embodiment described above, a step 205 of assembling the device (including a dicing step, a bonding step, and a packaging step), and an inspection step 206. The exposure process step 204 includes a step of performing the surface treatment for the substrate in order to adjust the hydrophilicity for the substrate and the liquid before the exposure.
  • [0113]
    According to the present invention, it is possible to suppress the exfoliation of the liquid, the generation of the bubble, or the occurrence of the turbulence, and it is possible to maintain the liquid in a desired state between the projection optical system and the substrate in the liquid immersion exposure. Accordingly, the pattern can be transferred correctly with a wide depth of focus. Therefore, the present invention is extremely useful for the exposure based on the use of the short wavelength light source such as ArF. It is possible to produce a highly integrated device having desired performance.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4346164 *Oct 6, 1980Aug 24, 1982Werner TabarelliPhotolithographic method for the manufacture of integrated circuits
US4480910 *Mar 15, 1982Nov 6, 1984Hitachi, Ltd.Pattern forming apparatus
US5078832 *May 3, 1990Jan 7, 1992Dainippon Screen Mfg. Co., Ltd.Method of treating wafer surface
US5326672 *Oct 22, 1992Jul 5, 1994Sortec CorporationResist patterns and method of forming resist patterns
US5610683 *Jun 5, 1995Mar 11, 1997Canon Kabushiki KaishaImmersion type projection exposure apparatus
US5715039 *May 17, 1996Feb 3, 1998Hitachi, Ltd.Projection exposure apparatus and method which uses multiple diffraction gratings in order to produce a solid state device with fine patterns
US5825043 *Oct 7, 1996Oct 20, 1998Nikon Precision Inc.Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
US5962079 *Jan 2, 1997Oct 5, 1999The University Of ConnecticutUltra thin silicon oxide and metal oxide films and a method for the preparation thereof
US6191429 *Apr 6, 1999Feb 20, 2001Nikon Precision Inc.Projection exposure apparatus and method with workpiece area detection
US6542302 *Sep 24, 2001Apr 1, 2003Bushnell CorporationLens coating to reduce external fogging of scope lenses
US6638439 *Dec 18, 2000Oct 28, 2003Canon Kabushiki KaishaInk-jet recording head and its manufacturing method
US6992750 *Dec 9, 2003Jan 31, 2006Canon Kabushiki KaishaExposure apparatus and method
US7423728 *Dec 23, 2005Sep 9, 2008Kabushiki Kaisha ToshibaImmersion exposure method and apparatus, and manufacturing method of a semiconductor device
US7528929 *Nov 12, 2004May 5, 2009Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US7535550 *Jul 17, 2007May 19, 2009Nikon CorporationExposure apparatus, exposure method, and method for producing device
US7812926 *Aug 30, 2006Oct 12, 2010Nikon CorporationOptical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US20020163629 *May 7, 2002Nov 7, 2002Michael SwitkesMethods and apparatus employing an index matching medium
US20030008224 *May 16, 2002Jan 9, 2003Yoshimasa FujitaOrganic LED display panel production method, organic LED display panel produced by the method, and base film and substrate for use in the method
US20030030916 *Dec 10, 2001Feb 13, 2003Nikon CorporationProjection optical system and exposure apparatus having the projection optical system
US20030091767 *Nov 2, 2001May 15, 2003Podhajny Richard M.Anti-microbial packaging materials and methods for making the same
US20030174408 *Mar 6, 2003Sep 18, 2003Carl Zeiss Smt AgRefractive projection objective for immersion lithography
US20030210322 *May 30, 2003Nov 13, 2003Yasuo KatanoImage recording body and image forming apparatus by use of the same
US20040000627 *Aug 2, 2002Jan 1, 2004Carl Zeiss Semiconductor Manufacturing Technologies AgMethod for focus detection and an imaging system with a focus-detection system
US20040075895 *Oct 22, 2002Apr 22, 2004Taiwan Semiconductor Manufacturing Co., Ltd.Apparatus for method for immersion lithography
US20040109237 *May 30, 2003Jun 10, 2004Carl Zeiss Smt AgProjection objective, especially for microlithography, and method for adjusting a projection objective
