Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050256515 A1
Publication typeApplication
Application numberUS 11/148,051
Publication dateNov 17, 2005
Filing dateJun 8, 2005
Priority dateFeb 5, 1997
Also published asDE69830732D1, DE69830732T2, EP1011811A1, EP1011811B1, US5810801, US6120497, US6659999, US20040143247, US20080269733, WO1998033558A1
Publication number11148051, 148051, US 2005/0256515 A1, US 2005/256515 A1, US 20050256515 A1, US 20050256515A1, US 2005256515 A1, US 2005256515A1, US-A1-20050256515, US-A1-2005256515, US2005/0256515A1, US2005/256515A1, US20050256515 A1, US20050256515A1, US2005256515 A1, US2005256515A1
InventorsR. Anderson, Edward Ross, James Hsia, Kathleen McMillan
Original AssigneeAnderson R R, Ross Edward V Jr, Hsia James C, Mcmillan Kathleen
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for treating wrinkles in skin using radiation
US 20050256515 A1
Abstract
A method for treating wrinkles in skin involves the use of a beam of pulsed, scanned or gated continuous wave laser or incoherent radiation. The method comprises generating a beam of radiation, directing the beam of radiation to a targeted dermal region between 100 microns and 1.2 millimeters below a wrinkle in the skin, and thermally injuring collagen in the targeted dermal region. The beam of radiation has a wavelength of between 1.3 and 1.8 microns. The method may include cooling an area of the skin above the targeted dermal region while partially denaturing the collagen in the targeted dermal region. The method may also include cooling an area of the skin above the targeted dermal region prior to thermally injuring collagen in the targeted dermal region.
Images(3)
Previous page
Next page
Claims(16)
1-15. (canceled)
16. An apparatus for treating a wrinkle in human skin, comprising:
a source generating a beam of radiation having a wavelength within a range at which a tissue absorption coefficient is in the range of between 1 and 20 cm−1;
a delivery system coupled to the source for directing the beam of radiation to a targeted dermal region to cause thermal injury sufficient to elicit a healing response that produces substantially unwrinkled skin; and
a cooling system for cooling an epidermal region of the skin above the targeted dermal region, to thereby minimize injury to the epidermal region.
17. The apparatus of claim 16 wherein the beam of radiation has a fluence of between 10 and 150 joules per square centimeter.
18. The apparatus of claim 16 wherein the beam of radiation has a power density of between 5 and 100 watts per square centimeter.
19. The apparatus of claim 16 wherein the beam of radiation has a wavelength of between about 1.3 and 1.8 microns.
20. The apparatus of claim 16 wherein the beam of radiation is directed to a targeted dermal region between 100 microns and 1.2 millimeters below a wrinkle in the skin.
21. The apparatus of claim 16 wherein the cooling system comprises a container of cold fluid, wherein the cold fluid can be sprayed onto the skin to extract heat from the skin on contact.
22. The apparatus of claim 16 wherein the cooling system further comprises a skin contacting portion having a first end in optical communication with a fiber coupled to the source and a second end, the skin contacting portion projecting the beam of radiation to the targeted dermal region through second end of the skin contacting portion.
23. The apparatus of claim 23 wherein:
the skin contacting portion further comprises a window located at the second end of the skin contacting portion, the window being in optical communication with the fiber; and
the skin contacting portion includes a fluid passage extending across at least a portion of the window, the fluid passage circulating a cooling fluid across the window.
24. An apparatus for treating a wrinkle in human skin, comprising:
a source generating a beam of radiation having a wavelength within a range at which a tissue absorption coefficient is in the range of between 1 and 20 cm−1;
a delivery system coupled to the source for directing the beam of radiation to a targeted dermal region between 100 microns and 1.2 millimeters below a wrinkle in the skin, wherein the beam of radiation causes thermal injury to the targeted dermal region sufficient to elicit a healing response that produces substantially unwrinkled skin; and
a cooling system for contact cooling an epidermal region of the skin above the targeted dermal region, to thereby minimize injury to the epidermal region.
25. The apparatus of claim 24 wherein the beam of radiation has a fluence of between 10 and 150 joules per square centimeter.
26. The apparatus of claim 24 wherein the beam of radiation has a power density of between 5 and 100 watts per square centimeter.
