US20050284649A1 - Recoilless impact device - Google Patents

Recoilless impact device Download PDF

Info

Publication number
US20050284649A1
US20050284649A1 US11/125,706 US12570605A US2005284649A1 US 20050284649 A1 US20050284649 A1 US 20050284649A1 US 12570605 A US12570605 A US 12570605A US 2005284649 A1 US2005284649 A1 US 2005284649A1
Authority
US
United States
Prior art keywords
striker
housing
tube
piston
propellant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/125,706
Inventor
Feliciano Sabates
David Wilson
Charles Mossey
Mark Johnson
Charles VanCampen
John Keating
Daniel Crayon
Kevin Miner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/125,706 priority Critical patent/US20050284649A1/en
Publication of US20050284649A1 publication Critical patent/US20050284649A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22BSLAUGHTERING
    • A22B3/00Slaughtering or stunning
    • A22B3/02Slaughtering or stunning by means of bolts, e.g. slaughtering pistols, cartridges
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B3/00Devices or single parts for facilitating escape from buildings or the like, e.g. protection shields, protection screens; Portable devices for preventing smoke penetrating into distinct parts of buildings
    • A62B3/005Rescue tools with forcing action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • B25D9/10Means for driving the impulse member comprising a built-in internal-combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53796Puller or pusher means, contained force multiplying operator
    • Y10T29/53839Puller or pusher means, contained force multiplying operator having percussion or explosive operator