US20040114117 *Nov 18, 2003Jun 17, 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20040118184 *Oct 14, 2003Jun 24, 2004Asml Holding N.V.Liquid flow proximity sensor for use in immersion lithography
US20040119954 *Dec 9, 2003Jun 24, 2004Miyoko KawashimaExposure apparatus and method
US20040125351 *Dec 30, 2002Jul 1, 2004Krautschik Christof GabrielImmersion lithography
US20040132294 *Oct 8, 2003Jul 8, 2004Kenichi TakagiManufacturing method of fine structure, optical element, integrated circuit, and electronic instrument
US20040136494 *Nov 12, 2003Jul 15, 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20040160582 *Nov 12, 2003Aug 19, 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20040165159 *Nov 12, 2003Aug 26, 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20040169834 *Nov 17, 2003Sep 2, 2004Infineon Technologies AgOptical device for use with a lithography method
US20040169924 *Feb 27, 2003Sep 2, 2004Asml Netherlands, B.V.Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US20040180294 *Feb 20, 2004Sep 16, 2004Asml Holding N.V.Lithographic printing with polarized light
US20040180299 *Mar 11, 2003Sep 16, 2004Rolland Jason P.Immersion lithography methods using carbon dioxide
US20040207824 *Nov 12, 2003Oct 21, 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20040211920 *Nov 12, 2003Oct 28, 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20040224265 *Aug 14, 2003Nov 11, 2004Matsushita Electric Industrial Co., LtdPattern formation method and exposure system
US20040224525 *Aug 20, 2003Nov 11, 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US20040227923 *Feb 26, 2004Nov 18, 2004Flagello Donis GeorgeStationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US20040253547 *Sep 15, 2003Dec 16, 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US20040253548 *Sep 15, 2003Dec 16, 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US20040257544 *Jun 19, 2003Dec 23, 2004Asml Holding N.V.Immersion photolithography system and method using microchannel nozzles
US20040259008 *Nov 19, 2003Dec 23, 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US20040259040 *Nov 17, 2003Dec 23, 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US20040263808 *Apr 26, 2004Dec 30, 2004Asml Holding N.V.Immersion photolithography system and method using inverted wafer-projection optics interface
US20050002004 *Jun 14, 2004Jan 6, 2005Asml Nitherlands B.V.Lithographic apparatus and device manufacturing method
US20050030506 *Jul 9, 2004Feb 10, 2005Carl Zeiss Smt AgProjection exposure method and projection exposure system
US20050036121 *Apr 26, 2004Feb 17, 2005Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20050036183 *Mar 18, 2004Feb 17, 2005Yee-Chia YeoImmersion fluid for immersion Lithography, and method of performing immersion lithography
US20050036184 *Apr 16, 2004Feb 17, 2005Yee-Chia YeoLithography apparatus for manufacture of integrated circuits
US20050036213 *Aug 12, 2003Feb 17, 2005Hans-Jurgen MannProjection objectives including a plurality of mirrors with lenses ahead of mirror M3
US20050037269 *Aug 11, 2003Feb 17, 2005Levinson Harry J.Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US20050046934 *Aug 29, 2003Mar 3, 2005Tokyo Electron LimitedMethod and system for drying a substrate
US20050048223 *Sep 2, 2003Mar 3, 2005Pawloski Adam R.Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
US20050068639 *Sep 26, 2003Mar 31, 2005Fortis Systems Inc.Contact printing using a magnified mask image
US20050073670 *Oct 3, 2003Apr 7, 2005Micronic Laser Systems AbMethod and device for immersion lithography
US20050084794 *Oct 16, 2003Apr 21, 2005Meagley Robert P.Methods and compositions for providing photoresist with improved properties for contacting liquids
US20050094116 *Oct 31, 2003May 5, 2005Asml Netherlands B.V.Gradient immersion lithography
US20050100745 *Nov 6, 2003May 12, 2005Taiwan Semiconductor Manufacturing Company, Ltd.Anti-corrosion layer on objective lens for liquid immersion lithography applications