27. The apparatus of claim 24 wherein the beam of radiation has a wavelength of between about 1.3 and 1.8 microns.
28. The apparatus of claim 24 wherein the delivery system further comprises a fiber coupled to the source, the fiber carrying the beam of radiation; and wherein the cooling system further comprises a skin contacting portion having a first end in optical communication with the fiber and a second end, the skin contacting portion projecting the beam of radiation toward the targeted dermal region through the second end of the skin contacting portion.
29. The apparatus of claim 28 wherein the skin contacting portion further comprises a window located at the second end of the skin contacting portion, the window being in optical communication with the fiber; and wherein the skin contacting portion has a fluid passage extending across at least a portion of the window, the fluid passage circulating a cooling fluid past the window.
30. An apparatus for treating a wrinkle in human skin, comprising:
means for generating a beam of radiation having a wavelength of between about 1.3 and 1.8 microns or having a wavelength within a range at which a tissue absorption coefficient is in the range of between 1 and 20 cm−1;
means for directing the beam of radiation to a targeted dermal region to cause thermal injury sufficient to elicit a healing response that produces substantially unwrinkled skin; and
means for cooling an epidermal region of the skin above the targeted dermal region, to thereby minimize injury to the epidermal region.
Description
    FIELD OF THE INVENTION
  • [0001]
    The invention relates generally to the treatment of wrinkles in human skin using radiation. In particular, the invention relates to a method for treating wrinkles in human skin using a beam of laser or incoherent radiation to cause thermal injury in the dermal region of the skin sufficient to elicit a healing response that produces substantially unwrinkled skin.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Undesired wrinkles in skin are commonly seen in dermatologic practice. Wrinkles in skin may be caused by age and by exposure to the sun's ultraviolet rays. Human skin consists mainly of two layers: the top layer of skin known as the epidermis; and the layer beneath the epidermis known as the dermis. The dermis is primarily acellular and is composed of water, the protein collagen, and glycosaminoglycans. Water constitutes approximately 70 percent of the total weight of the dermis. Collagen constitutes approximately 70 percent of the dry weight of the dermis, and glycosaminoglycans constitute between approximately 0.1 and 0.3 percent of the dry weight of the dermis. Collagen and glycosaminoglycans are constantly produced by fibroblasts, a type of connective tissue cell, and degraded by enzymes. Collagen degradation relies primarily on specific proteinases known as collagenases.
  • [0003]
    Collagen provides the dermis with the majority of its structural integrity. With aging, the amount of dermal collagen decreases and is replaced by the protein elastin. In addition, the remaining collagen tends to be chaotically oriented as compared to the more organized patterns found in youthful skin. Glycosaminoglycans are very hydrophilic, and increased amounts of these carbohydrates are. associated with the increased skin vigor found in youthful skin. One major difference between the smooth, supple skin of newborns and the drier, thinned skin of older individuals is the far greater relative amount of glycosaminoglycans found in newborn skin. The glycosarninoglycans found in newborns can bind up to 1000 times their weight in water. As the skin ages and the amount of glycosaminoglycans decreases, the skin may become less hydrated and lose some of the suppleness found in youth. Also, the remaining glycosaminoglycans in photo-aged skin are deposited on the haphazardly arranged elastin fibers which have replaced the collagen fibers. The placement of the remaining glycosaminoglycans may partially account for the weather-beaten appearance of photo-aged skin.
  • [0004]
    Existing procedures for eliminating or reducing the severity of wrinkles include chemical peels, mechanical abrasion and laser ablation. All of these methods remove the top layer of skin. A new top layer forms during healing. Cosmetic improvement is seen when the skin containing wrinkles is replaced by a new layer of horizontally oriented neocollagen in the superficial dermis. However, all of these methods disrupt and completely remove the epidermis. The resulting open wounds require daily care to optimize wound healing. Epidermal destruction and subsequent healing has several undesirable side effects. These undesirable side effects include prolonged hypopigmentation, hyperpigmentation, erythema and edema. Hyperpigmentation occurs frequently in darker skin types as a result ot an inflammatory response of the skin. Hyperpigmentation results in the treated area of the subject's skin turning darker than the surrounding untreated skin. Hyperpigmentation can be slow to clear, sometimes taking up to a year to disappear. Hypopigmentation is attributable to damage to the melanin-producing cells in the skin. While generally transient, hypopigmentation can be permanent, are therefore limited to the most superficial layer of the skin. Such superficial injury leads to an inflammatory healing response characterized by prolonged visible edema and erythema, as well as the possibility for long lasting pigmentary disturbances.
