Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060009756 A1
Publication typeApplication
Application numberUS 11/128,786
Publication dateJan 12, 2006
Filing dateMay 13, 2005
Priority dateMay 14, 2004
Also published asCA2569701A1, EP1750605A1, EP1750605B1, US8801707, US20120316488, US20150005694, WO2005112812A1
Publication number11128786, 128786, US 2006/0009756 A1, US 2006/009756 A1, US 20060009756 A1, US 20060009756A1, US 2006009756 A1, US 2006009756A1, US-A1-20060009756, US-A1-2006009756, US2006/0009756A1, US2006/009756A1, US20060009756 A1, US20060009756A1, US2006009756 A1, US2006009756A1
InventorsDavid Francischelli, Mark Stewart, James Skarda
Original AssigneeFrancischelli David E, Stewart Mark T, Skarda James R
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and devices for treating atrial fibrillation by mass ablation
US 20060009756 A1
Abstract
Apparatus and method for ablating target tissue including a non-linear area of tissue in the left atrium of a patient. The method can include selecting an ablation apparatus having an ablator with a tissue engagement section, penetrating a chest cavity of the patient, and identifying the target tissue. The method can also include positioning the ablation apparatus adjacent to the target tissue so that the tissue engagement section can transfer ablation energy to the target tissue. The method can further include energizing the tissue engagement section with ablation energy in order to create a footprint on the non-linear area of tissue in the left atrium and to reduce an overall mass of excitable tissue in the left atrium.
Images(11)
Previous page
Next page
Claims(28)
1. A method of ablating target tissue including a non-linear area of tissue in a left atrium of a patient, the method comprising:
selecting an ablation apparatus having an ablator with a tissue engagement section;
penetrating a chest cavity of the patient;
identifying the target tissue;
positioning the ablation apparatus adjacent to the target tissue so that the tissue engagement section can transfer ablation energy to the target tissue; and
energizing the tissue engagement section with ablation energy in order to create a footprint on the non-linear area of tissue in the left atrium and to reduce an overall mass of excitable tissue in the left atrium.
2. The method of claim 1 and further comprising choosing an ablation apparatus using at least one of radio frequency energy, thermal energy, cryogenic energy, chemical energy, pharmacological energy, ultrasound energy, microwave energy, laser energy, and radiation energy.
3. The method of claim 1 and further comprising choosing an ablation apparatus including at least one of a balloon, a mesh, a patch, a rolled electrode, a fan, a bipolar electrode, a wiper, and a crystal transmitter.
4. The method of claim 1 and further comprising penetrating the chest cavity by entering through at least one of a sub-xiphoid incision, a sub-costal incision, a sternotomy, a thoracotomy, and a trans-venous puncture.
5. The method of claim 1 and further comprising identifying the target tissue using at least one of direct visualization, X-ray, ultrasound, magnetic resonance imaging, positron emission tomography, computerized tomography, fluoroscopy, endoscopic observation, intra cardiac echo, and transesophageal echo.
6. The method of claim 1 and further comprising placing the ablation apparatus adjacent the outside of the left atrium by an epicardial approach.
7. The method of claim 1 and further comprising placing the ablation apparatus adjacent the inside of the left atrium by an endocardial approach.
8. The method of claim 1 and further comprising placing the ablation apparatus adjacent the left atrium by a transesophageal approach.
9. The method of claim 8 and further comprising energizing the tissue engagement section with ultrasound energy.
10. The method of claim 9 and further comprising focusing the ultrasound energy on the target tissue.
11. The method of claim 1 and further comprising transferring energy to a portion of the ablation apparatus at the tissue engagement section.
12. The method of claim 1 and further comprising:
removably placing the ablation apparatus in a delivery end of an insertion tool;
positioning the insertion tool into the patient through an incision;
directing the delivery end to a location adjacent the target tissue;
removing the ablation apparatus from the insertion tool; and
adjusting the ablation apparatus to bring the tissue engagement section in contact with the target tissue.
13. The method of claim 1 and further comprising affixing the tissue engagement section to the target tissue by at least one of a bio-adhesive, a vacuum, an inflatable balloon, a mechanical deflection, a magnetic field, a shape memory alloy, and a superelastic alloy.
14. The method of claim 1 and further comprising providing an insulator in the ablation apparatus to prevent damage to tissue adjacent the target tissue.
15. An ablation apparatus for ablating target tissue of a patient, the ablation apparatus comprising:
an insertion tool having a proximal end, a distal end, and a lumen;
an ablator including a conductor and a tissue engagement portion, the conductor having a source end extending from the proximal end of the insertion tool and a delivery end coupled to the tissue engagement portion, the ablator removably inserted in the lumen; and
an energy source connected to the conductor;
the insertion tool being inserted into a patient so that the distal end is adjacent the target tissue, the conductor urging the ablator out of the lumen to engage the target tissue;
energy being conducted from the energy source to the ablator to create a footprint on the target tissue to reduce an overall mass of excitable tissue.
16. The ablation apparatus of claim 15 and further comprising a sensor connected to the ablator to sense the target tissue.
17. The ablation apparatus of claim 15 and further comprising a mapping tool to visualize the tissue engagement portion of the ablator.
18. The ablation apparatus of claim 15 wherein the insertion tool includes a catheter.
19. The ablation apparatus of claim 15 wherein the ablator includes a patch removably attachable to the target tissue, the patch including at least one of an adhesive patch, a tongue patch, a circular patch, a balloon patch, a suction patch, a chemical release patch, a rolled patch, a carbon patch, and a webbed patch.
20. The ablation apparatus of claim 15 wherein the ablator includes a skirt that can suction to the target tissue, the skirt receiving fluid for conducting the energy to the target tissue.
21. The ablation apparatus of claim 20 wherein the fluid is electrically conductive.
22. The ablation apparatus of claim 20 wherein the fluid is caustic.
23. The ablation apparatus of claim 20 wherein the fluid is thermally conductive.
24. The ablation apparatus of claim 15 wherein the ablator includes a balloon, the balloon being inflatable to occupy a cavity in the patient adjacent to the target tissue, the balloon being removably stored in the distal end of the insertion tool wherein the balloon is inflated causing the balloon to emerge from the insertion tool, and the balloon being positionable to cause the tissue engagement portion to bear against the target tissue.
25. The ablation apparatus of claim 15 wherein the ablator includes a chemical delivery system.
26. The ablation apparatus of claim 25 wherein the chemical delivery system includes a delivery method of at least one of diffusion, iontophoresis, mechanical injection, needle-less injection, and controlled slow-release delivery.
27. The ablation apparatus of claim 15 wherein the ablator includes a skirt and an adhesive tongue inside the skirt, the tongue moveable within the skirt to engage the target tissue, the skirt affixing the ablator to the target tissue by a vacuum.
28. The ablation apparatus of claim 15 wherein the tissue engagement portion includes a first bipolar tissue electrode and a second bipolar tissue electrode, wherein the first bipolar tissue electrode is applied to the interior of the left atrium endocardially, wherein the second bipolar tissue electrode is applied to the exterior of the left atrium epicardially, each of the first and second bipolar tissue electrodes connected to the energy source, energy being applied from the energy source to conduct from the first bipolar tissue electrode to the second bipolar tissue electrode to render a mass of left atrium tissue located between the first and second bipolar tissue electrodes at least one of non-contractile, non-viable, and unable to propagate an action potential.
Description
    RELATED APPLICATIONS
  • [0001]
    This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 60/571,182 filed on May 14, 2004, which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates to tools and procedures generally and relates more particularly to the use of ablation to reduce the mass of excitable tissue of the left atrium to prevent and treat atrial fibrillation or other medical conditions.
  • BACKGROUND
  • [0003]
    Focal triggers initiating atrial fibrillation are thought to frequently arise from the pulmonary veins and their ostia. Surgeons have used the technique of modifying the substrate of the heart in these areas to prevent the propagation of the arrhythmia. In some patients with chronic atrial fibrillation, the Cox/MAZE III procedure has been employed. This procedure controls propagation of the depolarization wavefronts in the right and left atria by means of surgical incisions through the walls of the right and left atria. The incisions create blind or dead end conduction pathways, which prevent re-entrant atrial tachycardias from occurring.
  • [0004]
    While the Cox/MAZE procedure is successful in treating atrial fibrillation, the procedure is quite complex and is currently practiced by only a few very skilled cardiac surgeons in conjunction with other open-heart procedures. The procedure also is quite traumatic to the heart, as in essence, the right and left atria are cut into pieces and sewed back together, to define lines of lesion across which the depolarization wavefronts will not propagate. Still today, the Cox/MAZE procedure is done with traditional cut and sew techniques.
  • [0005]
    The market is demanding quicker, safer and less invasive approaches. As a result, there has been much recent research and evaluation of mechanisms to encircle and isolate the pulmonary veins and replicate the incisions of the MAE operation. Companies are developing ablation techniques that heat (or cool) or chemically destroy the underlying tissue along these lines.