US20050110973 *Nov 24, 2003May 26, 2005Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20050117224 *Dec 15, 2003Jun 2, 2005Carl Zeiss Smt AgCatadioptric projection objective with geometric beam splitting
US20050122497 *Dec 3, 2003Jun 9, 2005Lyons Christopher F.Immersion lithographic process using a conforming immersion medium
US20050130079 *Dec 14, 2004Jun 16, 2005Matsushita Electric Industrial Co., Ltd.Pattern formation method
US20050141098 *Sep 8, 2004Jun 30, 2005Carl Zeiss Smt AgVery high-aperture projection objective
US20050190455 *Dec 15, 2004Sep 1, 2005Carl Zeiss Smt AgRefractive projection objective for immersion lithography
US20050217135 *Sep 30, 2004Oct 6, 2005Lam Research Corp.Phobic barrier meniscus separation and containment
US20050217137 *Jun 30, 2004Oct 6, 2005Lam Research Corp.Concentric proximity processing head
US20050217703 *Sep 30, 2004Oct 6, 2005Lam Research Corp.Apparatus and method for utilizing a meniscus in substrate processing
US20050225738 *Jun 8, 2005Oct 13, 2005Nikon CorporationOptical element and projection exposure apparatus based on use of the optical element
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7420651Jun 8, 2007Sep 2, 2008Canon Kabushiki KaishaImmersion exposure technique
US7423728 *Dec 23, 2005Sep 9, 2008Kabushiki Kaisha ToshibaImmersion exposure method and apparatus, and manufacturing method of a semiconductor device
US7459669 *Dec 30, 2005Dec 2, 2008Asml Netherlands B.V.Sensor and lithographic apparatus
US7460206Dec 20, 2004Dec 2, 2008Carl Zeiss Smt AgProjection objective for immersion lithography
US7466393Jun 8, 2007Dec 16, 2008Canon Kabushiki KaishaImmersion exposure technique
US7474379 *Jun 28, 2005Jan 6, 2009Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US7483119Dec 9, 2005Jan 27, 2009Nikon CorporationExposure method, substrate stage, exposure apparatus, and device manufacturing method
US7495744Nov 22, 2005Feb 24, 2009Nikon CorporationExposure method, exposure apparatus, and method for producing device
US7535550Jul 17, 2007May 19, 2009Nikon CorporationExposure apparatus, exposure method, and method for producing device
US7561248Oct 31, 2007Jul 14, 2009Canon Kabushiki KaishaImmersion exposure technique
US7619714Jul 31, 2008Nov 17, 2009Canon Kabushiki KaishaImmersion exposure technique
US7626685Aug 5, 2008Dec 1, 2009Samsung Electronics Co., Ltd.Distance measuring sensors including vertical photogate and three-dimensional color image sensors including distance measuring sensors
US7643127 *Feb 23, 2007Jan 5, 2010Asml Netherlands B.V.Prewetting of substrate before immersion exposure
US7679718Jun 7, 2007Mar 16, 2010Canon Kabushiki KaishaImmersion exposure technique
US7692760Aug 4, 2005Apr 6, 2010Canon Kabushiki KaishaLiquid immersion exposure apparatus, method of controlling the same, and device manufacturing method
US7742150 *Jan 18, 2007Jun 22, 2010Kabushiki Kaisha ToshibaManufacturing method of semiconductor device
US7803516Nov 20, 2006Sep 28, 2010Nikon CorporationExposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US7812926Aug 30, 2006Oct 12, 2010Nikon CorporationOptical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US7855777Jul 19, 2007Dec 21, 2010Nikon CorporationExposure apparatus and method for manufacturing device
US7876418Jun 8, 2005Jan 25, 2011Nikon CorporationOptical element and projection exposure apparatus based on use of the optical element
US7898643Jul 22, 2005Mar 1, 2011Asml Holding N.V.Immersion photolithography system and method using inverted wafer-projection optics interface
US7907253Jul 16, 2007Mar 15, 2011Nikon CorporationExposure apparatus, exposure method, and method for producing device
US7907254Jul 19, 2007Mar 15, 2011Nikon CorporationExposure apparatus, exposure method, and method for producing device
US7911583Jul 18, 2007Mar 22, 2011Nikon CorporationExposure apparatus, exposure method, and method for producing device
US7914972Jul 20, 2005Mar 29, 2011Nikon CorporationExposure method and device manufacturing method
US7924403 *Jan 12, 2006Apr 12, 2011Asml Netherlands B.V.Lithographic apparatus and device and device manufacturing method
US7932991Mar 3, 2006Apr 26, 2011Nikon CorporationExposure apparatus, exposure method, and method for producing device