  • SUMMARY OF THE INVENTION
  • [0005]
    The present invention addresses the foregoing problems and provides a method for inducing remodeling of the skin's extracellular matrix by partially denaturing the dermal collagen deeper in the skin, below the surface, while avoiding injury to the epidermis and upper layers of the dermis. The invention offers numerous advantages over existing dermatologic procedures and devices. The surface of the skin remains intact, thereby avoiding the need for dressing wounds; pigmentary disturbances are minimized; and any inflammatory response to the injury is mild and less visually evident.
  • [0006]
    In general, the present invention features a method for treating wrinkles in skin, without removing a layer of skin, using a beam of pulsed, scanned or gated continuous wave (CW) laser or incoherent radiation. The method comprises generating a beam of radiation having a wavelength between 1.3 and 1.8 microns, directing the beam of radiation to a targeted dermal region between 100 microns and 1.2 millimeters below a wrinkle in the skin, and thermally injuring the targeted dermal region to elicit a healing response that produces substantially less wrinkles.
  • [0007]
    More specifically, causing selective thermal injury to the dermis activates fibroblasts which deposit increased amounts of extracellular matrix constituents (i.e., collagen and glycosaminoglycans). These increases in extracellular matrix constituents are responsible for dermal skin rejuvenation and the reduced appearance of wrinkles.
  • [0008]
    In one embodiment, the beam of radiation causes partial denaturation of the collagen in the targeted dermal region. The partial denaturation of the collagen accelerates the collagen synthesis process by the fibroblasts and the deposition of new glycosaminoglycans, leading to the elimination or a reduction in the severity of the wrinkle. The method may also include cooling the surface of the skin and epidermal tissue above the targeted dermal region while irradiating the skin. The method may also include cooling the surface of the skin prior to irradiating the skin.
  • [0009]
    In a detailed embodiment, the method also includes stretching the skin along the wrinkle before directing the beam of radiation to the targeted dermal region below the wrinkle. Stretching the skin causes thermal injury to the collagen fibers across the wrinkle, while not affecting the fibers along the wrinkle.
  • [0010]
    The invention also relates to an apparatus for treating wrinkles in skin.
  • [0011]
    The apparatus includes a radiation source and a delivery system which includes a cooling system. The radiation source generates a beam of radiation having a wavelength between 1.3 and 1.8 microns. The delivery system directs the beam of radiation to a targeted dermal region between 100 microns and 1.2 millimeters below a wrinkle in the skin. The cooling system cools the epidermal tissue above the targeted dermal region to minimize injury to the surface of the skin.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0012]
    The foregoing and other objects, features and advantages of the invention will become apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings. The drawings are not necessarily to scale, emphasis instead being placed on illustrating the principles of the present invention.
  • [0013]
    FIG. 1 is an illustration of an apparatus including a radiation source and a delivery system for practicing the invention.
  • [0014]
    FIG. 2 is an enlarged perspective view of a delivery system incorporating the principles of the invention.
  • [0015]
    FIG. 3 is an illustration of a wrinkle in skin exposed to a plurality of radiation pulses.
  • [0016]
    FIG. 4 is an illustration of a region of skin exposed to a highly convergent beam of radiation.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0017]
    The present invention contemplates a system and method for removing wrinkles which includes delivering a beam of laser or incoherent radiation to cause sufficient thermal injury in the dermal region of the skin to elicit a healing response to cause the skin to remodel itself, resulting in more youthful looking (i.e., substantially unwrinkled) skin. In particular, thermal injury may be in the form of partial denaturation of the collagen fibers in the targeted dermal region of skin. In one embodiment, the radiation beam has a set of parameter ranges carefully selected to partially denature collagen in the dermis while protecting the epidermis by surface cooling. As a result, a subject treated using the method of the invention is able to have the appearance of wrinkles lessened without damage to the epidermis.
  • [0018]
    FIG. 1 is an illustration of a system 10 for practicing the invention. The system 10 includes a radiation source 12 and a delivery system 13. A beam of radiation generated by the radiation source 12 is directed to a target region of a subject's skin including a wrinkle via the delivery system 13. In one embodiment, the radiation source 12 is a laser. The laser may generate a beam of pulsed, scanned or gated CW laser radiation. In another embodiment, the radiation source 12 generates incoherent radiation.