Definitions

  • This invention relates generally to hand-held impact devices, and more particularly to hand-held impact devices for gaining entry to locked or barricaded structures.
  • Portable, hand-held forcible entry devices have been developed that enable law enforcement and emergency personnel to forcibly open a locked or fortified door, barricaded passage, damaged structure, or any other barrier that requires the use of force to gain access to a building or structure.
  • a typical forcible entry device comprises a piston-driven striker housed within a generally cylindrical case.
  • the end of the striker extends from the front end of the case.
  • a modified, conventional firearm is secured to the other end of the case for discharging the forcible entry device.
  • the modified firearm fires a blank cartridge or other explosive charge which generates a combustion gas for driving the piston-driven striker outwardly of the housing to produce an extreme percussive force.
  • the striker is placed against a target object, such as a locked or barricaded door or damaged structure, and the firearm is fired.
  • the striker extends from the front end of the case with great force and impacts the target object for breaking through the door or structure.
  • a problem with conventional forcible entry devices is the recoil generated when the device is fired due to the large force necessary to drive the striker.
  • the recoil makes the device difficult for the user to hold and to control in use.
  • Another problem with using forcible entry devices occurs when the target object offers little resistance to the striker.
  • the force generated by the high velocity extension of the striker results in “forward” recoil wherein the device jerks forward in the user's hands.
  • Forward recoil is also a problem when the devices are “dry fired”, that is, fired when the striker does not impact a target object.
  • the new device should be recoilless in the traditional sense and minimize forward recoil in the case of soft target objects or dry firing.
  • the new impact device should also be compact and lightweight, and thus portable enough to be rapidly positioned and deployed to gain access to a structure without the need for an external power source.
  • Another object of the present invention is to provide an impact generating device which minimizes forward recoil, even when impacting soft target objects or when dry fired.
  • a further object of the present invention is to provide a recoilless impact generating device which is useful in forcible entry of a locked or damaged structure.
  • an apparatus for generating an impact against a target object comprises a housing defining an interior chamber and having a closed first end and an open second end.
  • a drive member is reciprocally disposed in the interior chamber adjacent the second end of the housing for movement relative to the housing from a first firing position to a second driven position.
  • the drive member includes a hollow tube member having a first closed end and a second open end.
  • a nozzle member having a plurality of openings is sealably mounted in the second end of the tube.
  • a piston is disposed in the tube for movement relative to the tube and propellant is disposed between the piston and the closed end of the tube. Fluid is also in the tube between the nozzle member and the piston.
  • a striker member having a head portion and a shaft portion is mounted within the interior chamber so that in a first retracted position of the striker member the head portion of the striker member is proximate the first end of the drive member and a portion of the shaft portion extends outwardly from the interior chamber through a passage formed in the closed end of the housing.
  • the striker member is movable relative to the housing between the first position and a second extended position where the head portion is adjacent the first end of the housing.
  • Means are provided for igniting the propellant so that combustion gases build pressure in the tube member between the piston and the closed end of the tube member causing the pressure in the tube member to exceed the predetermined pressure for rupturing the nozzle sealing means.
  • This causes the piston to move toward the nozzle member and fluid to be expelled through the nozzle member for moving the drive member against the head portion of the striker member and to the driven position.
  • the drive member transfers energy to the striker member for moving the striker member to the second position at high velocity for driving the end of the striker with great force against the target object Recoil action in the apparatus is cushioned by the fluid exiting the tube member through the nozzle member as the piston moves toward the nozzle member.
  • FIG. 1 is a perspective view of an embodiment of a recoilless impact device according to the present invention.
  • FIG. 2 is a front elevation view of the recoilless impact device shown in FIG. 1 .
  • FIG. 3 is a rear elevation view of the recoilless impact device shown in FIG. 1 .
  • FIG. 4 is a side elevation view of the recoilless impact device shown in FIG. 1 .
  • FIG. 5 is a side cross-section view of the recoilless impact device shown in FIG. 1
  • FIG. 6 is a side cross-section view of the recoilless impact device as shown in FIG. 5 with the striker assembly forced together.
  • FIG. 7 is a side cross-section view of the recoilless impact device shown in FIG. 6 after firing of the device.
  • FIG. 8 is an exploded cross-section view of the recoilless impact device shown in FIG. 5 .
  • FIG. 9 is a longitudinal cross-section view of a driver assembly for use with the recoilless impact device of FIG. 1 .
  • FIG. 10 is an exploded cross-section view of the driver assembly shown in FIG. 9 .
  • FIG. 11A is a flat plan view of a nozzle for use with the recoilless impact device shown in FIG. 1 .
  • FIGS. 11B-11D are cross-sectional views of the nozzle shown in FIG. 11A taken along lines 11 A- 11 A, 11 B- 11 B, and 11 C- 11 C, respectively.
  • FIG. 12 is a side elevation view of a key block assembly for use with the recoilless impact device shown in FIG. 1 .
  • FIG. 13 is an embodiment of the recoilless impact device as shown in FIG. 1 including a handle assembly.
  • FIG. 14 is a side cross-section view of a removable shaft tip for use with the recoilless impact device shown in FIG. 1 .
  • FIG. 15 an end view of a shaft for use with the recoilless impact device shown in FIG. 1 .
  • FIG. 16 is a close-up side cross-section view of a primer and primer block for use with the driver assembly shown in FIG. 9 .
  • FIG. 17 is a flat plan view of another embodiment of a nozzle for use with the recoilless impact device shown in FIG. 1 .
  • FIGS. 18 is a cross-sectional view of the nozzle shown in FIG. 17 taken along line 17 - 17 .
  • FIG. 19 is another embodiment of a striker assembly for use with the recoilless impact device shown in FIG. 1 .
  • the impact generating device according to the present invention is similar to the forcible entry device shown and described in U.S. patent application Ser. No. 09/065,746, the contents of which are hereby incorporated by reference.
  • FIGS. 14 an embodiment of the impact device according to the present invention for use, for example, in forcible entry of locked or barricaded structures or doors is shown in FIGS. 14 and designated generally at 20 .
  • the impact device 20 includes a housing 22 , a front cap 24 and an elongated striker shaft 26 extending through the cap 24 outwardly of the housing.
  • a tip 28 At the end of the striker shaft 26 is a tip 28 .
  • the tip 28 may be any useful shape, depending upon the structure to be opened, removed or cut. For example, a chisel type tip 28 is shown in FIG. 1 .
  • the tip 28 may be made removable, as in the present device 20 , to ease application of the device to different situations.
  • An outer channel weldment 30 extends from the front end of the housing 22 to a key block assembly 32 at the rear of the housing. The channel weldment 30 is held in place by straps 34 which are secured around the housing 20 by threaded fasteners 36 . Unless otherwise specified, all of the parts of the impact device 20 are aluminum except the striker shaft 26 and tip 28 which are steel.
  • the housing 22 defines a generally cylindrical interior chamber 38 .
  • the front end of the housing 22 is sealed by the front cap 24 which is threaded into the housing 22 , and the rear end of the housing is open.
  • a striker assembly 40 and a driver assembly 42 are reciprocally disposed within the chamber 38 at the front and rear of the housing 22 , respectively.
  • the striker assembly 40 comprises the striker shaft 26 and a striker head 44 .
  • One end of the striker shaft 26 extends outwardly of the housing 22 from the interior chamber 38 through a central opening 46 formed in the front cap 24 .
  • a brass bushing 48 fits in the cap opening 46 between the cap 24 and striker shaft 26 to permit the striker shaft to reciprocate freely relative to the front cap.
  • the cap 46 may be provided with an annular groove 48 for receiving an o-ring 50 which fits snugly around the striker shaft 26 to seal the space between the cap 24 and striker shaft.
  • the striker head 44 includes two generally cylindrical pieces, an outer striker head 52 and an inner striker head 54 .
  • the outer striker head 52 has three spaced circumferential grooves: a forward groove 56 which holds a rubber wiper ring 58 , a middle groove 60 which holds a polymer guide ring 62 and a rear groove 64 which holds a copper contact ring 66 which is insulated from the outer striker head 52 .
  • the inner striker head 54 is steel and includes four spaced guide pins 68 , only two of which are shown in FIGS. 5 and 8 .
  • the guide pins 68 are movably received in corresponding openings 70 in the rear of the outer striker head 52 so that the inner striker head 54 and outer striker head 52 fit reciprocally together.
  • the outer striker head 52 also has an axial pass through opening 72 for receiving a reduced diameter portion of the inner end of the striker shaft 26 .
  • the inner end of the striker shaft 26 has an internally threaded axial opening 73 for receiving a shaft screw 74 which passes through the axial opening 72 in the outer striker head 52 thus securing the outer striker head to the striker shaft.
  • a small coil spring 76 is interposed between the inner striker head 54 and outer striker head 52 for biasing the heads apart.
  • a large coil spring 78 is disposed around the striker shaft 26 within the housing 22 .
  • One end of the spring 78 is positioned against the outer striker head 52 and the other end of the spring is against the front cap 24 .
  • the spring 78 biases the striker assembly 40 inwardly of the housing 22 .
  • the inner diameter of the interior chamber 38 of the housing 22 is decreased intermediate the ends of the housing forming a seat 80 against which the inner striker head 54 is biased proximate to a front end of the driver assembly 42 ( FIG. 5 ).
  • the size of the coil spring 78 is selected so that the space between the inner striker head 54 and outer striker head 52 is maintained by the striker head spring 76 .
  • the tip 28 has an axial bore 164 for slidably receiving a pin 166 which is held in the tip 28 by a hollow, peripherally-threaded plug 168 which journals the end of the pin 166 .
  • a key retainer 170 is secured to the end of the pin 166 by a cap 172 and screw 174 which is received in an axial threaded bore in the end of the pin 166 .
  • a spring 175 is disposed around the pin 166 in the tip 28 . One end of the spring 175 is against the pin 166 head and the other end of the spring is against the plug 168 to bias the pin 166 and attached key retainer 170 inwardly of the tip 28 .
  • the outer end of the striker shaft 26 is shown in FIG. 15 to include a blind channel 176 defined along an axial bore 178 .
  • a transverse slot 180 is formed at the inner end of the channel 176 .
  • the driver assembly 42 is shown in FIGS. 9 and 10 .
  • the driver assembly 42 is similar to the recoilless propulsion unit shown and described in U.S. Pat. No. 5,099,764, the contents of which are hereby incorporated by reference, which expels a pressurized fluid from the unit through a nozzle using a closed-breech piston activated by a propellant charge.
  • the driver assembly 42 comprises a generally cylindrical hollow tube 82 , a piston assembly 84 and a nozzle assembly 86 .
  • the tube 82 has a closed inner end 88 and an open rear end 90 and defines an interior chamber 92 .
  • the closed end 88 of the tube 82 has an axial passage 94 of stepped diameter opening outwardly of the end of the tube.
  • the open end 90 of the tube 82 is internally threaded and is slightly thicker, which strengthens this portion of the tube.
  • the piston assembly 84 includes a cup-shaped piston 96 slidably disposed in the interior chamber 92 adjacent the closed inner end 88 of the tube 82 .
  • the piston 96 may be nylon for most fluids, but is preferably metal when gas permeability of the fluid is a consideration.
  • the outer surface of the metal piston 96 is sealed against the walls of the interior chamber 92 by two spaced o-rings 98 with metal backing rings which fit in spaced circumferential grooves 100 in the piston.
  • the o-rings 98 also serve as a guide for movement of the piston 96 in the tube 82 .
  • the o-rings 98 and backing rings may be replaced by T-seals typically used in high-pressure dynamic sealing applications.
  • a frustoconical ring seal 102 fits between chamfered surfaces 101 , 103 at the front of the end of the tube 82 and the piston 96 .
  • the piston 96 separates the interior chamber 92 of the tube 82 into front and rear variable volume chambers.
  • the ring seal 102 prevents fluid, particular permeable gases, in the rear variable volume chamber from entering the front variable volume chamber.
  • the ring seal 102 comprises a polymer material, but could be a soft metal.
  • the periphery of the front of the piston can be grooved and coated with a soft metal, such as copper or silver, for sealing the space between the piston 96 and tube 82 .
  • the pressure of the fluid in the chamber 92 forces the piston 96 forward thereby compressing the ring seal 102 against the chamfered surface at the inner end of the tube 82 for sealingly separating the front and rear variable volume portions of the tube chamber 92 .
  • the piston 96 has a central recess 104 for retaining a propellant charge 106 . It is understood that the present invention is not limited to the type of propellant used. For example, a suitable propellant is Winchester 231 smokeless powder. Adhesive paper 108 seals the propellant 106 in the recess 104 which centralizes the propellant in a contained target area.
  • the rear portion of the piston 96 may include a protrusion of slightly less diameter than the body of the piston 96 . As will be described below, when the impact device 20 is fired, the piston 96 is driven rearward with great force into the nozzle assembly 86 . The protrusion on the rear portion of the piston 96 strengthens the surface of the piston 96 that impacts the nozzle assembly 86 thereby minimizing the potential for deformation of the piston 96 edges.
  • a primer 110 is disposed in the axial passage 94 in the closed end of the tube 82 and held in place by a threaded plug 112 .
  • Suitable primers 110 include M52A3B1 or PA520 military grade electrically-initiated primers available from Lake City (Ohio) Army Ammunition Plant. A small amount of electrical energy, approximately 1 mJ, will form an arc within these primers which ignites a very small amount of propellant.
  • the passage 94 serves to communicate the primer 110 with the propellant charge 106 in the piston 96 and directs gases from the primer into the front variable volume chamber.
  • FIG. 16 Another embodiment of the driver assembly 42 according to the present invention is shown in FIG. 16 .
  • the primer 110 is disposed in a peripherally threaded cylindrical primer block 182 which is received in a larger diameter portion of the opening 94 in the inner end of the tube 82 .
  • the primer 110 fits in an opening in the primer block and is held in place by a hollow, peripherally threaded retainer 184 .
  • the retainer 184 defines an opening 186 in the primer block 186 that allows access to the inner end of the primer 110 .
  • the large diameter primer block 182 provides a contact point for completing an electrical firing circuit as will be described below.
  • the nozzle assembly 86 includes a peripherally-threaded cylindrical nozzle 114 which is threaded into the open end of the tube 82 .
  • An o-ring 115 seals the inner surface of the nozzle 114 against a shoulder 119 in the open end of the tube 82 .
  • the o-ring is preferably polyurethane which is less susceptible to gas permeability.
  • the inner surface of the nozzle 114 has a plurality of blind bores 116 ( FIGS. 11A-11D ) of stepped diameter. A small vent hole 117 leads from the end of each bore 116 outwardly of the nozzle 114 .
  • a plurality of angled passages 118 branch from a point intermediate along the length of the bores 116 and open outwardly of the outer surface of the nozzle 114 forming elliptical openings in the bores and the outer surface of the nozzle.
  • the hole pattern formed by the passage 118 openings in the outer surface of the nozzle 114 is selected so as to disperse the fluid in as many jets as possible without adversely affecting the flow characteristics of the fluid and to optimize the safety of the exit area of the nozzle 114 . The greater the exit area the more optimal the propulsion of the impact device 20 .
  • FIG. 3 shows another multiple hole pattern in the outer surface of the nozzle 114 . This pattern results from seven spaced bores 116 and four angled passages 118 from each bore 116 .
  • the thickness of the nozzle 114 is determined by the structural integrity of the hole pattern and the flow characteristics of the fluid 18 through the passages 118 .
  • Fluid 124 contained within the second variable volume chamber is preferably a liquid and, more preferably, the fluid is liquid CO 2 .
  • Liquid CO 2 is stored in the tube 82 as a high pressure liquid/gas mixture wherein liquid CO 2 fills from about 50% to about 95 % of the volume of the chamber 92 .
  • CO 2 liquid levels above 95% become too volatile since the CO 2 pressure will change due to temperature.
  • the upper limit to the liquid level is determined based on an expected storage temperature range.
  • a preferred CO 2 liquid level is about 75% at which the interior chamber 92 pressure will range from about 600 psi at 0° F.
  • the water preferably fills substantially 100% of the volume of the second variable volume chamber of the tube 82 .
  • a brass burst disc 126 is disposed in each bore 114 against the shoulder 128 formed where the bore changes diameter ( FIG. 11C ).
  • the burst disc 126 is formed from a brass shim stock with a protective coating.
  • Each burst disc 126 is sealed in place with a hollow hex head retainer screw 130 for sealing the interior chamber 92 of the tube 82 .
