Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050267367 A1
Publication typeApplication
Application numberUS 11/176,875
Publication dateDec 1, 2005
Filing dateJul 6, 2005
Priority dateAug 29, 2003
Also published asUS6953433, US20050049493
Publication number11176875, 176875, US 2005/0267367 A1, US 2005/267367 A1, US 20050267367 A1, US 20050267367A1, US 2005267367 A1, US 2005267367A1, US-A1-20050267367, US-A1-2005267367, US2005/0267367A1, US2005/267367A1, US20050267367 A1, US20050267367A1, US2005267367 A1, US2005267367A1
InventorsCynthia Kerby, Laurence McCabe, David DeWitt
Original AssigneeKerby Cynthia L, Mccabe Laurence S, Dewitt David R
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Protocol controller for a medical diagnostic imaging system
US 20050267367 A1
Abstract
The embodiments described herein relate to a protocol controller for a medical diagnostic imaging system. In one embodiment, two or more distinct study protocols are active on a medical diagnostic imaging system at the same time. In another embodiment, control of a medical diagnostic imaging system is changed at each stage of a study protocol sequence to optimize study performance. In yet another embodiment, a protocol is created from a collection of macros that control a medical diagnostic imaging system. Other embodiments are provided, and each of the embodiments described herein can be used alone or in combination with one another.
Images(4)
Previous page
Next page
Claims(20)
1-8. (canceled)
9. A medical diagnostic imaging system comprising:
a storage device storing a study protocol comprising two or more stages; and a processor operative to change control of the medical diagnostic imaging system to optimize study performance at each stage of the study protocol.
10. The invention of claim 9, wherein the optimization improves image quality.
11. The invention of claim 9, wherein the optimization improves study workflow.
12. The invention of claim 9, wherein the optimization changes annotations.
13. The invention of claim 9, wherein the optimization changes DICOM settings.
14. The invention of claim 9, wherein the change of control of the medical diagnostic imaging system comprises inserting a segment of a second study protocol into the first-mentioned study protocol.
15. The invention of claim 14, wherein one of the first-mentioned and second study protocols comprises a stress echo protocol and the other comprises a contrast protocol.
16. The invention of claim 9, wherein the medical diagnostic imaging system comprises an ultrasound imaging system.
17. The invention of claim 9, wherein the processor implements a finite state machine.
18. The invention of claim 9, wherein the medical diagnostic imaging system further comprises a display device, and wherein the processor is operative to display an icon on the display device that represents an automated sequence of exam measurements, wherein the icon displays a name of a currently active measurement and a tool tip that displays a next measurement in the sequence.
19. A medical diagnostic imaging system comprising:
a user interface;
a storage device storing a collection of macros for controlling one or more of the following: imaging system settings, the user interface, a display area on a display device, and
a system peripheral; and
a processor operative to receive user selection of two or more macros via the user interface and create a study protocol from the selected macros.
20. The invention of claim 19, wherein the collection of macros comprises at least one of the following: a clip capture macro, a clip playback macro, a workflow macro, and an acquisition sequence macro.
21. The invention of claim 19, wherein at least one of the macros controls one or more of the following: transmit parameters and settings, receive parameters and settings, imaging mode, imaging parameters and settings, filters and processing specifics, signal processing options, post-processing options, frequency, harmonic, mode, pulse repetition frequency, and frame-rate.
22. The invention of claim 19, wherein at least one of the macros controls one or more of the following: display control, number of views, annotation, a user interface page displayed in the display area, an active tool displayed in the display area, a cursor in the display area, and a number of views in the display area.
23. The invention of claim 19, wherein at least one of the macros controls one or more of the following: system control, measurements and reports, annotations, pictograms, review and display features, user preferences, which user interface page is displayed, and which tool/cursor is active.
24. The invention of claim 19, wherein at least one of the macros controls one or more of the following: a DICOM device, a CD, a DVD, a VCR, an MO drive, a printer, and a networked device.
25. The invention of claim 19, wherein the medical diagnostic imaging system comprises an ultrasound imaging system.
26. The invention of claim 19, wherein the processor implements a finite state machine.
27. The invention of claim 19, wherein the medical diagnostic imaging system further comprises a display device, and wherein the processor is operative to display an icon on the display device that represents an automated sequence of exam measurements, wherein the icon displays a name of a currently active measurement and a tool tip that displays a next measurement in the sequence.
Description
BACKGROUND

The use of protocols to support a stress echo exam is now standard within the ultrasound industry. The common practice is to step the user through pre-defined series of clip acquisitions that allow the clinician to compare left ventricular motion from a variety of views, with and without stressing the heart. Within the industry, there are some very standard pre-defined protocols (e.g., two-stage exercise stress, four-stage exercise stress, etc.). The Sequoia® Echocardiography Platform offers some degree of user customization of protocol factors such as the number of stages, the number of views, and the clip capture parameters used for each stage/view. Additionally, the Phillips 5500 system extends the protocol concept to imaging parameters in a limited way by providing the ability to remember image parameter settings changed by the user in one stage and then recall those settings in a subsequent stage.