US7973910Apr 13, 2007Jul 5, 2011Nikon CorporationStage apparatus and exposure apparatus
US7993008Nov 14, 2008Aug 9, 2011Nikon CorporationOptical element and exposure apparatus
US8040491Jan 10, 2008Oct 18, 2011Nikon CorporationExposure method, substrate stage, exposure apparatus, and device manufacturing method
US8054445 *Aug 7, 2006Nov 8, 2011Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US8054447Dec 3, 2004Nov 8, 2011Nikon CorporationExposure apparatus, exposure method, method for producing device, and optical part
US8102504Aug 11, 2006Jan 24, 2012Nikon CorporationExposure apparatus, exposure method, and method for producing device
US8111374Sep 8, 2006Feb 7, 2012Nikon CorporationAnalysis method, exposure method, and device manufacturing method
US8120749Dec 3, 2008Feb 21, 2012Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US8149381May 2, 2006Apr 3, 2012Nikon CorporationOptical element and exposure apparatus
US8169591Aug 1, 2005May 1, 2012Nikon CorporationExposure apparatus, exposure method, and method for producing device
US8189170Feb 25, 2010May 29, 2012Nikon CorporationOptical element and exposure apparatus
US8208117Sep 10, 2008Jun 26, 2012Nikon CorporationExposure method, substrate stage, exposure apparatus, and device manufacturing method
US8208123Aug 27, 2004Jun 26, 2012Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US8305553Aug 17, 2005Nov 6, 2012Nikon CorporationExposure apparatus and device manufacturing method
US8384880Sep 10, 2008Feb 26, 2013Nikon CorporationExposure method, substrate stage, exposure apparatus, and device manufacturing method
US8472001Jul 31, 2008Jun 25, 2013Nikon CorporationExposure method, exposure apparatus, and method for producing device
US8488108Jul 31, 2008Jul 16, 2013Nikon CorporationExposure method, exposure apparatus, and method for producing device
US8547519Mar 26, 2009Oct 1, 2013Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US8634056Jul 20, 2011Jan 21, 2014Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US8675173Mar 9, 2011Mar 18, 2014Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US8692973Apr 27, 2007Apr 8, 2014Nikon CorporationExposure apparatus and method for producing device
US8724075Sep 13, 2010May 13, 2014Nikon CorporationOptical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US8736809Oct 15, 2010May 27, 2014Nikon CorporationExposure apparatus, exposure method, and method for producing device
US8749755May 26, 2011Jun 10, 2014Nikon CorporationStage apparatus and exposure apparatus
US8767173Dec 15, 2010Jul 1, 2014Nikon CorporationOptical element and projection exposure apparatus based on use of the optical element
US8848165Feb 9, 2012Sep 30, 2014Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US8879043Nov 9, 2010Nov 4, 2014Nikon CorporationExposure apparatus and method for manufacturing device
US9019467Jan 30, 2013Apr 28, 2015Nikon CorporationExposure method, substrate stage, exposure apparatus, and device manufacturing method
US9019469Dec 15, 2006Apr 28, 2015Nikon CorporationExposure apparatus, exposure method, method for producing device, and optical part
US9046796Feb 28, 2012Jun 2, 2015Nikon CorporationOptical element and exposure apparatus
US9063436Mar 22, 2012Jun 23, 2015Nikon CorporationExposure apparatus, exposure method, and method for producing device
US9134622Dec 16, 2013Sep 15, 2015Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US9134623Apr 30, 2014Sep 15, 2015Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US9182684May 2, 2014Nov 10, 2015Nikon CorporationExposure apparatus, exposure method, and method for producing device
US9182685Sep 24, 2013Nov 10, 2015Nikon CorporationExposure apparatus, exposure method, method for producing device, and optical part
US9235139Jan 30, 2013Jan 12, 2016Nikon CorporationExposure method, substrate stage, exposure apparatus, and device manufacturing method
US9268237Jan 30, 2013Feb 23, 2016Nikon CorporationExposure method, substrate stage, exposure apparatus, and device manufacturing method
US9285684May 20, 2013Mar 15, 2016Nikon CorporationExposure method, exposure apparatus, and method for producing device
