Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060009762 A1
Publication typeApplication
Application numberUS 11/096,205
Publication dateJan 12, 2006
Filing dateMar 30, 2005
Priority dateJun 14, 2002
Also published asUS6893442, US7410487, US20030233090, US20080243119
Publication number096205, 11096205, US 2006/0009762 A1, US 2006/009762 A1, US 20060009762 A1, US 20060009762A1, US 2006009762 A1, US 2006009762A1, US-A1-20060009762, US-A1-2006009762, US2006/0009762A1, US2006/009762A1, US20060009762 A1, US20060009762A1, US2006009762 A1, US2006009762A1
InventorsJames Whayne
Original AssigneeAblatrics, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Vacuum coagulation probe for atrial fibrillation treatment
US 20060009762 A1
Abstract
An embodiment of the invention includes a surgical device for coagulating soft tissue such as atrial tissue in the treatment of atrial fibrillation, atrial flutter, and atrial tachycardia. The surgical device can include at least one elongate member comprising conductive elements adapted to coagulate soft tissue when radiofrequency or direct current energy is transmitted to the conductive elements. Openings through said conductive elements are routed through lumens in the elongate member to a vacuum source to actively engage the soft tissue surface intended to coagulate into intimate contact with the conductive elements to facilitate the coagulation process and ensure the lesions created are consistent, contiguous, and transmural. The embodiments of the invention can also incorporate cooling openings positioned near the conductive elements and coupled with a vacuum source or an injection source to transport fluid through the cooling openings causing the soft tissue surface to cool thus pushing the maximum temperature deeper into tissue. The embodiments of the invention can also incorporate features to tunnel between anatomic structures or dissect around the desired tissue surface to coagulate thereby enabling less invasive positioning of the soft tissue coagulating device and ensuring reliable and consistent heating of the soft tissue.
Images(11)
Previous page
Next page
Claims(20)
1. A surgical device for coagulating soft tissue comprising
a first elongate member defining at least one lumen and comprising at least one conductive element at a first end;
at least one opening through said conductive element, said opening coupled to said lumen;
at least one electrical conduit associated with said conductive element;
wherein said lumen is adapted to be connected to a vacuum source; and
said electrical conduit is adapted to be connected to an energy transmission source.
2. The device of claim 1, wherein said first elongate member is malleable.
3. The device of claim 1, wherein said conductive element is malleable.
4. The device of claim 1, further comprising multiple conductive elements coupled to said first elongate member and individually connected to electrical conduits that are routed to at least one energy transmission source.
5. The device of claim 1 wherein said first elongate member comprises at least one non-conductive material, said conductive element is associated with said first member, said lumen applies a suction force from said vacuum source at said opening to cause soft tissue to contact said conductive member, and said electrical conduit transmits energy from said source through said conductive member to cause contacted tissue to heat.
6. The device of claim 1 further comprising a sheath of a non-conductive material adapted to cover a length of said conductive element, wherein said sheath is axially movable relative to said conductive element.
7. A surgical device for coagulating soft tissue comprising:
a first elongate member defining a first lumen and a second lumen and comprising at least one conductive element;
at least one vacuum opening through said conductive element, said vacuum opening coupled to said first lumen;
at least one cooling opening through said first elongate member, said cooling opening coupled to said second lumen;
at least one electrical conduit associated with said conductive element;
wherein said first lumen is adapted to be connected to a vacuum source;
said second lumen is adapted to be connected to a fluid injection or suction source; and
said electrical conduit is adapted to be connected to an energy transmission source.
8. The device of claim 7 wherein said first lumen is coupled to said second lumen and said lumens are connected to a single suction source to simultaneously apply suction through said vacuum opening causing said soft tissue surface to contact said conductive element and cool said soft tissue surface as energy is transmitted to said conductive element causing said soft tissue to heat.
9. The device of claim 7 further comprising a sheath of a non-conductive material adapted to cover a length of said conductive element, wherein said sheath is axially movable relative to said conductive element.
10. A surgical device for coagulating soft tissue, and dissecting or tunneling through anatomic structures comprising:
a first elongate member defining a first lumen, a second lumen, and a distal end cap, and comprising at least one conductive element;
at least one vacuum opening through said conductive element, said vacuum opening coupled to said first lumen;
at least one injection opening through said distal end cap, said injection opening coupled to said second lumen;
at least one electrical conduit associated with said conductive element;
a vacuum source adapted to be connected to said first lumen;
a fluid injection source adapted to be connected to said second lumen;
an energy transmission source adapted to be connected to said electrical conduit;
wherein fluid is adapted to be transported at a sufficiently high velocity through said injection opening to dissect or separate soft tissue.
11. The device of claim 10 further comprising at least one cooling opening coupled to said first lumen, wherein said cooling opening is adapted to cool the soft tissue surface by suctioning fluid through said cooling opening as energy is transmitted to said conductive element causing said soft tissue to heat.
12. The device of claim 10 further comprising at least one cooling opening coupled to said second lumen, wherein said cooling opening is adapted to cool the soft tissue surface by injecting fluid through said cooling opening as energy is transmitted to said conductive element causing said soft tissue to heat.
13. The device of claim 10 further comprising a sheath of a non-conductive material adapted to cover a length of said conductive element, wherein said sheath is axially movable relative to said conductive element.
14. A method for coagulating a length of soft tissue comprising:
placing an elongate member comprising at least one lumen, at least one conductive element, and at least one opening through said conductive element and associated with said lumen against a soft tissue surface;
applying a vacuum source to said lumen causing said soft tissue to contact said conductive element at said opening;
transmitting radiofrequency energy through said conductive element to heat said soft tissue.
15. The method of claim 14 wherein at least one of said elongate member and said conductive element are malleable and the step of placing said elongate member against said soft tissue surface comprises deforming at least one of said elongate member and said conductive element before or after advancing said conductive element against said soft tissue surface.
16. The method of claim 14 wherein said elongate member further comprises a non-conductive sheath covering a length of said conductive member and movable relative to said conductive member, and the step of placing said elongate member against said soft tissue surface comprises advancing or retracting said sheath relative to said conductive member until the length of exposed conductive element equals the desired lesion length before or after advancing said conductive element against said soft tissue surface.
17. The method of claim 14 wherein said elongate member further comprises at least one fluid injection opening and said step of placing said elongate member against soft tissue surface comprises tunneling between or dissecting around anatomic structures to expose said soft tissue surface before advancing said conductive element against said soft tissue surface.
18. The method of claim 14 wherein said step of placing said elongate member against a soft tissue surface comprises tunneling or dissecting around pulmonary veins to engage said conductive element against a left atrial surface associated with the pulmonary veins.
19. The method of claim 14 wherein said step of heating said soft tissue comprises coagulating a contiguous, transmural lesion in atrial tissue by transmitting radiofrequency energy through said conductive element and into the contacting atrial epicardium.
20. The method of claim 14 wherein said step of heating said soft tissue comprises coagulating a contiguous, transmural lesion in atrial tissue by resistive heating said conductive element contacting an atrial epicardium.
Description
    FIELD OF THE INVENTIONS
  • [0001]
    Embodiments of the invention relate to devices and methods for less invasive treatment of atrial fibrillation. More particularly, certain embodiments of the invention relate to ablation and/or coagulation probes that utilize suction to ensure consistent and intimate tissue contact. These vacuum-assisted coagulation probes are capable of creating transmural, curvilinear lesions capable of preventing the propagation of wavelets that initiate and sustain atrial fibrillation, atrial flutter, or other arrhythmia substrate. The vacuum-assisted coagulation probes facilitate less invasive surgery involving thorascopic access and visualization to the target coagulation sites. Additionally, the vacuum-assisted coagulation probes of the invention are suitable for coagulating soft tissues (e.g. of the atria to treat atrial fibrillation, atrial flutter, or other arrhythmia) through a median sternotomy, lateral thoracotomy, intercostals port-access, mini-sternotomies, other less invasive approaches involving Xiphoid access, inguinal approaches, or sub-thoracic approaches adjacent the diaphram. Alternatively, the vacuum-assisted coagulation probes can be modified for catheter-based applications by elongating the shaft and altering the diameters and other feature dimensions for intravascular access.