SUMMARY

The present invention is defined by the following claims, and nothing in this section should be taken as a limitation on those claims.

By way of introduction, the embodiments described below relate to a protocol controller for a medical diagnostic imaging system. In one embodiment, two or more distinct study protocols are active on a medical diagnostic imaging system at the same time. In another embodiment, control of a medical diagnostic imaging system is changed at each stage of a study protocol sequence to optimize study performance. In yet another embodiment, a protocol is created from a collection of macros that control a medical diagnostic imaging system. Other embodiments are provided, and each of the embodiments described herein can be used alone or in combination with one another.

The embodiments will now be described with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a medical diagnostic ultrasound imaging system of an embodiment.

FIG. 2 is a stress echo state transition diagram of an embodiment.

FIG. 3 is a contrast state transition diagram of an embodiment.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

By way of introduction, the embodiments described below relate generally to protocols used in a medical diagnostic imaging system. Although any type of imaging system can be used, these embodiments will be illustrated in conjunction with an ultrasound imaging system. Turning now to FIG. 1, an ultrasound system 100 typically comprises a transducer probe 105, a beamformer 110, a processor 120, a display device 130, a storage device 140, and a user interface 150. The term “processor” is being used to broadly refer to the hardware components and/or software components (i.e., computer-readable program code) of the ultrasound system 100 that are used to implement the functionality described herein. Any suitable hardware/software components can be used. Further, it should be noted that multiple processors can be used and that the functionality described herein can be performed by a single processor or can be distributed among several processors. Additionally, some or all of the functionality described herein can be implemented purely with hardware.

During an ultrasound examination, a sonographer contacts the transducer probe 105 with a patient, and the ultrasound system 100 generates an ultrasound image. In general, the ultrasound system's processor 120 causes the beamformer 110 to apply a voltage to the transducer 105 to cause it to vibrate and emit an ultrasonic beam into the portion of the patient's body in contact with the transducer 105. Ultrasonic energy reflected from the patient's body impinges on the transducer 105, and the resulting voltages created by the transducer 105 are received by the beamformer 110. The processor 120 processes the sensed voltages to create an ultrasound image that is displayed on the display device 130.

The ultrasound system 100 can be used to perform any number of exams (or “studies”) of a patient. Some studies require a user to follow a defined “protocol.” A “protocol” is a sequence of steps performed by a user (e.g., a sonographer or physician) to perform a particular ultrasound study. A protocol is often used with a “staged” study, although a protocol can also be used with a non-staged study. A staged study contains a set of images acquired under specified conditions during two or more time intervals called “stages” with a consistent set of images called “views” acquired during each stage of the study. The protocol for a staged study dictates the actions a user must perform to complete the study. A user proceeds through a staged protocol exam one stage at a time, acquiring images with the capture settings of each stage. One example of a staged study is a stress echo ultrasound study, which allows a clinician to compare left ventricular motion from a variety of views, with and without stressing the heart. A typical stress echo protocol consists of the user imaging and capturing clips of the patient's heart while the patient's heart is at its resting heart rate. The standard views of the heart that are imaged and captured are Parasternal Long Axis (PLAX), Parasternal Short Axis (PSAX), Apical Four Chamber (A4C), and Apical Two Chamber (A2C). Next, the patient's heart rate is increased to its maximum, either by exercise (e.g., treadmill, bicycle) or with the use of drugs (for those patients who are unable to exercise). The user will image and capture clips (standard views) of the patient's heart while the patient's heart rate is at its maximum increase, before the heart rate slows down (images are typically captured within 60-90 seconds after exercise has stopped). The user reviews the captured clips and selects the clips he wants to keep. The rest of the clips are deleted when the study has ended. The standard has been to capture at least four clips of each view and only keep the best clip for each view of each stage.

An ultrasound imaging system can assist a user in performing a staged protocol study of a patient by automatically controlling various system parameters in accordance with the protocol to guide the user through a pre-defined series of clip acquisitions. For example, an ultrasound system can be programmed with a series of preset, defined protocols (e.g., a two-stage exercise stress echo protocol, a four-stage exercise stress echo protocol, etc.) that a user can select for a particular study. Based on the selected protocol, the ultrasound system automatically moves through stages and views, moves between imaging and review of captured images, provides automatic movement to the next stage, and performs automatic storage and retrieval of each view. The ultrasound system would also know how to capture and playback clips and can automate system actions where appropriate, such as automatically performing a system transition, to help eliminate the number of steps (i.e., button hits) the user must perform, thereby reducing the user's workload.