  • [0019]
    The beam of radiation is directed to a targeted dermal region of skin between 100 microns and 1.2 millimeters below the wrinkle. The parameter ranges for the beam have been specifically selected to cause thermal injury to the dermis while avoiding injury to the epidermis and upper layers of the dermis. In particular, the wavelength of the radiation beam has been chosen to maximize absorption in the targeted region of the dermis, and the fluence or power density, deperiding on the type of radiation, has been chosen to minimize erythema. The wavelength range chosen has a tissue absorption coefficient preferably in the range of about 1 to 20 cm−1. Thus, the beam preferably has a wavelength of between about 1.3 and 1.8 microns in one embodiment. Within this wavelength range, radiation energy applied through the surface of the skin is deposited predominantly in the dermal region of the skin. In one embodiment, the radiation beam has a nominal wavelength of approximately 1.5 microns. Lasers which produce radiation having wavelengths in the range of between about 1.3 and 1.8 microns include the 1.33 micron Nd:YAG laser, the 1.44 micron Nd:YAG laser and the 1.54 micron Er:Glass laser. The radiation beam may be pulsed, scanned or gated continuous wave laser radiation. In embodiments having a laser as the radiation source 12, the laser radiation generated preferably has a fluence of between about 10 and 150 joules.
  • [0020]
    In aaother embodiment, the radiation used to thermally injure the dermis is incoherent radiation. In embodiments using incoherent radiation, the incoherent radiation generated by the radiation source 12 preferably has a power density of between about 5 and 100 watts per square centimeter.
  • [0021]
    FIG. 2 is an enlarged perspective view of a delivery system 13 incorporating the principles of the invention. The delivery system 13 includes a fiber 14 having a circular cross-section and a handpiece 16. A beam of radiation having a circular cross-section is delivered by the fiber 14 to the handpiece 16. An optical system within the handpiece 16 projects an output beam of radiation to a targeted region of the subject's skin. A user holding the handpiece 16 irradiates the targeted region of the subject's skin including the wrinkle with output pulses from the beam.
  • [0022]
    To minimize thermal injury to the epidermis and the upper layers of the dermis, in one embodiment, the delivery system 13 includes a cooling system for cooling the surface of the skin prior to and/or during application of the radiation. In this embodiment, the delivery system 13 is multi-functional and is capable of delivering radiation and cooling the surface of the skin at the same time. FIG. 3 shows one embodiment of a delivery system 13 which includes a cooling system. The handpiece 16 includes a skin contacting portion 20 which is brought into contact with the region of skin 22 receiving the beam of radiation 24. The skin contacting portion 20 cools the epidermal region of skin 22 receiving the beam of radiation. The skin contacting portion 20 includes a sapphire window 26 and a fluid passage 28 which contains a cooling fluid. The cooling fluid may be a fluorocarbon type cooling fluid. The cooling fluid circulates through the fluid passage 28 and past the sapphire window 26 which is in contact with the epidermal region of skin 22 receiving the beam of radiation 24.
  • [0023]
    In another embodiment, the delivery system 13 and the cooling system are separate systems. The cooling system may comprise a container of a cold fluid. Cooling of the surface of the skin is accomplished by briefly spraying the skin with the cold fluid which extracts heat from the skin on contact. The fluid used can also be a non-toxic substance with high vapor pressure at normal body temperature, such as a freon. These fluids extract heat from the skin by the virtue of evaporative cooling.
  • [0024]
    FIG. 3 illustrates the treatment of a wrinkle 30 in accordance with the invention. Radiation pulses are produced using the radiation source 12, which may be a pulsed, scanned or gated CW laser or incoherent radiation source. The radiation pulses are directed toward the region 22 of the subject's skin containing the wrinkle 30 by the delivery system 13. The radiation pulses are preferably directed to a targeted dermal region between 100 microns and 1.2 millimeters below the surface of the skin. In a detailed embodiment, the radiation pulses are focused to a region centered at a depth of about 750 microns. The targeted dermal region including a portion of the wrinkle 30 is then irradiated with radiation pulses exiting from the handpiece 16 until collagen in that region is partially denatured. To accomplish this, the collagen at the selected depth in the targeted dermal region is preferably heated to a temperature in the range of about 50 to 70 degrees Celsius. Partially denaturing collagen in the dermis accelerates the collagen synthesis process by the fibroblasts. The thermal injury caused by the radiation is mild and is only sufficient to elicit a healing response and cause the fibroblasts to produce new collagen. Excessive denaturation of collagen in the dermis causes prolonged edema, erythema, and potentially scarning.