  • [0006]
    It has been suggested that procedures similar to the MAZE procedure could be instead, performed by means of electrosurgical ablation, for example, by applying radio frequency energy to internal or external surfaces of the atria to create lesions across which the depolarization wavefronts will not propagate. Such procedures are disclosed in U.S. Pat. No. 5,895,417, issued to Pomeranz, et al. (“the Pomeranz '417 patent”); U.S. Pat. No. 5,575,766, issued to Swartz, et al. (“the Swartz '766 patent”); U.S. Pat. No. 6,032,077, issued to Pomeranz (“the Pomeranz '077 patent”); U.S. Pat. No. 6,142,994, issued to Swanson, et al. (“the Swanson '994 patent”); and U.S. Pat. No. 5,871,523, issued to Fleischman, et al. (“the Fleischman '523 patent”), all incorporated herein by reference in their entireties.
  • [0007]
    The Pomeranz '417 patent discloses an apparatus for ablating tissue by making linear lesions within the chamber of a patient's heart by application of a plurality of spaced electrodes along an elongate member. The Schwartz '766 patent discloses a process for treating atrial arrhythmia by creating discrete ablation tracks within both the left and right atrium. The Pomeranz '077 patent discloses an ablation catheter that is electrically connected to tissue to be ablated by a foam on the electrodes that is soaked in saline. The foam in the Pomeranz '077 patent acts as a conductive fluid to allow energy from the electrode to ablate the contacted tissue. The Swanson '994 patent discloses a surgical method and apparatus for positioning an element in the body of a patient for diagnosis or therapy. The apparatus in the Swanson '994 patent may be a catheter or a probe having a shaft with a lumen extending there through. The Fleischman '523 patent discloses a helically-wound emitter on an element with a insulating sheath movable over the emitter.
  • [0008]
    Various types of electrophysiology devices are used for ablating tissue. Typically, such devices include a conductive tip or blade that serves as one electrode in an electrical circuit that is completed via a grounding electrode coupled to the patient. The contact point is small or linear to create lesions to form linear tracks of ablated tissue. A power source creates high levels of electrical energy between the two electrodes causing the tissue to heat to a sufficient level to denature proteins within the tissue and cause cell death. In order for such procedures to be effective, it is desirable that the electrosurgically-created lesions are continuous along their length and extend completely through the tissue of the heart.
  • [0009]
    Manufacturers have developed catheters that have a linear array of electrodes along a long axis (e.g., the Amazr, MECCA, and Revelation catheters). The surgeon positions the catheter and electrodes in contact with the tissue and either individually or sequentially applies energy to each electrode. Additionally, catheters that incorporate an electrode that is energized and moves along its length have been proposed, such as the Flex-10 from AFx, Inc., of 47929 Fremont Aye, Fremont, Calif. 94538.
  • [0010]
    Surgeons have also been able to create linear lesions on the heart using applications of the same techniques. For example, Kottkamp, et. al. in an article entitled “Intraoperative Radio Frequency Ablation of Chronic Atrial Fibrillation: A Left Atrial Curative Approach by Elimination of Anatomic ‘Anchor’ Reentrant Circuits,” Journal of Cardiovascular Electrophysiology, 10:772-780 (1999), describe a hand-held device that creates as series of spot or short (less than 1 cm) linear lesions. Other investigators have used long, linear unipolar probes to create somewhat longer lesions. Still others have used multi-electrode linear catheters, similar to those described above to create a series of ablations that net a linear lesion.
  • [0011]
    The focus of most investigators has been to isolate the pulmonary veins. There is growing research that suggests this may not be necessary in the prevention and cure of atrial fibrillation, as discussed in the article by G. Stabile, P. Turco, V. La Rocca, P. Nocerino, E. Stabile, and A. Dc Simone entitled “Is Pulmonary Vein Isolation Necessary for Curing Atrial Fibrillation?,” Circulation, 108:657-660 (2003). Rather than focusing on only isolating the pulmonary veins, reduction in the overall volume of excitable tissue in the left atrium is sufficient to prevent atrial fibrillation. The general concept is to ablate a large enough nonlinear area of the left atrium to prevent re-entrant waves and the propagation of atrial fibrillation.
  • SUMMARY OF THE INVENTION
  • [0012]
    Some embodiments of the invention provide a method of ablating target tissue including a non-linear area of tissue in the left atrium of a patient. The method can include selecting an ablation apparatus having an ablator or ablation member with a tissue engagement section, penetrating a chest cavity of the patient, and identifying the target tissue. The method can also include positioning the ablation apparatus adjacent to the target tissue so that the tissue engagement section can transfer ablation energy to the target tissue. The method can further include energizing the tissue engagement section with ablation energy in order to create a footprint on the non-linear area of tissue in the left atrium and to reduce an overall mass of excitable tissue in the left atrium.
  • [0013]
    In some embodiments, an ablation apparatus can include an insertion tool having a proximal end, a distal end, and a lumen. The ablation apparatus can include an ablator or ablation member having a conductor and a tissue engagement portion. The conductor can include a source end extending from the proximal end of the insertion tool and a delivery end coupled to the tissue engagement portion. The ablator can be removably inserted in the lumen. The ablation apparatus can also include an energy source connected to the conductor. The insertion tool can be inserted into a patient so that the distal end is adjacent the target tissue. The conductor can urge the ablator out of the lumen to engage the target tissue. Energy can be conducted from the energy source to the ablator to create a footprint on the target tissue to reduce an overall mass of excitable tissue.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    FIG. 1 is an illustration of a posteroinferior view of the human heart removed from the chest cavity.
  • [0015]
    FIG. 2 is an illustration of a cross-section of the human heart showing the left atrium and the ostia leading to the pulmonary veins.
  • [0016]
    FIG. 3 is a schematic illustration of an ablation apparatus according to one embodiment of the invention shown being applied to a patient.
  • [0017]
    FIG. 4 is a top view of an ablation apparatus according to another embodiment of the invention with an ablator on an insulated balloon.
  • [0018]
    FIG. 4A is a cross-sectional view along the line 4A-4A of FIG. 4.
  • [0019]
    FIG. 4B is a partial perspective view of a distal end of an insertion tool having the ablator of FIG. 4 removably inserted therein.
  • [0020]
    FIG. 5 is a top view of an ablation apparatus according to another embodiment of the invention with an ablator as a patch.
  • [0021]
    FIG. 5A is a cross-sectional view of the ablation apparatus along line 5A-5A of FIG. 5.
  • [0022]
    FIG. 6 is a top view of an ablation apparatus according to another embodiment of the invention with an ablator as a contoured patch.
  • [0023]
    FIG. 7 is a perspective view of an ablation apparatus according to another embodiment of the invention with an ablator as a bipolar electrode.
  • [0024]
    FIG. 8 is a perspective view of an ablation apparatus according to another embodiment of the invention with a suction tent having a wiper.
  • [0025]
    FIG. 9 is a perspective view of an ablation apparatus according to another embodiment of the invention with an ablator as an adhesive tongue electrode.
  • [0026]
    FIG. 10 is a perspective view of an ablation apparatus according to another embodiment of the invention with a head having a cauterizing chemical applicator.
  • [0027]
    FIG. 11 is a top view and an end view of an ablation apparatus according to another embodiment of the invention with a rolled electrode for insertion in a catheter or other delivery tool.
  • [0028]
    FIG. 12 is a side view of an ablation apparatus according to another embodiment of the invention with a web ablator.
  • [0029]
    FIGS. 13A and 13B are perspective views of an ablation apparatus according to another embodiment of the invention having an expandable mesh with electrodes.
  • [0030]
    FIG. 14 is a side view of an ablation apparatus according to another embodiment of the invention with a contoured ablator for ablating adjacent to the pulmonary veins.
  • [0031]
    FIG. 15 is a top view of an ablation apparatus according to another embodiment of the invention with an ablator as a contoured patch.
  • [0032]
    FIG. 16 is a top view of an ablation apparatus according to another embodiment of the invention with a rolled electrode for insertion in a catheter or other delivery tool.
  • DETAILED DESCRIPTION
  • [0033]
    Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limited. The use of “including,” “comprising” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected” and “coupled” are used broadly and encompass both direct and indirect mounting, connecting and coupling. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings, and can include electrical connections or couplings, whether direct or indirect.
  • [0034]
    Some embodiments of the invention provide a method and apparatus for reducing the mass of the viable tissue (e.g., by rendering the mass of tissue non-contractile, non-viable, or unable to propagate an action potential) in the left atrium of the heart to prevent or cure atrial fibrillation. Some embodiments of the invention can include preventing reentry of depolarizing wavefront signals by ablating a large area of the left atrium. Furthermore, some embodiments of the invention can substantially prevent the sustenance of atrial fibrillation.