  • the burst disc is designed to withstand 3700 psi.
  • FIGS. 17 and 18 A simplified nozzle 114 design according to the present invention is shown in FIGS. 17 and 18 .
  • This nozzle 114 has seven straight passages 188 for fluid ejection. Each passage 188 is sealed by a burst disc 126 held in place by a peripherally threaded cylindrical retainer sleeve 190 .
  • This nozzle 114 design is possible with the use of stainless steel non-fragmenting burst discs 126 available from BS&B Safety System of Tulsa, Okla.
  • the nozzle 114 also has a central fill hole 120 which opens into the interior chamber 92 of the tube 82 .
  • a threaded plug 122 is provided for sealing the fill hole 120 .
  • the plug 122 is a hollow modified set screw with an opening 123 that feeds into the interior 92 of the tube 82 when the plug 122 is slightly backed out of the hole 120 .
  • An appropriate adapter (not shown) is provided on the plug 122 for coupling to a fluid feed line for loading the second variable volume portion of the interior chamber 92 of the tube 82 between the piston 96 and the nozzle 114 .
  • the driver assembly retention means comprises the key block assembly 32 mounted on the rear of the housing 22 .
  • the key block assembly 32 includes a block 132 , a stop hammer 136 and a plunger 138 reciprocally disposed in the channel weldment 30 .
  • the stop hammer 136 is a flat piece having an opening 137 therethrough which is reciprocally received in a slot in the block 132 .
  • the key block assembly 132 is positioned over a peripheral slot 140 in the housing 22 ( FIG. 5 ) which opens through to the interior chamber and allows the stop hammer 136 to extend into the housing 22 .
  • the plunger 138 has a forward end 141 and a conically-shaped rear end 142 and is slidably disposed in the block 132 .
  • the plunger 138 passes through the opening 137 in the stop hammer 136 .
  • Movement of the plunger 138 in the key block assembly 32 relative to the stop hammer 136 .mioves the stop hammer 136 between a first position where a portion of the stop hammer extends into the housing 22 and a second position where the stop hammer is out of the housing. In the first position, the stop hammer 136 extends through the slot 140 in the housing and engages the rear of the tube 82 for securing the driver assembly 42 in the housing 22 .
  • the stop hammer 136 In the second position, the stop hammer 136 is in a non-blocking position with respect to the tube 82 so that the driver assembly 42 may be removed from the housing 22 .
  • the stop hammer 136 is biased into the first, blocking position by one or more springs in the block 132 .
  • a yoke 144 is shown connected to the front end of the plunger 138 for attachment to an appropriate release mechanism operable by the user.
  • a firing mechanism is provided. It is understood that there are many ways to fire the primer 110 , including mechanical and electrical means. Preferably, the firing mechanism is electrical since electrical means are less prone to accidental actuation.
  • the specifics of the electrical circuitry for firing the device 20 can be easily developed by those skilled in the art and will not be addressed.
  • This approach includes first and second electrical contact plungers 146 , 148 schematically shown in FIG. 5 .
  • the plungers 146 , 148 are spring-biased through respective openings in the housing 22 to a position adjacent the striker head 44 .
  • the first plunger 146 is biased into an open area in the housing 22 between the outer striker head 52 and inner striker head 54 when the impact device 20 is in a non-firing condition.
  • An electrical wire 150 (not shown) connected to the copper contact ring 66 passes through a transverse hole (not shown) in the outer strike head 52 and into the axial opening in the striker head 44 .
  • the wire leads to an electrical plunger 152 ( FIG. 9 ) disposed on the inner end of the driver assembly 42 and contacting the primer 110 for delivering electric current for firing the primer 110 .
  • the ground connection is through the primer 110 skirt which is in close contact with the primer plug 112 .
  • a plurality of electrical contact plungers 200 two of which are shown in FIG. 8 , nested in the rear end of the inner striker head 54 contact the primer plug 112 .
  • the second plunger 148 is biased through the housing 22 and connects the inner striker head 54 to the electrical power source when the striker assembly 40 is in the firing position.
  • the housing 22 When preparing to fire the device 20 , the housing 22 is loaded with a driver assembly 42 through the open end of the housing.
  • the inside diameter of the housing 22 is larger than the closed end of the tube 82 to facilitate loading.
  • the closed end of the driver assembly 42 engages the stop hammer 136 which has a ramped surface 139 for allowing the advancing driver assembly 42 to force the stop hammer up into the block 132 . This movement is possible because the hole 137 in the stop hammer 136 is larger than the diameter of the plunger 138 .
  • the driver assembly 42 is advanced until the rear of the tube 82 is clear of the stop hammer 136 which is biased into the housing to hold the driver assembly 42 in the housing 22 .
  • the tip 28 of the striker shaft 26 is then positioned against an object such as a locked door, damaged structure or other barrier to be opened and manual force applied to the device 20 toward the object
  • the first electrical contact plunger 146 engages the copper contact ring 66 on the outer striker head to complete the electrical circuit.
  • the preferred firing mechanism requires the user to physically engage the target object with the striker shaft tip 28 and manually force the striker shaft 26 into the housing a predetermined distance to enable the firing mechanism. This is a safe arrangement which prevents accidental “dry” firing of the device 20 .
  • FIG. 19 Another embodiment of the striker head 44 according to the present invention is shown in FIG. 19 .
  • the outer striker head 52 and inner striker head 54 fit slidably together.
  • a contact assembly 192 is positioned in axial openings across the striker heads 52 , 54 for movement with the outer striker head 52 relative to the inner striker head 54 .
  • the contact assembly 192 comprises a nylon contact holder 194 , a housing 196 , a probe contact 198 and a ground contact 200 .
  • the contact holder 194 is fixed to a reduced inner end of the housing 196 which is formed from an electrically conductive material such as, for example, brass.
  • the housing 196 has an axial bore which receives the electrically conductive probe contact 198 .
  • the probe contact 198 is held in the housing 196 by a retaining ring 202 .
  • a spring 204 is disposed in the housing 196 for biasing the probe contact 198 outwardly of the housing 196 .
  • the housing 196 is slidably received in an insulator sleeve 206 positioned in the inner striker head 54 .
  • the insulator sleeve 206 separates the ground contact 200 from the housing 196 .
  • a wave spring 208 is disposed between the ground contact 200 and the inner striker head 54 for biasing the ground contact outwardly of the housing 196 and against the primer block 182 .
  • a circular retainer disc 210 is fixed to the rear end of the inner striker head 54 to hold the contact assembly 192 elements in the inner striker head 54 .
  • the periphery of the inner striker head 54 includes two peripheral grooves which hold electrically conductive contact rings 212 .
  • the spring-loaded contact pins 146 , 148 are positioned in the housing 22 to engage the rings 212 in the both the non-firing condition and the firing position of the impact device 20 .
  • Spring-biased contact pin assemblies 214 , 216 disposed in transverse passages in the inner striker head 54 electrically connect the contact bands 212 with the housing 196 and ground contact 200 , respectively. This provides the electrical path from the exterior of the housing 22 to the probe contact 198 and ground contact 200 .
  • the probe contact 198 is extended from the rear end of the inner striker head 54 and engages the primer 110 . Since the ground contact 200 is against the primer block 182 the firing circuit is completed.
  • a cup 218 may be secured to the front end of the outer striker head 52 .
  • the cup 218 serves as a witness panel for a proximity sensor (not shown) positioned in the outer cylinder of the housing.
  • the proximity sensor senses when the inner and outer heads 52 , 54 of the striker assembly 40 are compressed in the firing position of the impact device 20 .
  • This is a redundant arming feature.
  • the operator fires the device 20 by actuating the firing mechanism which delivers an electrical charge to the primer 110 .
  • the primer cap 110 is discharged by the electrical charge.
  • the primer 110 fires hot flame and gases generated by the primer pass into the first variable volume chamber through the passage 94 in the end of the tube 82 .
  • the gases are directed by the passage 94 at a target area on the paper 108 retaining the propellant 106 .
  • the primer gases penetrate the paper 108 and ignite the propellant 106 while simultaneously blowing the propellant around the first variable volume chamber.
  • Expansion of the propellant gases builds up pressure in the first variable volume chamber between the piston 96 and the front end of the tube 82 .
  • the pressure increase generates a force on the piston 96 which is transferred to the fluid 124 .
  • the propellant gases continue to expand causing fluid pressure to rise until the burst discs 126 are ruptured.
  • the vent holes 117 allow pieces of the burst discs 126 to be driven safely into the blind end of the nozzle bores 116 .
  • the vent holes 117 are too small to let pieces of the discs 126 escape.
  • spikes (not shown) extending from the blind end of the bores 116 for capturing the burst discs 126 could replace the vent holes 117 .
  • the inner elliptical openings of the secondary nozzle passages 118 are small enough to prevent pieces of the burst disc from exiting the nozzle 114 .
  • the propellant gases continue to expand causing fluid 124 to be expelled through the nozzle 114 and into the atmosphere away from the user.
  • the momentum and the pressure generated by the fluid 124 expelled into the atmosphere force the driver assembly 42 forward against the striker head 44 which moves the striker assembly 40 towards the front end of the housing 22 with great force.
  • the striker shaft tip 28 impacts against the locked door, damaged structure or other barrier so that the user, such as law enforcement or emergency personnel, may gain access to the building or structure.
  • the recoilless feature of the device 20 is due to the Davis Gun Principle which holds that when a mass is expelled from a body there is an equal and opposite reaction generated propelling that body.
  • the expelled fluid 124 generates a driving force. Since this reaction takes place within the housing 22 which is not rigidly attached to the propelling body, the result is no recoil transferred to the housing.
  • the burning propellant generates a pressure in the first variable volume chamber acting on the piston which, after an initial increase, is relatively constant over time as the piston travels toward the nozzle. Eliminating an initial pressure spike when the propellant is ignited allows a less robust tube to be manufactured. This goal is realized in the present invention due to a number of factors related to interior ballistics principals for pyrotechnically driven devices.
  • the ratio of propellant charge to the initial available volume of the first variable volume chamber contributes to the desired propellant ignition and initial burn cycle. Maintaining the proper ratio controls the explosive nature of the burning propellant and the rate of the initial pressure increase upon firing of the device. Too much propellant or too little volume can lead to too high of an initial pressure spike.
  • the cup shape of the piston is also a factor in the chamber configuration to optimize the burning of the propellant.
  • the initial location of the piston 96 sets the chamber volume which matches an optimum burning solution for the propellant.
  • the position of the recess 104 and the retaining paper 108 fixes the propellant conditions and minimizes the initial area exposed to the primer flame and gases for slowing the initial propellant burning rate. Blowing the propellant around the chamber helps produce a consistent repeatable burn.
  • the pressure in the first variable volume chamber increases until the burst discs 126 rupture and fluid 124 is expelled from the nozzle.
  • the burst discs 126 are designed to burst at a predetermined pressure in order to insure proper propellant burn pressure and temperature.
  • the first chamber volume ahead of the piston 96 increases proportionally to the amount of fluid 124 displaced. This increase in the first chamber volume directly affects the burning characteristics of the propellant charge 106 .
  • the rate at which fluid 124 is expelled from the tube 82 is directly proportional to the number and total cross-sectional area of holes 118 in the nozzle 114 which determine the amount of resistant force, or back pressure, acting on the piston 96 as the piston moves down the tube and causes propellant to burn to a relatively steady rate.
  • a propellant charge 106 can be selected by those skilled in the art so as to generate a controlled propellant burn cycle and provide a desired pressure curve for the system.
  • the propellant charge is 4.1 g which occupies about 0.1496 cubic inches.
  • the empty volume of the first variable volume chamber is about 1.988 cubic inches.
  • the ratio of the propellant charge to the initial chamber volume is 0.075.
  • the driver assembly 42 is loaded with approximately 0.42 lbs. of liquid CO 2 .
  • the burst discs retain at least an additional 1000-1200 psi of pressure before the discs break to properly initiate propellant buring. This configuration produces about 7000 psi of pressure within the propellant chamber and produces relatively constant pressure over time during firing.
  • the impact force of the device 20 having these characteristics is designed to be 65,000 lbs. of peak force at 20 lb-sec impulse at ambient temperatures against a rigid surface.
  • the liquid CO 2 turns into solid flakes, like snow, as it passes through the nozzle 114 .
  • the driver assembly 42 is recessed into the housing 22 to create a cavity for the expanding CO 2 liquid-to-gas effect to increase impulse from the pressure generated by the phase change of the fluid.
  • the striker assembly 40 compresses the spring 78 between the striker head 44 and front cap 24 as the striker shaft 26 extends from the housing 22 .
  • the spring 78 and air compressed between the front cap 24 and striker head 44 serve as a pneumatic damping mechanism for slowing the striker assembly 40 to a stop and minimizing forward recoil.
  • a small vent hole 156 is provided in the housing 22 near the front end. Air is forced through the vent hole 156 only if pressure in the housing reaches a predetermined pressure, for example about 250 psi, which happens only if the striker is over-accelerated. This feature is particularly advantageous when the device 20 is dry-fired or a target object is easily penetrated when fired.
  • the tube 82 is slightly tapered at the nozzle end 90 to allow propellant gases to vent between the piston assembly 84 and the tube wall to relieve the pressure in the driver assembly 42 as the piston 96 is nearing the nozzle 114 .
  • the compression spring 78 returns the striker assembly 40 and driver assembly 42 into the housing to the pre-firing position shown in FIG. 5 .
  • the device After firing, the device is reloaded by advancing the plunger 138 which raises the stop hammer 136 away from the rear of the driver assembly 42 .
  • the spent driver assembly 42 is slipped out of the housing 22 and replaced with a fresh driver assembly.
  • the spent driver assembly is reusable.
  • the handle assembly 157 is preferably formed from a fiber reinforced composite material which is both strong and light, and comprises two hand grips 159 extending transversely to the housing 22 .
  • the handle assembly 157 accommodates a power source, such as a 9-volt battery.
  • a power source such as a 9-volt battery.
  • the user's thumbs are over a forward safety button 158 and a rear firing switch 160 positioned on the outside of the device which is easily accessible to the user holding the device.
  • a forward safety button 158 When the user holds the device 20 , the user's thumbs are over a forward safety button 158 and a rear firing switch 160 positioned on the outside of the device which is easily accessible to the user holding the device.
  • an LED under the safety button 158 lights-signaling the user the device is pre-loaded.
  • the user presses the safety button 158 which powers up the device 20 .
  • an LED under the firing switch 160 lights and the user knows the device is ready to fire.
  • a pivoting release lever 162 on the rear of the handle assembly 157 is pressed downward to raise the stop hammer 136 and allow a spent driver assembly to be removed and replaced.
  • the previously described versions of the present invention have many advantages, including delivery of a large impact to a target object, such as a locked or damaged structure, while generating no recoil, even when impacting soft target objects or accidental dry firing.
  • the device is a great improvement over existing forcible entry devices for gaining entry to locked or damages structures through doors or other barriers.
  • the impact device of the present invention is also compact and lightweight. This reduces the amount of time required to gain access to the building or damaged structure. Further, the impact device is versatile enough to be utilized in the many different situations in addition to those noted above, including for forcibly cutting materials and the dispatching of animals to be processed for nutritional purposes.
  • the present invention has been shown and described in considerable detail with respect to only a few exemplary embodiments thereof, it should be understood by those skilled in the art that we do not intend to limit the invention to the embodiments since various modifications, omissions and additions may be made to the disclosed embodiments without materially departing from the novel teachings and advantages of the invention, particularly in light of the foregoing teachings.
  • the impact device of the present invention has numerous other applications including delivering destructive blows to objects or dispatching animals.
  • the significant advantage of the device is the forceful impact delivered with no recoil. Accordingly, we intend to cover all such modifications, omissions, additions and equivalents as may be included within the spirit and scope of the invention as defined by the following claims.
  • means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures.
  • a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a crew may be equivalent structures.