  • [0025]
    The skin contacting portion 20 preferably cools the area of the skin above the targeted dermal region to temperatures below approximately 50 to 70 degrees Celsius during application of the radiation, so as not to cause collateral thermal damage to the epidermis. The radiation beam, due to its wavelength, does not sufficiently penetrate into depths below the targeted dermal region to cause thermal damage deeper in the skin. In one detailed embodiment, the skin contacting portion 20 cools an area of the skin above the targeted dermal region before the radiation is applied. The relative timing of cooling the surface of the skin to applying radiation depends, in part, on the depth to which thermal injury is to be prevented. Longer periods of cooling prior to the application of radiation allow more time for heat to diffuse out of the skin and cause a thicker layer of skin to be cooled, as compared to the thickness of the layer cooled by a short period of cooling. This thicker layer of cooled tissue sustains less thermal injury when the radiation energy is subsequently applied. Continued cooling of the surface of the skin during the delivery of radiation energy extracts heat from the upper layers of the skin as heat is deposited by the radiation, thereby further protecting the upper layers from thermal injury.
  • [0026]
    The depth of thermal injury caused by the radiation depends primarily on the penetration depth of the radiation used. The penetration depth can be approximated by taking the reciprocal of the absorption coefficient of the skin at the wavelength of the radiation. The thickness of the tissue overlying the zone of injury which is spared from injury depends primarily on the cooling applied prior to and/or during the delivery of radiation energy. By suitably choosing the radiation wavelength, the timing of the surface cooling, the cooling temperature, the radiation fluence and/or the power density as described above, the depth, the thickness and the degree of thermal injury can be confined to a zone within the dermis. These parameters can be chosen to optimally induce the injury required to elicit remodeling within the dermis, while substantially or completely sparing injury to the overlying epidermis and upper layers of the dermis.
  • [0027]
    In another detailed embodiment, the region of skin including the wrinkle 30 is stretched along the wrinkle 30 before the beam of radiation is directed to the targeted dermal region below the wrinkle 30. Stretching the skin along the wrinkle before irradiating the skin causes partial denaturation of the collagen fibers across the wrinkle, while not damaging the fibers along the wrinkle. Partially denaturing the fibers across the wrinkle tightens the skin sufficiently to cause the wrinkle to disappear.
  • [0028]
    Referring to FIG. 4, in one embodiment, to counteract the effects of scattering, the radiation beam is made highly convergent on the surface of the skin.
  • EXPERIMENTAL RESULTS
  • [0029]
    The method of the present invention for treating wrinkles in skin using radiation was applied in a series of in vivo experiments performed on pigs. A pulsed erbium glass laser producing radiation having a wavelength of approximately 1.54 microns was used as the radiation source 12. The laser energy was applied to the pig skin via the skin contacting portion 20 equipped with a cooled sapphire window 26 at the tip, as described above and shown in FIGS. 1-3. The inner surface of the sapphire window 26 was cooled by circulating refrigerated coolant, chilled to approximately minus 25 degrees Celsius through the passage 28. The coolant used was a halocarbon which is transparent to the 1.54 micron laser radiation. The laser beam at the outer surface of the sapphire window 26 was approximately 5 mm in diameter.
  • [0030]
    The tip of the skin contacting portion 20 was placed in contact with the skin to cool the skin prior to applying the laser radiation. After a set amount of time (hereinafter “the pre-cooling time”), laser energy was applied to the skin. Various combinations of pre-cooling times, laser pulse energies, laser pulse repetition frequencies, time intervals of laser energy delivery, and total nwnber of laser pulses delivered were studied. It was found that by the appropriate choice of these parameters, varying degrees of thermal injury can be achieved at varying depths in the dermis while preserving the viability of the epidermis and upper dermis.
  • [0031]
    For example, using a pre-cooling time of 5 seconds, a laser energy in the range of between 0.2 and 0.8 joules per pulse at a pulse repetition frequency of 4 Hertz (corresponding to an average laser power in the range between 0.8 to 3.2 watts), and a total of 24 pulses, it was found that varying degrees of thermal injury could be induced in a zone centered at a depth in the range of approximately 0.5 to 1.0 millimeters beneath the surface of the skin, while avoiding injury to the epidermis and upper dennis.