  • [0035]
    Embodiments of the invention can provide an ablation apparatus used to conduct ablating energy to a locale of contacted or non-contacted and possibly surrounding tissue with the intent to ablate an entire area, while not harming neighboring tissue. The ablation apparatus can include an electrode having a footprint of a dimension designed to cover a predetermined region of tissue in the left atrium.
  • [0036]
    According to some embodiments of the invention, an ablation apparatus can be used to ablate a non-linear area of the tissue in the left atrium en masse. This method can be performed by endocardial positioning of an ablation device in the left atrium either via a trans-atrial septal puncture or retrograde through the arterial system. Alternatively, embodiments of the invention can provide a method of ablating tissue in the left atrium in a predefined area by inserting an ablating apparatus using an epicardial approach with access to the posterior left atrium through the pericardial space, either by a sub-xiphoid or inter-costal incision.
  • [0037]
    Some embodiments of the invention provide a method of ablating tissue using a large footprint ablation electrode for the control, prevention, and cure of atrial fibrillation. The method can include ablating a predefined area of tissue in the left atrium, while protecting other areas of the heart, lungs, and esophagus using directional energy delivery, insulation, or standoffs to space the ablation apparatus from protected areas. The method of ablating the heart tissue can include using a trans-venous catheter from the inside of the heart to deliver the ablation apparatus. Location and imaging techniques such as echogram, sonogram, magnetic resonance imaging, ultrasound, X-ray, sensors or transmitters on the ablation device, or other mapping technology can allow for proper placement to minimize damage to surrounding tissue.
  • [0038]
    Some embodiments of the invention include a locatable ablation apparatus having a predefined footprint that can be delivered through an incision in the chest wall in order to ablate by trans-myocardial engagement with a bipolar electrode. The ablation apparatus can use any of suitable method and/or procedure with electro-surgical devices or other types of ablation devices (e.g., thermal ablation, micro-wave ablation, cryogenic ablation, ultrasound ablation, etc.) to ablate tissue in the left atrium to reduce the mass of excitable tissue therein.
  • [0039]
    The apparatuses and methods of some embodiments of the invention are designed to reduce the overall excitable mass of the left atrium and to reduce or cure atrial fibrillation (AF). Some embodiments of the invention use radio frequency energy to create heat and ablate an area of tissue. However, other embodiments of the invention may include additional or alternative energy sources, such as microwave, cryogenic, ultrasound, laser, thermal, etc. Also, some embodiments of the invention can be used for creating ablation lesions in other areas of the heart, such as the ventricles.
  • [0040]
    FIG. 1 illustrates the human heart 10 from a posteroinferior view. The left atrium 12 includes an external surface 14 of an area target tissue 15, which includes the area of tissue to be ablated. In some embodiments, the target tissue 15 can be defined as the entire left atrial posterior wall tissue extending around, but not including, the pulmonary veins. As shown in FIG. 1, the target tissue 15 can be generally spaced from the pulmonary veins 16 to prevent damage to the pulmonary veins 16.
  • [0041]
    As shown in FIG. 2, an inner chamber 22 of the left atrium 12 includes an internal surface 24 of the target tissue 15. The pulmonary veins 16 themselves are generally not included in the target tissue 15 due to concern over vein stenosis. The internal surface 24 of the target tissue 15 may be defined as the entire left atrial posterior wall tissue extending into the ostial regions surrounding the pulmonary veins 16, but not extending over into the lumen of the pulmonary veins, extending to near the mitral valve annulus. There is interest in creating conduction block in the area between one or both of the right inferior pulmonary vein and the mitral valve annulus. Tissue to be protected can include all tissue in the patient not defined as the target tissue 15. Tissue to be protected can be isolated to prevent damage. The target tissue 15 can be spaced from the ostia of the pulmonary veins 16, but may extend to areas surrounding the pulmonary vein ostia as well.
  • [0042]
    FIG. 3 illustrates an ablation apparatus 30 according to one embodiment of the invention for ablating the target tissue 15. The ablation apparatus 30 can include or be used in conjunction with an insertion tool 32, such as a trocar, an endoscopy port, a catheter, etc. The insertion tool 32 can include a distal end 34 and a proximal end 36. The ablation apparatus 30 can also include a lumen 38 that can extend through the insertion tool 32 and can open at the distal end 34 and/or the proximal end 36 of the insertion tool 32. The ablation apparatus 30 can further include an ablator 43 that can extend from the distal end 34 of the insertion tool 32. The ablator 43 can be inserted in the lumen 38 for delivery through an incision 40 in the patient 42. A conductor 44 can extend through the lumen 38 to connect the ablator 43 to a power source 46. The power source 46 can be a source of ablation energy, such as radio frequency energy. Other forms of ablative methods and energy sources can be used with the ablator 43. Other forms of ablation techniques include, but are not limited to, microwave, ultrasound, heat, cyrogenic, radiation, and chemical ablation.
  • [0043]
    Proper positioning of the ablator 43 on the targeted tissue 15 can be performed by any suitable means, such as direct visualization, fluoroscopic X-ray visualization, ultrasound positron emission tomography, fluoroscopy, intra-cardiac echo, trans-esophageal echo, magnetic resonance imaging, computerized tomography, or by endoscopic imaging. As shown in FIG. 3, a mapping tool 48 can include a sensor 50 connected to a display 52 to represent or visualize the position of the ablator 43 with respect to the target tissue 15. An input device, such as a toggle stick 54 or a pointer pen 56, can be used to identify the target tissue 15 on the heart 10.
  • [0044]
    The ablator 34 can include a tissue engagement section 60 (as shown in FIGS. 4-6), which can include a footprint that allows the tissue engagement section 60 to ablate a predefined area with each energization.
  • [0045]
    As shown in FIG. 4, the ablator 43 can include a balloon 58 having a tissue engagement section 60 with a footprint for endocardial or epicardial application. The footprint can be of a size and shape to conform to the individual patient requirements. The balloon 58 may include an inflator tube 62 positioned in the insertion tool 32. The inflator tube 62 can be connected to an inflation source 64 for inflating the balloon 58 with air, CO2, saline, etc. An insulator 66 on the balloon 58 can protect adjacent tissue from the energy in the ablator 43, while ablating the target tissue 15 bearing against the footprint of the tissue engagement section 60. Additional insulation can be achieved by the saline or gas in the balloon 58. The insertion tool 32 can be flexible or rigid to help the surgeon manipulate the position of the balloon 58 to bring the tissue engagement section 60 in contact with the target tissue 15. The inflation source 64 can direct liquid or gas through the inflator tube 62 to inflate the balloon 58. The balloon 58 can expand to cause the tissue engagement section 60 to bear against the target tissue 15. In some embodiments, as shown in FIG. 4, bowing struts 67 can be deployed within the left atrium 12 to push the ablator 43 into contact with the left atrial posterior wall. When deployed in the pericardial space, the balloon 58 may be inflated to force contact of the tissue engagement section 60 with the epicardial target tissue 15.
  • [0046]
    In some embodiments, the balloon 58 can include a conducting surface that acts as a tissue engagement section 60. A collapsed balloon 58 can be inserted into the left atrium 12 or into the pericardial space surrounding the epicardial surface of the target tissue 15. In one embodiment, the balloon 58 can then be inflated with saline from the inflation source 64 and oriented such that a thermally-transmissive, tissue engagement section 60 of the balloon 58 can be positioned against the posterior left atrium and an insulated portion of the balloon 58 can be positioned against the anterior left atrium. The saline can be heated by electrical current supplied by power source 46 to a temperature between 50 degrees Celsius and 85 degrees Celsius, and in some embodiments, between 55 degrees Celsius and 65 degrees Celsius. At these temperatures, the cells in the target area 15 generally die without collagen shrinkage. Alternatively, the balloon 58 can be cooled with cryogenic technology to freeze the atrial tissue and ablate the target tissue 15. Generally, temperatures for cryogenic therapy must be less than negative 20 degrees Celsius to negative 40 degrees Celsius.
  • [0047]
    FIG. 4 illustrates a cross section of the balloon 58 with the insulator 66 surrounding the ablator 43. The ablator 43 can include one or more ablating elements 68 on the tissue engagement section 60 for transferring the energy of the power source 46 to the target tissue 15. Ablating elements 68 may comprise one or more electrodes, ultrasound transducers, microwave antennae, cryogenic elements, chemical elements and/or radioactive elements, for example. Insertion of the balloon 58 into the left atrium 12 allows the balloon 58 to be manipulated during inflation to bring the ablating elements 68 of the tissue engagement section 60 to bear against the target tissue 15 and to space the ablating elements 68 from the tissue to be protected. The insulator 66 can protect adjacent tissue not within the area of the target tissue 15.