Abstract

An apparatus for generating an impact against a target object comprises a driver reciprocally disposed in a housing. The driver includes a hollow tube having a closed end and a nozzle sealing the other end. A piston is slidably positioned in the tube. Propellant is disposed between the piston and the closed end of the tube and fluid is disposed between the nozzle and the piston. A rupture disc is provided for sealing the nozzle which is adapted to rupture when the pressure in the tube exceeds a predetermined pressure. A striker is also mounted in the housing so that in a retracted position of the striker a head portion is proximate the driver and a portion of a shaft extends outwardly from the housing. The striker member is movable between the retracted position and an extended position. The propellant is ignited so that combustion gases build pressure in the tube between the piston and the closed end of the tube causing the pressure in the tube to exceed the predetermined pressure for rupturing the disc. This causes the piston to move toward the nozzle and fluid to be expelled through the nozzle for moving the driver against the head portion of the striker. The driver transfers energy to the striker for moving the striker to the extended position at high velocity for driving the end of the striker with great force against the target object. Recoil action is cushioned by the fluid exiting the nozzle.

Description

    CROSS-REFERENCES
  • This application is a continuation-in-part of application Ser. No. 09/710,073, filed Nov. 10, 2000, the contents of which are hereby incorporated by reference.
  • GOVERNMENT RIGHTS
  • The inventions described herein may be manufactured and used by or for the U.S. Government for U.S. Government purposes.
  • BACKGROUND
  • This invention relates generally to hand-held impact devices, and more particularly to hand-held impact devices for gaining entry to locked or barricaded structures.
  • There is often a need for authorized personnel to rapidly gain access to locked, barricaded or otherwise secured buildings and to damaged structures, particularly in response to illegal activity or an emergency. Portable, hand-held forcible entry devices have been developed that enable law enforcement and emergency personnel to forcibly open a locked or fortified door, barricaded passage, damaged structure, or any other barrier that requires the use of force to gain access to a building or structure.
  • A typical forcible entry device comprises a piston-driven striker housed within a generally cylindrical case. The end of the striker extends from the front end of the case. A modified, conventional firearm is secured to the other end of the case for discharging the forcible entry device. The modified firearm fires a blank cartridge or other explosive charge which generates a combustion gas for driving the piston-driven striker outwardly of the housing to produce an extreme percussive force. In use, the striker is placed against a target object, such as a locked or barricaded door or damaged structure, and the firearm is fired. The striker extends from the front end of the case with great force and impacts the target object for breaking through the door or structure.
  • A problem with conventional forcible entry devices is the recoil generated when the device is fired due to the large force necessary to drive the striker. The recoil makes the device difficult for the user to hold and to control in use. Another problem with using forcible entry devices occurs when the target object offers little resistance to the striker. The force generated by the high velocity extension of the striker results in “forward” recoil wherein the device jerks forward in the user's hands. Forward recoil is also a problem when the devices are “dry fired”, that is, fired when the striker does not impact a target object.
  • For the foregoing reasons, there is a need for a new impact generating device for use in forcible entry of locked or damaged structure which is recoilless. The new device should be recoilless in the traditional sense and minimize forward recoil in the case of soft target objects or dry firing. Ideally, the new impact device should also be compact and lightweight, and thus portable enough to be rapidly positioned and deployed to gain access to a structure without the need for an external power source.
  • SUMMARY
  • Therefore, it is an object of the present invention to provide an impact generating device which is recoilless.
  • Another object of the present invention is to provide an impact generating device which minimizes forward recoil, even when impacting soft target objects or when dry fired.
  • A further object of the present invention is to provide a recoilless impact generating device which is useful in forcible entry of a locked or damaged structure.
  • According to the present invention, an apparatus for generating an impact against a target object comprises a housing defining an interior chamber and having a closed first end and an open second end. A drive member is reciprocally disposed in the interior chamber adjacent the second end of the housing for movement relative to the housing from a first firing position to a second driven position. The drive member includes a hollow tube member having a first closed end and a second open end. A nozzle member having a plurality of openings is sealably mounted in the second end of the tube. A piston is disposed in the tube for movement relative to the tube and propellant is disposed between the piston and the closed end of the tube. Fluid is also in the tube between the nozzle member and the piston. Means are provided for sealing the openings in the nozzle member, wherein the nozzle opening sealing means is adapted to rupture when the pressure in the tube exceeds a predetermined pressure. A striker member having a head portion and a shaft portion is mounted within the interior chamber so that in a first retracted position of the striker member the head portion of the striker member is proximate the first end of the drive member and a portion of the shaft portion extends outwardly from the interior chamber through a passage formed in the closed end of the housing. The striker member is movable relative to the housing between the first position and a second extended position where the head portion is adjacent the first end of the housing. Means are provided for igniting the propellant so that combustion gases build pressure in the tube member between the piston and the closed end of the tube member causing the pressure in the tube member to exceed the predetermined pressure for rupturing the nozzle sealing means. This causes the piston to move toward the nozzle member and fluid to be expelled through the nozzle member for moving the drive member against the head portion of the striker member and to the driven position. The drive member transfers energy to the striker member for moving the striker member to the second position at high velocity for driving the end of the striker with great force against the target object Recoil action in the apparatus is cushioned by the fluid exiting the tube member through the nozzle member as the piston moves toward the nozzle member.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention, reference should now be had to the embodiments shown in the accompanying drawings and described below. In the drawings:
  • FIG. 1 is a perspective view of an embodiment of a recoilless impact device according to the present invention.
  • FIG. 2 is a front elevation view of the recoilless impact device shown in FIG. 1.
  • FIG. 3 is a rear elevation view of the recoilless impact device shown in FIG. 1.
  • FIG. 4 is a side elevation view of the recoilless impact device shown in FIG. 1.
  • FIG. 5 is a side cross-section view of the recoilless impact device shown in FIG. 1
  • FIG. 6 is a side cross-section view of the recoilless impact device as shown in FIG. 5 with the striker assembly forced together.
  • FIG. 7 is a side cross-section view of the recoilless impact device shown in FIG. 6 after firing of the device.
  • FIG. 8 is an exploded cross-section view of the recoilless impact device shown in FIG. 5.
  • FIG. 9 is a longitudinal cross-section view of a driver assembly for use with the recoilless impact device of FIG. 1.
  • FIG. 10 is an exploded cross-section view of the driver assembly shown in FIG. 9.
  • FIG. 11A is a flat plan view of a nozzle for use with the recoilless impact device shown in FIG. 1.
  • FIGS. 11B-11D are cross-sectional views of the nozzle shown in FIG. 11A taken along lines 11A-11A, 11B-11B, and 11C-11C, respectively.
  • FIG. 12 is a side elevation view of a key block assembly for use with the recoilless impact device shown in FIG. 1.
  • FIG. 13 is an embodiment of the recoilless impact device as shown in FIG. 1 including a handle assembly.
  • FIG. 14 is a side cross-section view of a removable shaft tip for use with the recoilless impact device shown in FIG. 1.
  • FIG. 15 an end view of a shaft for use with the recoilless impact device shown in FIG. 1.
  • FIG. 16 is a close-up side cross-section view of a primer and primer block for use with the driver assembly shown in FIG. 9.
  • FIG. 17 is a flat plan view of another embodiment of a nozzle for use with the recoilless impact device shown in FIG. 1.
  • FIGS. 18 is a cross-sectional view of the nozzle shown in FIG. 17 taken along line 17-17.
  • FIG. 19 is another embodiment of a striker assembly for use with the recoilless impact device shown in FIG. 1.
  • DESCRIPTION
  • The impact generating device according to the present invention is similar to the forcible entry device shown and described in U.S. patent application Ser. No. 09/065,746, the contents of which are hereby incorporated by reference.
  • Certain terminology is used herein for convenience only and is not to be taken as a limitation on the invention. For example, words such as “upper,” “lower,” “left,” “right,” “horizontal,” “vertical,” “upward,” and “downward” merely describe the configuration shown in the Figures. Indeed, the components may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise.
  • Referring now to the drawings, wherein like reference numerals designate corresponding or similar elements throughout the several views, an embodiment of the impact device according to the present invention for use, for example, in forcible entry of locked or barricaded structures or doors is shown in FIGS. 14 and designated generally at 20. The impact device 20 includes a housing 22, a front cap 24 and an elongated striker shaft 26 extending through the cap 24 outwardly of the housing. At the end of the striker shaft 26 is a tip 28. The tip 28 may be any useful shape, depending upon the structure to be opened, removed or cut. For example, a chisel type tip 28 is shown in FIG. 1. The tip 28 may be made removable, as in the present device 20, to ease application of the device to different situations. An outer channel weldment 30 extends from the front end of the housing 22 to a key block assembly 32 at the rear of the housing. The channel weldment 30 is held in place by straps 34 which are secured around the housing 20 by threaded fasteners 36. Unless otherwise specified, all of the parts of the impact device 20 are aluminum except the striker shaft 26 and tip 28 which are steel.
  • Referring now to FIGS. 5 and 8, the housing 22 defines a generally cylindrical interior chamber 38. The front end of the housing 22 is sealed by the front cap 24 which is threaded into the housing 22, and the rear end of the housing is open.
  • A striker assembly 40 and a driver assembly 42 are reciprocally disposed within the chamber 38 at the front and rear of the housing 22, respectively. The striker assembly 40 comprises the striker shaft 26 and a striker head 44. One end of the striker shaft 26 extends outwardly of the housing 22 from the interior chamber 38 through a central opening 46 formed in the front cap 24. A brass bushing 48 fits in the cap opening 46 between the cap 24 and striker shaft 26 to permit the striker shaft to reciprocate freely relative to the front cap. Optionally, the cap 46 may be provided with an annular groove 48 for receiving an o-ring 50 which fits snugly around the striker shaft 26 to seal the space between the cap 24 and striker shaft. However, if the bushing 48 is machined to sufficiently close tolerance with the shaft 26, the o-ring 50 is not necessary. The striker head 44 includes two generally cylindrical pieces, an outer striker head 52 and an inner striker head 54. The outer striker head 52 has three spaced circumferential grooves: a forward groove 56 which holds a rubber wiper ring 58, a middle groove 60 which holds a polymer guide ring 62 and a rear groove 64 which holds a copper contact ring 66 which is insulated from the outer striker head 52.The inner striker head 54 is steel and includes four spaced guide pins 68, only two of which are shown in FIGS. 5 and 8. The guide pins 68 are movably received in corresponding openings 70 in the rear of the outer striker head 52 so that the inner striker head 54 and outer striker head 52 fit reciprocally together. The outer striker head 52 also has an axial pass through opening 72 for receiving a reduced diameter portion of the inner end of the striker shaft 26. The inner end of the striker shaft 26 has an internally threaded axial opening 73 for receiving a shaft screw 74 which passes through the axial opening 72 in the outer striker head 52 thus securing the outer striker head to the striker shaft. A small coil spring 76 is interposed between the inner striker head 54 and outer striker head 52 for biasing the heads apart.
  • A large coil spring 78 is disposed around the striker shaft 26 within the housing 22. One end of the spring 78 is positioned against the outer striker head 52 and the other end of the spring is against the front cap 24. The spring 78 biases the striker assembly 40 inwardly of the housing 22. As best seen in FIG. 8, the inner diameter of the interior chamber 38 of the housing 22 is decreased intermediate the ends of the housing forming a seat 80 against which the inner striker head 54 is biased proximate to a front end of the driver assembly 42 (FIG. 5). The size of the coil spring 78 is selected so that the space between the inner striker head 54 and outer striker head 52is maintained by the striker head spring 76.
  • Referring to FIG. 14, the removable tip 28 is shown in more detail. The tip 28 has an axial bore 164 for slidably receiving a pin 166 which is held in the tip 28 by a hollow, peripherally-threaded plug 168 which journals the end of the pin 166. A key retainer 170 is secured to the end of the pin 166 by a cap 172 and screw 174 which is received in an axial threaded bore in the end of the pin 166. A spring 175 is disposed around the pin 166 in the tip 28. One end of the spring 175 is against the pin 166 head and the other end of the spring is against the plug 168 to bias the pin 166 and attached key retainer 170 inwardly of the tip 28. The outer end of the striker shaft 26 is shown in FIG. 15 to include a blind channel 176 defined along an axial bore 178. A transverse slot 180 is formed at the inner end of the channel 176. To attach the tip 28 to the end of the striker shaft 26, the key retainer 170 is aligned with the channel 176 in the end of the shaft 26 and tip 28 pushed into the shaft along the depth of the channel. A counterclockwise turn (as seen in FIG. 15) of the tip 28 will cause the key retainer 170 to move along the slot 180 thus locking the tip 28 in place in the shaft 26. Removal of the tip 28 is the reverse of attachment.
  • The driver assembly 42 is shown in FIGS. 9 and 10. The driver assembly 42 is similar to the recoilless propulsion unit shown and described in U.S. Pat. No. 5,099,764, the contents of which are hereby incorporated by reference, which expels a pressurized fluid from the unit through a nozzle using a closed-breech piston activated by a propellant charge.
  • The driver assembly 42 according to the present invention comprises a generally cylindrical hollow tube 82, a piston assembly 84 and a nozzle assembly 86. The tube 82 has a closed inner end 88 and an open rear end 90 and defines an interior chamber 92. The closed end 88 of the tube 82 has an axial passage 94 of stepped diameter opening outwardly of the end of the tube. The open end 90 of the tube 82 is internally threaded and is slightly thicker, which strengthens this portion of the tube.
  • The piston assembly 84 includes a cup-shaped piston 96 slidably disposed in the interior chamber 92 adjacent the closed inner end 88 of the tube 82. The piston 96 may be nylon for most fluids, but is preferably metal when gas permeability of the fluid is a consideration. The outer surface of the metal piston 96 is sealed against the walls of the interior chamber 92 by two spaced o-rings 98 with metal backing rings which fit in spaced circumferential grooves 100 in the piston. The o-rings 98 also serve as a guide for movement of the piston 96 in the tube 82. Alternatively, the o-rings 98 and backing rings may be replaced by T-seals typically used in high-pressure dynamic sealing applications.
  • A frustoconical ring seal 102 fits between chamfered surfaces 101, 103 at the front of the end of the tube 82 and the piston 96. The piston 96 separates the interior chamber 92 of the tube 82 into front and rear variable volume chambers. The ring seal 102 prevents fluid, particular permeable gases, in the rear variable volume chamber from entering the front variable volume chamber. Preferably, the ring seal 102 comprises a polymer material, but could be a soft metal. Alternatively, the periphery of the front of the piston can be grooved and coated with a soft metal, such as copper or silver, for sealing the space between the piston 96 and tube 82. In any case, the pressure of the fluid in the chamber 92 forces the piston 96 forward thereby compressing the ring seal 102 against the chamfered surface at the inner end of the tube 82 for sealingly separating the front and rear variable volume portions of the tube chamber 92.
  • The piston 96 has a central recess 104 for retaining a propellant charge 106. It is understood that the present invention is not limited to the type of propellant used. For example, a suitable propellant is Winchester 231 smokeless powder. Adhesive paper 108 seals the propellant 106 in the recess 104 which centralizes the propellant in a contained target area. Although not shown in the FIGs., the rear portion of the piston 96 may include a protrusion of slightly less diameter than the body of the piston 96. As will be described below, when the impact device 20 is fired, the piston 96 is driven rearward with great force into the nozzle assembly 86. The protrusion on the rear portion of the piston 96 strengthens the surface of the piston 96 that impacts the nozzle assembly 86 thereby minimizing the potential for deformation of the piston 96 edges.
  • A primer 110 is disposed in the axial passage 94 in the closed end of the tube 82 and held in place by a threaded plug 112. Suitable primers 110 include M52A3B1 or PA520 military grade electrically-initiated primers available from Lake City (Ohio) Army Ammunition Plant. A small amount of electrical energy, approximately 1 mJ, will form an arc within these primers which ignites a very small amount of propellant. The passage 94 serves to communicate the primer 110 with the propellant charge 106 in the piston 96 and directs gases from the primer into the front variable volume chamber.
  • Another embodiment of the driver assembly 42 according to the present invention is shown in FIG. 16. In this embodiment, the primer 110 is disposed in a peripherally threaded cylindrical primer block 182 which is received in a larger diameter portion of the opening 94 in the inner end of the tube 82. The primer 110 fits in an opening in the primer block and is held in place by a hollow, peripherally threaded retainer 184. The retainer 184 defines an opening 186 in the primer block 186 that allows access to the inner end of the primer 110. The large diameter primer block 182 provides a contact point for completing an electrical firing circuit as will be described below.
  • The nozzle assembly 86 includes a peripherally-threaded cylindrical nozzle 114 which is threaded into the open end of the tube 82. An o-ring 115 seals the inner surface of the nozzle 114 against a shoulder 119 in the open end of the tube 82. When CO2 is the fluid, the o-ring is preferably polyurethane which is less susceptible to gas permeability. The inner surface of the nozzle 114 has a plurality of blind bores 116 (FIGS. 11A-11D) of stepped diameter. A small vent hole 117 leads from the end of each bore 116 outwardly of the nozzle 114. A plurality of angled passages 118 branch from a point intermediate along the length of the bores 116 and open outwardly of the outer surface of the nozzle 114 forming elliptical openings in the bores and the outer surface of the nozzle. The hole pattern formed by the passage 118 openings in the outer surface of the nozzle 114 is selected so as to disperse the fluid in as many jets as possible without adversely affecting the flow characteristics of the fluid and to optimize the safety of the exit area of the nozzle 114. The greater the exit area the more optimal the propulsion of the impact device 20. FIG. 3 shows another multiple hole pattern in the outer surface of the nozzle 114. This pattern results from seven spaced bores 116 and four angled passages 118 from each bore 116. The thickness of the nozzle 114 is determined by the structural integrity of the hole pattern and the flow characteristics of the fluid 18 through the passages 118.