  • [0032]
    Histology performed on biopsy samples taken at sites treated with the above range of parameters revealed collagen denaturation extending from about 100 microns in the dermis to about 1 mm deep. The epidermis and upper layers of the dermis were preserved as confirmed with nitrotetrazolium blue, a viability stain. In the cases in which only partial collagen denaturation was shown on histology, clinically, the treated areas showed an intact epidermis with mild edema and erythema which resolved completely within two weeks. Histologically, the treated sites showed greatly increased fibroblast activity, new collagen secretion and degradation of denatured collagen. By four weeks post treatment, the treated sites returned to normal, both clinically and histologically.
  • Equivalents
  • [0033]
    While the invention has been particularly shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3404350 *Jun 2, 1964Oct 1, 1968Arthur M. MuncheryanDirected-beam portable laser system
US3538919 *Apr 7, 1967Nov 10, 1970Gregory System IncDepilation by means of laser energy
US3693623 *Dec 25, 1970Sep 26, 1972Gregory System IncPhotocoagulation means and method for depilation
US3834391 *Jan 19, 1973Sep 10, 1974Block Carol LtdMethod and apparatus for photoepilation
US3900034 *Apr 10, 1974Aug 19, 1975Us EnergyPhotochemical stimulation of nerves
US3916143 *Oct 28, 1971Oct 28, 1975Research CorpBranding living animals
US4388924 *May 21, 1981Jun 21, 1983Weissman Howard RMethod for laser depilation
US4461294 *Jan 20, 1982Jul 24, 1984Baron Neville AApparatus and process for recurving the cornea of an eye
US4608978 *Sep 26, 1983Sep 2, 1986Carol Block LimitedMethod and apparatus for photoepiltion
US4617926 *Jan 30, 1984Oct 21, 1986Sutton A GunillaDepilation device and method
US4733660 *Dec 10, 1986Mar 29, 1988Medical Laser Research And Development CorporationLaser system for providing target specific energy deposition and damage
US4819669 *Apr 1, 1986Apr 11, 1989Politzer Eugene JMethod and apparatus for shaving the beard
US4930504 *Nov 13, 1987Jun 5, 1990Diamantopoulos Costas ADevice for biostimulation of tissue and method for treatment of tissue
US4976709 *Jun 30, 1989Dec 11, 1990Sand Bruce JMethod for collagen treatment
US5000752 *Jun 19, 1989Mar 19, 1991William J. HoskinTreatment apparatus and method
US5019034 *Mar 30, 1989May 28, 1991Massachusetts Institute Of TechnologyControl of transport of molecules across tissue using electroporation
US5059192 *Apr 24, 1990Oct 22, 1991Nardo ZaiasMethod of hair depilation
US5139495 *Jan 12, 1990Aug 18, 1992S. L. T. Japan Co., Ltd.Bent and tapered laser light emitting probe
US5182857 *Oct 29, 1990Feb 2, 1993U.S. Philips Corp.Shaving apparatus
US5226907 *Oct 29, 1991Jul 13, 1993Tankovich Nikolai IHair removal device and method
US5282797 *May 28, 1991Feb 1, 1994Cyrus ChessMethod for treating cutaneous vascular lesions
US5290273 *May 25, 1993Mar 1, 1994Tan Oon TLaser treatment method for removing pigement containing lesions from the skin of a living human
US5304170 *Mar 12, 1993Apr 19, 1994Green Howard AMethod of laser-induced tissue necrosis in carotenoid-containing skin structures
US5320618 *Apr 9, 1991Jun 14, 1994Morgan GustafssonDevice for treatment of undesired skin disfigurements
US5336217 *Jun 5, 1992Aug 9, 1994Institut National De La Sante Et De La Recherche Medicale (Insepm)Process for treatment by irradiating an area of a body, and treatment apparatus usable in dermatology for the treatment of cutaneous angio dysplasias
US5344418 *Dec 12, 1991Sep 6, 1994Shahriar GhaffariOptical system for treatment of vascular lesions
US5397327 *Jul 27, 1993Mar 14, 1995Coherent, Inc.Surgical laser handpiece for slit incisions
US5405368 *Oct 20, 1992Apr 11, 1995Esc Inc.Method and apparatus for therapeutic electromagnetic treatment