  • [0048]
    The ablator 43 can be delivered to the desired location in the patient using the insertion tool 32, such as a catheter 70, as shown in FIG. 4B. The footprint of the ablator 43 can be configured for any patient anatomy and/or any ablation pattern desired. The collapsed balloon 58 of the ablator 43 can be removably inserted through the distal end 34 of the catheter 70, so that the conductor 44 extends through the insertion tool 32, as shown in FIG. 4B. The catheter 70 can be inserted into the patient 42 (as described with respect to FIG. 3) to position the distal end 34 adjacent the target tissue 15. The conductor 44 can be used to push the ablator 43 out of the lumen 38 to a position extending from the distal end 34, as shown in FIG. 4.
  • [0049]
    FIGS. 5 and 5A illustrate an embodiment of a circular ablator 43. In other embodiments, the ablator 43 can be elliptical, oval, etc. The circular ablator 43 can include a tissue engagement surface 60 and an outside skirt 72. The outside skirt 72 can be used as a stand-off to space the tissue engagement surface 60 from delicate tissue, such as the pulmonary veins 16. The circular ablator 43 can include one or more ablating elements 68 on the tissue engagement surface 60 and an insulation layer 66 on the opposite surface, as shown in FIG. 5A. The ablating elements 68 can be positioned in a helical or circular pattern. The outside skirt 72 can be constructed of a soft, heat-insulating material, such as silicone or other elastomeric material. The outside skirt 72 can include an outer edge 74 constructed of a resilient material to positively space the ablating elements 68 from the tissue to be protected.
  • [0050]
    The circular ablator 43 can be used epicardially by insertion within the pericardial space adjacent the posterior left atrium. In one embodiment, the circular ablator 43 can alternatively include an uncoiling spiral configuration. The uncoiling spiral can be positioned through a sheath 32, and when advanced beyond the sheath 32, can uncoil to take the desired shape. Pre-formed shape memory or superelastic alloys, such as NiTi, can be used to ensure that the spiral uncoils into the desired shape.
  • [0051]
    In another embodiment, two circular ablators 43 can be used in a bipolar arrangement. One ablator 43 can be on the external surface 14 of the target tissue 15 and another ablator 43 can be positioned on the internal surface 24 of the target tissue 15 in the left atrium 12. The bipolar circular ablator 43 can also be positioned using an uncoiling spiral configuration. The uncoiling spiral can be positioned through a sheath 32, and when advanced beyond the sheath 32, can uncoil to take the desired shape. Pre-formed shape memory or superelastic alloys, such as NiTi, can be used to ensure that the spiral uncoils into the desired shape.
  • [0052]
    FIGS. 6 and 15 illustrate two embodiments of a contoured patch ablator 43 having a predefined shape with contoured edges 76. The contoured edges 76 can bear against structures in the heart, such as the pulmonary veins 16, to position the tissue engagement surface 60 against the target tissue 15. As shown in FIG. 6, ablating elements 68 can be connected to a power source 46 by the conductor 44 extending through an insertion tool 32 for either epicardial or endocardial use.
  • [0053]
    FIG. 7 illustrates an ablator 43 having two ablating elements, a first ablating element 80 and a second ablating element 82. A conductor 44 may be used to connect the first and second ablating elements 80, 82 together or separately for individual control. In one embodiment, ablating elements 80, 82 may comprise electrodes, which can be energized using radio frequency energy. Ablating elements 80, 82 may be held in contact with tissue by a vacuum applied to ports 83. Alternatively, the first ablating element 80 may be a high intensity focused ultrasound (HIFU) crystal transmitter or transducer and the second ablating element 82 can be another HIFU crystal transmitter or transducer, both of which can focus ultrasound energy on the target tissue 15. Alternatively, the first and second ablating elements 80, 82 may be microwave antennae, which can deliver microwave ablation energy to the target tissue 15. The ablator 43 may be used, in some embodiments, from a location within the esophagus to focus ablation energy on the posterior left atrium of the heart.
  • [0054]
    FIG. 8 illustrates an ablator 43 having a skirt 73 and a deployable wiper 86 that can be placed in the patient to surround the target tissue 15. The skirt 73 can be held to the target tissue 15 by a vacuum applied to a suction chamber 84. The deployable wiper 86 can be connected to a conductor 44 and can move within the skirt 73 of the ablator 43 to rotate in an arc around a pivot point (e.g., a motor 88). The deployable wiper 86 may include one or more ablating elements. The deployable wiper 86 can sweep from side to side and/or can rotate 360 degrees and can apply energy to ablate during all or during a portion of the rotation. The skirt 73 can be collapsible to be removably inserted in a catheter 70. A resilient outer edge 74 can releasably seal onto the target tissue 15 when the vacuum is applied. An air gap between the skirt 73 and the deployable wiper 86 can protect adjacent tissue from harm by the ablation energy. Also, to aid in guiding the ablations within the skirt 73, a lumen can be provided adjacent to the conductor 44 to allow passage of a fiber optic or endoscopic catheter, which can provide visual confirmation of proper positioning of the skirt 73 and of the selected region for ablation.
  • [0055]
    FIG. 9 illustrates an ablator 43 including an adhesive tongue 90 having a footprint extending from a catheter 70. A skirt 72 can be used to ablate tissue within an outer edge 74. The adhesive tongue 90 can be removably attached to the target tissue 15 for directed ablation by a vacuum applied through a conductor 44. In other embodiments, contact may be facilitated with a biological compatible glue or adhesive 91 on a tissue engagement surface 60. A conductive fluid 92 can be used in a chamber 84 of the skirt 72 to translate the ablating energy to all tissue within the outer edge 74. Alternatively, epicardial application of the adhesive tongue 90 with slow release ablation chemicals can be used to ablate tissue. The adhesive tongue 90 can also include, in some embodiments, anti-arrhythmia medications or other medications.
  • [0056]
    FIG. 10 illustrates an ablator 43 designed to deliver one or more ablation agents, e.g., chemical ablation agents and/or radioactive ablation agents. A conductor or conduit 44 can transfer an ablative agent through a tip 96 to come in contact with tissue within an outer edge 74 of a skirt 72. The tip 96 can be removably inserted into a catheter 70 to be positioned in the left atrium. The catheter 70 can be manipulated and rotated to cause the skirt 72 to cover the target tissue 15. An ablation agent can be introduced into a chamber 84 within the shirt 72 to ablate the target tissue 15. Following the ablation procedure, any remaining ablation agent may be removed back through tip 96. In some embodiments, tip 96 may be designed for mechanical injection and/or needle-less injection of an ablation agent into tissue. In one embodiment, the ablation agent diffuses into the tissue to be treated. Alternatively, the ablation agent is delivered via controlled slow-release delivery and/or iontophoresis techniques.
  • [0057]
    FIG. 11 illustrates an ablator 43 including a rolled ablating element 98 that can be rolled into a single roll or parallel rolls and can be removably inserted in an insertion tool 32. S-shaped memory wires 100 can unroll the rolled ablating element 98 when a conductor 44 urges the rolled ablating element 98 out of a lumen 38. The rolled ablating element 98 can be rolled for placement between the heart 10 and pericardium for epicardial ablation onto the external surface 14 of the target tissue 15. The rolled ablating element 98 can be similar to the circular and contoured embodiments shown in FIGS. 5 and 6, respectively.
  • [0058]
    FIG. 12 illustrates an ablator 43 including a webbed fan 102 having ablating elements 68 a and 68 b positioned in an apex 104 of each fold 106. The ablating elements 68 a when positioned adjacent the target tissue 15 can be energized and the ablating elements 68 b spaced from the target tissue 15 can remain non-energized to protect tissue outside the area of target tissue 15. The webbed fan 102 can include an insulation layer on one side. The webbed fan 102 can be unfolded into a flat sheet to energize all or a portion of the ablating elements 68 a, 68 b. The webbed fan 102 may be compressed to be removably inserted in a lumen 38 of a catheter 70.
  • [0059]
    FIGS. 13A and 13B illustrate an ablator 43 with an expandable mesh with numerous ablating elements 68. The ablator 43 can be positioned in the left atrium using an insertion tool 32. Each ablating element 68 can be individually represented using a mapping tool 48 and displayed on a display 52. A conductor 44 can allow individual electrodes 68 in contact with the target tissue 15 to be energized by a power source 46 to ablate tissue. One or more sensors 50 can be positioned inside the expandable mesh to locate the target tissue 15. The ablating elements 68 on the expandable mesh that are contacting the posterior left atrium can be selected. Selection can be facilitated by electrophysiological mapping, computerized complex algorithms, imaging, individual addressing of smart ablating elements 68, or other suitable methods. The appropriate ablating elements 68 can be are energized either individually or collectively to create an area of ablated tissue on the posterior.
  • [0060]
    FIG. 14 illustrates a contoured ablator 43 with a predefined shape defined by contoured edges 76. The contoured edges 76 can bear against structures on the heart, such as the pulmonary veins 16 to position a tissue engagement surface 60 against the target tissue 15. One or more ablating elements 68 can be connected to a power source (not shown) by a conductor 44.