  • Fluid 124 contained within the second variable volume chamber is preferably a liquid and, more preferably, the fluid is liquid CO2. Liquid CO2 is stored in the tube 82 as a high pressure liquid/gas mixture wherein liquid CO2 fills from about 50% to about 95% of the volume of the chamber 92. At CO2 liquid levels below about 50% there is typically not enough power delivered for propelling the driver assembly 42 forward with sufficient force when the device 20 is fired. CO2 liquid levels above 95% become too volatile since the CO2 pressure will change due to temperature. Thus, the upper limit to the liquid level is determined based on an expected storage temperature range. A preferred CO2 liquid level is about 75% at which the interior chamber 92 pressure will range from about 600 psi at 0° F. to about 3000 psi at 145° F. It is understood that other fluids may be used which have different preferred fill levels. For example, if water is the chosen fluid, the water preferably fills substantially 100% of the volume of the second variable volume chamber of the tube 82.
  • A brass burst disc 126 is disposed in each bore 114 against the shoulder 128 formed where the bore changes diameter (FIG. 11C). The burst disc 126 is formed from a brass shim stock with a protective coating. Each burst disc 126 is sealed in place with a hollow hex head retainer screw 130 for sealing the interior chamber 92 of the tube 82. When liquid CO2 is used as the fluid in the driver assembly 42, the burst disc is designed to withstand 3700 psi.
  • A simplified nozzle 114 design according to the present invention is shown in FIGS. 17 and 18. This nozzle 114 has seven straight passages 188 for fluid ejection. Each passage 188 is sealed by a burst disc 126 held in place by a peripherally threaded cylindrical retainer sleeve 190. This nozzle 114 design is possible with the use of stainless steel non-fragmenting burst discs 126 available from BS&B Safety System of Tulsa, Okla.
  • As best seen in FIG. 18, the nozzle 114 also has a central fill hole 120 which opens into the interior chamber 92 of the tube 82. A threaded plug 122 is provided for sealing the fill hole 120. The plug 122 is a hollow modified set screw with an opening 123 that feeds into the interior 92 of the tube 82 when the plug 122 is slightly backed out of the hole 120. An appropriate adapter (not shown) is provided on the plug 122 for coupling to a fluid feed line for loading the second variable volume portion of the interior chamber 92 of the tube 82 between the piston 96 and the nozzle 114.
  • Means for retaining the driver assembly 42 in the housing 22 are provided. The driver assembly retention means comprises the key block assembly 32 mounted on the rear of the housing 22. As best shown in FIG. 12, the key block assembly 32 includes a block 132, a stop hammer 136 and a plunger 138 reciprocally disposed in the channel weldment 30. The stop hammer 136 is a flat piece having an opening 137 therethrough which is reciprocally received in a slot in the block 132. The key block assembly 132 is positioned over a peripheral slot 140 in the housing 22 (FIG. 5) which opens through to the interior chamber and allows the stop hammer 136 to extend into the housing 22. The plunger 138 has a forward end 141 and a conically-shaped rear end 142 and is slidably disposed in the block 132. The plunger 138 passes through the opening 137 in the stop hammer 136. Movement of the plunger 138 in the key block assembly 32 relative to the stop hammer 136.mioves the stop hammer 136 between a first position where a portion of the stop hammer extends into the housing 22 and a second position where the stop hammer is out of the housing. In the first position, the stop hammer 136 extends through the slot 140 in the housing and engages the rear of the tube 82 for securing the driver assembly 42 in the housing 22. In the second position, the stop hammer 136 is in a non-blocking position with respect to the tube 82 so that the driver assembly 42 may be removed from the housing 22. The stop hammer 136 is biased into the first, blocking position by one or more springs in the block 132. A yoke 144 is shown connected to the front end of the plunger 138 for attachment to an appropriate release mechanism operable by the user.
  • In keeping with the present invention a firing mechanism is provided. It is understood that there are many ways to fire the primer 110, including mechanical and electrical means. Preferably, the firing mechanism is electrical since electrical means are less prone to accidental actuation. The specifics of the electrical circuitry for firing the device 20 can be easily developed by those skilled in the art and will not be addressed A preferred approach for carrying an electrical charge from a power source through the housing 22 and to the driver assembly 42 will be described. This approach includes first and second electrical contact plungers 146, 148 schematically shown in FIG. 5. The plungers 146, 148 are spring-biased through respective openings in the housing 22 to a position adjacent the striker head 44. The first plunger 146 is biased into an open area in the housing 22 between the outer striker head 52 and inner striker head 54 when the impact device 20 is in a non-firing condition. An electrical wire 150 (not shown) connected to the copper contact ring 66 passes through a transverse hole (not shown) in the outer strike head 52 and into the axial opening in the striker head 44. The wire leads to an electrical plunger 152 (FIG. 9) disposed on the inner end of the driver assembly 42 and contacting the primer 110 for delivering electric current for firing the primer 110. The ground connection is through the primer 110 skirt which is in close contact with the primer plug 112. A plurality of electrical contact plungers 200, two of which are shown in FIG. 8, nested in the rear end of the inner striker head 54 contact the primer plug 112. The second plunger 148 is biased through the housing 22 and connects the inner striker head 54 to the electrical power source when the striker assembly 40 is in the firing position.
  • When preparing to fire the device 20, the housing 22 is loaded with a driver assembly 42 through the open end of the housing. The inside diameter of the housing 22 is larger than the closed end of the tube 82 to facilitate loading. The closed end of the driver assembly 42 engages the stop hammer 136 which has a ramped surface 139 for allowing the advancing driver assembly 42 to force the stop hammer up into the block 132. This movement is possible because the hole 137 in the stop hammer 136 is larger than the diameter of the plunger 138. The driver assembly 42 is advanced until the rear of the tube 82 is clear of the stop hammer 136 which is biased into the housing to hold the driver assembly 42 in the housing 22.
  • Referring now to FIG. 6, the tip 28 of the striker shaft 26 is then positioned against an object such as a locked door, damaged structure or other barrier to be opened and manual force applied to the device 20 toward the object This moves the striker shaft 26 inwardly of the housing 22 pushing the outer striker head 52 against the inner striker head 54 against the force of the interposed spring 76. When the outer striker head 52 is moved rearward, the first electrical contact plunger 146 engages the copper contact ring 66 on the outer striker head to complete the electrical circuit. Thus, the preferred firing mechanism requires the user to physically engage the target object with the striker shaft tip 28 and manually force the striker shaft 26 into the housing a predetermined distance to enable the firing mechanism. This is a safe arrangement which prevents accidental “dry” firing of the device 20.
  • Another embodiment of the striker head 44 according to the present invention is shown in FIG. 19. In this arrangement, the outer striker head 52 and inner striker head 54 fit slidably together. A contact assembly 192 is positioned in axial openings across the striker heads 52, 54 for movement with the outer striker head 52 relative to the inner striker head 54. The contact assembly 192 comprises a nylon contact holder 194, a housing 196, a probe contact 198 and a ground contact 200. The contact holder 194 is fixed to a reduced inner end of the housing 196 which is formed from an electrically conductive material such as, for example, brass. The housing 196 has an axial bore which receives the electrically conductive probe contact 198. The probe contact 198 is held in the housing 196 by a retaining ring 202. A spring 204 is disposed in the housing 196 for biasing the probe contact 198 outwardly of the housing 196. The housing 196 is slidably received in an insulator sleeve 206 positioned in the inner striker head 54. The insulator sleeve 206 separates the ground contact 200 from the housing 196. A wave spring 208 is disposed between the ground contact 200 and the inner striker head 54 for biasing the ground contact outwardly of the housing 196 and against the primer block 182. A circular retainer disc 210 is fixed to the rear end of the inner striker head 54 to hold the contact assembly 192 elements in the inner striker head 54.
  • In this embodiment of the striker assembly 40, the periphery of the inner striker head 54 includes two peripheral grooves which hold electrically conductive contact rings 212. The spring-loaded contact pins 146, 148 are positioned in the housing 22 to engage the rings 212 in the both the non-firing condition and the firing position of the impact device 20. Spring-biased contact pin assemblies 214, 216 disposed in transverse passages in the inner striker head 54 electrically connect the contact bands 212 with the housing 196 and ground contact 200, respectively. This provides the electrical path from the exterior of the housing 22 to the probe contact 198 and ground contact 200. When the inner and outer striker heads 52, 54 are brought together in the firing position of the impact device 20, the probe contact 198 is extended from the rear end of the inner striker head 54 and engages the primer 110. Since the ground contact 200 is against the primer block 182 the firing circuit is completed.
  • In either embodiment of the striker assembly 40, a cup 218 may be secured to the front end of the outer striker head 52. The cup 218 serves as a witness panel for a proximity sensor (not shown) positioned in the outer cylinder of the housing. The proximity sensor senses when the inner and outer heads 52, 54 of the striker assembly 40 are compressed in the firing position of the impact device 20. This is a redundant arming feature. When the impact device 20 is in firing position, the operator fires the device 20 by actuating the firing mechanism which delivers an electrical charge to the primer 110. The primer cap 110 is discharged by the electrical charge. When the primer 110 fires, hot flame and gases generated by the primer pass into the first variable volume chamber through the passage 94 in the end of the tube 82. The gases are directed by the passage 94 at a target area on the paper 108 retaining the propellant 106. The primer gases penetrate the paper 108 and ignite the propellant 106 while simultaneously blowing the propellant around the first variable volume chamber.
  • Expansion of the propellant gases builds up pressure in the first variable volume chamber between the piston 96 and the front end of the tube 82. The pressure increase generates a force on the piston 96 which is transferred to the fluid 124. The propellant gases continue to expand causing fluid pressure to rise until the burst discs 126 are ruptured. In the embodiment of the nozzle assembly 86 employing fragmenting burst discs 126, the vent holes 117 allow pieces of the burst discs 126 to be driven safely into the blind end of the nozzle bores 116. The vent holes 117 are too small to let pieces of the discs 126 escape. Alternatively, spikes (not shown) extending from the blind end of the bores 116 for capturing the burst discs 126 could replace the vent holes 117. The inner elliptical openings of the secondary nozzle passages 118 are small enough to prevent pieces of the burst disc from exiting the nozzle 114.
  • The propellant gases continue to expand causing fluid 124 to be expelled through the nozzle 114 and into the atmosphere away from the user. Referring to FIG. 7, the momentum and the pressure generated by the fluid 124 expelled into the atmosphere force the driver assembly 42 forward against the striker head 44 which moves the striker assembly 40 towards the front end of the housing 22 with great force. The striker shaft tip 28 impacts against the locked door, damaged structure or other barrier so that the user, such as law enforcement or emergency personnel, may gain access to the building or structure. The recoilless feature of the device 20 is due to the Davis Gun Principle which holds that when a mass is expelled from a body there is an equal and opposite reaction generated propelling that body. In the present invention, the expelled fluid 124 generates a driving force. Since this reaction takes place within the housing 22 which is not rigidly attached to the propelling body, the result is no recoil transferred to the housing.
  • Ideally, the burning propellant generates a pressure in the first variable volume chamber acting on the piston which, after an initial increase, is relatively constant over time as the piston travels toward the nozzle. Eliminating an initial pressure spike when the propellant is ignited allows a less robust tube to be manufactured. This goal is realized in the present invention due to a number of factors related to interior ballistics principals for pyrotechnically driven devices. First, the ratio of propellant charge to the initial available volume of the first variable volume chamber contributes to the desired propellant ignition and initial burn cycle. Maintaining the proper ratio controls the explosive nature of the burning propellant and the rate of the initial pressure increase upon firing of the device. Too much propellant or too little volume can lead to too high of an initial pressure spike. The cup shape of the piston is also a factor in the chamber configuration to optimize the burning of the propellant. The initial location of the piston 96 sets the chamber volume which matches an optimum burning solution for the propellant. The position of the recess 104 and the retaining paper 108 fixes the propellant conditions and minimizes the initial area exposed to the primer flame and gases for slowing the initial propellant burning rate. Blowing the propellant around the chamber helps produce a consistent repeatable burn.
  • The pressure in the first variable volume chamber increases until the burst discs 126 rupture and fluid 124 is expelled from the nozzle. The burst discs 126 are designed to burst at a predetermined pressure in order to insure proper propellant burn pressure and temperature. As the piston 96 moves down the tube 82, the first chamber volume ahead of the piston 96 increases proportionally to the amount of fluid 124 displaced. This increase in the first chamber volume directly affects the burning characteristics of the propellant charge 106. The rate at which fluid 124 is expelled from the tube 82 is directly proportional to the number and total cross-sectional area of holes 118 in the nozzle 114 which determine the amount of resistant force, or back pressure, acting on the piston 96 as the piston moves down the tube and causes propellant to burn to a relatively steady rate. Thus, with a known initial volume of the first variable volume chamber and a specific nozzle design, a propellant charge 106 can be selected by those skilled in the art so as to generate a controlled propellant burn cycle and provide a desired pressure curve for the system.
  • In a preferred embodiment, the propellant charge is 4.1 g which occupies about 0.1496 cubic inches. The empty volume of the first variable volume chamber is about 1.988 cubic inches. Thus, the ratio of the propellant charge to the initial chamber volume is 0.075. The driver assembly 42 is loaded with approximately 0.42 lbs. of liquid CO2. The burst discs retain at least an additional 1000-1200 psi of pressure before the discs break to properly initiate propellant buring. This configuration produces about 7000 psi of pressure within the propellant chamber and produces relatively constant pressure over time during firing. The impact force of the device 20 having these characteristics is designed to be 65,000 lbs. of peak force at 20 lb-sec impulse at ambient temperatures against a rigid surface. The liquid CO2 turns into solid flakes, like snow, as it passes through the nozzle 114. The driver assembly 42 is recessed into the housing 22 to create a cavity for the expanding CO2 liquid-to-gas effect to increase impulse from the pressure generated by the phase change of the fluid.
  • The striker assembly 40 compresses the spring 78 between the striker head 44 and front cap 24 as the striker shaft 26 extends from the housing 22. The spring 78 and air compressed between the front cap 24 and striker head 44 serve as a pneumatic damping mechanism for slowing the striker assembly 40 to a stop and minimizing forward recoil. A small vent hole 156 is provided in the housing 22 near the front end. Air is forced through the vent hole 156 only if pressure in the housing reaches a predetermined pressure, for example about 250 psi, which happens only if the striker is over-accelerated. This feature is particularly advantageous when the device 20 is dry-fired or a target object is easily penetrated when fired. The tube 82 is slightly tapered at the nozzle end 90 to allow propellant gases to vent between the piston assembly 84 and the tube wall to relieve the pressure in the driver assembly 42 as the piston 96 is nearing the nozzle 114. The compression spring 78 returns the striker assembly 40 and driver assembly 42 into the housing to the pre-firing position shown in FIG. 5.
  • After firing, the device is reloaded by advancing the plunger 138 which raises the stop hammer 136 away from the rear of the driver assembly 42. The spent driver assembly 42 is slipped out of the housing 22 and replaced with a fresh driver assembly. The spent driver assembly is reusable.
  • An embodiment of the device 20 including a handle assembly 157 is shown in FIG. 13. The handle assembly 157 is preferably formed from a fiber reinforced composite material which is both strong and light, and comprises two hand grips 159 extending transversely to the housing 22. The handle assembly 157 accommodates a power source, such as a 9-volt battery. When the user holds the device 20, the user's thumbs are over a forward safety button 158 and a rear firing switch 160 positioned on the outside of the device which is easily accessible to the user holding the device. In a preferred firing sequence, when the user pre-loads the device 20 by pressing the tip 28 against a rigid object, an LED under the safety button 158 lights-signaling the user the device is pre-loaded. The user then presses the safety button 158 which powers up the device 20. When the device 20 has enough energy to fire, an LED under the firing switch 160 lights and the user knows the device is ready to fire.
  • A pivoting release lever 162 on the rear of the handle assembly 157 is pressed downward to raise the stop hammer 136 and allow a spent driver assembly to be removed and replaced.
  • The previously described versions of the present invention have many advantages, including delivery of a large impact to a target object, such as a locked or damaged structure, while generating no recoil, even when impacting soft target objects or accidental dry firing. The device is a great improvement over existing forcible entry devices for gaining entry to locked or damages structures through doors or other barriers. The impact device of the present invention is also compact and lightweight. This reduces the amount of time required to gain access to the building or damaged structure. Further, the impact device is versatile enough to be utilized in the many different situations in addition to those noted above, including for forcibly cutting materials and the dispatching of animals to be processed for nutritional purposes.
  • Although the present invention has been shown and described in considerable detail with respect to only a few exemplary embodiments thereof, it should be understood by those skilled in the art that we do not intend to limit the invention to the embodiments since various modifications, omissions and additions may be made to the disclosed embodiments without materially departing from the novel teachings and advantages of the invention, particularly in light of the foregoing teachings. For example, the impact device of the present invention has numerous other applications including delivering destructive blows to objects or dispatching animals. The significant advantage of the device is the forceful impact delivered with no recoil. Accordingly, we intend to cover all such modifications, omissions, additions and equivalents as may be included within the spirit and scope of the invention as defined by the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a crew may be equivalent structures.