While some existing ultrasound systems offer some degree of user customization of a protocol (such as the number of stages, the number of views, and the clip capture parameters used for each stage/view or remembering image parameter settings changed by the user in one stage and then recalling those settings in a subsequent stage), the protocol in those systems is for the same application (e.g., a stress echo protocol). In one embodiment, the concept of protocol is expanded beyond its use in stress echo. More generally, the processor 120 in the ultrasound system 100 can be configured to run a protocol controller 160 that allows two or more different protocols to be active simultaneously and be executed together in an integrated fashion. By allowing multiple protocols to be active and work together, imaging modes can be changed in a user-customizable, pre-defined way as the protocol proceeds. This allows the protocol to drive the basic imaging of the system.

For example, an emerging application in ultrasound is the use of contrast agents during imaging. This typically involves imaging the target organ before contrast, injecting contrast media, and imaging the target organ after contrast. At the point of injection, the user often would like to initiate a timer to keep track of elapsed time from injection. During imaging and after contrast injection, a different imaging mode is typically used with a completely different suite of imaging parameters. To document, this procedure, a different set of clip capture parameters are typically used for pre-injection vs. post-injection clips.

By allowing aspects of system operation to be coordinated in a user-customizable, pre-defined way, a user can nest a pre-defined stress echo protocol with a pre-defined contrast protocol to define one integrated protocol that combines the two protocols. In this way, pre-defined protocols can be combined, almost like building blocks, and work together to create new and novel applications. Table 1 shows this combination of stress echo and contrast protocols conceptually, from the user's point of view:

TABLE 1
User Input System Response
Start the “rest” phase of Initiate the stress protocol.
a stress exam.
Capture clips to document resting Capture clips.
phase without contrast.
Inject contrast media. Initiate the contrast protocol
within the context of the stress
echo protocol.
Capture clips to document resting A new suite of capture parameters
phase with contrast. is used, optimized for contrast.
Move the stress protocol to the Return to standard imaging using
next stage: peak exercise. clip capture parameters optimized
for peak stress.
Capture clips to document peak Capture clips.
stress without contrast.
Inject contrast media. Initiate the contrast protocol
within the context of the stress
echo protocol.
Capture clips to document resting A new suite of capture parameters
phase with contrast. is used, optimized for contrast.

The following shows, in more detail, how two different protocols (here, pharmacologic stress echo and contrast) can be active and used together at the same time. Tables 2 and 3 set forth the protocol parameter definition values for pharmacologic stress echo and contrast protocols, and Table 4 provides a description of the actions taken by the user and the ultrasound system's response for each stage in the protocol. It should be noted that this is merely an example, and the details set forth in this example should not be read into the claims.

TABLE 2
Protocol Parameter Definition Values for
Pharmacologic Stress Echo Protocol
Stage Sequence: Baseline, Low Dose, Peak Dose
Clip Auto Delete: On
Auto Next Stage: On
Clip Playback Speed: 50%
Clip Playback Mode: Loop aligned
Clip Capture parameter values for Baseline Stage
View Sequence: PLAX, PSAX, A4C, A2C
Clips per Capture: 4
Clip Capture Method: Prospective
Compression Rate: Medium
Duration per Clip: 1 heart beat
Clip Auto Review: End of Stage
Clip Capture Size: ¼ ROI
R-Wave Trigger: On
Clip Capture parameter values for Low Dose Stage
View Sequence: A2C, A4C, PSAX, PLAX
Clips per Capture: 4
Clip Capture Method: Prospective
Compression Rate: Medium
Duration per Clip: 1 heart beat
Clip Auto Review: End of Stage
Clip Capture Size: ¼ ROI
R-Wave Trigger: On
Clip Capture parameter values for Peak Dose Stage
View Sequence: PLAX, PSAX, A4C, A2C
Clips per Capture: Continuous
Clip Capture Method: Prospective
Compression Rate: Medium
Duration per Clip: 1 heart beat
Clip Auto Review: Off
Clip Capture Size: ¼ ROI
R-Wave Trigger: On
Clip Capture parameter values for an Alternate Capture Definition
Clips per Capture: 1
Clip Capture Method: Prospective
Compression Rate: Medium
Duration per Clip: 1 minute
Clip Auto Review: Off
Clip Capture Size: ¼ ROI
R-Wave Trigger: Off

TABLE 3
Protocol Parameter Definition Values for Contrast
(Sequence for Myocardial Perfusion (MP))
Protocol
Trigger: R-wave
Burst Duration: 5 frames (at high MI)
Transmit Duration: Continuous (except during Burst)
(at low MI)
Transmit Transition Delay: 0
Restart Sequence after: N + 1, where N = r-wave
to r-wave interval
Duration per Clip: 2 heart beats