US5425728 *Jan 19, 1993Jun 20, 1995Tankovich; Nicolai I.Hair removal device and method
US5445634 *Sep 29, 1994Aug 29, 1995Keller; Gregory S.Method of laser cosmetic surgery
US5474549 *Feb 18, 1993Dec 12, 1995LaserscopeMethod and system for scanning a laser beam for controlled distribution of laser dosage
US5486172 *Jan 31, 1994Jan 23, 1996Chess; CyrusApparatus for treating cutaneous vascular lesions
US5522813 *Sep 23, 1994Jun 4, 1996Coherent, Inc.Method of treating veins
US5527350 *Feb 24, 1993Jun 18, 1996Star Medical Technologies, Inc.Pulsed infrared laser treatment of psoriasis
US5569242 *Feb 16, 1995Oct 29, 1996Lax; Ronald G.Method and apparatus for controlled contraction of soft tissue
US5606798 *Mar 10, 1992Mar 4, 1997Kelman; ElliotHair cutting apparatus
US5643706 *Nov 30, 1995Jul 1, 1997Xerox CorporationProcess for preparing electroconductive members
US5647866 *May 14, 1996Jul 15, 1997Zaias; NardoMethod of hair depilation
US5683380 *Mar 29, 1995Nov 4, 1997Esc Medical Systems Ltd.Method and apparatus for depilation using pulsed electromagnetic radiation
US5707403 *Apr 23, 1996Jan 13, 1998Star Medical Technologies, Inc.Method for the laser treatment of subsurface blood vessels
US5752948 *Jun 19, 1995May 19, 1998Thermolase CorporationHair removal method
US5752949 *May 13, 1996May 19, 1998Thermolase CorporationHair removal method
US5755753 *May 5, 1995May 26, 1998Thermage, Inc.Method for controlled contraction of collagen tissue
US5860967 *Jul 21, 1993Jan 19, 1999Lucid, Inc.Dermatological laser treatment system with electronic visualization of the area being treated
US5868732 *Oct 9, 1996Feb 9, 1999Esc Medical Systems, Ltd.Cooling apparatus for cutaneous treatment employing a laser and method for operating same
US5897549 *Jul 11, 1996Apr 27, 1999Lumedics, Ltd.Transformation of unwanted tissue by deep laser heating of water
US5925035 *Aug 1, 1996Jul 20, 1999Thermolase CorporationHair removal method
US5964749 *Sep 15, 1995Oct 12, 1999Esc Medical Systems Ltd.Method and apparatus for skin rejuvenation and wrinkle smoothing
US6083217 *Oct 14, 1997Jul 4, 2000Lumedics, Ltd.Destruction for unwanted tissue by deep laser heating of water
US6267771 *Feb 27, 1996Jul 31, 2001Thermotrex CorporationHair removal device and method
US6280438 *Aug 18, 1997Aug 28, 2001Esc Medical Systems Ltd.Method and apparatus for electromagnetic treatment of the skin, including hair depilation
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7891362Feb 22, 2011Candela CorporationMethods for treating pigmentary and vascular abnormalities in a dermal region
US8246611Aug 21, 2012Candela CorporationTreatment of skin by spatial modulation of thermal heating
US8277495Oct 2, 2012Candela CorporationMethod and apparatus for treating a diseased nail
US9028469Sep 28, 2006May 12, 2015Candela CorporationMethod of treating cellulite
Classifications
U.S. Classification606/9, 607/89, 607/88
International ClassificationA61B17/00, A61N5/067, A61B18/20, A61B18/00
Cooperative ClassificationA61B2018/00452, A61B2018/0047, A61N2005/067, A61B2018/00023, A61B2018/00029, A61B2017/00761, A61B18/203
European ClassificationA61B18/20H
Legal Events
DateCodeEventDescription
Jun 6, 2006ASAssignment
Owner name: CANDELA CORPORATION, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HSIA, JAMES C.;MCMILLAN, KATHLEEN;REEL/FRAME:017746/0923;SIGNING DATES FROM 19961231 TO 19970114
Owner name: NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROSS, JR., EDWARD V.;REEL/FRAME:017746/0932
Effective date: 19970207
Owner name: GENERAL HOSPITAL CORPORTATION, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANDERSON, R. ROX;REEL/FRAME:017746/0929
Effective date: 19981015
Dec 19, 2006ASAssignment
Owner name: CANDELA CORPORATION, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY;REEL/FRAME:018645/0948
Effective date: 20061215