Claims (14)

1. A firing system for an impact generating apparatus including a housing defining an interior chamber with a front portion and a rear portion, the firing system comprising:
a striker assembly having a first end and a second end and movably disposed within the front portion of the housing, the striker assembly comprising,
a striker head disposed at the first end of the striker assembly, the striker head having inner and outer portions which are moveable relative to one another and the inner portion of the striker head having an opening, and
a striker shaft mounted to the outer portion of the striker head and extending outwardly of the front portion of the housing and terminating in the second end of the striker assembly;
a driver assembly having a first end and a second end and containing a propellant charge, the driver assembly disposed within the rear portion of the housing so that the first end of the driver assembly is adjacent the inner portion of the striker head;
means responsive to an electrical charge for igniting the propellant, the propellant igniting means disposed on the first end of the, driver assembly;
an electrical power supply associated with the housing; and
a firing circuit comprising,
electrical contacts connected to the power supply and adapted to be positioned in the housing adjacent the inner striker head,
positive and negative electrically conductive rings disposed around the inner striker head and operatively connected to the electrical contacts in the housing,
an electrically conductive contact member including a positive contact and a negative contact, the contact member disposed within the striker head for movement with the outer portion of the striker head and relative to the inner portion of the striker head from a first position where the inner and outer portions of the striker head are spaced and at least one of the positive or negative contact points is within the opening in the inner portion of the striker head and a second position where the inner and outer portions of the striker head are closer together and the contact point extends from the inner portion of the striker head toward the rear portion of the housing, and
means for electrically connecting the positive and negative conductive rings with the positive and negative contacts, respectively, on the contact member,
wherein when a target object is forcibly engaged with the striker shaft tip so as to move the striker shaft inwardly of the housing, the outer portion of the striker head is moved toward the rear portion of the housing relative to the inner portion of the striker head to the second position so that the contact point of the contact member extends from the inner portion of the striker head to engage the propellant igniting means for completing an electrical firing circuit to enable firing of the device by electrical power supplied through the firing circuit to the propellant igniting means.
2. A firing system for an impact generating apparatus as recited in claim 1, wherein a spring is interposed between the inner and outer portions of the striker head for biasing the portions of the striker head to the first position.
3. A fluid eject propulsion apparatus for use in a device including a housing having a closed end and a second open end and a striker having a head movably disposed in the housing and a shaft attached to the head, the distal end of the shaft extending outwardly from an opening formed in the closed end of the housing in a the first position of the striker, the striker movable in the housing to a second position where the head is adjacent the closed end of the housing for generating an impact by the distal end shaft against a target object, the fluid eject propulsion apparatus comprising:
a hollow tube member having a first closed end and a second open end, the tube member adapted to be disposed in the housing so that the first end of the tube member is proximate the striker, the tube member movable relative to the housing from a first firing position to a second driven position;
a nozzle member sealably mounted in the second end of the tube and having a plurality of openings;
a piston disposed in the tube for movement relative to the tube;
a propellant disposed between the piston and the closed end of the tube;
a fluid disposed in the tube between the nozzle member and the piston;
means for sealing the openings in the nozzle member, wherein the nozzle opening sealing means is adapted to rupture when the pressure in the tube exceeds a predetermined pressure; and
means associated with the tube for igniting the propellant,
wherein upon ignition of the propellant combustion gases build pressure in the tube member between the piston and the closed end of the tube member causing the pressure in the tube member to exceed the predetermined pressure for rupturing the nozzle sealing means causing the piston to move toward the nozzle member and fluid to be expelled through the nozzle member for moving the drive member to the driven position whereby recoil action is cushioned by the fluid exiting the tube member through the nozzle openings as the piston moves toward the nozzle member.
4. A fluid eject propulsion apparatus as recited in claim 3, wherein the piston divides the interior chamber defined by the hollow tube member and nozzle into a first variable volume chamber between the piston and first closed end of the tube and a second variable volume chamber between the piston and nozzle member and wherein the ratio of the volume of propellant to the initial volume of the first variable volume chamber is chosen so that the burning propellant generates a pressure in the first variable volume chamber which after an initial post-ignition increase is relatively constant over time.
5. A fluid eject propulsion apparatus as recited in claim 4, wherein the ratio of the volume of propellant to the initial volume of the first variable volume chamber is about 0.075.
6. A fluid eject propulsion apparatus as recited in claim 3, wherein the piston is cup-shaped with the open face of cup-shaped member facing in the direction of the closed end of the tube.
7. A fluid eject propulsion apparatus as recited in claim 6, wherein the open face of the piston has a central recess for receiving the propellant charge and further comprising means for retaining the propellant in the piston recess.
8. A fluid eject propulsion apparatus as recited in claim 3, wherein the fluid is liquid CO2.
9. A fluid eject propulsion apparatus as recited in claim 4, wherein CO2 occupies at least about 50% of the of the volume of the second variable volume chamber.
10. A fluid eject propulsion apparatus as recited in claim 4, wherein CO2 occupies up to about 95% of the volume of the second variable volume chamber.
11. A fluid eject propulsion apparatus as recited in claim 4, wherein CO2 occupies from about 50% to about 95% of the volume of the second variable volume chamber.
12. A fluid eject propulsion apparatus as recited in claim 4, wherein CO2 occupies about 75% of the volume of the second variable volume chamber.
13. A fluid eject propulsion apparatus as recited in claim 3, wherein the first closed end of the tube has an axial passage therethrough, and the propellant ignition means comprises a primer disposed in the passage wherein the apparatus is fired by igniting the primer which initiates burning of the propellant.
14. A fluid eject propulsion apparatus as recited in claim 3, wherein the nozzle member opening sealing means comprises burst discs.
US11/125,706 2000-11-10 2005-05-10 Recoilless impact device Abandoned US20050284649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/125,706 US20050284649A1 (en) 2000-11-10 2005-05-10 Recoilless impact device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/710,073 US6631668B1 (en) 2000-11-10 2000-11-10 Recoilless impact device
US10/008,352 US6564688B2 (en) 2000-11-10 2001-11-13 Recoilless impact device
US10/441,629 US6889591B2 (en) 2000-11-10 2003-05-20 Recoilless impact device
US11/125,706 US20050284649A1 (en) 2000-11-10 2005-05-10 Recoilless impact device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/441,629 Continuation US6889591B2 (en) 2000-11-10 2003-05-20 Recoilless impact device