US9316917Jul 16, 2008Apr 19, 2016Nikon CorporationMeasuring method, stage apparatus, and exposure apparatus
US9348239May 23, 2014May 24, 2016Nikon CorporationExposure apparatus, exposure method, and method for producing device
US9354525May 20, 2013May 31, 2016Nikon CorporationExposure method, exposure apparatus, and method for producing device
US9372410Jul 24, 2013Jun 21, 2016Nikon CorporationMeasuring method, stage apparatus, and exposure apparatus
US9746781Jun 25, 2014Aug 29, 2017Nikon CorporationExposure apparatus and method for producing device
US9766555May 3, 2016Sep 19, 2017Nikon CorporationExposure apparatus, exposure method, and method for producing device
US9804506Jul 24, 2013Oct 31, 2017Nikon CorporationMeasuring method, stage apparatus, and exposure apparatus
US20050094119 *Aug 27, 2004May 5, 2005Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20050225737 *Dec 20, 2004Oct 13, 2005Carl Zeiss Smt AgProjection objective for immersion lithography
US20050225738 *Jun 8, 2005Oct 13, 2005Nikon CorporationOptical element and projection exposure apparatus based on use of the optical element
US20050254031 *Jul 22, 2005Nov 17, 2005Asml Holding N.V.Immersion photolithography system and method using inverted wafer-projection optics interface
US20060028630 *Aug 4, 2005Feb 9, 2006Canon Kabushiki KaishaLiquid immersion exposure apparatus, method of controlling the same, and device manufacturing method
US20060158628 *Jan 12, 2006Jul 20, 2006Asml Netherlands B.V.Lithographic apparatus and device and device manufacturing method
US20060177776 *Dec 23, 2005Aug 10, 2006Kentaro MatsunagaImmersion exposure method and apparatus, and manufacturing method of a semiconductor device
US20060192930 *Feb 27, 2006Aug 31, 2006Canon Kabushiki KaishaExposure apparatus
US20060203218 *May 2, 2006Sep 14, 2006Nikon CorporationOptical element and exposure apparatus
US20060209285 *May 3, 2006Sep 21, 2006Nikon CorporationOptical element and projection exposure apparatus based on use of the optical element
US20060290909 *Jun 28, 2005Dec 28, 2006Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20070004182 *Nov 16, 2005Jan 4, 2007Taiwan Semiconductor Manufacturing Company, Ltd.Methods and system for inhibiting immersion lithography defect formation
US20070030468 *Oct 12, 2006Feb 8, 2007Nikon CorporationOptical element and projection exposure apparatus based on use of the optical element
US20070041001 *Aug 7, 2006Feb 22, 2007Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20070058148 *Sep 8, 2006Mar 15, 2007Nikon CorporationAnalysis method, exposure method, and device manufacturing method
US20070103661 *Dec 27, 2006May 10, 2007Nikon CorporationExposure apparatus, exposure method, and method for producing device
US20070152178 *Dec 30, 2005Jul 5, 2007Asml Netherlands B.V.Sensor and lithographic apparatus
US20070159613 *Feb 23, 2007Jul 12, 2007Asml Netherlands B.V.Prewetting of substrate before immersion exposure
US20070172767 *Nov 20, 2006Jul 26, 2007Nikon CorporationExposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US20070188733 *Jan 18, 2007Aug 16, 2007Shinichi ItoManufacturing method of semiconductor device
US20070196774 *Jul 20, 2005Aug 23, 2007Tomoharu FujiwaraExposure Method And Device Manufacturing Method
US20070201011 *Aug 30, 2006Aug 30, 2007Nikon CorporationOptical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US20070216889 *Jun 3, 2005Sep 20, 2007Yasufumi NishiiExposure Apparatus, Exposure Method, and Method for Producing Device
US20070222958 *May 18, 2007Sep 27, 2007Nikon CorporationExposure apparatus, exposure method, and method for producing device
US20070229783 *Jun 8, 2007Oct 4, 2007Canon Kabushiki KaishaImmersion exposure technique
US20070229784 *Jun 8, 2007Oct 4, 2007Canon Kabushiki KaishaImmersion exposure technique
US20070258066 *Jul 17, 2007Nov 8, 2007Nikon CorporationExposure apparatus, exposure method, and method for producing device
US20070263182 *Aug 17, 2005Nov 15, 2007Nikon CorporationExposure Apparatus and Device Manufacturing Method
