Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050268082 A1
Publication typeApplication
Application numberUS 11/146,490
Publication dateDec 1, 2005
Filing dateJun 6, 2005
Priority dateApr 28, 2000
Also published asUS6920553
Publication number11146490, 146490, US 2005/0268082 A1, US 2005/268082 A1, US 20050268082 A1, US 20050268082A1, US 2005268082 A1, US 2005268082A1, US-A1-20050268082, US-A1-2005268082, US2005/0268082A1, US2005/268082A1, US20050268082 A1, US20050268082A1, US2005268082 A1, US2005268082A1
InventorsDavid Poisner
Original AssigneePoisner David I
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus to boot system from the USB port
US 20050268082 A1
Abstract
In one embodiment, a design is described for providing the BIOS instructions to a computer through the USB port. At boot-up, a USB controller checks the USB port for a bootable device containing BIOS instructions. If a bootable device is connected, the USB controller transfers the BIOS instructions through the USB port to the processor. The computer then boots-up using the USB boot instructions. If no bootable device is connected to the USB port, the computer looks to a standard BIOS EPROM for boot instructions.
Images(4)
Previous page
Next page
Claims(1)
1. A device and/or method substantially as shown and described.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of and claims priority to U.S. patent application Ser. No. 09/560,858, filed Apr. 28, 2000.

TECHNICAL FIELD

This invention relates to computer booting instructions, and more particularly to providing the BIOS instructions through a USB bus.

BACKGROUND

The BIOS (basic input/output system) is built-in software that determines what a computer can do without accessing programs from a disk. On PCs, the BIOS contains all the code required to control the keyboard, display screen, disk drives, serial communications, and a number of other functions. The BIOS is typically placed on a writeable chip that comes on the motherboard. This ensures that the BIOS will always be available and will not be damaged by disk failures. The BIOS also contains a boot program that provides the initial instructions to the computer processor at startup. These initial instructions contained in the boot program allow the computer to boot itself.

If the BIOS does not exist or has been corrupted, existing systems allow the processor to boot from a peripheral component interconnect (PCI) adapter. This requires a user to open the housing of the computer to access the PCI adapter. It is typically undesirable to have a user open the housing of a computer. Even with trained service personnel, it would be more convenient to boot the computer without accessing the PCI adapter. This is especially true with systems having cases that are sealed or difficult to open, such as notebook computers.

DESCRIPTION OF DRAWINGS

Features and advantages of the invention will become more apparent upon reading the following detailed description and upon reference to the accompanying drawings.

FIG. 1 illustrates the boot path of a computer according to the prior art.

FIG. 2 illustrates the boot path of a computer according to one embodiment of the present invention.

FIG. 3 is a flowchart showing the boot process used by a computer according to one embodiment of the present invention.

DETAILED DESCRIPTION

FIG. 1 illustrates the boot path 100 of a typical computer according to the prior art. The boot path includes a central processing unit (CPU) 105, a chipset 110, and a BIOS EPROM (erasable programmable read-only memory) 125. When a computer is first powered on, an initial set of instructions must be executed to allow the computer to boot itself. The CPU 105 is set to execute instructions that are located at the top of the computers memory located within the chipset 110. At power-up, there are typically no instructions present at these locations. Thus, the computer cycles forward to the BIOS EPROM 125. The BIOS EPROM 125 contains an initial set of boot instructions which are transferred to the chipset 110. The CPU 105 then reads the boot instructions from the chipset 110 and executes the instructions to boot the computer.

If the BIOS EPROM 125 is corrupted or missing, the initial set of boot instructions cannot be executed by the CPU 105. Thus, the CPU 105 is unable to boot the computer. In this circumstance, some computers allow the system to boot from the peripheral component interconnect (PCI) adapter. To accomplish this, hardware having a PCI interface is connected to the PCI bus. Because connections to the PCI bus are located on the computers motherboard, this procedure requires opening the housing of the computer.

FIG. 2 illustrates the boot path 200 of a computer according to one embodiment of the present invention. The boot path 200 includes the CPU 105, a chipset 210, a Universal Serial Bus (USB) controller 220, a USB device having BIOS instructions 215, and the BIOS EPROM 125. The USB controller 220 is a bus master device that can be incorporated within the chipset 210 or may be separate from the chipset 210. The USB controller 220 may follow the USB protocol, or may use a different protocol if desired.

When the computer is powered on, the USB controller 220 checks the USB port of the computer to determine if any connected USB device contains the BIOS instructions. If the USB device 215 includes BIOS instructions, these instructions are passed via the USB controller 220 through the chipset 210 to the CPU 105. The CPU 105 can then execute the instructions to boot the computer. Of course, the instructions on the USB port may be used to program the BIOS EPROM 125 in a manner known to one of skill in the art.