  • [0061]
    FIG. 16 illustrates a coiled linear ablator 43 with one or more coiled ablating elements that can be deployed out of an insertion tool 32 (e.g., a sheath) to create an area for ablation. In some embodiments, the coiled linear ablator 43 can deliver energy in one direction (e.g., toward the epicardial surface of the posterior left atrium).
  • [0062]
    In some embodiments, the ablator 43 (e.g., an ablation energy transmitting member having one or more ablating elements) may be remote from the target tissue 15. For example, ultrasound energy may be focused remotely on the target tissue 15, causing ablation of the target tissue 15, while passing without ablating through non-targeted tissue located between the targeted tissue and ablator 43. The location of the energy focus on the target tissue 15 can be moved throughout the region to be ablated by steering a focal point about a non-linear area to be ablated. A steering mechanism can be manual (e.g., by physically moving an ultrasound transducer relative to the tissue) or electrical (e.g., by using phased arrays of ultrasound transducers or by otherwise modifying the ultrasound focal zone).
  • [0063]
    Some embodiments of the invention are effective at terminating atrial fibrillation, yet can be performed more safely than some conventional methods. Some embodiments of the invention can perform ablations more quickly than some conventional methods. Some embodiments of the invention can also be used to amputate, ligate, staple, etc. the left atrial appendage (LAA) of the heart—a major source of clots and strokes in the population. Some embodiments of the invention result in less trauma to the patient and less chance of accidentally damaging the heart and surrounding structures. Some embodiments of the invention can minimize the size of the incision required to insert the ablation apparatus 30 and/or the ablator 43 through the chest wall. Some embodiments of the invention can eliminate the need for contiguous, linear lesions to treat atrial fibrillation. Some embodiments of the invention can allow the surgeon to create lesions in the heart from the epicardial surface of the beating heart. Some embodiments of the invention can be practiced via transvenous catheters from the inside of the heart.
  • [0064]
    Various additional features and advantages of the invention are set forth in the following claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3807403 *Jun 14, 1972Apr 30, 1974Frigitronics Of Conn IncCryosurgical apparatus
US3859986 *Jun 20, 1973Jan 14, 1975Jiro OkadaSurgical device
US3862627 *Aug 16, 1973Jan 28, 1975Hans Sr Wendel JSuction electrode
US4018227 *Oct 9, 1975Apr 19, 1977Cryomedics, Inc.Cryosurgical instrument
US4072152 *Feb 23, 1976Feb 7, 1978Linehan John HOrthopedic cryosurgical apparatus
US4082096 *Feb 9, 1977Apr 4, 1978Benson Jerrel WCryosurgical system
US4248224 *Aug 1, 1978Feb 3, 1981Jones James WDouble venous cannula
US4377168 *Feb 27, 1981Mar 22, 1983Wallach Surgical Instruments, Inc.Cryosurgical instrument
US4562900 *Dec 20, 1984Jan 7, 1986Varian Associates, Inc.Lens system for acoustic transducer array
US4736749 *Apr 4, 1986Apr 12, 1988Astra-Tech AktiebolagHolder for medical use fixed by vacuum
US4802475 *Jun 22, 1987Feb 7, 1989Weshahy Ahmed H A GMethods and apparatus of applying intra-lesional cryotherapy
US4815470 *Nov 13, 1987Mar 28, 1989Advanced Diagnostic Medical Systems, Inc.Inflatable sheath for ultrasound probe
US4916922 *May 9, 1989Apr 17, 1990Mullens Patrick LRapid freezing apparatus
US4917095 *Nov 18, 1985Apr 17, 1990Indianapolis Center For Advanced Research, Inc.Ultrasound location and therapy method and apparatus for calculi in the body
US5078713 *Nov 30, 1989Jan 7, 1992Spembly Medical LimitedCryosurgical probe
US5080102 *Apr 21, 1989Jan 14, 1992Edap International, S.A.Examining, localizing and treatment with ultrasound
US5080660 *May 11, 1990Jan 14, 1992Applied Urology, Inc.Electrosurgical electrode
US5100388 *May 25, 1990Mar 31, 1992Interventional Thermodynamics, Inc.Method and device for thermal ablation of hollow body organs
US5108390 *Nov 14, 1988Apr 28, 1992Frigitronics, Inc.Flexible cryoprobe
US5178133 *Mar 26, 1991Jan 12, 1993Pena Louis TLaparoscopic retractor and sheath
US5275595 *Jul 6, 1992Jan 4, 1994Dobak Iii John DCryosurgical instrument
US5277201 *May 1, 1992Jan 11, 1994Vesta Medical, Inc.Endometrial ablation apparatus and method
US5281213 *Apr 16, 1992Jan 25, 1994Implemed, Inc.Catheter for ice mapping and ablation
US5281215 *Jun 15, 1992Jan 25, 1994Implemed, Inc.Cryogenic catheter
US5295484 *May 19, 1992Mar 22, 1994Arizona Board Of Regents For And On Behalf Of The University Of ArizonaApparatus and method for intra-cardiac ablation of arrhythmias
US5385148 *Jul 30, 1993Jan 31, 1995The Regents Of The University Of CaliforniaCardiac imaging and ablation catheter
US5396887 *Sep 23, 1993Mar 14, 1995Cardiac Pathways CorporationApparatus and method for detecting contact pressure
US5397304 *Jun 29, 1993Mar 14, 1995Medtronic CardiorhythmShapable handle for steerable electrode catheter
US5400770 *Feb 28, 1994Mar 28, 1995Nakao; Naomi L.Device utilizable with endoscope and related method
US5400783 *Oct 12, 1993Mar 28, 1995Cardiac Pathways CorporationEndocardial mapping apparatus with rotatable arm and method
US5402792 *Mar 15, 1994Apr 4, 1995Shimadzu CorporationUltrasonic medical apparatus
US5403309 *Jul 29, 1993Apr 4, 1995Spembly Medical LimitedCryosurgical ablation
US5403311 *Mar 29, 1993Apr 4, 1995Boston Scientific CorporationElectro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5405376 *Aug 27, 1993Apr 11, 1995Medtronic, Inc.Method and apparatus for ablation
US5409483 *May 14, 1993Apr 25, 1995Jeffrey H. ReeseDirect visualization surgical probe
US5486193 *May 1, 1995Jan 23, 1996C. R. Bard, Inc.System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5487385 *Dec 3, 1993Jan 30, 1996Avitall; BoazAtrial mapping and ablation catheter system
US5487757 *Feb 21, 1995Jan 30, 1996Medtronic CardiorhythmMulticurve deflectable catheter
US5496312 *Oct 7, 1993Mar 5, 1996Valleylab Inc.Impedance and temperature generator control
US5497774 *Nov 3, 1993Mar 12, 1996Daig CorporationGuiding introducer for left atrium
US5498248 *Mar 14, 1994Mar 12, 1996Implemed, Inc.Iontophoretic structure for medical devices
US5500013 *Jan 13, 1995Mar 19, 1996Scimed Life Systems, Inc.Biodegradable drug delivery vascular stent
US5505730 *Jun 24, 1994Apr 9, 1996Stuart D. EdwardsThin layer ablation apparatus
US5590657 *Nov 6, 1995Jan 7, 1997The Regents Of The University Of MichiganPhased array ultrasound system and method for cardiac ablation
US5595183 *Feb 17, 1995Jan 21, 1997Ep Technologies, Inc.Systems and methods for examining heart tissue employing multiple electrode structures and roving electrodes
US5607462 *Jul 7, 1994Mar 4, 1997Cardiac Pathways CorporationCatheter assembly, catheter and multi-catheter introducer for use therewith
US5617854 *Jun 22, 1994Apr 8, 1997Munsif; AnandShaped catheter device and method
US5713942 *Jun 7, 1995Feb 3, 1998Vesta Medical, Inc.Body cavity ablation apparatus and model
US5716389 *Nov 13, 1995Feb 10, 1998Walinsky; PaulCardiac ablation catheter arrangement with movable guidewire
US5718241 *Jun 7, 1995Feb 17, 1998Biosense, Inc.Apparatus and method for treating cardiac arrhythmias with no discrete target
US5718701 *Mar 18, 1996Feb 17, 1998Electro-Catheter CorporationAblation electrode
US5720775 *Jul 31, 1996Feb 24, 1998Cordis CorporationPercutaneous atrial line ablation catheter
US5722402 *Jul 12, 1996Mar 3, 1998Ep Technologies, Inc.Systems and methods for guiding movable electrode elements within multiple-electrode structures
US5730074 *Jun 7, 1996Mar 24, 1998Farmer Fabrications, Inc.Liquid dispenser for seed planter
US5730127 *Jan 29, 1996Mar 24, 1998Avitall; BoazMapping and ablation catheter system
US5730704 *May 6, 1996Mar 24, 1998Avitall; BoazLoop electrode array mapping and ablation catheter for cardiac chambers
US5733280 *Nov 15, 1995Mar 31, 1998Avitall; BoazCryogenic epicardial mapping and ablation
US5735280 *Sep 9, 1996Apr 7, 1998Heart Rhythm Technologies, Inc.Ultrasound energy delivery system and method
US5735290 *Jul 28, 1994Apr 7, 1998Heartport, Inc.Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5871523 *Aug 12, 1996Feb 16, 1999Ep Technologies, Inc.Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5871525 *Oct 23, 1995Feb 16, 1999Ep Technologies, Inc.Steerable ablation catheter system
US5873845 *Mar 17, 1997Feb 23, 1999General Electric CompanyUltrasound transducer with focused ultrasound refraction plate
US5876399 *May 28, 1997Mar 2, 1999Irvine Biomedical, Inc.Catheter system and methods thereof
US5879295 *Apr 2, 1997Mar 9, 1999Medtronic, Inc.Enhanced contact steerable bowing electrode catheter assembly
US5879296 *Feb 12, 1997Mar 9, 1999Daig CorporationGuiding introducers for use in the treatment of left ventricular tachycardia
US5881732 *Jun 21, 1996Mar 16, 1999Cardima, Inc.Intravascular method and system for treating arrhythmia
US5882346 *Jul 15, 1996Mar 16, 1999Cardiac Pathways CorporationShapable catheter using exchangeable core and method of use
US5885278 *Oct 11, 1994Mar 23, 1999E.P. Technologies, Inc.Structures for deploying movable electrode elements
US5893848 *Oct 24, 1996Apr 13, 1999Plc Medical Systems, Inc.Gauging system for monitoring channel depth in percutaneous endocardial revascularization
US5895417 *Nov 6, 1997Apr 20, 1999Cardiac Pathways CorporationDeflectable loop design for a linear lesion ablation apparatus
US5897553 *Nov 2, 1995Apr 27, 1999Medtronic, Inc.Ball point fluid-assisted electrocautery device
US5897554 *Mar 1, 1997Apr 27, 1999Irvine Biomedical, Inc.Steerable catheter having a loop electrode
US6012457 *Jul 8, 1997Jan 11, 2000The Regents Of The University Of CaliforniaDevice and method for forming a circumferential conduction block in a pulmonary vein
US6016811 *Sep 1, 1998Jan 25, 2000Fidus Medical Technology CorporationMethod of using a microwave ablation catheter with a loop configuration
US6042556 *Sep 4, 1998Mar 28, 2000University Of WashingtonMethod for determining phase advancement of transducer elements in high intensity focused ultrasound
US6358248 *May 26, 2000Mar 19, 2002Medtronic, Inc.Ball point fluid-assisted electrocautery device
US6361531 *Jan 21, 2000Mar 26, 2002Medtronic Xomed, Inc.Focused ultrasound ablation devices having malleable handle shafts and methods of using the same
US6502575 *May 30, 2000Jan 7, 2003Clemens J. JacobsInstrument for interrupting conduction paths within the heart
US6514250 *Apr 27, 2000Feb 4, 2003Medtronic, Inc.Suction stabilized epicardial ablation devices
US6527767 *May 20, 1998Mar 4, 2003New England Medical CenterCardiac ablation system and method for treatment of cardiac arrhythmias and transmyocardial revascularization
US6537248 *Jul 6, 1999Mar 25, 2003Medtronic, Inc.Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US6537272 *Nov 30, 2001Mar 25, 2003Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6692450 *Jan 19, 2000Feb 17, 2004Medtronic Xomed, Inc.Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
US6699240 *Dec 12, 2001Mar 2, 2004Medtronic, Inc.Method and apparatus for tissue ablation
US6702811 *May 3, 2001Mar 9, 2004Medtronic, Inc.Ablation catheter assembly with radially decreasing helix and method of use
US6706038 *Apr 9, 2003Mar 16, 2004Medtronic, Inc.System and method for assessing transmurality of ablation lesions
US6706039 *May 25, 2001Mar 16, 2004Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6849073 *Apr 24, 2002Feb 1, 2005Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6858028 *Feb 7, 2002Feb 22, 2005Medtronic, Inc.Tissue sealing electrosurgery device and methods of sealing tissue
US20020002372 *Apr 26, 2001Jan 3, 2002Medtronic, Inc.Suction stabilized epicardial ablation devices
US20030045872 *Oct 21, 2002Mar 6, 2003Jacobs Clemens J.Instrument for interrupting conduction paths within the heart
US20040015106 *Jun 20, 2003Jan 22, 2004Coleman R. GlenFocused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US20040015219 *Feb 3, 2003Jan 22, 2004Francischelli David E.Device and method for ablation of cardiac tissue
US20040044340 *Oct 14, 2003Mar 4, 2004Francischelli David E.Ablation system and method of use
US20040049179 *Sep 9, 2003Mar 11, 2004Francischelli David E.Ablation system
US20050010095 *May 3, 2004Jan 13, 2005Medtronic, Inc.Multi-purpose catheter apparatus and method of use
US20050033280 *Aug 20, 2004Feb 10, 2005Francischelli David E.Method and system for treatment of atrial tachyarrhythmias
US20060009759 *Jun 2, 2005Jan 12, 2006Chrisitian Steven CLoop ablation apparatus and method
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7678108Jun 2, 2005Mar 16, 2010Medtronic, Inc.Loop ablation apparatus and method
US7678111Nov 29, 2005Mar 16, 2010Medtronic, Inc.Device and method for ablating tissue
US7699805Nov 30, 2007Apr 20, 2010Medtronic, Inc.Helical coil apparatus for ablation of tissue
US7706882May 13, 2005Apr 27, 2010Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area
US7706894Apr 26, 2005Apr 27, 2010Medtronic, Inc.Heart wall ablation/mapping catheter and method
US7740623Jun 23, 2005Jun 22, 2010Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US7744562Oct 10, 2006Jun 29, 2010Medtronics, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US7744591 *Dec 15, 2006Jun 29, 2010Boston Scientific Scimed, Inc.Foam electrode and method of use thereof during tissue resection
US7758576Jun 2, 2005Jul 20, 2010Medtronic, Inc.Clamping ablation tool and method
US7758580Jun 2, 2005Jul 20, 2010Medtronic, Inc.Compound bipolar ablation device and method
US7794460Aug 11, 2008Sep 14, 2010Medtronic, Inc.Method of ablating tissue
US7818039Jul 15, 2005Oct 19, 2010Medtronic, Inc.Suction stabilized epicardial ablation devices
US7824399Feb 16, 2006Nov 2, 2010Medtronic, Inc.Ablation system and method of use
US7871409Feb 2, 2009Jan 18, 2011Medtronic, Inc.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US7875028Jul 8, 2009Jan 25, 2011Medtronic, Inc.Ablation device with jaws
US7959626Jul 20, 2007Jun 14, 2011Medtronic, Inc.Transmural ablation systems and methods
US7963963Jan 21, 2005Jun 21, 2011Medtronic, Inc.Electrosurgical hemostat
US7967816Jan 25, 2002Jun 28, 2011Medtronic, Inc.Fluid-assisted electrosurgical instrument with shapeable electrode
US7975703Aug 31, 2006Jul 12, 2011Medtronic, Inc.Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US8016826Jun 16, 2010Sep 13, 2011Boston Scientific Scimed, Inc.Foam electrode and method of use thereof during tissue resection
US8096959Oct 24, 2007Jan 17, 2012Medtronic, Inc.Trans-septal catheter with retention mechanism
US8150499Nov 19, 2010Apr 3, 2012Kardium Inc.Automatic atherectomy system
US8162933Mar 3, 2004Apr 24, 2012Medtronic, Inc.Vibration sensitive ablation device and method
US8162941Dec 20, 2010Apr 24, 2012Medtronic, Inc.Ablation device with jaws
US8172835Jun 24, 2008May 8, 2012Cutera, Inc.Subcutaneous electric field distribution system and methods
US8172837Jun 14, 2010May 8, 2012Medtronic, Inc.Clamping ablation tool and method
US8197476Oct 26, 2011Jun 12, 2012Hermes Innovations LlcTissue ablation systems
US8197477Oct 26, 2011Jun 12, 2012Hermes Innovations LlcTissue ablation methods
US8221402Dec 9, 2005Jul 17, 2012Medtronic, Inc.Method for guiding a medical device
US8221415Jul 27, 2007Jul 17, 2012Medtronic, Inc.Method and apparatus for tissue ablation
US8262649Jul 27, 2007Sep 11, 2012Medtronic, Inc.Method and apparatus for tissue ablation
US8273072Nov 18, 2009Sep 25, 2012Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US8333764May 12, 2004Dec 18, 2012Medtronic, Inc.Device and method for determining tissue thickness and creating cardiac ablation lesions
US8369930Jun 16, 2010Feb 5, 2013MRI Interventions, Inc.MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US8372068Aug 13, 2009Feb 12, 2013Hermes Innovations, LLCTissue ablation systems
US8382753Aug 13, 2009Feb 26, 2013Hermes Innovations, LLCTissue ablation methods
US8396532Jun 16, 2010Mar 12, 2013MRI Interventions, Inc.MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US8409219Sep 30, 2009Apr 2, 2013Medtronic, Inc.Method and system for placement of electrical lead inside heart
US8414573Oct 11, 2006Apr 9, 2013Medtronic, Inc.Device and method for ablation of cardiac tissue
US8454591Apr 6, 2012Jun 4, 2013Cutera, Inc.Subcutaneous electric field distribution system and methods
US8489172Jan 25, 2008Jul 16, 2013Kardium Inc.Liposuction system
US8500732Oct 26, 2009Aug 6, 2013Hermes Innovations LlcEndometrial ablation devices and systems
US8512337Aug 20, 2004Aug 20, 2013Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US8529562Nov 13, 2009Sep 10, 2013Minerva Surgical, IncSystems and methods for endometrial ablation
US8532746Feb 24, 2012Sep 10, 2013Kardium Inc.Automatic atherectomy system
US8540708Oct 26, 2009Sep 24, 2013Hermes Innovations LlcEndometrial ablation method
US8568409Oct 31, 2007Oct 29, 2013Medtronic Advanced Energy LlcFluid-assisted medical devices, systems and methods
US8632533Feb 23, 2010Jan 21, 2014Medtronic Advanced Energy LlcFluid-assisted electrosurgical device
US8663245Apr 19, 2007Mar 4, 2014Medtronic, Inc.Device for occlusion of a left atrial appendage
US8690873Jul 9, 2013Apr 8, 2014Hermes Innovations LlcEndometrial ablation devices and systems
US8706260Oct 27, 2011Apr 22, 2014Medtronic, Inc.Heart wall ablation/mapping catheter and method
US8715278Nov 11, 2009May 6, 2014Minerva Surgical, Inc.System for endometrial ablation utilizing radio frequency
US8768433Dec 21, 2012Jul 1, 2014MRI Interventions, Inc.MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US8801707Aug 14, 2012Aug 12, 2014Medtronic, Inc.Method and devices for treating atrial fibrillation by mass ablation
US8821486Nov 11, 2010Sep 2, 2014Hermes Innovations, LLCTissue ablation systems and methods
US8825133Jan 24, 2013Sep 2, 2014MRI Interventions, Inc.MRI-guided catheters
US8870864Oct 28, 2011Oct 28, 2014Medtronic Advanced Energy LlcSingle instrument electrosurgery apparatus and its method of use
US8882756Dec 24, 2008Nov 11, 2014Medtronic Advanced Energy LlcFluid-assisted electrosurgical devices, methods and systems
US8886288Jan 10, 2013Nov 11, 2014MRI Interventions, Inc.MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US8906011Nov 16, 2007Dec 9, 2014Kardium Inc.Medical device for use in bodily lumens, for example an atrium
US8906012Jun 30, 2010Dec 9, 2014Medtronic Advanced Energy LlcElectrosurgical devices with wire electrode
US8920411Jun 28, 2006Dec 30, 2014Kardium Inc.Apparatus and method for intra-cardiac mapping and ablation
US8920417Dec 28, 2012Dec 30, 2014Medtronic Advanced Energy LlcElectrosurgical devices and methods of use thereof
US8926635Oct 2, 2009Jan 6, 2015Medtronic, Inc.Methods and devices for occlusion of an atrial appendage
US8932287Mar 23, 2011Jan 13, 2015Kardium Inc.Medical device for use in bodily lumens, for example an atrium
US8940002Sep 28, 2011Jan 27, 2015Kardium Inc.Tissue anchor system
US8956348Jul 20, 2011Feb 17, 2015Minerva Surgical, Inc.Methods and systems for endometrial ablation
US8998901Aug 23, 2013Apr 7, 2015Hermes Innovations LlcEndometrial ablation method
US9011423Mar 11, 2013Apr 21, 2015Kardium, Inc.Systems and methods for selecting, activating, or selecting and activating transducers
US9017320Mar 11, 2013Apr 28, 2015Kardium, Inc.Systems and methods for activating transducers
US9017321Mar 11, 2013Apr 28, 2015Kardium, Inc.Systems and methods for activating transducers
US9023040Oct 26, 2010May 5, 2015Medtronic Advanced Energy LlcElectrosurgical cutting devices
US9072511Mar 15, 2012Jul 7, 2015Kardium Inc.Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9113896Dec 28, 2007Aug 25, 2015Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US9119633Mar 5, 2013Sep 1, 2015Kardium Inc.Apparatus and method for intra-cardiac mapping and ablation
US9119634Nov 18, 2014Sep 1, 2015Kardium Inc.Apparatus and method for intra-cardiac mapping and ablation
US9119647 *Nov 12, 2010Sep 1, 2015Covidien LpApparatus, system and method for performing an electrosurgical procedure
US9138289Jun 28, 2010Sep 22, 2015Medtronic Advanced Energy LlcElectrode sheath for electrosurgical device
US9192468Jan 23, 2014Nov 24, 2015Kardium Inc.Method for anchoring a mitral valve
US9198592Nov 18, 2014Dec 1, 2015Kardium Inc.Systems and methods for activating transducers
US9204964Jun 13, 2013Dec 8, 2015Kardium Inc.Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US9226792Jun 12, 2013Jan 5, 2016Medtronic Advanced Energy LlcDebridement device and method
US9227088May 3, 2010Jan 5, 2016Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US9254168Mar 16, 2010Feb 9, 2016Medtronic Advanced Energy LlcElectro-thermotherapy of tissue using penetrating microelectrode array
US9259264Apr 14, 2015Feb 16, 2016Kardium Inc.Systems and methods for activating transducers
US9259290Jun 8, 2010Feb 16, 2016MRI Interventions, Inc.MRI-guided surgical systems with proximity alerts
US9289257Nov 13, 2009Mar 22, 2016Minerva Surgical, Inc.Methods and systems for endometrial ablation utilizing radio frequency
US9333027 *Oct 3, 2013May 10, 2016Medtronic Advanced Energy LlcMethod of producing an electrosurgical device
US9345541Sep 8, 2010May 24, 2016Medtronic Advanced Energy LlcCartridge assembly for electrosurgical devices, electrosurgical unit and methods of use thereof
US9381061Nov 23, 2011Jul 5, 2016Medtronic Advanced Energy LlcFluid-assisted medical devices, systems and methods
US9427281Mar 15, 2011Aug 30, 2016Medtronic Advanced Energy LlcBronchoscope-compatible catheter provided with electrosurgical device
US9439713Apr 14, 2015Sep 13, 2016Kardium Inc.Systems and methods for activating transducers
US9439735Jun 8, 2010Sep 13, 2016MRI Interventions, Inc.MRI-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
US9445858Mar 5, 2014Sep 20, 2016Medtronic Advanced Energy LlcBipolar electrosurgical device
US9445862Apr 14, 2015Sep 20, 2016Kardium Inc.Systems and methods for selecting, activating, or selecting and activating transducers
US9452016Dec 20, 2013Sep 27, 2016Kardium Inc.Catheter system
US9480525Mar 11, 2013Nov 1, 2016Kardium, Inc.High-density electrode-based medical device system
US9486273Mar 11, 2013Nov 8, 2016Kardium Inc.High-density electrode-based medical device system
US9486281Jun 19, 2014Nov 8, 2016Sentreheart, Inc.Methods and devices for accessing and delivering devices to a heart
US9486283Dec 20, 2013Nov 8, 2016Medtronic Advanced Energy LlcFluid-assisted electrosurgical device
US9492227Mar 1, 2013Nov 15, 2016Kardium Inc.Enhanced medical device for use in bodily cavities, for example an atrium
US9492228Mar 1, 2013Nov 15, 2016Kardium Inc.Enhanced medical device for use in bodily cavities, for example an atrium
US20030191462 *Apr 2, 2003Oct 9, 2003Jacobs Clemens J.Method for interrupting conduction paths within the heart
US20040015106 *Jun 20, 2003Jan 22, 2004Coleman R. GlenFocused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US20040015219 *Feb 3, 2003Jan 22, 2004Francischelli David E.Device and method for ablation of cardiac tissue
US20040049179 *Sep 9, 2003Mar 11, 2004Francischelli David E.Ablation system
US20040078069 *Oct 14, 2003Apr 22, 2004Francischelli David E.Method and system for treatment of atrial tachyarrhythmias
US20040138621 *Jan 14, 2003Jul 15, 2004Jahns Scott E.Devices and methods for interstitial injection of biologic agents into tissue
US20040138656 *Jan 6, 2004Jul 15, 2004Francischelli David E.System and method for assessing transmurality of ablation lesions
US20040215183 *May 18, 2004Oct 28, 2004Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US20040220560 *Apr 29, 2003Nov 4, 2004Briscoe Roderick E.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US20040236322 *Jun 30, 2004Nov 25, 2004Mulier Peter M.J.Device and method for ablating tissue
US20050033280 *Aug 20, 2004Feb 10, 2005Francischelli David E.Method and system for treatment of atrial tachyarrhythmias
US20050165392 *Dec 3, 2004Jul 28, 2005Medtronic, Inc.System and method of performing an electrosurgical procedure
US20050209564 *Nov 30, 2004Sep 22, 2005Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US20050256522 *May 12, 2004Nov 17, 2005Medtronic, Inc.Device and method for determining tissue thickness and creating cardiac ablation lesions
US20050267454 *Jul 19, 2005Dec 1, 2005Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20050273006 *Apr 26, 2005Dec 8, 2005Medtronic, Inc.Heart wall ablation/mapping catheter and method
US20060009759 *Jun 2, 2005Jan 12, 2006Chrisitian Steven CLoop ablation apparatus and method
US20060009760 *Sep 16, 2005Jan 12, 2006Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20060020263 *Jun 2, 2005Jan 26, 2006Rothstein Paul TClamping ablation tool and method
US20060020271 *Jun 17, 2005Jan 26, 2006Stewart Mark TMethods and devices for occlusion of an atrial appendage
US20060036236 *Jun 2, 2005Feb 16, 2006Rothstein Paul TCompound bipolar ablation device and method
US20060041243 *Jun 23, 2005Feb 23, 2006Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US20060041254 *Jan 21, 2005Feb 23, 2006Medtronic, Inc.Electrosurgical hemostat
US20060047278 *Jun 2, 2005Mar 2, 2006Christian Steven CAblation device with jaws
US20060052770 *Jun 28, 2005Mar 9, 2006Medtronic, Inc.Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US20060079888 *Nov 29, 2005Apr 13, 2006Mulier Peter M JDevice and method for ablating tissue
US20060195082 *Apr 26, 2006Aug 31, 2006Francischelli David EMethod and apparatus for tissue ablation
US20060195083 *Apr 26, 2006Aug 31, 2006Jahns Scott EElectrosurgical hemostat
US20060229594 *Dec 9, 2005Oct 12, 2006Medtronic, Inc.Method for guiding a medical device
US20070049920 *Oct 2, 2006Mar 1, 2007Tissuelink Medical, Inc.Fluid-Assisted Medical Devices, Fluid Delivery Systems and Controllers for Such Devices, and Methods
US20070049923 *Aug 31, 2006Mar 1, 2007Jahns Scott EDevice and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US20070093808 *Dec 8, 2006Apr 26, 2007Mulier Peter M JMethod and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20070118107 *Jan 3, 2007May 24, 2007Francischelli David EVibration sensitive ablation device and method
US20070156127 *Dec 15, 2006Jul 5, 2007Boston Scientific Scimed, Inc.Foam electrode and method of use thereof during tissue resection
US20070203484 *Jan 26, 2007Aug 30, 2007David KimMethods of using ablation device and of guiding ablation device into body
US20070208332 *Dec 7, 2006Sep 6, 2007Mulier Peter MPen-type electrosurgical instrument
US20070208336 *Jan 26, 2007Sep 6, 2007David KimAblation device and system for guiding ablation device into body
US20070270688 *May 19, 2006Nov 22, 2007Daniel GelbartAutomatic atherectomy system
US20070270799 *Jul 27, 2007Nov 22, 2007Francischelli David EMethod and apparatus for tissue ablation
US20080004534 *Jun 28, 2006Jan 3, 2008Daniel GelbartIntra-cardiac mapping and ablation method
US20080009851 *Jun 28, 2006Jan 10, 2008Dan WittenbergerVariable geometry cooling chamber
US20080039746 *May 25, 2007Feb 14, 2008Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20080071271 *Jul 27, 2007Mar 20, 2008Francischelli David EMethod and apparatus for tissue ablation
US20080275439 *Mar 26, 2008Nov 6, 2008David FrancischelliCardiac ablation and electrical interface system and instrument
US20090131930 *Nov 16, 2007May 21, 2009Daniel GelbartMedical device for use in bodily lumens, for example an atrium
US20090138008 *Feb 2, 2009May 28, 2009Medtronic, Inc.Endocardial Dispersive Electrode for Use with a Monopolar RF Ablation Pen
US20090171346 *Dec 28, 2007Jul 2, 2009Greg LeyhHigh conductivity inductively equalized electrodes and methods
US20090192441 *Jan 25, 2008Jul 30, 2009Daniel GelbartLiposuction system
US20090222001 *Dec 24, 2008Sep 3, 2009Salient Surgical Technologies, Inc.Fluid-Assisted Electrosurgical Devices, Methods and Systems
US20090306647 *Jun 5, 2008Dec 10, 2009Greg LeyhDynamically controllable multi-electrode apparatus & methods
US20100022999 *Dec 8, 2008Jan 28, 2010Gollnick David ASymmetrical rf electrosurgical system and methods
US20100042110 *Sep 30, 2009Feb 18, 2010Medtronic, Inc.Method and system for placement of electrical lead inside heart
US20100094129 *Dec 18, 2007Apr 15, 2010Frank MarchilinskiEsophagial visualization device
US20100114089 *Oct 26, 2009May 6, 2010Hermes Innovations LlcEndometrial ablation devices and systems
US20100145331 *Feb 12, 2010Jun 10, 2010Chrisitian Steven CLoop Ablation Apparatus and Method
US20100145361 *Oct 2, 2009Jun 10, 2010Francischelli David EMethods and Devices for Occlusion of an Atrial Appendage
US20100168740 *Mar 11, 2010Jul 1, 2010Medtronic, Inc.Heart Wall Ablation/Mapping Catheter and Method
US20100198216 *Mar 16, 2010Aug 5, 2010Palanker Daniel VElectro-thermotherapy of tissue using penetrating microelectrode array
US20100217162 *May 3, 2010Aug 26, 2010Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20100217255 *Feb 23, 2010Aug 26, 2010Salient Surgical Technologies, Inc.Fluid-Assisted Electrosurgical Device and Methods of Use Thereof
US20100256631 *Jun 16, 2010Oct 7, 2010Boston Scientific Scimed, Inc.Foam electrode and method of use thereof during tissue resection
US20100312094 *Jun 8, 2010Dec 9, 2010Michael GuttmanMri-guided surgical systems with preset scan planes
US20100312096 *Jun 8, 2010Dec 9, 2010Michael GuttmanMri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
US20100317962 *Jun 16, 2010Dec 16, 2010Jenkins Kimble LMRI-Guided Devices and MRI-Guided Interventional Systems that can Track and Generate Dynamic Visualizations of the Devices in near Real Time
US20110022166 *Oct 6, 2010Jan 27, 2011Kardium Inc.Medical device for constricting tissue or a bodily orifice, for example a mitral valve
US20110066146 *Sep 14, 2010Mar 17, 2011Jahns Scott ESuction Stabilized Epicardial Ablation Devices
US20110071519 *Jun 14, 2010Mar 24, 2011Rothstein Paul TClamping Ablation Tool and Method
US20110087205 *Dec 20, 2010Apr 14, 2011Christian Steven CAblation device with jaws
US20110112523 *Nov 11, 2009May 12, 2011Minerva Surgical, Inc.Systems, methods and devices for endometrial ablation utilizing radio frequency
US20110118718 *Nov 13, 2009May 19, 2011Minerva Surgical, Inc.Methods and systems for endometrial ablation utilizing radio frequency
US20110125146 *Sep 8, 2010May 26, 2011Salient Surgical Technologies, Inc.Cartridge Assembly For Electrosurgical Devices, Electrosurgical Unit And Methods Of Use Thereof
US20110125172 *Nov 19, 2010May 26, 2011Kardium Inc.Automatic atherectomy system
US20120123403 *Nov 12, 2010May 17, 2012Vivant Medical, Inc.Apparatus, System and Method for Performing an Electrosurgical Procedure
US20130066308 *Aug 31, 2012Mar 14, 2013Jaime LandmanAblation-based therapy for bladder pathologies
WO2008082494A2 *Dec 18, 2007Jul 10, 2008The Trustees Of The University Of PennsylvaniaEsophagial visualization device
Legal Events
DateCodeEventDescription
Sep 23, 2005ASAssignment
Owner name: MEDTRONIC, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRANCISCHELLI, DAVID E.;STEWART, MARK T.;SKARDA, JAMES R.;REEL/FRAME:017011/0849;SIGNING DATES FROM 20050824 TO 20050908