US20070263183 *Jul 19, 2007Nov 15, 2007Nikon CorporationExposure apparatus, exposure method, and method for producing device
US20070263185 *Jul 18, 2007Nov 15, 2007Nikon CorporationExposure apparatus, exposure method, and method for producing device
US20070269751 *Aug 18, 2005Nov 22, 2007Kazumasa WakiyaImmersion Liquid for Liquid Immersion Lithography Process and Method for Forming Resist Pattern Using Such Immersion Liquid
US20080018871 *Jun 7, 2007Jan 24, 2008Canon Kabushiki KaishaImmersion exposure technique
US20080084546 *Aug 1, 2005Apr 10, 2008Nikon CorporationExposure Apparatus,Exposure Method, And For Producing Device
US20080117395 *Apr 13, 2007May 22, 2008Nikon CorporationStage apparatus and exposure apparatus
US20080117401 *Nov 14, 2007May 22, 2008Nikon CorporationSurface treatment method and surface treatment apparatus, exposure method and exposure apparatus, and device manufacturing method
US20080192222 *Dec 2, 2005Aug 14, 2008Nikon CorporationExposure Apparatus, Exposure Method, and Device Manufacturing Method
US20080246937 *Apr 25, 2006Oct 9, 2008Nikon CorporationExposing Method, Exposure Apparatus, Device Fabricating Method, and Film Evaluating Method
US20080252864 *Oct 31, 2007Oct 16, 2008Canon Kabushiki KaishaImmersion exposure technique
US20080291409 *Jul 31, 2008Nov 27, 2008Canon Kabushiki KaishaImmersion exposure technique
US20080291419 *Aug 6, 2008Nov 27, 2008Carl Zeiss Smt AgProjection objective for immersion lithography
US20080297745 *Aug 6, 2008Dec 4, 2008Carl Zeiss Smt AgProjection objective for immersion lithography
US20090004607 *Jul 29, 2005Jan 1, 2009Takeshi ShimoaokiSubstrate Processing Method
US20090009745 *Jul 31, 2008Jan 8, 2009Nikon CorporationExposure method, exposure apparatus, and method for producing device
US20090033890 *Jun 29, 2006Feb 5, 2009Nikon CorporationExposure apparatus, substrate processing method, and device producing method
US20090033896 *Jun 27, 2006Feb 5, 2009Hiroyuki NagasakaExposure apparatus and method, and device manufacturing method
US20090047607 *Mar 30, 2006Feb 19, 2009Hiroyuki NagasakaExposure method, exposure apparatus and device fabricating methods
US20090103070 *Nov 14, 2008Apr 23, 2009Nikon CorporationOptical element and exposure apparatus
US20090135382 *Apr 27, 2006May 28, 2009Nikon CorporationExposure method, exposure apparatus, and method for producing device
US20090225289 *Feb 18, 2009Sep 10, 2009Asml Netherlands B.V.Lithographic apparatus and methods
US20090244514 *Aug 5, 2008Oct 1, 2009Samsung Electronics Co., Ltd.Distance measuring sensors including vertical photogate and three-dimensional color image sensors including distance measuring sensors
US20090253083 *Mar 31, 2006Oct 8, 2009Nikon CorporationExposure Apparatus, Exposure Method, and Method for Producing Device
US20100060868 *Aug 31, 2009Mar 11, 2010Asml Netherlands B.V.Fluid handling structure, lithographic apparatus and device manufactuirng method
US20100220305 *Feb 25, 2010Sep 2, 2010Nikon CorporationOptical element and exposure apparatus
US20110013160 *Sep 13, 2010Jan 20, 2011Nikon CorporationOptical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US20110122380 *Jan 28, 2011May 26, 2011Asml Holding N.V.Immersion photolithography system and method using inverted wafer-projection optics interface
US20110128514 *Dec 15, 2010Jun 2, 2011Nikon CorporationOptical element and projection exposure apparatus based on use of the optical element
US20110228240 *May 26, 2011Sep 22, 2011Nikon CorporationStage apparatus and exposure apparatus
US20160004171 *Aug 28, 2015Jan 7, 2016Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
USRE42741Mar 11, 2008Sep 27, 2011Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
Classifications
U.S. Classification355/53, 355/30
International ClassificationG03F7/20
Cooperative ClassificationG03F7/2041, G03F7/709, G03F7/70341
European ClassificationG03F7/70F24, G03F7/70P6F, G03F7/20F
Legal Events
DateCodeEventDescription
Jun 8, 2005ASAssignment
Owner name: NIKON CORPORATION, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAGASAKA, HIROYUKI;MAGOME, NOBUTAKA;REEL/FRAME:016679/0332;SIGNING DATES FROM 20050530 TO 20050531