  • [0002]
    The vacuum-assisted coagulation probes can also be used to coagulate other soft tissues for cancer therapy in a wide-variety of applications (e.g. liver, prostate, colon, esophageal, gastrointestinal, gynecological, etc.), or shrinking of collagen in tissue structures such as skin, tendons, muscles, ligaments, vascular tissue during arthroscopic, laparoscopic, or other minimally invasive procedures.
  • [0003]
    Certain embodiments of devices and methods of the invention also enable tunneling through and/or dissecting soft tissue structures by injecting fluid (air, CO2, saline, etc.) in high intensity streams that separate tissue structures by disrupting fatty deposits, ligaments, adventitial tissue, or other structure that holds anatomic structures together without damaging the anatomic structure the device is dissecting free or otherwise exposing. These devices of the invention enable less invasive access without having to manually dissect tissue structures to place the vacuum-assisted coagulation probes. As such, these fluid dissecting devices are capable of tunneling through the pulmonary veins, separate the pulmonary veins, the aorta, the pulmonary artery, and other anatomy from the atria to provide a path for the vacuum-assisted coagulation probe to directly appose the atrial epicardium throughout the desired length the lesion is expected to span, which is required to create transmural, curvilinear lesions. These embodiments may alternatively dissect other soft tissue structures during applications such as endoscopic saphenous vein harvesting, left internal mammary artery dissection, etc.
  • DESCRIPTION OF THE RELATED ART
  • [0004]
    Atrial fibrillation surgery involving radiofrequency, d.c., microwave, or other thermal ablation of atrial tissue has a limitation in that tissue contact throughout the length of the electrode(s) is/are not consistent causing variability in the transmission of energy throughout the target length of ablated/coagulated tissue. This produces gaps of viable tissue that promote propagation of wavelets that sustain atrial fibrillation, or produce atrial flutter, atrial tachycardia, or other arrhythmia substrate. Another influence in the inability of existing thermal ablation probes to create complete curvilinear, transmural lesions is the presence of convective cooling on the opposite surface of the atrium producing a heat sink that decreases the maximum temperature at this surface thereby preventing the lesions from consistently extending transmural through the entire wall of the atrium. This is especially relevant during beating-heart therapies in which the coagulation/ablation probe is placed against the epicardial surface, and blood flowing along the endocardium removes heat thus producing a larger gradient between temperature immediately under the probe electrodes along the epicardium and that at the endocardium. Increased tissue contact is capable of reversing this effect by evoking a compression of the tissue that shortens the wall thickness of the atria, ensuring consistent contact throughout the length of the electrode(s), and increasing the efficiency of thermal conduction from the epicardium to the endocardium. As such a more consistent and reliable lesion is created.
  • BRIEF DESCRIPTION OF DRAWINGS
  • [0005]
    Several exemplary embodiments of the present invention, and many features and advantages of those exemplary embodiments will be elaborated in the following detailed description and accompanying drawings, in which:
  • [0006]
    FIGS. 1 a to 1 d show a top view, a side-sectional view taken along A-A of FIG. 1 a, a side view, and a bottom view of a vacuum coagulation probe embodiment of the invention;
  • [0007]
    FIGS. 1 e and 1 f show cross-sectional views taken along B-B and C-C of FIG. 1 d;
  • [0008]
    FIGS. 2 a and 2 b show a side view and a bottom view of a vacuum coagulation probe embodiment that incorporates tunneling/dissecting fluid injection capabilities;
  • [0009]
    FIGS. 2 c and 2 d show sectional views taken along B-B and C-C of FIG. 2 a;
  • [0010]
    FIG. 2 e shows a detailed view of region D taken from FIG. 2 b;
  • [0011]
    FIG. 3 shows a side view of a vacuum coagulation probe embodiment deflected or bent to engage the soft tissue surface;
  • [0012]
    FIGS. 4 a to c show side views of a vacuum coagulation probe embodiment that incorporates a movable insulation sheath to adjust the electrode length and convective cooling pores;
  • [0013]
    FIG. 5 shows a posterior view of the heart and associated vasculature with a vacuum coagulation probe embodiment accessing a desired lesion location along the left atrium;
  • [0014]
    FIG. 6 shows a posterior view of the heart and associated vasculature with a vacuum coagulation probe embodiment used to create lesions along the left atrium and right atrium capable of treating atrial fibrillation;
  • [0015]
    FIG. 7 a shows an anterior view of a heart and associated vasculature with a vacuum coagulation probe embodiment placed to access regions of the left atrium about the pulmonary veins;
  • [0016]
    FIG. 7 b shows a region of the thoracic cavity with the heart removed, but associated vasculature in place, to show access sites along the left atrium for a vacuum coagulation probe embodiment to create lesions capable of treating atrial fibrillation;
  • [0017]
    FIG. 8 a shows a side-sectional view of a vacuum coagulation probe embodiment with the vacuum pores actuated to ensure intimate and complete contact between a tissue surface and the probe electrode;
  • [0018]
    FIG. 8 b shows a close-up side-sectional view of the vacuum coagulation probe embodiment in FIG. 8 a with the vacuum pores actuated to urge soft tissue into intimate contact with the electrode, coagulation energy transmitted through the electrode into tissue to create a curvilinear, transmural lesion, and convective cooling pores to decrease the surface temperature of the soft tissue and urge the maximum temperature deeper;
  • [0019]
    FIG. 9 shows a perspective view of a vacuum coagulation probe embodiment that incorporates a high intensity fluid injection system to tunnel between and/or dissect free anatomic structures;
  • DETAILED DESCRIPTION
  • [0020]
    A need exists for vacuum coagulation probe devices and methods that create contiguous, curvilinear, transmural lesions in the atria to treat atrial fibrillation, atrial flutter, or other arrhythmia substrate. In addition, such devices and methods could simplify other soft tissue coagulation procedures by ensuring intimate tissue contact while precisely and effectively heating a region of soft tissue. The needed technology also could enable certain procedures to be performed less invasive through limited incisions that previously required large, open incisions with inherent morbidity and risks to other anatomic structures. Such inventive devices and methods thus could enable patients to undergo such reparative or therapeutic surgical procedures while enduring less pain, expedited hospital stays, and shorter rehabilitative and recovery times.
  • [0021]
    The present invention relates to methods and devices that enable reliable and controlled coagulation of soft tissue during less invasive procedures. To accomplish this, the coagulation probe incorporates vacuum conduits associated with the electrode(s) to urge the soft tissue into intimate contact with the edges of the electrode(s) and ensure efficient transmission of energy capable of consistently and completely heating a desired region of soft tissue. The vacuum coagulation probe embodiments of the invention also enable convective cooling of the tissue surface to move the maximum temperature deeper into tissue and create larger and deeper lesions. The vacuum coagulation probe embodiments of the invention can also incorporate tunneling and/or dissecting features capable of introducing the vacuum coagulation probe between anatomic structures around the atria which would otherwise be inaccessible without mechanical dissection, and/or expose a region of atria to produce consistent tissue contact, required to ensure contiguous, transmural lesions.
  • [0022]
    The following is a detailed description of certain exemplary embodiments of the inventions. This detailed description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating certain general principles of the inventions.
  • [0023]
    This patent application discloses a number of exemplary embodiments, mainly in the context of soft tissue coagulation accomplished through less invasive approaches (e.g. thoracoscopic, arthroscopic, laparoscopic, percutaneous, or other minimally invasive procedures). The vacuum coagulation probe embodiments disclosed herein can produce intimate contact between a soft tissue surface and electrode(s) used to transmit energy capable of heating the soft tissue until irreversible injury is achieved making the soft tissue non-viable and unable to propagate electrical impulses, mutate, reproduce or other unwanted function. The vacuum coagulation probe embodiments also enable supporting and/or repositioning the soft tissue during coagulation to prevent or minimize shrinking or other change in the shape of the soft tissue associated with heat causing the collagen in the soft tissue to denature. The vacuum coagulation probe embodiments also address issues related to inadequate access to the soft tissue during less invasive approaches by tunneling and/or dissecting the anatomic structures to produce a path to the coagulation sites, and expose the surface of the soft tissue. This capability is especially relevant when coagulating atrial tissue along the posterior region of the heart, characteristic of creating lesions along the left atrial epicardium about the pulmonary veins.
  • [0024]
    Nevertheless, it should be appreciated that the vacuum coagulation probe devices can be applicable for use in other indications involving devices that are used to coagulate soft tissue, and/or tunnel between or dissect anatomic structures where access to the tissue is limited by a small opening into the cavity, confined space at the soft tissue interface, difficult to reach locations, or other anatomic limitation. The embodiments of the invention can be configured for the human anatomy; however, it should be noted that the embodiments of the invention can, in some cases, be tailored to other species, such as canine, ovine, porcine, bovine, or horses, by changing the geometry and sizes of the structures.
  • [0025]
    An additional benefit of vacuum coagulation probe devices can involve the ease of deployment and the rapid healing post-procedure. The small incision used to access the soft tissue during such procedures accelerates the healing process and reduces the visible scar. The vacuum coagulation probe devices can be capable of being deployed through a thoracostomy, thoracotomy, median sternotomy, mini-sternotomy, mini-thoracotomy, xiphoid access, subthoracic access, arthroscopic, or laparoscopic approach, thereby potentially eliminating the need for long incisions to access the soft tissue and corresponding anatomic structures.
  • [0026]
    The vacuum coagulation probe, and corresponding components, can be fabricated from at least one rod, wire, band, bar, tube, sheet, ribbon, other raw material having the desired pattern, cross-sectional profile, and dimensions, or a combination of cross-sections. The rod, wire, band, bar, sheet, tube, ribbon, or other raw material can be fabricated by extruding, injection molding, press-forging, rotary forging, bar rolling, sheet rolling, cold drawing, cold rolling, using multiple cold-working and annealing steps, casting, or otherwise forming into the desired shape. The components of the vacuum coagulation probe may be cut from raw material by conventional abrasive sawing, water jet cutting, laser cutting, ultrasonic cutting, EDM machining, photochemical etching, or other techniques to cut the lumens, pores, ports and/or other features of the vacuum coagulation probe from the raw material. Components of the vacuum coagulation probe can be attached by laser welding, adhesively bonding, ultrasonic welding, radiofrequency welding, soldering, spot welding, or other attachment means.
  • [0027]
    For several of the vacuum coagulation probe embodiments below, various components can be fabricated from at least one wire, tube, ribbon, sheet, rod, band or bar of raw material cut to the desired configuration and thermally formed into the desired 3-dimensional configuration. When thermally forming (e.g. annealing) components, they can be stressed into the desired resting configuration using mandrels and/or forming fixtures having the desired resting shape of the puncturing component, and heated to between 300 and 600 degrees Celsius for a period of time, typically between 15 seconds and 10 minutes. Alternatively, the components may be heating immediately prior to stressing. Once the volume of material reaches the desired temperature, the component is quenched by inserting into chilled or room temperature water or other fluid, or allowed to return to ambient temperature. As such the components can be fabricated into their resting configuration. When extremely small radii of curvature are desired, multiple thermal forming steps can be utilized to sequentially bend the component into smaller radii of curvature.
  • [0028]
    When fabricating the vacuum coagulation probe components from tubing, the raw material can have an oval, circular, rectangular, square, trapezoidal, or other cross-sectional geometry capable of being cut into the desired pattern. After cutting the desired pattern of lumens, ports, and pores, the components can be formed into the desired shape, stressed, heated, for example, between 300° C. and 600° C., and allowed to cool in the preformed geometry to set the shape of the components, as discussed above.
  • [0029]
    Once the components are fabricated and formed into the desired 3-dimensional geometry, they can be tumbled, sand blasted, bead blasted, chemically etched, ground, mechanically polished, electropolished, or otherwise treated to remove any edges and/or produce a smooth surface.
  • [0030]
    Holes, slots, notches, other cut-away areas, or regions of ground material can be incorporated in the components to tailor the stiffness profile. Cutting and treating processes described above can be used to fabricate the slots, holes, notches, cut-away regions, and/or ground regions in the desired pattern to taper the stiffness along, focus the stiffness along the length of, reinforce specific regions of, or otherwise customize the stiffness profile of the vacuum probe components.
  • [0031]
    FIGS. 1 a to d show a top view, a side-sectional view taken along A-A, a side view, and a bottom view of a vacuum coagulation probe 2 embodiment of the invention. The vacuum coagulation probe 2 incorporates a shaft 4 that defines a lumen 6, as shown in FIG. 1 e. The shaft 4 may be fabricated from a metal (e.g. titanium), metal alloy (e.g. stainless steel, spring steel, nickel titanium), PEBAX®, polyester, polyurethane, urethane, silicone, polyimide, other thermoplastic, thermoset plastic, or elastomer, or braided metallic wires covered with a polymer. The shaft 4 is preferably fabricated from tubing having a diameter between 0.040″ and 0.300″ and a wall thickness between 0.004″ and 0.080″ depending on the type of material and stiffness requirements. The tubing may have a circular cross-section, elliptical cross-section, rectangular cross-section, or other geometry depending on the stiffness requirements, access characteristics, and other considerations. The shaft 4 may be fabricated from multi-lumen cubing having two or more lumens serving specific functions. At its proximal end, the shaft 4 is bonded to a handle (not shown) that incorporates a port(s) 20 that feeds the lumen(s) 6. The port(s) 20 may incorporate a luer adaptor(s) or other tubing connection to facilitate attaching IV tubing or other feeding tube capable of connecting to a vacuum source.
  • [0032]
    The handle (not shown) also houses at least one electrical connector 14 to which wire(s) 12 are attached at the proximal end. The wire(s) 12 are routed to the electrode(s) 8 to enable transmitting energy (radiofrequency, or direct current) to the electrode(s). When transmitting radiofrequency energy in unipolar fashion to a large surface area, reference electrode placed apart from the coagulation electrode, a single wire is routed to each electrode and connected to a radiofrequency generator. When transmitting d.c. or radiofrequency energy in bipolar fashion to electrode pairs, individual wires are connected to each of two or more individual, closely-spaced electrodes. When utilizing resistive heating of the electrode and relying on conduction to transfer heat to adjacent tissue, two wires are connected to each electrode (e.g. resistive element in this case) spaced apart so the entire length of the electrode heats to the desired temperature and the heat is conducted to contacted tissue.
  • [0033]
    Temperature sensors (not shown) may be associated with each electrode with wires routed along the shaft to the handle where they are connected to an electrical connector (14) capable of transmitting the temperature signal to a radiofrequency generator with temperature monitoring or control capabilities or a separate temperature monitor. U.S. Pat. No. 5,769,847, entitled “Systems and methods for controlling tissue ablation using multiple temperature sensing elements” and incorporated herein by reference, describes tissue coagulation systems utilizing multiple electrodes and temperature sensors associated with each electrode to controllably transmit radiofrequency energy and maintain all electrode(s) essentially at the same temperature. The vacuum coagulation probe electrode(s) and associated temperature sensors (not shown) may be connected to such a mechanism to control transmission of radiofrequency energy to each electrode to control the heating of contacted soft tissue.
  • [0034]
    The electrode(s) 8 may be fabricated from one or more lengths of tubing (having a circular, elliptical, rectangular, or other cross-section) secured to the shaft 4 at one end and containing a cap at the other end. If more than one electrode 8 is desired, multiple lengths of tubing may be connected to the shaft 4 separated by short lengths of insulative tubing material. Alternatively, the electrode(s) may be fabricated from wire, having a circular, rectangular, elliptical, or other cross-section, coiled into a helix, interlaced into a mesh or other configuration and placed over and secured to an electrode support. Another electrode configuration includes lengths of sheet or bar material bonded to an electrode support having a semicircular cross-section or other geometry that defines a lumen, with the electrode in place, that is linked to the shaft 4 lumen 6. This configuration exposes the electrode only along one side of the vacuum coagulation probe and insulates the opposite side against transmission of radiofrequency energy and/or heat. As shown in FIGS. 1 b, 1 d, and 1 f, pores or holes 10 are created along one side of the electrode connecting the lumen 6 of the shaft 4 to the external surface of the electrode(s) 8. These pores 10 enable producing a vacuum against the soft tissue throughout the length of electrode(s) 8 thereby ensuring intimate tissue contact between the electrode(s) 8 and the soft tissue. The pores 10 also produce edges along the electrodes commonly associated with high current densities transmitted into the soft tissue. The combination of creating intimate tissue contact and directing the current density profile creates controlled and efficient heating of the soft tissue required when creating contiguous curvilinear, transmural lesions in atrial tissue (or other soft tissue). The pores may have a constant diameter or vary in diameter or profile along the length of the electrode to differ contact forces and/or current density profiles throughout the length of the electrode(s) 8.
  • [0035]
    The electrode(s) 8 may be fabricated from metal (e.g. tungsten, titanium, platinum, gold), metal alloy (e.g. stainless steel, spring steel, nickel titanium, etc.), metals deposited over a carrier (e.g. gold-plated stainless steel, gold deposited polyimide, platinum deposited polyester, etc.) or a combination of materials cut, with methods described previously, to define pores, shaft 4 attachment features (e.g. threads, slots, etc.) or other features. The electrode(s) may have a circular, elliptical, rectangular, curved, flattened, or other profile depending on the function of the electrode(s). The electrode(s) may be fabricated from elastic or superelastic materials so they can be deflected-upon exposure to an external force (e.g. actuation of the vacuum, manual bending, etc.), or be treated so the electrode(s) is/are malleable so the operator may tailor the electrode(s) to the anatomic structures. Similarly, the shaft 4, described above, may be treated so it is malleable.
  • [0036]
    FIGS. 2 a and 2 b show another vacuum coagulation probe embodiment used to coagulate soft tissue during minimally invasive access (e.g. thoracoscopic, endoscopic, arthroscopic, laparoscopic, or other approach) into the body cavity. A conventional cannulae, trocar or other portal is used to access the cavity through the skin and underlying tissues.
  • [0037]
    The vacuum coagulation probe (2) embodiment in FIGS. 2 a, 2 b, 2 c, 2 d, and 2 e. incorporates a multi-lumen tubing shaft (4) that contains two lumens (6 and 16). The first lumen 6 links to pores (10) created in at least one electrode (8), as shown in FIG. 2 c. The electrode embodiment in FIGS. 2 a 2 b, 2 c, 2 d, and 2 e preferably consists of a length of sheet or bar material, having a predetermined wall thickness, secured to the multi-lumen shaft tubing along one side of the shaft. The electrode(s) may fit inside notches created in the shaft tubing that houses the electrode(s), adhesively bonded to an opening(s) in the shaft, ultrasonically welded to an opening(s) in the shaft, laser welded, spot welded or secured to the shaft with another process depending on the materials used for the electrode(s) and the shaft. Alternatively, the electrode(s) may be fabricated from a multi-lumen tubing having the desired cross-section and secured to the shaft. For example, the multi-lumen electrode tubing may have the same cross-section profile as the shaft to maintain consistency in the lumen mating apposition. Another configuration involves fabricating the electrode(s) and the shaft from a single length of conductive tubing (e.g. single lumen or multi-lumen), or less conductive tubing deposited or otherwise covered with a metallic coating. In these cases, the shaft region of the probe is covered with an insulative material to isolate the shaft from the electrode(s). In the embodiment shown in FIG. 2 a, the shaft is preformed into a “S” configuration; alternatively, the shaft may be formed into any desired geometry depending on the access to the target coagulation location.
  • [0038]
    As shown in FIGS. 2 a, 2 c, and 9, lumen 16 defined by the multi-lumen tubing routes a second port 22 at the handle to high velocity fluid injection pores 18 at the distal end of the vacuum coagulation probe 2 to enable separation and/or dissection of connective tissue, fatty deposits, or other tissue that covers target anatomic structures or holds the anatomy together. Injection of fluid through the high velocity fluid injection pores 18 produces high intensity streams (68) of fluid, as shown in FIG. 9, capable of disrupting certain connective tissues (70), fatty deposits, and other tissue without damaging vascular tissue (72 and 74), or other anatomic structures. As such, the vacuum coagulation probe is capable of tunneling through anatomic structures such as the pulmonary veins, the pulmonary artery, the aorta, or other anatomic structure to place the probe at any desired coagulation location and produce a clean surface of tissue for the probe to contact and improve the efficiency of coagulation by removing adventitia or other tissue. The fluid used to dissect and/or separate tissue may consist of saline, CO2, air or other medium capable of being forced through the shaft 4 lumen 16 and past the distal end injection pores 18 to create high velocity streams. The injection pores 18 have a diameter between 0.0005″ and 0.040″ and are distributed throughout the distal end of the vacuum coagulation probe (or the sides) to direct the stream of injected high intensity fluid against the tissue to be dissected or separated. The pores may be angled such that the streams (68) intersect a distance away from the distal end of the probe to focus the dissection and/or tunneling force a specified distance from the distal end of the probe.
  • [0039]
    The embodiments described above may be treated so they are malleable and may be deformed into a desired shape, as shown in FIG. 3, required to access the desired coagulation location and/or create the desired lesion length, and shape. An alternative approach, not shown in the Figures, is to incorporate a steering mechanism in the vacuum coagulation probe. The steering mechanism may be used to deflect the entire electrode relative to the shaft and/or a portion of the electrode. At least one pull-wire can be secured to the electrode at the electrode to shaft junction if the electrode is to be deflected as a unit relative to the shaft, or along the electrode up to the distal end of the probe if the electrode is to be deflected. The opposite end of the pull-wire(s) are routed to the handle where it is secured to an actuation knob, not shown, to manually deflect the vacuum coagulation probe into a curve. The curve shape, angle and radius is defined by the distance along or from the electrode(s) at which the pull-wire(s) is/are secured and the stiffness relationship between the shaft and the electrode(s). A guide-coil or other radially restraining component can be housed around the pull-wire(s) in the shaft to specify the stiffness of the shaft and further define the radius of curvature and angle of deflection of the distal region of the probe as the pull-wires are actuated.
  • [0040]
    FIGS. 4 a-4 b, and 4 c show the distal section of another vacuum coagulation probe (2) embodiment. This probe (2) incorporates at least one electrode (8), one is shown in FIGS. 4 a, 4 b, and 4 c, containing vacuum pores (10) defined as cuts through the at least one electrode (8). A moveable sheath 24 alters the length of the electrode(s) by insulating a proximal region of the electrode(s) from tissue and covering pores (10) in the proximal region of the electrode (8) such that tissue is not forced against the electrode(s) in the isolated region. FIG. 4 a shows the probe (2) with the distal 15% of the electrode(s) exposed and used to vacuum contact and coagulate tissue. FIG. 4 b shows the probe (2) with the sheath (24) retracted such that approximately 40% of the electrode(s) is/are exposed. FIG. 4 c shows the probe (2) with the sheath further retracted such that approximately 85% of the electrode(s) is/are exposed. The sheath (24) may be manipulated relative to the electrode(s) at any location to predetermine the length of the tissue to be coagulated into a lesion. The probe (2) embodiment in FIGS. 4 a, 4 b, and 4 c further includes convective cooling pores (26) that may be connected to the vacuum lumen 6 such that actuation of the vacuum source not only causes the tissue to contact the electrode but produces a convective cooling of the tissue surface at the electrode-tissue interface capable of cooling the tissue surface and urging the maximum tissue temperature deeper into the tissue. Alternatively, the convective cooling pores (26) may be connected to the high velocity fluid injection lumen (16), or other conduit, such that saline, CO2, air, or other medium may be injected through the electrode or adjacent the electrode to actively cool the electrode and/or the tissue surface immediately adjacent the electrode and urge the maximum tissue temperature deeper into tissue. The velocity of the fluid injected, the volume of injected fluid, and the temperature of the medium determines the amount of cooling and the magnitude of the effect upon tissue heating.
  • [0041]
    Existing atrial fibrillation coagulation or other soft tissue coagulation treatment applications performed thoracoscopically, endoscopically, arthroscopically, laparoscopically, or with other less invasive approach tend to create incomplete curvilinear lesions because the desired lesion sites are inaccessible, contact to the tissue is poor, and the temperature gradient from the contacted tissue surface to the opposite tissue surface is dramatic; these conditions limit the creation of contiguous, transmural, curvilinear, lesions. This is especially the case when blood is flowing along the opposite tissue surface producing a heat sink that cools that tissue surface further affecting the temperature gradient and limiting the lesion depth. As such, the existing techniques can be inferior and have a higher rate of arrhythmia persistence than the vacuum coagulation probe devices of the invention. In addition, incomplete lesions during atrial fibrillation treatment have been demonstrated to generate substrates for persistent atrial flutter and/or atrial tachycardia. For other applications, the inability to create consistent and complete lesions allows cancerous cells, or other disease substrates to prevail.
  • [0042]
    An approach for creating atrial fibrillation with the vacuum coagulation probe (2) of the invention is shown in FIG. 5. The probe is inserted into the thoracic cavity through ports placed in intercostal spaces, a thoracotomy, a thoracostomy, a median sternotomy, a mini-sternotomy, a xiphoid access port, a lateral subthoracic access site, or other less invasive surgical procedure. The probe (2) may contain high velocity fluid injection capabilities, as shown in FIGS. 2 c and 9 and described above, to tunnel around or between vessels (72 and 74) such as the aorta, pulmonary artery, pulmonary veins (28), and/or other anatomic structures by separating and/or dissecting connective tissue (70), fatty deposits, and/or other tissue without damaging the vasculature (72 and 74). The probe (2) may be deflected or deformed into the desired lesion pattern, which in this case is circular or semi-circular passing around the right superior pulmonary vein, the right inferior pulmonary vein, the left inferior pulmonary vein, the left superior pulmonary vein, and terminating at the right superior pulmonary vein. Once placed, the vacuum source is actuated to apply a suction force through the vacuum pores (10) to urge the epicardium of the left atrium (36) into intimate contact with the electrode(s) (8). It should be noted that the vacuum coagulation probe can instead be placed against the endocardium of the atria during cardiopulmonary bypass procedures where the atria are open for valve (mitral, tricuspid, and/or atrioventricular) repair or replacement procedures or beating heart procedures where an introducer into the atrium is obtained through an atrial appendage, the atrial free wall, the ventricle, a pulmonary vein, a vena cava, or other conduit that may be closed upon completion of the coagulation procedure.
  • [0043]
    The entire length of the exposed electrode(s) is used to apply suction through the pores (10) to apply a vacuum force against the epicardium (or endocardium) and urge the tissue into engagement with the electrode(s). An insulative, movable sheath as shown in FIGS. 4 a, 4 b, and 4 c may be used to alter the length of exposed electrode(s) and the target region of tissue that will be urged into engagement by the suction forces.
  • [0044]
    Then radiofrequency (or d.c.) energy is transmitted to the electrode(s) in unipolar or bipolar mode such that the current density is transmitted into tissue adjacent the electrode(s) and ohmic heating causes the tissue adjacent the electrode(s) to heat and conduct the heat further into depths of tissue. Alternatively, the electrode(s) may be fabricated from a resistive element in which radiofrequency (or d.c.) energy applied along the resistive element, between wire connections at opposite ends of the resistive element, heats the element and the intimate tissue to electrode(s) contact enable thermal conduction of the heat into the target soft tissue.
  • [0045]
    The transmission of energy in unipolar or bipolar mode causes the soft tissue to heat which conducts further into adjacent soft tissue; alternatively the heating of a resistive element causes the resistive electrode(s) to heat which is then conducted into adjacent, contacted soft tissue. As cardiac cells (and any muscle tissue) is heated above 50° C., irreversible conduction block occurs and the cells become non-viable (Nath, et al. Cellular electrophysiologic effects of hyperthermia, on isolated guinea pig papillary muscle: implications for catheter ablation. Circulation. 1993; 88:1826-1831). As such, a consistent, continuous length of atrial tissue extending from the epicardial surface to the endocardial surface must be heated above 50° C. to treat atrial fibrillation.
  • [0046]
    For other applications involving coagulation of soft tissue to shrink collagen rich tissues or prevent shrinking of collagen tissues, heating of the soft tissue must be controlled, which the vacuum coagulation probe embodiments of the invention enable. Published studies evaluating the response of vessels (arteries and veins) to heat have focused on the ability to permanently occlude vessels. Veins have been shown to shrink to a fraction of their baseline diameter, up to and including complete occlusion, at temperatures greater than 70° C. for 16 seconds; the contraction of arteries was significantly less than that of veins but arteries still contracted to approximately one half of their baseline diameter when exposed to 90° C. for 16 seconds (Gorisch et al. Heat-induced contraction of blood vessels. Lasers in Surgery and Medicine. 2:1-13, 1982; Cragg et al. Endovascular diathermic vessel occlusion. Radiology. 144:303-308, 1982). Gorisch et al explained the observed vessel shrinkage response “as a radial compression of the vessel lumen due to a thermal shrinkage of circumferentially arranged collagen fiber bundles”. These collagen fibrils were observed to denature, thus shrink, in response to heat causing the collagen fibrils to lose the cross-striation patterns and swell into an amorphous mass.
  • [0047]
    Embodiments of the invention prevent or limit the heat-induced contraction of such structures as the pulmonary veins by applying a vacuum force capable of maintaining the position (e.g. diameter) of the vessel while heating the soft tissue. As such, the vessel is stented or supported from the external surface as the tissue is heated above the required 50° C. threshold without concern that the vessel may accidentally become stenosed due to the heat-induced contraction.
  • [0048]
    Alternatively, the vacuum coagulation probe embodiments direct heat-induced contraction of such structures as tendons, skin or other anatomy in which the therapy is designed to heat thereby denature the collagen and shrink the tissue until the desired shape or effect is achieved. In addition, the vacuum coagulation probe can reposition the soft tissue while heat is applied to the soft tissue to direct the shrinking and cause the collagen fibrils to reorganize reforming the soft tissue into a desired shape.
  • [0049]
    FIG. 6 shows a posterior view of a heart with a vacuum coagulation probe embodiment placed between the right superior pulmonary vein 28 and the coronary sinus 30 to create a lesion extending from the right superior pulmonary vein to the right inferior pulmonary vein and finally ending at the coronary-sinus. FIG. 6 shows this placement intersecting another lesion 40 previously created with the vacuum coagulation probe embodiment and extending from the left superior pulmonary vein to the left inferior pulmonary vein and ending at the coronary sinus. FIG. 6. also shows right atrial lesions created with the vacuum coagulation probe extending from the superior vena cava to the inferior vena cava, and from the inferior vena cava to the tricuspid valve annulus located along the atrial-ventricular groove proximate the coronary sinus orifice. Such lesion patterns described above have been demonstrated to terminate atrial fibrillation provided they are contiguous, transmural, and extend to the barriers (e.g. the branching vessels, atrio-ventricular groove, or other structure that inhibits electrical propagation).
  • [0050]
    FIGS. 7 a and 7 b show an anterior view of a heart and a cut away view with the heart removed having two vacuum coagulation probes 2 advanced between vascular structures to access the posterior region of the left atrium about the pulmonary veins. As FIGS. 7 a and 7 b show, a first vacuum coagulation probe accessing the heart from the anterior surface of the thoracic cavity between the aorta and the superior vena cava, adjacent the right superior pulmonary vein, past the right inferior pulmonary vein, and down to the atria-ventricular groove; the electrode(s) (8) create a lesion from the atria-ventricular groove along the right pulmonary veins. The second vacuum coagulation probe enters the thoracic cavity and extends around the left ventricle of the heart, passes around the left inferior pulmonary vein, and intersects the first vacuum coagulation probe. The electrode(s) for this probe extend along the left atrium around the left inferior pulmonary vein and terminates at or past the lesion created with the first probe. It should be noted that any pattern of curvilinear, transmural lesions may be created along the epicardial surface or the endocardial surface with the vacuum coagulation probe embodiments of the invention. Other potential lesion patterns capable of treating atrial fibrillation, which the vacuum coagulation probe may replicate, are described in U.S. Pat. No. 6,071,279 entitled “Branched structures for supporting multiple electrode elements” and incorporated herein by reference.
  • [0051]
    FIGS. 8 a and 8 b show a side view and a close-up view of the vacuum coagulation probe in FIGS. 4 a, 4 b, and 4 c with the suction actuated to urge the epicardium (52) (or endocardium) into engagement with the electrode(s) (8) about the vacuum pores (10). A contiguous transmural lesion extending from the epicardium (52) to the endocardium (54) is created spanning the length of the exposed electrode(s). A sheath (24) masks a proximal region of electrode(s) and associated vacuum pores to limit the lesion to a desired length. Radiofrequency (or d.c.) energy is transmitted to the electrode(s) and into the contacted tissue. The current density pattern (64) has the highest values adjacent the edges of the pores (10) because these edges represent a dramatic transition from a conductive material to an insulative (or less conductive) region producing edge effects that result in high current density profiles. As shown in FIG. 8 b, convective cooling pores (26) connected through the vacuum lumen (6) or the injection lumen (16) can be placed along the lateral sides of the electrode(s) (8) to utilize suction of air or fluid or injection of cooled saline, CO2, air or other media to produce a surface cooling of the epicardium and urge the maximum temperature deeper into the soft tissue. The suction force used to produce intimate contact between the epicardial surface and the electrode(s) helps counteract the effects of endocardial convective cooling caused by blood flowing 58 along the endocardial surface taking heat away and cooling the tissue adjacent the endocardium. The suction force compresses the tissue against the electrode(s) decreasing the depth of tissue (60) through which thermal conduction must extend. Suction also makes energy delivery more efficient by optimizing tissue contact throughout the length of the electrode(s) such that regions of the electrode(s) not in intimate tissue contact do not hinder energy transmission for those regions that are in intimate contact, as is the case with conventional approaches. The incorporation of convective cooling pores (26) along the sides of the electrodes further affects the temperature gradient by utilizing a vacuum source or an injection source to flow a fluid medium (air, CO2, saline, etc.) along the epicardial surface actively cooling the surface and allowing more energy to be transmitted into the soft tissue which correspondingly heats more tissue and urges the maximum tissue temperature deeper.
  • [0052]
    The embodiments of the invention described in this specification can also be used for coagulating other soft tissues such as breast tissue, the liver, the prostate, gastrointestinal tissue, skin, or other soft tissue for the coagulation of cancerous cells or tendons, or other collagen based soft tissue for the heat induced shrinking or contraction.
  • [0053]
    Although the present inventions have been described in terms of the preferred embodiments above, numerous modifications and/or additions to the above-described preferred embodiments would be readily apparent to one skilled in the art. It is intended that the scope of the present inventions extend to all such modifications and/or additions and that the scope of the present inventions is limited solely by the claims of the invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5125928 *Feb 19, 1991Jun 30, 1992Everest Medical CorporationAblation catheter with selectively deployable electrodes
US5322064 *Sep 24, 1993Jun 21, 1994Lundquist Ingemar HTorquable catheter and method
US5562722 *Mar 14, 1994Oct 8, 1996Medical Evaluation Devices & Instruments Corp.Multiple electrode catheter
US5571088 *Jun 6, 1995Nov 5, 1996Boston Scientific CorporationAblation catheters
US5725523 *Mar 29, 1996Mar 10, 1998Mueller; Richard L.Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications
US5733280 *Nov 15, 1995Mar 31, 1998Avitall; BoazCryogenic epicardial mapping and ablation
US5769847 *Apr 24, 1996Jun 23, 1998Ep Technologies, Inc.Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US5782828 *Dec 11, 1996Jul 21, 1998Irvine Biomedical, Inc.Ablation catheter with multiple flexible curves
US5785706 *Nov 18, 1996Jul 28, 1998Daig CorporationNonsurgical mapping and treatment of cardiac arrhythmia using a catheter contained within a guiding introducer containing openings
US5836311 *Sep 20, 1995Nov 17, 1998Medtronic, Inc.Method and apparatus for temporarily immobilizing a local area of tissue
US5919188 *Feb 4, 1997Jul 6, 1999Medtronic, Inc.Linear ablation catheter
US5971983 *May 9, 1997Oct 26, 1999The Regents Of The University Of CaliforniaTissue ablation device and method of use
US6063081 *Feb 22, 1995May 16, 2000Medtronic, Inc.Fluid-assisted electrocautery device
US6071279 *Dec 19, 1996Jun 6, 2000Ep Technologies, Inc.Branched structures for supporting multiple electrode elements
US6071281 *May 5, 1998Jun 6, 2000Ep Technologies, Inc.Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
US6080151 *Jul 21, 1997Jun 27, 2000Daig CorporationAblation catheter
US6161543 *Oct 15, 1997Dec 19, 2000Epicor, Inc.Methods of epicardial ablation for creating a lesion around the pulmonary veins
US6237555 *Sep 29, 2000May 29, 2001Briggs & Stratton CorporationSpark blanking apparatus for an internal combustion engine
US6237605 *Sep 21, 1998May 29, 2001Epicor, Inc.Methods of epicardial ablation
US6237606 *Mar 10, 1999May 29, 2001Vnus Medical Technologies, Inc.Method of applying energy to tissue with expandable ligator catheter having multiple electrode leads
US6264650 *May 21, 1999Jul 24, 2001Arthrocare CorporationMethods for electrosurgical treatment of intervertebral discs
US6264654 *Jul 27, 1999Jul 24, 2001Daig CorporationAblation catheter
US6296638 *Nov 20, 1998Oct 2, 2001Arthrocare CorporationSystems for tissue ablation and aspiration
US6311692 *Jul 19, 1999Nov 6, 2001Epicor, Inc.Apparatus and method for diagnosis and therapy of electrophysiological disease
US6314916 *Nov 2, 1999Nov 13, 2001Nelson A. Watson, Sr.Rotary tethering system
US6314962 *Nov 15, 1999Nov 13, 2001Epicor, Inc.Method of ablating tissue around the pulmonary veins
US6314963 *Nov 15, 1999Nov 13, 2001Epicor, Inc.Method of ablating tissue from an epicardial location
US6364876 *Sep 20, 1999Apr 2, 2002Afx, Inc.Vacuum-assisted securing apparatus for a microwave ablation instrument
US6425895 *Aug 22, 2000Jul 30, 2002Ep Technologies, Inc.Surgical apparatus for positioning a diagnostic or therapeutic element within the body
US6463332 *Sep 14, 2000Oct 8, 2002Core Medical, Inc.Method and system for pericardial enhancement
US6464699 *Mar 24, 2000Oct 15, 2002Scimed Life Systems, Inc.Method and apparatus for positioning a diagnostic or therapeutic element on body tissue and mask element for use with same
US6474340 *Nov 15, 1999Nov 5, 2002Epicor, Inc.Apparatus and method for diagnosis and therapy of electrophysiological disease
US6482202 *Jan 10, 2001Nov 19, 2002Gyrus Medical LimitedUnder water treatment
US6484727 *Nov 15, 1999Nov 26, 2002Epicor, Inc.Apparatus and method for diagnosis and therapy of electrophysiological disease
US6506180 *Dec 28, 1998Jan 14, 2003Banning G. LaryPassive perfusion sleeve/placement catheter assembly
US6514250 *Apr 27, 2000Feb 4, 2003Medtronic, Inc.Suction stabilized epicardial ablation devices
US6558382 *Apr 26, 2001May 6, 2003Medtronic, Inc.Suction stabilized epicardial ablation devices
US6579288 *Aug 30, 2000Jun 17, 2003Scimed Life Systems, Inc.Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US6605087 *Jul 17, 2001Aug 12, 2003St. Jude Medical, Daig DivisionAblation catheter
US6645200 *Mar 24, 2000Nov 11, 2003Scimed Life Systems, Inc.Method and apparatus for positioning a diagnostic or therapeutic element within the body and tip electrode for use with same
US6645202 *Oct 27, 2000Nov 11, 2003Epicor Medical, Inc.Apparatus and method for ablating tissue
US6689128 *Dec 5, 2001Feb 10, 2004Epicor Medical, Inc.Methods and devices for ablation
US6701931 *Dec 5, 2001Mar 9, 2004Epicor Medical, Inc.Methods and devices for ablation
US6719755 *Jun 19, 2001Apr 13, 2004Epicor Medical, Inc.Methods and devices for ablation
US6726664 *Aug 6, 2001Apr 27, 2004Optonol Ltd.Flow control device, introducer and method of implanting
US6764487 *Apr 11, 2003Jul 20, 2004Medtronic, Inc.Fluid-assisted electrosurgical device
US6849075 *Oct 15, 2002Feb 1, 2005Estech, Inc.Cardiac ablation devices and methods
US6887249 *Nov 21, 2000May 3, 2005Converge Medical Inc.Positioning systems for sutureless anastomosis systems
US6893442 *Jun 14, 2002May 17, 2005Ablatrics, Inc.Vacuum coagulation probe for atrial fibrillation treatment
US6917834 *Oct 10, 2001Jul 12, 2005Boston Scientific Scimed, Inc.Devices and methods for creating lesions in endocardial and surrounding tissue to isolate focal arrhythmia substrates
US6949095 *Aug 30, 2002Sep 27, 2005Epicor Medical, Inc.Apparatus and method for diagnosis and therapy of electrophysiological disease
US7052491 *Apr 1, 2002May 30, 2006Afx, Inc.Vacuum-assisted securing apparatus for a microwave ablation instrument
US7115126 *Apr 15, 2002Oct 3, 2006Afx Inc.Directional microwave ablation instrument with off-set energy delivery portion
US7144363 *Oct 11, 2002Dec 5, 2006Extensia Medical, Inc.Systems for heart treatment
US7226448 *Apr 8, 2003Jun 5, 2007Estech, Inc. (Endoscopic Technologies, Inc.)Cardiac treatment devices and methods
US20020091299 *Jan 31, 2002Jul 11, 2002Enteric Medical Technologies, Inc.Apparatus for forming implants in gastrointestinal tract
US20050149152 *Nov 12, 2004Jul 7, 2005Bertolero Arthur A.Cardiac ablation devices and methods
US20050240175 *Jun 8, 2005Oct 27, 2005Estech, Inc. (Endoscopic Technologies, Inc.)Cardiac treatment devices and methods
US20050288666 *Jul 20, 2005Dec 29, 2005Bertolero Arthur ACardiac ablation devices and methods
US20060004388 *Jun 17, 2005Jan 5, 2006Ablatrics, Inc.System for tissue cavity closure
US20060015165 *Jul 20, 2005Jan 19, 2006Bertolero Arthur AConduction block verification probe and method of use
US20060184167 *Apr 11, 2006Aug 17, 2006Matthias VaskaMethods and devices for ablation
US20060200124 *May 23, 2006Sep 7, 2006Ncontact Surgical, Inc.Vacuum coagulation probes
US20060206113 *May 12, 2006Sep 14, 2006Ncontact Surgical, Inc.Methods of coagulating tissue
US20060235381 *May 12, 2006Oct 19, 2006Ncontact Surgical, Inc.Vacuum coagulation probes
US20060293646 *Aug 18, 2005Dec 28, 2006Whayne James GVacuum coagulation & dissection probes
US20070043351 *Apr 21, 2006Feb 22, 2007Ncontact Surgical, Inc.Vacuum coagulation probes
US20070083082 *Apr 21, 2006Apr 12, 2007Ncontact Surgical, Inc.Diaphragm entry for posterior surgical access
US20070083225 *Apr 21, 2006Apr 12, 2007Ncontact Surgical, Inc.Diaphragm entry for posterior surgical access
US20070156185 *Jan 8, 2007Jul 5, 2007Swanson David KAblative treatment of the heart to improve patient outcomes following surgery
US20070239155 *May 30, 2007Oct 11, 2007Endoscopic Technologies, Inc.Cardiac ablation devices and methods
US20070249991 *Apr 19, 2007Oct 25, 2007Ncontact Surgical, Inc.Diaphragm entry for posterior surgical access
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7410487Mar 30, 2005Aug 12, 2008Ncontact Surgical, Inc.Vacuum coagulation probe for atrial fibrillation treatment
US7572257Aug 18, 2005Aug 11, 2009Ncontact Surgical, Inc.Vacuum coagulation and dissection probes
US7645277Jan 12, 2010Salient Surgical Technologies, Inc.Fluid-assisted medical device
US7651494Jan 26, 2010Salient Surgical Technologies, Inc.Fluid-assisted medical device
US7727232Feb 4, 2005Jun 1, 2010Salient Surgical Technologies, Inc.Fluid-assisted medical devices and methods
US7758578May 12, 2006Jul 20, 2010Ncontact Surgical, Inc.Methods of coagulating tissue
US7780661Aug 24, 2010nContact Surgical, IncVacuum coagulation probes
US7803155May 23, 2006Sep 28, 2010Ncontact Surgical, Inc.Vacuum coagulation probes
US7811282Oct 12, 2010Salient Surgical Technologies, Inc.Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US7815634Oct 19, 2010Salient Surgical Technologies, Inc.Fluid delivery system and controller for electrosurgical devices
US7914527Aug 17, 2006Mar 29, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US7922716Apr 12, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of anatomic tissue defects
US7951148Feb 6, 2004May 31, 2011Salient Surgical Technologies, Inc.Electrosurgical device having a tissue reduction sensor
US7972330Jul 5, 2011Terumo Kabushiki KaishaMethods and apparatus for closing a layered tissue defect
US7998140Mar 30, 2004Aug 16, 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US8021362Sep 20, 2011Terumo Kabushiki KaishaMethods and apparatus for closing a layered tissue defect
US8034053Oct 11, 2011Ncontact Surgical, Inc.Vacuum coagulation and dissection probes
US8038669Oct 18, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8038670Oct 18, 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US8038671Oct 18, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8038672Jun 21, 2006Oct 18, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8038673Oct 18, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8048070Nov 1, 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US8052678Nov 8, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8057469Nov 15, 2011Terumo Kabushiki KaishaMethods and apparatus for treatment of patent foramen ovale
US8066701Jun 21, 2006Nov 29, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8070747Jun 21, 2006Dec 6, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8075554Jun 21, 2006Dec 13, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8075557Oct 30, 2007Dec 13, 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices and methods
US8109274Feb 7, 2012Terumo Kabushiki KaishaMethods and electrode apparatus to achieve a closure of a layered tissue defect
US8133221Jun 29, 2007Mar 13, 2012Terumo Kabushiki KaishaEnergy based devices and methods for treatment of anatomic tissue defects
US8235990Apr 19, 2007Aug 7, 2012Ncontact Surgical, Inc.Vacuum coagulation probes
US8267951Sep 18, 2012Ncontact Surgical, Inc.Dissecting cannula and methods of use thereof
US8361068Oct 12, 2010Jan 29, 2013Medtronic Advanced Energy LlcFluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US8454598Feb 3, 2012Jun 4, 2013Ncontact Surgical, Inc.Vacuum coagulation probes
US8465485Sep 16, 2011Jun 18, 2013Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8475455Oct 28, 2003Jul 2, 2013Medtronic Advanced Energy LlcFluid-assisted electrosurgical scissors and methods
US8852181Sep 14, 2007Oct 7, 2014Terumo Kabushiki KaishaEnergy based devices and methods for treatment of anatomic tissue defects
US8858528Apr 23, 2008Oct 14, 2014Ncontact Surgical, Inc.Articulating cannula access device
US8858552Aug 6, 2010Oct 14, 2014Ncontact Surgical, Inc.Vacuum coagulation probes
US8992557Aug 16, 2012Mar 31, 2015Ncontact Surgical, Inc.Dissecting cannula and methods of use thereof
US8998900Apr 21, 2006Apr 7, 2015Ncontact Surgical, Inc.Vacuum coagulation probes
US9308042May 30, 2013Apr 12, 2016Ncontact Surgical, Inc.Vacuum coagulation probes
US20030114850 *Jan 29, 2003Jun 19, 2003Tissuelink Medical, Inc.Fluid-assisted medical device
US20040138655 *Dec 22, 2003Jul 15, 2004Tissuelink Medical, Inc.Fluid delivery system and controller for electrosurgical devices
US20040267191 *Mar 26, 2004Dec 30, 2004Cierra, Inc.Methods and apparatus for treatment of patent foramen ovale
US20050080406 *Oct 4, 2004Apr 14, 2005Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20050131401 *Feb 2, 2005Jun 16, 2005Cierra, Inc.Energy based devices and methods for treatment of anatomic tissue defects
US20060027241 *Oct 12, 2005Feb 9, 2006Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20060074410 *Sep 27, 2004Apr 6, 2006Cierra, Inc.Energy based devices and methods for treatment of anatomic tissue defects
US20060106379 *Dec 22, 2005May 18, 2006Tissuelink Medical, Inc.Fluid-assisted medical devices, systems and methods
US20060206113 *May 12, 2006Sep 14, 2006Ncontact Surgical, Inc.Methods of coagulating tissue
US20060235381 *May 12, 2006Oct 19, 2006Ncontact Surgical, Inc.Vacuum coagulation probes
US20060241581 *Jun 21, 2006Oct 26, 2006Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20060241582 *Jun 21, 2006Oct 26, 2006Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20060241583 *Jun 21, 2006Oct 26, 2006Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20060241584 *Jun 21, 2006Oct 26, 2006Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20060247612 *Jun 21, 2006Nov 2, 2006Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20060271030 *Apr 11, 2006Nov 30, 2006Cierra, Inc.Methods and apparatus to achieve a closure of a layered tissue defect
US20060271089 *Apr 11, 2006Nov 30, 2006Cierra, Inc.Methods and apparatus to achieve a closure of a layered tissue defect
US20060276779 *Aug 15, 2006Dec 7, 2006Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20060276846 *Aug 17, 2006Dec 7, 2006Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20060293646 *Aug 18, 2005Dec 28, 2006Whayne James GVacuum coagulation & dissection probes
US20070010806 *Jun 21, 2006Jan 11, 2007Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20070043351 *Apr 21, 2006Feb 22, 2007Ncontact Surgical, Inc.Vacuum coagulation probes
US20070044811 *Aug 17, 2006Mar 1, 2007Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20070049920 *Oct 2, 2006Mar 1, 2007Tissuelink Medical, Inc.Fluid-Assisted Medical Devices, Fluid Delivery Systems and Controllers for Such Devices, and Methods
US20070078485 *Aug 15, 2006Apr 5, 2007Cierra, Inc.Methods and apparatus for treatment of patent foramen ovale
US20070112347 *Jan 11, 2007May 17, 2007Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US20070123851 *Dec 20, 2006May 31, 2007Cierra, Inc.Methods and apparatus for closing a layered tissue defect
US20070123852 *Dec 20, 2006May 31, 2007Cierra, Inc.Methods and apparatus for closing a layered tissue defect
US20070250058 *Apr 19, 2007Oct 25, 2007Ncontact Surgical, Inc.Vacuum coagulation probes
US20080004658 *Sep 14, 2007Jan 3, 2008Cierra, Inc.Energy based devices and methods for treatment of anatomic tissue defects
US20080097429 *Dec 21, 2007Apr 24, 2008Tissuelink Medical, Inc.Fluid-assisted medical devices, systems and methods
US20080108876 *Oct 31, 2007May 8, 2008Houser Russell ASuperelastic/Shape Memory Tissue Stabilizers and Surgical Instruments
US20080114354 *Nov 9, 2006May 15, 2008Ncontact Surgical, Inc.Vacuum coagulation probes
US20080114355 *Nov 9, 2006May 15, 2008Ncontact Surgical, Inc.Vacuum coagulation probes
US20080243119 *Jun 6, 2008Oct 2, 2008Ncontact Surgical, Inc.Vacuum coagulation probe for atrial fibrillation treatment
US20090270676 *Oct 29, 2009Ncontact Surgical, Inc.Articulating cannula access device
US20090312783 *Jul 16, 2008Dec 17, 2009Ncontact Surgical, Inc.Dissecting cannula and methods of use thereof
US20100100095 *Dec 21, 2009Apr 22, 2010Salient Surgical Technologies, Inc.Fluid-assisted medical device
US20100211057 *Aug 19, 2010Cardio Vascular Technologies, Inc. a California CorporationTissue heating device and rf heating method with tissue attachment feature
US20100262138 *Jun 22, 2010Oct 14, 2010Ncontact Surgical, Inc.Methods of coagulating tissue
US20110028965 *Oct 12, 2010Feb 3, 2011Salient Surgical Technologies, Inc.Fluid-Assisted Electrosurgical Devices, Electrosurgical Unit With Pump And Methods Of Use Thereof
Classifications
U.S. Classification606/49
International ClassificationA61B18/00, A61B18/14
Cooperative ClassificationA61B18/1492, A61B2018/00029, A61B2218/002, A61B2218/007, A61B2018/00291, A61B2018/00351
European ClassificationA61B18/14V
Legal Events
DateCodeEventDescription
Mar 30, 2005ASAssignment
Owner name: ABLATRICS, INC., NORTH CAROLINA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WHAYNE, JAMES G.;REEL/FRAME:016436/0104
Effective date: 20040707
Dec 16, 2005ASAssignment
Owner name: NCONTACT SURGICAL, INC., NORTH CAROLINA
Free format text: CHANGE OF NAME;ASSIGNOR:ABLATRICS, INC.;REEL/FRAME:016914/0366
Effective date: 20051018
Feb 12, 2010ASAssignment
Owner name: DAUGHERTY, DENNIS,NORTH CAROLINA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:023928/0240
Effective date: 20100210
Owner name: DAUGHERTY, DENNIS, NORTH CAROLINA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:023928/0240
Effective date: 20100210
Jun 4, 2010ASAssignment
Owner name: INTERSOUTH PARTNERS VI, L.P.,NORTH CAROLINA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: HARBERT VENTURE PARTNERS II, L.P.,ALABAMA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: MASSEY BURCH VENTURE FUND II, L.P.,TENNESSEE
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: TALL OAKS ABLATRICS PARTNERS, LP,VIRGINIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: FINISTERE-CHICAGO PARTNERS FUND I L.P.,CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: FINISTERE-OCEANIA PARTNERS FUND I L.P.,CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: HIPPO VENTURES, L.L.C.,NORTH CAROLINA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: INTERSOUTH PARTNERS VI, L.P., NORTH CAROLINA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: HARBERT VENTURE PARTNERS II, L.P., ALABAMA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: MASSEY BURCH VENTURE FUND II, L.P., TENNESSEE
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: TALL OAKS ABLATRICS PARTNERS, LP, VIRGINIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: FINISTERE-CHICAGO PARTNERS FUND I L.P., CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: FINISTERE-OCEANIA PARTNERS FUND I L.P., CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Owner name: HIPPO VENTURES, L.L.C., NORTH CAROLINA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024483/0767
Effective date: 20100604
Aug 20, 2010ASAssignment
Owner name: HARBERT VENTURE PARTNERS (ANNEX FUND), LLC, ALABAM
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024864/0206
Effective date: 20100816
Owner name: FINISTERE-OCEANIA PARTNERS FUND I L.P., CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024864/0206
Effective date: 20100816
Owner name: MASSEY BURCH VENTURE FUND II, L.P., TENNESSEE
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024864/0206
Effective date: 20100816
Owner name: HIPPO VENTURES, L.L.C., NORTH CAROLINA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024864/0206
Effective date: 20100816
Owner name: HARBERT VENTURE PARTNERS II, L.P., ALABAMA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024864/0206
Effective date: 20100816
Owner name: FINISTERE-CHICAGO PARTNERS FUND I L.P., CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024864/0206
Effective date: 20100816
Owner name: INTERSOUTH PARTNERS VI, L.P., NORTH CAROLINA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024864/0206
Effective date: 20100816
Owner name: TALL OAKS ABLATRICS PARTNERS, LP, VIRGINIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NCONTACT SURGICAL, INC.;REEL/FRAME:024864/0206
Effective date: 20100816
Feb 21, 2011ASAssignment
Owner name: NCONTACT SURGICAL, INC., NORTH CAROLINA
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DAUGHERTY, DENNIS;REEL/FRAME:025836/0648
Effective date: 20101020
Owner name: NCONTACT SURGICAL, INC., NORTH CAROLINA
Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:INTERSOUTH PARTNERS VI, L.P.;MASSEY BURCH VENTURE FUND II, L.P.;TALL OAKS ABLATRICS PARTNERS, LP;AND OTHERS;REEL/FRAME:025837/0119
Effective date: 20101020
Feb 22, 2011ASAssignment
Owner name: NCONTACT SURGICAL, INC., NORTH CAROLINA
Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:INTERSOUTH PARTNERS VI, L.P.;HARBERT VENTURE PARTNERS II, L.P.;HARBERT VENTURE PARTNERS (ANNEX FUND), LLC;AND OTHERS;REEL/FRAME:025841/0380
Effective date: 20101020
Jan 24, 2012FPAYFee payment
Year of fee payment: 4
Nov 19, 2015FPAYFee payment
Year of fee payment: 8
Mar 11, 2016ASAssignment
Owner name: ATRICURE, INC., OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NCONTACT SURGICAL, LLC;REEL/FRAME:038062/0392
Effective date: 20160308