TABLE 4
User Input System Response
User wants to perform a The system provides the user with the
Stress Echo exam with the capability to choose a Stress Echo
use of a Contrast agent. The exam type (exercise or pharmacologic).
use of the Contrast agent for This example assumes a Pharmacologic
MP (myocardial perfusion) Stress Echo exam has been chosen.
is to identify perfusion
defects from induced
ischemia. The purpose is to
document a change in the
contrast bubble delivery at
rest (patient heart rate at
rest) compared with stress
(patient heart rate at
maximum increase).
The user plugs the The system performs system initializa-
appropriate cardiac tion for the Stress Echo exam. This
transducer into the system entails initializing parameter values
and selects the for the selected transducer and the
Pharmacologic Stress Echo Stress Echo exam, such as imaging
exam. parameters, calculation package(s),
and the Stress Echo protocol.
Additionally, it initializes the
Contrast protocol, so that a Contrast
protocol can be used during a Stress
Echo (“SE”) exam. The SE Protocol
Controller is the current active
protocol in the Imaging state,
Baseline stage, PLAX view.
The user images the patients The system changes the Protocol Clip
heart and decides to capture Capture definitions from the
a clip of the heart in BC Pharmacologic Stress Echo Protocol
mode before beginning the Clip Capture definitions to the
Stress Echo - Contrast Pharmacologic Stress Echo Protocol
exam. Alternate Capture Clip Capture
The user selects the definitions. (These Alternate Capture
Alternate Capture via a UI definitions allow the user to
selection, to active the temporarily capture clips in a non-SE
Alternate Capture capture method without leaving the SE
definitions. The user exam or having to change any Protocol
changes the system from B definitions.)
mode to BC mode.
The user selects the Clip When the Clip Capture button is
Capture button to start a selected, the system captures 1 Clip
Clip capture. (Clips per Capture = 1), where
the Clip is up to 1 minute long. The
Clip size is full screen (Clip Capture
Size = Full Screen).
When finished, the user The system will NOT transition from
selects the Clip Capture live imaging mode to review (Clip
button to stop the Clip Auto Review = Off) of the clip
capture. just captured.
The user disables the The system changes the Protocol Clip
Alternate Capture, so they Capture definitions from the
can start the SE - Contrast Pharmacologic Stress Echo Protocol
exam. Alternate Capture Clip Capture
definitions to the Pharmacologic
Stress Echo Protocol Clip Capture
definitions.
The user enables Contrast The Contrast Protocol Controller
by selecting the Contrast becomes active in addition to the SE
button and begins image Protocol Controller. The Contrast
acquisition. Protocol Controller is in the Normal
Acquisition, Sequence 1 state.
The system will flow through the SE
protocol using the SE protocol
defined parameter values and, since
Contrast was enabled by selecting the
Contrast button, the system will
additionally flow through the Contrast
protocol using its defined parameter
values. Since the parameter ‘Duration
per Clip’ is defined for both
protocols, the Contrast value of
2 heart beats will be used. If
Contrast was disabled, then the
Contrast Protocol Controller would
not be active, and its parameter
values would not be used.
The user injects the patient The Contrast protocol acquisition
with the Contrast agent and sequence will transmit using the
invokes the Contrast defined parameters above. Every N +
acquisition sequence. 1 (N = 0 initially) heart beats,
the system will transmit a burst of
5 frames of high power followed by
transmitting low power.
The user selects the Clip Each time the Clip Capture button
Capture button to capture is selected, the system captures 4
clips for each of the 4 views clips (Clips per Capture = 4),
(PLAX, PSAX, A4C, A2C) where each clip is 2 heart beats
for the Baseline stage. long, ¼ ROI size (Duration per
Clip = 2 heart beats, Clip
Capture Size = ¼ ROI) for
all Views (View Sequence) of the
Baseline stage.
Following the capture of 4 clips for
the last view, A2C, the system will
transition from live imaging mode to
review (Clip Auto Review = End of
Stage) of the clips that were
captured.
The user selects the clips he The Protocol Controller knows the
wants to keep, the ones that View Sequence of this Pharmacologic
captured the anatomy Stress Echo exam. The protocol will
clearly. As part of selecting default the clip label to the next
the clip, the user will label View label as the user assigns View
the clip with the appropriate labels to their selected clips.
View label (i.e., PLAX, etc).
The user is ready to System transitions from review to
continue the exam. The live imaging. The SE Protocol
user selects to exit Review Controller is in Imaging state,
and return to live image Low Dose stage, A2C view.
acquisition.
The user injects The Contrast protocol acquisition
pharmacological drug to sequence will transmit using the
increase the patients heart defined parameters above. Every N +
rate. 1 (N = 0 initially) heart beats,
The user injects the patient the system will transmit a burst of
with the Contrast agent and 5 frames of high power followed by
invokes the Contrast transmitting low power.
acquisition sequence and
begins image acquisition.
The user selects the Clip Each time the Clip Capture button is
Capture button to capture selected, the system captures 4 clips
clips for each of the 4 views (Clips per Capture = 4) where each
(A2C, A4C, PSAX, PLAX) clip is 2 heart beats long, ¼ ROI
for the Low Dose stage. size (Duration per Clip = 2 heart
beats, ¼ ROI size) for all Views
(View Sequence) of the Low Dose stage.
Following the capture of 4 clips for
the last view, PLAX, the system will
transition from live imaging mode to
review (Clip Auto Review = End of
Stage) of the clips that were captured.
The user selects the clips he The Protocol Controller knows the View
wants to keep, the ones that Sequence of this Pharmacologic Stress
captured the anatomy Echo exam. The protocol will default
clearly. As part of selecting the clip label to the next View label
the clip, the user will label as the user assigns View labels to
the clip with the appropriate their selected clips.
View label (i.e., PLAX, etc).
The user is ready to System transitions from review to live
continue the exam. The imaging. The SE Protocol Controller is
user selects to exit Review in Imaging state, Peak Dose stage,
and return to live image PLAX view.
acquisition.
The user increases the The Contrast protocol acquisition
injected amount of sequence will transmit using the
pharmacological drug to defined parameters above. Every N +
increase the patient's heart 1 (N = 0 initially) heart beats,
rate even higher the system will transmit a burst of 5
When the patient's heart rate frames of high power followed by
is where the physician wants transmitting low power.
it to be, the user injects the
patient with the Contrast
agent and invokes the
Contrast acquisition
sequence and begins image
acquisition.
The user selects the Clip The system begins a Continuous Clip
Capture button once for a capture (Clips per Capture =
continuous capture. This Continuous) where each clip is 2 heart
captures clips for each of the beats long, ¼ ROI size (Duration
4 views (PLAX, PSAX, per Clip = 2 heart beats, ¼ ROI
A4C, A2C) for the Peak size). The user moves the transducer
Dose stage. through all 4 views to capture clips
of each view.
When finished, the user The system will NOT transition from
selects the Clip Capture live imaging mode to review (Clip Auto
button to stop the Review = Off) of the clips that
Continuous Clip capture. were captured.
The user selects Review to The system transitions from live
view all clips captured for imaging mode to review of the clips
the exam. that were captured.
The user selects the clips he The Protocol Controller knows the View
wants to keep, the ones that Sequence of this Pharmacologic Stress
captured the anatomy Echo exam. The protocol will default
clearly. As part of selecting the clip label to the next View label
the clip, the user will label as the user assigns View labels to
the clip with the appropriate their selected clips.
View label (i.e., PLAX, etc).
The user selects to end the The Protocol Controller was initialized
exam. for the Pharmacologic Stress Echo
protocol to delete all clips that are
not selected as clips to keep at the
end of the exam (Clip Auto Delete =
On). The clips not selected as clips
to keep are deleted when the patient
record is closed.

In the examples set forth above, two different protocols were active and used together at the same time. In a more general embodiment, the concept of nested protocols can be used to automatically change the control of the ultrasound system at each stage of a multi-stage study protocol sequence. Such optimization can be used to improve image quality and study workflow and can involve changing annotations and/or DICOM settings. In this way, nesting two or more different protocols so that a segment of one study protocol is inserted into another study protocol can be viewed as a particular example of changing the control of the ultrasound system at each stage of a multi-stage study protocol sequence.

It is presently preferred that the Protocol Controller 160 be implemented as a software-implemented finite state machine. Of course, other implementations can be used. Finite state machines are known in the art and are described in, for example, chapter 5 of “Dynamic Modeling in Object-Oriented Modeling and Design” by Rumbaugh, Blaha, Premerlani, Eddy and Lorensen, which is hereby incorporated by reference. It is preferred that the finite state machine design pattern be implemented in such a way that the finite state machine software allows the Protocol Controller 160 to implement a state model diagram in a highly configurable way. A state model diagram relates events and states. When an event is received, the next state depends on the current state as well as the event. A change of state caused by an event is called a transition. A state model diagram is a graph whose nodes are states and whose directed arcs are transitions labeled with event names. There can be guards and actions associated with state transitions, as well as state entry and state exit actions. The finite state machine represents a collection of hierarchical states, where only one sub-state is current at any time. An application can have multiple states by having multiple finite state machines. The state model diagram of a given protocol is used to initiate the execution of the application functionality. It is driven by events, which are due to user actions. There can be concurrent finite state machines active at the same time, and they can communicate by sending messages, which may cause state transitions and actions to be executed. The finite state machine model definition is defined in a file using a state model meta-language. This allows a concise definition of all the information represented in the state model diagram. No software coding is required to define the states or their relationships and transitions of the state model diagram. The states and some of their relationships and transitions can be changed without having to recompile and re-build the software.

Each protocol has its own set of parameters that are defined by the protocol and get initialized when the protocol finite state machine is created and initialized. The parameters define to the system how to perform or respond to certain user actions (e.g., selections). The protocol finite state machine always knows what state the protocol is in and defines the sequences of operations that occur in response to external stimuli (e.g., user actions, such as button presses or selections). The external stimuli (user actions) generates system events, and the finite state machine's response to an event depends on the state of the finite state machine receiving the event. It can include a change of state or the sending of another event. The Protocol Controller 160 can have one or more protocol finite state machines created and running concurrently. The protocol finite state machines can send events to each other, so they can be synchronized.

FIGS. 2 and 3 are stress echo and contrast state transition diagrams, respectively. In these figures, the lines with arrows represent Events. Events are labeled using “Event” in the name. There are entry functions that get executed as the corresponding state is entered. As events are received, the finite state machine may change states. Events can have guards or action functions. These diagrams show guards and are functions that get called when transitioning to the state. The guard function checks some conditions, such as checking a parameter for a specific value. The guard function must return true before the transition to that state will actually occur (i.e., if the guard function does not return true, then the new state is not entered).

Turning now to FIG. 2, the stress echo protocol finite state machine 200, comprises three concurrent finite state machine: SystemStates 210, Stages 220, and Views 230. The SystemStates finite state machine 210 comprises two states: Imaging 212 and Review 214. The Imaging state 212 is when the system is in live image acquisition, and the Review state 214 is when the system is in review of captured images (still images or multi-frame images (clips)). The Stages finite state machine 220 has as many stages as the system allows. In one embodiment, a maximum of ten stages is used because most stress echo studies will use four to seven stages. Of course, fewer or more stages can be used. These stages correspond with the user stages (e.g., Stage1 would be Baseline, Stage2 would be Low Dose, and Stage 3 would be Peak Dose).

When a Stage is entered, the entry guard function, displayStageTimer, will display the Stage timer if the presets had set the parameter to tell the system to display it; otherwise, it will not be displayed. When the SelectStageEvent is received, it has a parameter of Stage. This tells the finite state machine to go to the Stage passed in. For example, SelectStageEvent(Stage2) tells the finite state machine to go to Stage2. The user would have a selection on the display that would allow him to select a specific stage to go to. That is how this event would be sent out. There could be other ways that the SelectStageEvent gets sent out. When a Clip capture is finished, an EndOfCaptureEvent would be sent out. If the guard functions indicated that the Clip Auto Review parameter was not set to End of Capture or End of Stage and that the Auto Next Stage parameter was set to On, then the finite state machine would automatically move to the next Stage.

View are the same as Stages, only for Views (View1, View2 . . . View10). As with Stages, a maximum of ten views were selected for this example since most Stress Echo studies use four to six views. These correspond with the user views such as View1 would be the stress echo PLAX view, View2 would be the PSAX view, etc. The entry function, doContrastAcquisition has a guard function of isContrastOn. If contrast is enabled for this view, then the system could automatically activate the Contrast protocol by sending an event (ContrastAcquisitionEvent).

Turning now to FIG. 3, the Contrast protocol finite state machine 300 comprises two concurrent finite state machines: AcquisitionStates 310 and ContrastAquisitionSequences 320. The AcquisitionStates finite state machine 310 has two states: NormalAquisition 312 and ContrastAcquisition 314. The NormalAquisition state 312 is when the system is in live image acquisition and a contrast acquisition sequence is not active. The ContrastAcquisition state 314 is when the system is in live image acquisition and a contrast acquisition sequence is active.

The ContrastAcquisitionSequences finite state machine 319 has as many contrast sequences as desired. There are different ways that the live image acquisition is performed. For example, instead of Normal acquisition where the system just transmits, a contrast sequence may transmit each time the patient's r-wave occurs for some number of r-waves (e.g., 5), and the first transmit may use a high mechanical index (MI), and the subsequent transmissions may use low MI. The purpose being that the first transmit with high MI is to burst the contrast bubbles, and the following transmits are to allow the system to capture an image but not burst any contrast bubbles. This allows the user to see and capture reflow or perfusion of blood into an area in the anatomy (e.g., liver, heart muscle or ventricle).

In another embodiment, a user can select a factory-defined protocol, modify a factory-defined protocol (thereby, making it a user-defined protocol), or create a new protocol. Preferably, the storage device 140 stores a collection of macros for controlling one or more of the following: imaging system settings, the user interface, a display area, and a system peripheral. The processor 120 displays a list of macros on the display device 130 and receives a user selection of two or more of the macros via the user interface 150. The processor 120 then creates a study protocol from the selected macros. In this way, the user can select portions of already-defmed protocols (via the list of macros) and put them together to form a new, user-defined group protocol. This eliminates the need for a user to redefine a whole new protocol.

In software, the term “macro” is often used to describe a segment, script, or skeleton that can be used by another process, preferably repeatedly and in more than one way. For example, in Excel, one can build a macro (preferably in Visual C) to perform a sequence of instructions. Once built, the macro can be used repeatedly with a given spreadsheet or moved easily to another spreadsheet and be used there, potentially in a significantly different context. Accordingly, the term “macro” means any sequence of instructions that can be interpreted by another process, causing that process to execute or have executed a sequence of instructions. Macros can be exceedingly useful as building blocks for the Protocol Controller 160. With respect to the Protocol Controller 160, consider a macro to be a set of parameter definitions that define specific ultrasound system behavior. Each macro (or set of parameters) can be used as ultrasound preset data values or ultrasound system controlling parameters. Every protocol will consist of some set of macros. Once a macro has been defined, it belongs to a pool of defined macros. A new protocol can be created by combining a unique set of macros from this pool of already-defined macros. The Protocol Controller 160 itself can then be implemented as an engine used to drive a series of macros. This development is particularly useful in that the engine (i.e., the Protocol Controller 160) can run multiple protocols concurrently and/or one protocol can be suspended, its exit point marked, then another protocol activated, and later return to the exit point of the original protocol and continue with the first protocol. This is illustrated in the above example showing the concurrent use of pharmacologic stress echo and contrast protocols.

Instead of being a set of parameters, a macro can be a code snippet. That is, a macro can be any sequence of instructions that can be interpreted by another process, causing that process to execute a sequence of instructions. In this sense, a “macro” is any sequence of instructions that can be interpreted by another process, causing that process to execute or have executed a sequence of instructions. For example, a protocol can have a data or image capture segment. Each instantiation of capture can be built as a macro, such as “store image to disk” or “store clip to VCR.” Of particular usefulness might be an instantiation of a macro for storing data utilizing parameters for a data type and device type: Store <datatype> to <devicetype>. In this way, each segment of the protocol can be written as a macro utilizing parameter. The protocol itself can then be implemented as an engine used to drive a series of macros. This development is particularly useful in that the engine (i.e., the Protocol Controller 160) can be interrupted after execution of a macro, the sequence can be marked to indicate where to re-enter, and the user can run another sequence of macros (protocol) before returning to the exit point and continuing execution of the original protocol.

As mentioned above, the collection of macros controls one or more of the following: imaging system settings, the user interface, a display area, and a system peripheral. More specifically, the macros can control one or more of the following: transmit parameters and settings, receive parameters and settings, imaging mode, imaging parameters and settings, filters and processing specifics, signal processing options, post-processing options, frequency, harmonic, mode, pulse repetition frequency, frame-rate, display control, number of views, annotation, a user interface page displayed in the display area, an active tool displayed in the display area, a cursor in the display area, a number of views in the display area, system control, measurements and reports, annotations, pictograms, review and display features, user preferences, which user interface page is displayed, and which tool/cursor is active, a DICOM device, a CD, a DVD, a VCR, an MO drive, a printer, and a networked device.

Suitable protocol macros include a clip capture macro, a clip playback macro, a workflow macro, and an acquisition sequence macro. The following are examples of these types of macros:

Clip Capture

Number of clips to capture per clip capture activation (1, 2, 4, etc).

Duration/length of each clip to be captured (in seconds, microseconds, heartbeats, etc).

R-wave trigger clip capture enabled/disabled (capture clips based on patients heartbeat or not).

Clip capture delay time (a delay time after an r-wave trigger occurs to start capturing the clip, in microseconds).

Clip compression level.

Clip capture size (full screen, quarter screen, or some other derivative size).

Clip Playback

Clip playback speed.

Clip playback mode (align heartbeats of multiple captured clips or just play each clip or start each clip together at the same time).

Workflow

Enable/disable to automatically delete unselected clips at end of exam.

Enable/disable to automatically move the system to the next stage of a staged protocol.

Enable/disable to automatically start and stop VCR recording based upon some defined event.

Enable/disable to automatically save and recall imaging parameters (a defined set such as transmit/receive settings, imaging mode, filters and processing settings, etc.) upon some defmed event such as the first view of each stage of a staged protocol, or at the beginning of a defined acquisition sequence, etc.).

Enable/disable to automatically transfer specifically defined types of data to specifically defined devices or locations, such as transfer clips over the network at the end of each clip capture, transfer still images to a CD at the end of exam, etc.

Enable/disable annotations or pictograms upon the occurrence of some user or system event.

Enable/disable automatically performing a specific measurement upon the occurrence of some user or system event.

Enable/disable entry into a specific measurement and/or report package upon the occurrence of some user or system event.

Enable/disable system guidance, such as a guidance to the user on the next step to perform for a specific type of exam.

Enable/disable to automatically change the imaging mode based upon the occurrence of some user or system event.

Acquisition Sequence

Define a set of imaging acquisition steps where each step would have varying imaging acquisition parameter definitions, the system could automatically move through the acquisition steps or could move through the acquisition steps based upon the occurrence of some user/system event.

In yet another embodiment, an automated exam measurement sequence icon is presented to improve work flow of examinations. Ultrasound systems usually provide a menu for the selection of measurements to be performed during an exam. Once invoked, the menu provides a free-style measurement selection and execution that requires the user to revisit the menu for each successive measurement. However, for the majority of exams, a standard set of measurements are routinely performed in a standard sequence. There may be several such sets of measurements at any specific site or clinic. In this embodiment, an ultrasound system provides an icon that represents an automated sequence of exam measurement. The icon and associated keys provide user control of the sequence including pause, repeat, and skip capabilities. The icon displays the name of the currently active measurement and a tool tip that displays the next measurement in the sequence.

Upon invocation, a menu is displayed that allows the user to select a particular sequence (e.g., a uterus or abdominal sequence). When a sequence is selected from the menu, the first measurement of the sequence is started (i.e., the system enters the proper measurement state and the appropriate measurement tool(s) are displayed). The user then performs the measurement. Once the measurement is completed and its value committed, the next measurement in the sequence begins. A sequence may be terminated by completing the sequence or by repeating the action that invoked the sequence (e.g., pressing the auto-sequence key). Setup facilities allow the user to customize the sequences by changing the order of measurements and by adding or removing measurements. The setup facilities provide for any number of sequences to be stored in memory, each with a specific name that is displayed on the sequence selection menu. The user may also designate a particular subset of the sequences to be displayed on the menu, along with the order in which they appear.

While a sequence is active, the icon displays the name of the current measurement. When the cursor is moved over the icon, a tool tip appears that displays the name of the next measurement in the sequence, and the cursor is changed to the shape of a hand with the index finger pointing to the right. This represents skipping directly to the next measurement in the sequence if the cursor is clicked. If the cursor is instead moved to the left, the cursor changes to a hand with the index finger pointing to the left, indicating a repeat of the previous measurement, and the tool tip text changes to the name of the previous measurement. A double click on the icon at any point pauses the sequence. During a pause, the user may take any actions or measurements desired. The sequence is resume by double clicking on the icon. The icon will change in a recognizable way to indicate that the sequence is paused (e.g., change color).

A dedicated key on the ultrasound console may be used to invoke the auto sequence icon. In this case, pressing the key during a sequence will terminate the sequence. The sequence menu may also be invoked by another menu on the ultrasound system. As an alternative to, or in addition to, the above cursor behavior, a set of console buttons may be used to advance, repeat, and pause the sequence. In addition to measurements, the auto sequences may also include prompts for the user to adjust the transducer or make adjustments to the machine state or image settings, etc.

As noted above, each of the embodiments described herein can be used alone or in combination with one another. As also noted above, these embodiments can be used with image modalities other than ultrasound imaging, and the claims should not be limited to any particular type of image modality unless explicitly recited therein. Examples of different types of image modalities that can be used with these embodiments include, but are not limited to, computed tomography (CT), magnetic resonance imaging (MRI), computed radiography, magnetic resonance, angioscopy, color flow Doppler, cystoscopy, diaphanography, echocardiography, fluoresosin angiography, laparoscopy, magnetic resonance angiography, positron emission tomography, single-photon emission computed tomography, x-ray angiography, computed tomography, nuclear medicine, biomagnetic imaging, culposcopy, duplex Doppler, digital microscopy, endoscopy, fundoscopy, laser surface scan, magnetic resonance spectroscopy, radiographic imaging, thermography, and radio fluroscopy.

It is intended that the foregoing detailed description be understood as an illustration of selected forms that the invention can take and not as a definition of the invention. It is only the following claims, including all equivalents, that are intended to define the scope of this invention.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8006183 *Dec 8, 2006Aug 23, 2011Trading Technologies International Inc.System and method for using a curser to convey information
US8216141 *Nov 13, 2008Jul 10, 2012Medison Co., Ltd.Ultrasound system and method for forming BC-mode image
US8235904 *Nov 13, 2008Aug 7, 2012Medison Co., Ltd.Ultrasound system and method for forming BC-mode image
US8682686Jan 11, 2008Mar 25, 2014General Electric CompanySystem and method to manage a workflow in delivering healthcare
US8706516Jan 11, 2008Apr 22, 2014General Electric CompanySystem and method to manage a workflow in delivering healthcare
US8732578Jun 10, 2011May 20, 2014Trading Technologies International, Inc.System and method for using a cursor to convey information
US20080306385 *Dec 14, 2006Dec 11, 2008Koninklijke Philips Electronics N.V.Automatic Ultrasound Scanning Initiated by Protocol Stage
US20090124904 *Nov 13, 2008May 14, 2009Chi Young AhnUltrasound System And Method For Forming BC-Mode Image
US20090124905 *Nov 13, 2008May 14, 2009Chi Young AhnUltrasound System And Method For Forming BC-Mode Image
Classifications
U.S. Classification600/437
International ClassificationA61B8/00
Cooperative ClassificationA61B8/00, G01S7/52098
European ClassificationG01S7/52S18, A61B8/00