Publications (1)

Publication Number Publication Date
US20050284649A1 true US20050284649A1 (en) 2005-12-29

Family

ID=24852512

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/710,073 Expired - Fee Related US6631668B1 (en) 2000-11-10 2000-11-10 Recoilless impact device
US10/008,352 Expired - Fee Related US6564688B2 (en) 2000-11-10 2001-11-13 Recoilless impact device
US10/441,629 Expired - Fee Related US6889591B2 (en) 2000-11-10 2003-05-20 Recoilless impact device
US11/125,706 Abandoned US20050284649A1 (en) 2000-11-10 2005-05-10 Recoilless impact device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/710,073 Expired - Fee Related US6631668B1 (en) 2000-11-10 2000-11-10 Recoilless impact device
US10/008,352 Expired - Fee Related US6564688B2 (en) 2000-11-10 2001-11-13 Recoilless impact device
US10/441,629 Expired - Fee Related US6889591B2 (en) 2000-11-10 2003-05-20 Recoilless impact device

Country Status (3)

Country Link
US (4) US6631668B1 (en)
AU (1) AU2002225988A1 (en)
WO (1) WO2002038316A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090151587A1 (en) * 2007-12-18 2009-06-18 Raytheon Utd Inc. Device and method for controlled breaching of reinforced concrete
US20100000752A1 (en) * 2008-06-11 2010-01-07 Black & Decker Inc. Resilient Stop Assembly For Impact Tool
US20110000949A1 (en) * 2009-07-01 2011-01-06 Hitachi Koki Co., Ltd. Fastener-Driving Tool
US8354934B2 (en) 2010-06-14 2013-01-15 Fike Corporation Burst indicator
US20130081838A1 (en) * 2011-09-30 2013-04-04 Greenlee Textron Inc. Handle For A Hydraulically Driven Tool With Heat Transmission Reducing Properties
US9534864B2 (en) 2014-12-16 2017-01-03 Proparms Ltd. Gas compensated recoilless liquid disrupter
US20180290279A1 (en) * 2015-04-30 2018-10-11 Hitachi Koki Co., Ltd. Fastener driving machine

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631668B1 (en) * 2000-11-10 2003-10-14 David Wilson Recoilless impact device
FI117305B (en) * 2001-11-21 2006-08-31 Dekati Oy Impactor, body part for an impactor and part intended for use in an impactor
EP1451519B1 (en) * 2001-12-10 2008-10-08 Piexon AG Hand-held firing device comprising several cartridges
US20040099707A1 (en) * 2002-11-25 2004-05-27 Nail Rod Wt, Inc. Method and apparatus for precise location of materials
US7013986B2 (en) * 2003-05-12 2006-03-21 Nitto Kohki Co., Ltd. Impact tool
DE112004001993D2 (en) * 2003-10-20 2006-06-29 Klaus Foerster Device and method for forcibly opening a door
US7059424B2 (en) * 2004-04-05 2006-06-13 Halliuburton Energy Services, Inc. Apparatus for rotating a threaded closure device
US20070029101A1 (en) * 2005-08-05 2007-02-08 Paul Croas Hammerhead forcible entry tool used to defeat burglar bars
US7434785B1 (en) * 2005-09-28 2008-10-14 Mcmorrow John F Shot tool entry system
US8695266B2 (en) 2005-12-22 2014-04-15 Larry Moore Reference beam generating apparatus
US20110072956A1 (en) * 2007-03-29 2011-03-31 Wall Marcus L Tactical Utility Pole and Door Mount Systems and Methods of Use Thereof
US7802509B2 (en) * 2007-03-29 2010-09-28 Marcus L Wall Tactical utility pole system and method of use thereof
US20080283263A1 (en) * 2007-05-15 2008-11-20 Hsin Fa Kang Air tool
US7926690B1 (en) * 2007-06-13 2011-04-19 Tippmann Sr Dennis J Combustion powered driver
US8522895B1 (en) * 2007-08-29 2013-09-03 Thomas W. Honsa Power tool
US8109706B2 (en) * 2007-11-28 2012-02-07 Richards Joseph P Composite fastener, belly nut, tie system and/or method for reducing heat transfer through a building envelope
DE102008010100A1 (en) * 2008-02-20 2009-08-27 Robert Bosch Gmbh Hand tool
US8534527B2 (en) 2008-04-03 2013-09-17 Black & Decker Inc. Cordless framing nailer
US9216502B2 (en) 2008-04-03 2015-12-22 Black & Decker Inc. Multi-stranded return spring for fastening tool
US8627591B2 (en) 2008-09-05 2014-01-14 Larry Moore Slot-mounted sighting device
US8312665B2 (en) 2008-10-10 2012-11-20 P&L Industries, Inc. Side-mounted lighting device
US8607495B2 (en) 2008-10-10 2013-12-17 Larry E. Moore Light-assisted sighting devices
DE102009026542A1 (en) * 2009-05-28 2010-12-09 Hilti Aktiengesellschaft machine tool
GB2601465B (en) * 2010-01-20 2023-03-15 Secr Defence Apparatus for breaching a barrier
US20110198104A1 (en) * 2010-02-18 2011-08-18 Stockstill Kenneth R Stake driver
US8015682B1 (en) * 2010-03-01 2011-09-13 Lawrence Fred Anders Method and device for forcible entry
US9429404B2 (en) 2011-01-18 2016-08-30 Larry E. Moore Laser trainer target
US8696150B2 (en) 2011-01-18 2014-04-15 Larry E. Moore Low-profile side mounted laser sighting device
US8552282B1 (en) * 2011-04-11 2013-10-08 The United States Of America As Represented By The Secretary Of The Navy Propulsion defeating system
US8679399B2 (en) 2011-06-13 2014-03-25 Eric Bleicken Apparatus for metal cutting and welding
US9175938B2 (en) 2011-06-13 2015-11-03 Darrel Barnette Rotating and oscillating breaching device with reactive material
US9365463B1 (en) 2011-06-13 2016-06-14 Darrel Barnette Rotating and oscillating breaching device with reactive material
US8418592B1 (en) 2011-08-29 2013-04-16 Innovative Technologies, Llc Firearm based breaching tool
US10532275B2 (en) 2012-01-18 2020-01-14 Crimson Trace Corporation Laser activated moving target
US9545710B2 (en) * 2012-05-18 2017-01-17 Mark Boice Impact tool
US8844189B2 (en) 2012-12-06 2014-09-30 P&L Industries, Inc. Sighting device replicating shotgun pattern spread
US9297614B2 (en) 2013-08-13 2016-03-29 Larry E. Moore Master module light source, retainer and kits
US9182194B2 (en) 2014-02-17 2015-11-10 Larry E. Moore Front-grip lighting device
CN105283278A (en) * 2014-03-31 2016-01-27 Piap工业自动化与测量研究院 Gas actuated tool
US9644826B2 (en) 2014-04-25 2017-05-09 Larry E. Moore Weapon with redirected lighting beam
US10436553B2 (en) 2014-08-13 2019-10-08 Crimson Trace Corporation Master module light source and trainer
US10132595B2 (en) 2015-03-20 2018-11-20 Larry E. Moore Cross-bow alignment sighter
US9868202B1 (en) 2015-09-01 2018-01-16 Donald Burcham Spring loaded impact tool
US10821308B1 (en) * 2015-09-21 2020-11-03 David Krumrei Battering ram
CN105217039B (en) * 2015-10-08 2017-10-27 谢飞 A kind of smog ejecting device
US10156414B2 (en) * 2015-11-09 2018-12-18 American Classic Arms, LLC Accommodating firearm bushing
US9829280B1 (en) 2016-05-26 2017-11-28 Larry E. Moore Laser activated moving target
US20180001118A1 (en) * 2016-06-30 2018-01-04 New Mexico Tech Research Foundation Horizontal blade trunk opening tool
US10946222B2 (en) * 2016-07-19 2021-03-16 Kbt, Llc Breaching assist tool
US10209030B2 (en) 2016-08-31 2019-02-19 Larry E. Moore Gun grip
US10436538B2 (en) 2017-05-19 2019-10-08 Crimson Trace Corporation Automatic pistol slide with laser
CN107569788B (en) * 2017-08-01 2022-08-26 陈飞 Automatic window breaking device for vehicle
CN107648765B (en) * 2017-11-01 2022-11-22 安徽安凯汽车股份有限公司 Full-automatic broken window device
US10209033B1 (en) 2018-01-30 2019-02-19 Larry E. Moore Light sighting and training device
CN109351443B (en) * 2018-12-02 2024-02-27 北京协同创新食品科技有限公司 High-pressure jet nozzle and high-pressure jet crushing device using same
US10619972B1 (en) * 2019-06-10 2020-04-14 Bryan B. Glauber Glass break apparatus
WO2022132890A1 (en) * 2020-12-15 2022-06-23 Jarvis Products Corporation Speed sensor for animal stunner
CN112924269A (en) * 2021-01-11 2021-06-08 国家管网集团西部管道有限责任公司 Method and test device for simulating third-party damage to large-caliber high-pressure pipeline
CN113577623A (en) * 2021-07-29 2021-11-02 世纪联保消防新技术(江西)有限公司 Starting device and fire extinguishing apparatus
CN113457048A (en) * 2021-07-29 2021-10-01 北京世纪联保消防新技术股份有限公司 Starting device and fire extinguishing apparatus
CN113654601B (en) * 2021-10-21 2022-02-18 成都万江港利科技股份有限公司 Automatic river channel section flow measuring system and method
CN114719690A (en) * 2022-03-29 2022-07-08 四川美创达电子科技有限公司 Torpedo outer glass collision propulsion unit
CN114849124B (en) * 2022-05-30 2023-01-06 浙江中辰城市应急服务管理有限公司 Multifunctional fire-fighting forcible entry device
CN115040806B (en) * 2022-08-12 2022-10-28 中北大学 Airborne fire extinguishing bomb scattering device