If none of the devices connected to the USB port include BIOS instructions, the USB controller may instruct the computer to cycle forward to the BIOS EPROM 125. If the BIOS EPROM 124 is present and not corrupted, the CPU 105 executes the instructions in the BIOS EPROM 125 to boot the computer.

The boot process 300 used by a computer according to an embodiment of the present invention is shown in FIG. 3. The process begins in a start state 305. Proceeding to state 310, the computer detects whether a USB controller is present. If no USB controller is present, the computer does not attempt the boot process 300, but proceeds with a normal boot process using the BIOS EPROM.

Proceeding to state 312, the computer attempts to authenticate any device connected to the USB port. A bootable device on the USB is capable of reprogramming the BIOS EPROM 125. The authentication procedure ensures that only an authorized device is used. Techniques to accomplish the authentication process are well known in the art, and may include reading a code from the device connected to the USB port, or a challenge and reply system. If the device is not authorized, the computer will not boot using the instruction on the USB device. If the device passed the authentication, the process 300 continues to attempt to boot the computer.

Proceeding to state 315, the USB controller determines whether any of the devices attached to the USB port is a bootable device containing BIOS instructions. The USB port is capable of interfacing many devices to the computer. At startup, the USB controller is only interested in devices that include boot instructions for the computer. If a bootable device is connected to the USB port, the process 300 proceeds along the YES branch to state 320. In state 320, the process 300 reads the boot instructions from the bootable USB device. The instructions are read through the USB port via the USB controller.

Returning to state 315, if no bootable device exists on the USB port, the process 300 proceeds along the NO branch to state 325. In state 325, the computer determines if a BIOS EPROM is present and non-corrupt. If the BIOS EPROM is corrupted, the computer treats it as if no BIOS EPROM is present. If no BIOS EPROM is present, the process 300 proceeds along the NO branch to an END state 340. In this situation, the computer is unable to boot due to the lack of BIOS instructions available on either the USB port or the BIOS EPROM.

Returning to state 325, if the BIOS EPROM is present, the process 300 proceeds along the YES branch to state 330. In state 330, the initial boot instructions are read into the CPU from the BIOS EPROM.

After the initial boot instructions are read from either the USB port in state 320 or the BIOS EPROM in state 330, the process 300 proceeds to state 335. In state 335, the CPU 105 executes the initial instructions necessary to boot the computer. After the instructions are executed, the computer will boot-up and the boot process 300 terminates in end state 340.

In an alternative embodiment, the CPU 105 may be preset to either boot from either the USB port or the BIOS EPROM 125. The CPU 105 may contain an indicator such as a policy bit that directs the CPU 105 to a desired boot path. For example, if the policy bit was set to a logical high, the CPU 105 may boot through the USB port. However, if the policy bit was set to a logical low, the CPU 105 may boot through the BIOS EPROM 125. The use of a boot indicator directs the CPU 105 to a specific boot path regardless of whether a bootable device is connected to the USB port.

Numerous variations and modifications of the invention will become readily apparent to those skilled in the art. Accordingly, the invention may be embodied in other specific forms without departing from its spirit or essential characteristics.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5325529 *May 18, 1990Jun 28, 1994Compaq Computer CorporationExternal boot information loading of a personal computer
US5680556 *Sep 3, 1996Oct 21, 1997International Business Machines CorporationComputer system and method of operation thereof wherein a BIOS ROM can be selectively locatable on diffeent buses
US5694600 *Feb 9, 1996Dec 2, 1997Iomega CorporationMethods and apparatus for booting a computer having a removable media disk drive
US5805882 *Jul 19, 1996Sep 8, 1998Compaq Computer CorporationComputer system and method for replacing obsolete or corrupt boot code contained within reprogrammable memory with new boot code supplied from an external source through a data port
US5854905 *Sep 3, 1996Dec 29, 1998Intel CorporationExtensible bios for boot support of devices on multiple hierarchical buses
US6263381 *Nov 13, 1998Jul 17, 2001Tommyca FreadmanPreconditioning system for facilitating switching between electronic devices using automatic peripheral connection button to download predetermined software/parameters and automatically activating microphone and plurality of speakers
US6317828 *Nov 13, 1998Nov 13, 2001Dell Usa, L.P.BIOS/utility setup display
US6366583 *Jul 21, 1999Apr 2, 2002Cisco Technology, Inc.Network router integrated onto a silicon chip
US6480914 *Feb 23, 2000Nov 12, 2002Inventec CorporationMethod for supporting USB input devices via BIOS
US6513113 *Jun 16, 1999Jan 28, 2003Ricoh Company, Ltd.Electronic instrument adapted to be selectively booted either from externally-connectable storage unit or from internal nonvolatile rewritable memory
US6813725 *Jan 26, 2000Nov 2, 2004Hewlett-Packard Development Company, L.P.Method for restoring an operating system utilizing a storage device on a USB bus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7440287Oct 11, 2007Oct 21, 2008Super Talent Electronics, Inc.Extended USB PCBA and device with dual personality
US7547218Sep 17, 2007Jun 16, 2009Super Talent Electronics Inc.Plug and cap for a universal-serial-bus (USB) device
US7628622Mar 18, 2008Dec 8, 2009Super Talent Electronics, Inc.Multi-level cell (MLC) slide flash memory
US7660938Oct 30, 2007Feb 9, 2010Super Talent Electronics, Inc.Flash card reader and data exchanger utilizing low power extended USB protocol without polling
US7664902Oct 26, 2007Feb 16, 2010Super Talent Electronics, Inc.Extended SD and microSD hosts and devices with USB-like high performance packetized interface and protocol
US7676640Sep 28, 2007Mar 9, 2010Super Talent Electronics, Inc.Flash memory controller controlling various flash memory cells
US7744387Mar 18, 2008Jun 29, 2010Super Talent Electronics, Inc.Multi-level cell (MLC) rotate flash memory device
US7771215Jul 10, 2008Aug 10, 2010Super Talent Electronics, Inc.MLC COB USB flash memory device with sliding plug connector
US7788553Oct 11, 2007Aug 31, 2010Super Talent Electronics, Inc.Mass production testing of USB flash cards with various flash memory cells
US7806705Oct 22, 2009Oct 5, 2010Super Talent Electronics, Inc.Slide flash memory devices
US7815469Oct 22, 2007Oct 19, 2010Super Talent Electronics, Inc.Dual-personality extended USB plugs and receptacles using with PCBA and cable assembly
US7850082Oct 31, 2007Dec 14, 2010Super Talent Electronics, Inc.Extended universal serial bus (USB) card reader
US7850468Jul 17, 2009Dec 14, 2010Super Talent Electronics, Inc.Lipstick-type USB device
US7869219Jan 29, 2009Jan 11, 2011Super Talent Electronics, Inc.Flash drive with spring-loaded retractable connector
US7874067Jun 11, 2008Jan 25, 2011Super Talent Electronics, Inc.Manufacturing method for single chip COB USB devices with optional embedded LED
US7944702Jul 12, 2010May 17, 2011Super Talent Electronics, Inc.Press-push flash drive apparatus with metal tubular casing and snap-coupled plastic sleeve
US7984303Apr 8, 2008Jul 19, 2011Super Talent Electronics, Inc.Flash memory devices with security features
US8014130Dec 4, 2007Sep 6, 2011Super Talent Electronics, Inc.Pen-like universal serial bus (USB) flash drive with deploying and retracting functionalities
US8021166Oct 18, 2007Sep 20, 2011Super Talent Electronics, Inc.Extended USB plug, USB PCBA, and USB flash drive with dual-personality for embedded application with mother boards
US8043099Oct 3, 2007Oct 25, 2011Super Talent Electronics, Inc.Extended USB plug, USB PCBA, and USB flash drive with dual-personality
US8073985Sep 28, 2007Dec 6, 2011Super Talent Electronics, Inc.Backward compatible extended USB plug and receptacle with dual personality
US8078794Oct 29, 2007Dec 13, 2011Super Talent Electronics, Inc.Hybrid SSD using a combination of SLC and MLC flash memory arrays
US8240034May 28, 2008Aug 14, 2012Super Talent Electronics, Inc.High throughput manufacturing method for micro flash memory cards
US8262416Sep 17, 2010Sep 11, 2012Super Talent Electronics, Inc.Dual-personality extended USB plugs and receptacles using with PCBA and cable assembly
US8296521Jun 30, 2010Oct 23, 2012Mosaid Technologies IncorporatedMethod of configuring non-volatile memory for a hybrid disk drive
US8297987Aug 16, 2011Oct 30, 2012Super Talent Electronics, Inc.Extended USB plug, USB PCBA, and USB flash drive with dual-personality for embedded application with mother boards
US8301831Oct 24, 2011Oct 30, 2012Super Talent Electronics, Inc.Backward compatible extended USB plug and receptacle with dual personality
US8677084Oct 19, 2012Mar 18, 2014Mosaid Technologies IncorporatedMethod of configuring non-volatile memory for a hybrid disk drive
Classifications
U.S. Classification713/1
International ClassificationG06F9/00, G06F9/445
Cooperative ClassificationG06F9/4401, G06F11/1417
European ClassificationG06F9/44A
Legal Events
DateCodeEventDescription
Jul 25, 2005ASAssignment
Owner name: INTEL CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:POISNER, DAVID I.;REEL/FRAME:016794/0014
Effective date: 20000905