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1668432A (en) 1927-12-08 1928-05-01 Thorstenson Karl Axel Firearm for killing cattle
US3252281A (en) 1962-09-17 1966-05-24 Fairchild Hiller Corp Rocket system and method
US3246396A (en) 1963-04-11 1966-04-19 Mine Safety Appliances Co Explosive cutting tool for cable and the like
DE1503009B2 (en) 1963-08-26 1970-07-16 Omark Industries Inc., Portland, Oreg. (V.St.A.) Intercepting device for the thrust piston of an internal combustion bolt setter
FR1602494A (en) 1968-05-20 1970-11-30
US3563439A (en) 1968-06-18 1971-02-16 Omark Industries Inc Powder actuated tool
US3566977A (en) 1969-08-01 1971-03-02 Vulcan Iron Works Percussion hammer
DE2055805C3 (en) 1970-11-13 1974-03-28 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Launching device for projectiles
US3792739A (en) 1971-03-12 1974-02-19 Chamberlain W Jack hammer
DE2237344C3 (en) 1972-07-29 1979-02-15 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Launching device for projectiles
US4075850A (en) 1975-06-07 1978-02-28 Max Co., Ltd. Striking tool
DE2618596C2 (en) 1976-04-28 1984-05-17 Robert Bosch Gmbh, 7000 Stuttgart Tool holder
US4132149A (en) * 1976-07-20 1979-01-02 General Electric Company Liquid propellant weapon system
US4091709A (en) 1976-07-26 1978-05-30 The United States Of America As Represented By The Secretary Of The Army Recoilless rifle nozzle
US4106574A (en) * 1977-07-07 1978-08-15 The United States Of America As Represented By The United States Department Of Energy Method for establishing high permeability flow path between boreholes
FI60153C (en) 1978-05-11 1981-12-10 Tampella Oy Ab SLAGANORDNING
US4208948A (en) * 1978-11-22 1980-06-24 The United States Of America As Represented By The Secretary Of The Army High efficiency propulsion system
US4603615A (en) * 1979-01-08 1986-08-05 General Electric Company Liquid propellant weapon system
IT7920575V0 (en) * 1979-01-23 1979-01-23 Berfi Spa IMPROVEMENT IN SHOOT FIXING TOOLS.
USRE30617E (en) 1979-08-10 1981-05-19 Olin Mathieson Chemical Corporation Power actuated tool
US4392412A (en) 1980-10-30 1983-07-12 The United States Of America As Represented By The Secretary Of The Army Gaseous blast reducer
US4432202A (en) 1981-05-07 1984-02-21 The United States Of America As Represented By The Secretary Of The Army Flow-through pyrotechnic delay
US4426909A (en) 1981-10-20 1984-01-24 The Boeing Company Noise, flash and smoke suppressor apparatus and method for rocket launcher
SE428604B (en) 1981-10-21 1983-07-11 Foerenade Fabriksverken PRESSURE MUTTER FOR RECYCLING Weapons
US4443001A (en) 1982-05-19 1984-04-17 Haerer James P Hydraulically operated hand tool for forcing open doors
US4470440A (en) 1982-09-30 1984-09-11 Thor Harry A Impact producing tool
CH652647A5 (en) 1982-12-20 1985-11-29 Milorad Milisavljevic HYDRAULIC, PNEUMATIC, PNEUMATIC / HYDRAULIC, OR PNEUMATIC / COMBINED EXPLOSION PRESS.
SE444401B (en) 1983-01-24 1986-04-14 Atlas Copco Ab ENERGY ABSORBING POCKET UNIT RECORDING UNIT
JPS59162984U (en) 1983-04-15 1984-10-31 日東技研株式会社 Pneumatic multi-needle peeling tool
US4624323A (en) 1985-02-07 1986-11-25 Burrola Henry G Multi-purpose impact hand tool kit
FR2578639B1 (en) 1985-03-08 1989-03-10 Termet Pierre CARTRIDGE SUPPLY DEVICE FOR AN APPARATUS OPERATING WITH AN EXPLOSIVE CHARGE AND CHARGER FOR SUPPLYING THE SAME
US4631779A (en) 1985-04-11 1986-12-30 Berera & C. S.N.C. Animal slaughtering apparatus with its cartridge feeder advanced automatically, simultaneously with the resetting of the firing pin
US4681171A (en) 1985-07-12 1987-07-21 Kee Gene A One-person battering ram
US4744423A (en) 1986-03-26 1988-05-17 Tri Square Industrial Co., Ltd. Piezoelectric high voltage impact mechanism
US4709765A (en) 1986-03-28 1987-12-01 Campanell Ronald J Tack driver
US4762304A (en) 1986-04-26 1988-08-09 Stafford Hill Arms Company Limited Fluid-operated door opener
FR2602040B1 (en) * 1986-07-23 1988-11-10 Serat IMPROVEMENTS IN OR RELATING TO PROJECTILES WITHOUT RECOIL ARMS OR LAUNCHING SYSTEMS
WO1988003855A1 (en) 1986-11-20 1988-06-02 Institut Gornogo Dela Sibirskogo Otdelenia Akademi Single-stroke percussion device
DE3735018C2 (en) 1987-07-25 1995-02-16 Schmidt Paul Ram drilling machine
FR2620417A1 (en) * 1987-09-15 1989-03-17 Prospection & Inventions SEALING APPARATUS FOR UNDERWATER WORKS
GB2239082B (en) * 1989-12-15 1993-09-08 Roy Hutchison Recoilless air gun
DE4015449A1 (en) 1990-05-14 1991-11-21 Hilti Ag POWDER POWERED SETTING DEVICE
US5149908A (en) * 1990-07-10 1992-09-22 The United States Of America As Represented By The Secretary Of The Navy Combustion instability suppression in regenerative liquid propellant gun
US5048795A (en) 1990-08-06 1991-09-17 Iowa American Fire Fighting Equipment Co. Forcible access tool
US5196647A (en) 1990-10-23 1993-03-23 Majors J Paul Door unlocking device and method
US5131379A (en) 1991-01-29 1992-07-21 Sewell Jr Frank K Device and method for inserting a cannula into a duct
US5088174A (en) 1991-02-11 1992-02-18 Hull Harold L Forcible entry tool
US5167043A (en) 1991-04-04 1992-12-01 Lopez Gabriel A Hand-held forcible entry tool
US5099764A (en) * 1991-05-30 1992-03-31 The United States Of America As Represented By The Secretary Of The Army Propulsion unit fireable from an enclosure
US5177850A (en) 1991-10-03 1993-01-12 Hull Harold L Forcible entry tool
FR2685741A1 (en) 1991-12-31 1993-07-02 Thomson Brandt Armements PYROTECHNIC CYLINDER WITH AMORTIZED RUN.
GB2291958B (en) * 1992-04-15 1996-06-26 Royal Ordnance Plc Disrupter weapon
DE4222961A1 (en) 1992-07-13 1994-01-20 Hilti Ag Powder-powered setting tool
DE9216394U1 (en) 1992-12-02 1993-02-11 Joh. Friedrich Behrens Ag, 2070 Ahrensburg, De
AT401250B (en) 1993-03-08 1996-07-25 Winter Udo Pneumatic hammer
US5329685A (en) 1993-06-18 1994-07-19 Gillespie Donald E Pneumatically-powered battering ram
US5423400A (en) 1993-07-29 1995-06-13 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Mechanical energy absorber
US5415241A (en) 1993-08-25 1995-05-16 Tac Inc. Explosive actuated battering ram
US5505431A (en) 1993-10-28 1996-04-09 Iowa-American Firefighting Equipment Co. Forcible entry tool
US5425488A (en) 1993-11-05 1995-06-20 Thompson William J Impact actuated tool for driving fasteners
GB9323460D0 (en) 1993-11-13 1994-03-09 Richmond Electronics & Enginee Projectile
US5822905A (en) 1994-02-23 1998-10-20 Teetzel; James W. Firearm hand grips for controlling an electronic module
US5398773A (en) 1994-04-22 1995-03-21 Baker; Charles W. Forcing tool for locked doors, gates and the like
US5605271A (en) 1995-06-06 1997-02-25 Russell; Michael W. Nail driver
US5671814A (en) 1995-12-01 1997-09-30 Smith; Eric C. Flag insert tool
US5987723A (en) * 1997-01-15 1999-11-23 Mcnally; Daniel L. Apparatus and method for rapid, remote, forcible entry
US5810333A (en) 1997-02-06 1998-09-22 Curtiss Wright Flight Systems Inc. Ram device
US6318228B1 (en) * 1997-04-24 2001-11-20 Ramtech 2000, L.L.C. Forcible entry device
US5842623A (en) 1997-06-16 1998-12-01 Olin Corporation Gas primed powder actuated tool
US6631668B1 (en) * 2000-11-10 2003-10-14 David Wilson Recoilless impact device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072190A1 (en) * 2007-12-18 2009-06-24 Raytheon UTD Inc. Device and method for controlled breaching of reinforced concrete
US7814822B2 (en) 2007-12-18 2010-10-19 Raytheon Utd Inc. Device and method for controlled breaching of reinforced concrete
US20110030539A1 (en) * 2007-12-18 2011-02-10 Mike Brennan Device and Method for Controlled Breaching of Reinforced Concrete
US8342069B2 (en) 2007-12-18 2013-01-01 Raytheon Company Device and method for controlled breaching of reinforced concrete
US20090151587A1 (en) * 2007-12-18 2009-06-18 Raytheon Utd Inc. Device and method for controlled breaching of reinforced concrete
US20100000752A1 (en) * 2008-06-11 2010-01-07 Black & Decker Inc. Resilient Stop Assembly For Impact Tool
US8104547B2 (en) * 2008-06-11 2012-01-31 Black & Decker Inc. Resilient stop assembly for impact tool
US8840002B2 (en) * 2009-07-01 2014-09-23 Hitachi Koki Co., Ltd. Fastener-driving tool
US20110000949A1 (en) * 2009-07-01 2011-01-06 Hitachi Koki Co., Ltd. Fastener-Driving Tool
US8354934B2 (en) 2010-06-14 2013-01-15 Fike Corporation Burst indicator
US20130081838A1 (en) * 2011-09-30 2013-04-04 Greenlee Textron Inc. Handle For A Hydraulically Driven Tool With Heat Transmission Reducing Properties
US9604355B2 (en) * 2011-09-30 2017-03-28 Textron Innovations Inc. Handle for a hydraulically driven tool with heat transmission reducing properties
US10406669B2 (en) 2011-09-30 2019-09-10 Greenlee Tools, Inc. Handle for a hydraulically driven tool with heat transmission reducing properties
US9534864B2 (en) 2014-12-16 2017-01-03 Proparms Ltd. Gas compensated recoilless liquid disrupter
US20180290279A1 (en) * 2015-04-30 2018-10-11 Hitachi Koki Co., Ltd. Fastener driving machine
US10843318B2 (en) * 2015-04-30 2020-11-24 Koki Holdings Co., Ltd. Fastener driving machine

Also Published As

Publication number Publication date
US6564688B2 (en) 2003-05-20
US20040069134A1 (en) 2004-04-15
WO2002038316A3 (en) 2004-12-09
WO2002038316A2 (en) 2002-05-16
US20020112599A1 (en) 2002-08-22
US6631668B1 (en) 2003-10-14
AU2002225988A1 (en) 2002-05-21
US6889591B2 (en) 2005-05-10

Similar Documents

Publication Publication Date Title
US6564688B2 (en) Recoilless impact device
US5078117A (en) Projectile propellant apparatus and method
US5996503A (en) Reusable gas-powered hand grenade
US5529300A (en) Self-powered extensible projectile launching police baton
US7686005B2 (en) Combustion-gas-powered paintball marker
US7254914B2 (en) Hydrogen operated recreational launcher
EP0937226B1 (en) Distraction device
US3728937A (en) Gas fired caseless ammunition rifle
JPH05208382A (en) Ignition device for driving gunpowder particularly for bolt driving device or bolt setting device
US5904284A (en) Explosively actuated fastener system and method of application thereof
US3283657A (en) Method for direct percussive ignition of stable explosives, and apparatus therefor
US5038665A (en) Silent stud gun attachment device
US8807004B1 (en) Recoil attenuated payload launcher system
US4099465A (en) Ignition device for missile motors
US4905603A (en) Explosively operated industrial tool
KR100739904B1 (en) Driver for power tools
EP0880668B1 (en) Grenade for a grenade thrower
US4832265A (en) Perforator-injector with an internal percussion mass
US4078710A (en) Tools for driving nails and the like
US9383161B2 (en) Handheld payload launcher system
JP3105596U (en) Criminal tracking paintball launcher
KR19990003472U (en) Tear Powder

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION