Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060030761 A1
Publication typeApplication
Application numberUS 11/166,344
Publication dateFeb 9, 2006
Filing dateJun 27, 2005
Priority dateJun 19, 1998
Also published asUS6922576, US20030149348, US20070208237
Publication number11166344, 166344, US 2006/0030761 A1, US 2006/030761 A1, US 20060030761 A1, US 20060030761A1, US 2006030761 A1, US 2006030761A1, US-A1-20060030761, US-A1-2006030761, US2006/0030761A1, US2006/030761A1, US20060030761 A1, US20060030761A1, US2006030761 A1, US2006030761A1
InventorsEric Raskas
Original AssigneeRaskas Eric J
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Micro optical sensor device
US 20060030761 A1
Abstract
A sensor device for measuring a concentration of a substance within a sample comprises a sensor comprising an optical transmission member having a first end and a second end, the second end having a tip portion attached thereto and an active material incorporated within the tip portion, the tip portion adapted to be inserted into a sample, the active material capable of interacting with a substance within a sample, a light source coupled to the first end of the sensor for emitting a beam of light into and through the sensor and into a sample, the emitted beam of light having a wavelength and the active material interacting with a substance within a sample to change the wavelength of the emitted beam of light to produce a reflected beam of light and the sensor for transmitting the reflected beam of light out of the second end thereof, an optical detector for receiving the reflected beam of light from the second end of the sensor for producing a signal indicative of the reflected beam of light, and a processor for receiving the signal indicative of the reflected beam of light and for processing the signal to determine the concentration of a substance within a sample.
Images(4)
Previous page
Next page
Claims(20)
1. A sensor device for measuring a concentration of a substance within a sample comprising:
a sensor comprising an optical transmission member having a first end and a second end, the second end having a tip portion attached thereto and an active material incorporated within the tip portion, the tip portion adapted to be inserted into a sample, the active material capable of interacting with a substance within a sample;
a light source coupled to the first end of the sensor for emitting a beam of light into and through the sensor and into a sample, the emitted beam of light having a wavelength and the active material interacting with a substance within a sample to change the wavelength of the emitted beam of light to produce a reflected beam of light and the sensor for transmitting the reflected beam of light out of the second end thereof,
means for receiving the reflected beam of light from the second end of the sensor for producing a signal indicative of the reflected beam of light; and
a processor for receiving the signal indicative of the reflected beam of light and for processing the signal to determine the concentration of a substance within a sample.
2. The sensor device of claim 1 wherein the active material is preselected to interact with a predetermined substance within a sample.
3. The sensor device of claim 1 wherein the reflected beam of light has a wavelength which is different from the wavelength of the emitted beam of light.
4. The sensor device of claim 1 wherein the optical transmission member is made from a material selected from the group consisting of a fiber optic, organic polymers, inorganic alkoxysilanes, lead borosilicate, fused silica, and combinations thereof.
5. The sensor device of claim 1 wherein the concentration to be measured is glucose and the sample is a human.
6. The sensor device of claim 1 further comprising a pencil shaped and sized body having a tip portion, a central body, and an end cap.
7. The sensor device of claim 1 wherein the tip portion comprises a biologically active compound that is immobilized in an environment that is optically reactive.
8. A sensor device for measuring a concentration of a substance within a sample comprising:
a light source adapted to emit an emitted beam of light having a first wavelength;
an optical transmission member having a tip portion, the optical transmission member operatively connected to the light source such that the emitted beam of light is transmitted through the optical transmission member, the tip portion including an active material, the active material adapted to receive the emitted beam of light and to reflect a reflected beam of light through the member, the reflected beam of light having a second wavelength different than the first wavelength, the reflected beam of light relating to a concentration of a substance within a sample;
a detector operatively connected to the optical transmission member and adapted to receive the reflected beam of light and to produce a signal; and
a processor adapted to receive and process the signal and to determine the concentration of the substance within the sample.
9. The sensor device of claim 8 wherein the optical transmission member is made from a material selected from the group consisting of a fiber optic, organic polymers, inorganic alkoxysilanes, lead borosilicate, fused silica, and combinations thereof.
10. The sensor device of claim 8 wherein the tip portion is shaped and adapted to be inserted into a cell without damaging the cell.
11. The sensor device of claim 8 wherein the tip portion has a diameter of less than 30 microns.
12. The sensor device of claim 8 wherein the concentration to be measured is glucose and the sample is a human.
13. The sensor device of claim 8 wherein the tip portion has a diameter of less than 20 microns.
14. The sensor device of claim 8 wherein the tip portion has a diameter of less than 10 microns.
15. A sensor device for measuring a concentration of a substance within a sample comprising:
a light source adapted to emit an emitted beam of light having a first wavelength;
an optical transmission member having a tip portion, the optical transmission member operatively connected to the light source such that the emitted beam of light is transmitted through the optical transmission member, the tip portion including a first active material and a second active material, the first active material adapted to receive the emitted beam of light and to reflect a first reflected beam of light through the optical transmission member, the second active material adapted to receive the emitted beam of light and to reflect a second reflected beam of light through the optical transmission member, the first reflected beam of light having a second wavelength different than the first wavelength, the second reflected beam of light having a third wavelength different than the first wavelength, the first reflected beam of light relating to a concentration of a first substance within a sample, the second reflected beam of light relating to a concentration of a second substance within a sample;
a detector operatively connected to the optical transmission member and adapted to receive the first and second reflected beams of light and to produce a signal; and
a processor adapted to receive and process the first signal and to determine the concentration of the first substance within the sample, and to receive and process the second signal and to determine the concentration of the second substance within the sample.
16. The sensor device of claim 15 wherein the optical transmission member is made from a material selected from the group consisting of a fiber optic, organic polymers, inorganic alkoxysilanes, lead borosilicate, fused silica, and combinations thereof.
17. The sensor device of claim 16 wherein the tip portion is shaped and adapted to be inserted into a cell without damaging the cell.
18. The sensor device of claim 15 wherein the first concentration to be measured is glucose and the sample is a human.
19. The sensor device of claim 15 wherein the tip portion has a diameter of less than 10 microns.
20. The sensor device of claim 15 wherein the tip portion comprises a biologically active compound that is immobilized in an environment that is optically reactive.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This is a continuation-in-part of U.S. patent application Ser. No.09/729,611, filed on Dec. 4, 2000 which is a continuation of U.S. patent application Ser. No. 09/100,295 filed Jun. 19, 1998, now U.S. Pat. No. 6,157,442.
  • BACKGROUND OF THE INVENTION
  • [0002]
    This invention relates generally to a sensor device and more particularly to a micro optical sensor device which may be employed in a variety of sensor applications to monitor, sense, or measure a concentration of a material within a sample.
  • [0003]
    There are numerous applications in which a device is used to monitor or detect a concentration of material within a substance. For example, it may be required to know the concentration of a chemical in a sample of material such as knowing the concentration of sodium, calcium, or some other chemical composition in a sample. Monitoring or detecting a concentration of a substance typically requires a set up of relatively complex, sensitive, and expensive equipment or instrumentation. Sometimes space requirements make it difficult to use the set up of complex equipment and it would be advantageous to have equipment which has small dimensions and is easily transportable. Additionally, such complex equipment may not provide results which are of a high resolution.
  • [0004]
    One known and important application for monitoring a concentration of a material within a sample deals with checking blood glucose for diabetics. There are at least two known techniques for monitoring blood glucose levels in humans. The two techniques are invasive which involves extracting samples with the use of needles or syringes and noninvasive. Typically, for the invasive method, a patient employs a small lancet device which is used to prick or puncture a finger. Blood is then collected onto a strip which has incorporated therein a chemical reagent. The strip is then placed inside of a device that optically reads the chemical reaction of the blood on the strip and converts this to a blood glucose level. It has been found very important to control glucose levels in diabetics to reduce any complications associated with diabetes. Many samples or finger pricks may be required to be taken for analysis during the course of a day. Self monitoring of blood glucose by a patient is therefore very important in the treatment of diabetes. Since finger pricking or lancing is required for self monitoring levels of glucose in a patient, many patients avoid this because it is painful and inconvenient. Therefore, a less invasive procedure would be desirable. The other methods, which have been termed noninvasive, typically involve a device which uses near infrared light to detect blood glucose levels. These devices measure a glucose concentration in blood or an organism's tissue by use of an optical device without the need to collect blood or fracturing a part of the organism's tissue. Although these devices use noninvasive methods, in that no blood is collected, none of these devices have been commercially accepted or viable.
  • [0005]
    The present invention is designed to obviate and overcome many of the disadvantages and shortcomings associated with the prior use of complex testing and monitoring equipment. Additionally, the present invention is simple to use, provides extremely quick results and high resolution, and is easily transportable. The present invention uses relatively inexpensive components which result in a commercially viable product. Further, the micro optical fiber sensor device of the present invention is relatively noninvasive since it does not require the drawing of blood and provides immediate results which does not require related blood processing such as centrifugation, storage, transportation, and other time consuming testing.
  • SUMMARY OF THE INVENTION
  • [0006]
    The present invention is a sensor device for measuring a concentration of a substance within a sample which comprises a sensor comprising an optical transmission member having a first end and a second end, the second end having a tip portion attached thereto and an active material incorporated within the tip portion, the tip portion adapted to be inserted into a sample, the active material capable of interacting with a substance within a sample, a light source coupled to the first end of the sensor for emitting a beam of light into and through the sensor and into a sample, the emitted beam of light having a wavelength and the active material interacting with a substance within a sample to change the wavelength of the emitted beam of light to produce a reflected beam of light and the sensor for transmitting the reflected beam of light out of the second end thereof, means for receiving the reflected beam of light from the second end of the sensor for producing a signal indicative of the reflected beam of light, and a processor for receiving the signal indicative of the reflected beam of light and for processing the signal to determine the concentration of a substance within a sample.
  • [0007]
    Another example of the present invention is a sensor device for measuring a concentration of a substance within a sample which comprises a sensor comprising an optical transmission member having a first end and a second end, the second end having a tip portion attached thereto and an active material incorporated within the tip portion, the tip portion adapted to be inserted into a sample, the active material capable of interacting with a substance within a sample, a light source for emitting a beam of light of a preselected wavelength with the light source being coupled to an optical device capable of transmitting the beam of light therethrough, the transmitted beam of light being directed into the first end of the sensor, through the sensor and out of the second end into a sample, the active material interacting with a substance within a sample to change the wavelength of the transmitted beam of light to produce a reflected beam of light and the sensor for transmitting the reflected beam of light from the second end, through the sensor, and out of the first end thereof, the optical device being further capable of reflecting the reflected beam of light, means for receiving the reflected beam of light which is reflected by the optical device for producing a signal indicative of the reflected beam of light; and a processor for receiving the signal indicative of the reflected beam of light and for processing the signal to determine the concentration of a substance within a sample.
  • [0008]
    A further example of the present invention is a sensor device for measuring a concentration of a substance within a sample which comprises a sensor comprising an optical transmission member having a first end and a second end, the second end having a tip portion attached thereto and a first and a second active material incorporated within the tip portion, the tip portion adapted to be inserted into a sample, the first active material capable of interacting with a first substance within a sample and the second active material capable of interacting with a second substance within a sample, a light source coupled to the first end of the sensor for emitting a beam of light into and through the sensor and into a sample, the emitted beam of light having a wavelength and the first active material interacting with a first substance within a sample to change the wavelength of the emitted beam of light to produce a first reflected beam of light, the second active material interacting with a second substance within a sample to change the wavelength of the emitted beam of light to produce a second reflected beam of light, and the sensor for transmitting the first and second reflected beams of light out of the second end thereof, means for receiving the first and second reflected beams of light from the second end of the sensor for producing a first signal indicative of the first reflected beam of light and a second signal indicative of the second reflected beam of light, and a processor for receiving the first and second signals and for processing the first and second signals to determine the concentration of a first substance within a sample and the concentration of a second substance with a sample.
  • [0009]
    In light of the foregoing comments, it will be recognized that a principal object of the present invention is to provide an improved sensor device which is hand held, portable, and easy to operate.
  • [0010]
    Another object of the present invention is to provide a sensor device which has a tip portion of an extremely small size so that when it is inserted into a hand of a patient little or no sensation will be produced or detected.
  • [0011]
    A further object of the present invention is to provide a sensor device which is of simple construction and design and which can be easily employed with highly reliable results.
  • [0012]
    Another object of the present invention is to provide a sensor device which is accurate and provides readings in a short time span.
  • [0013]
    A still further object of the present invention is to provide a sensor device which is compact in design and is easily transportable for personal use.
  • [0014]
  • [0015]
    These and other objects and advantages of the present invention will become apparent after considering the following detailed specification in conjunction with the accompanying drawings, wherein:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0016]
    FIG. 1 is a perspective view of a micro optical sensor device constructed according to the present invention;
  • [0017]
    FIG. 2 is a block diagram of the micro optical sensor device constructed according to the present invention;
  • [0018]
    FIG. 3 is a perspective view of a tip portion of the micro optical sensor device shown in FIG. 1;
  • [0019]
    FIG. 4 is a schematic view of the micro optical sensor device of the present invention being employed to sense a concentration in a sample;
  • [0020]
    FIG. 5 is a block diagram of a second embodiment of the micro optical sensor device constructed according to the present invention;
  • [0021]
    FIG. 6 is perspective view of the sensor device of FIG. 5 illustrated monitoring a concentration of glucose in a hand of a patient; and
  • [0022]
    FIG. 7 is a block diagram of a third embodiment of the micro optical sensor device constructed according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0023]
    Referring now to the drawings, wherein like numbers refer to like items, number 10 identifies a preferred embodiment of a micro optical sensor device constructed according to the present invention. As illustrated in FIG. 1, the device 10 comprises a pencil or pen shaped body 12 which includes a tip portion 14, a central body portion 16, and an end cap 18. The central body portion 16 further includes a display device 20, such as an LED (light emitting diode) type display or an LCD type display, for displaying information. The end cap 18, which may be removable from the central body portion 16, is used to allow access into the interior of the central body portion 16. Batteries (not shown) can be inserted into the central body portion 16 to supply power to the device 10, as will be explained. The central body portion 16 may also include an ON/OFF switch 22 which may be used to operate the device 10. Other switches (not shown) may be incorporated into the central body portion 16 to further control the device 10. Additionally, the central body portion 16 houses electronic circuitry and other components which will be illustrated and explained in further detail herein. The device 10 is sized and shaped to be a hand held type device which is portable and preferably is the size and shape of a pencil or a pen.
  • [0024]
    With reference now to FIG. 2, a block diagram of the circuitry and components of the device 10 is shown. The device 10 includes a light source 30 which may be an LED, a laser, a laser diode, or other excitation source. The light source 30 is adapted to project a beam of light 32 into an optical transmission member 34. The optical transmission member 34 transmits a beam of light 36 to a tip device 38 which is part of the tip portion 14.
  • [0025]
    The optical transmission member 34 and the tip device 38 can be any device capable of transmitting light. For example, a portion of fiber optic is used in the preferred embodiment. Various types of organic polymers such as polystyrene, PMMA, polycarbonate, SAN, polyacrylonitrile and SU-8 epoxy resins can also be used. The optical transmission member can also be an inorganic alkoxysilane or a form of glass such as lead borosilicate or fused silica. The optical transmission member can be any combination of these light transmitting materials.
  • [0026]
    The beam of light 36 passes through the tip device 38 and a reflected beam of light 40 can be reflected back from a sample (not shown) through the tip device 38 to a detector 42. The reflected beam of light 40 typically has a wavelength or a frequency which is different than the wavelength or frequency of the beam of light 36. The detector 42 is in turn connected to a computer 44 via an electrical connection such as a wire 46. The detector 42 provides electrical signals over the wire 46 to the computer 44. The computer 44 may consists of, by way of examples, a microprocessor, a microcontroller, an ASIC chip, or any other known equivalent device which is capable of processing electrical signals. The computer 44 is further operatively connected to a power supply 48, such as batteries, by a wire 50. The computer 44 may also connected to the display device 20, the switch 22, and the light source 30 although such connection is not illustrated in FIG. 2. Additionally, the computer 44 may also be connected to other switches (not shown) which may be provided with the device 10. In this manner, the additional switches are used to further control or operate other functions of the device 10.
  • [0027]
    The tip device 38 is shown in greater detail in FIG. 3 and is preferably a small device on the order of microns in diameter. The tip device 38 may be constructed as is disclosed in U.S. Pat. Nos. 5,361,314 and 5,627,922. For example, the tip device can be prepared by several processes such as heat pulling, acid and/or solvent etching, laser micro-machining, laser post processing, E-beam micro-machining, injection molding, corona or electrical arcing, ultra-sound modification, high impact/high temperature powder crushing, grinding, masked lithography/etching, and micro-stereo lithography. In particular, in the preferred embodiment the tip device 38 includes a non-tapered portion 60 and a tapered portion 62 which is coated with an opaque material 64. Other shapes and configurations can also be used. The tip device 38 further includes a first end 66 and a second end 68. The second end 68 further has a tip or portion 70 of material which is adhered thereto. The tip 70 is chemically treated which enables the tip 70 to interact with the sample to be detected. Properties of the sensor or tip device 38 may vary dependent upon the sample and the chemical or substance to be detected by the device 10. As constructed, the tip device 38 allows for the beam of light 36 to pass through the first end 66, the second end 68, and the tip portion 70 and the reflected beam 40 is allowed to pass through the tip portion 70, the second end 68, and the first end 66.
  • [0028]
    As indicated above, the tip device 38 is extremely small on the order of one-thousandth the width of a human hair and because of this size it can be inserted through gaps in most cells or through the membrane of a cell without damaging the cell. The tip 70 may be bathed in chemical coatings selected to react with biological compounds such as acid, calcium, oxygen, glucose, potassium, sodium, or any other material to be detected. The beam of light 36 which is transmitted through the tip device 38 glows with its brightness and color varying according to the concentration of the target chemical. The portion 70 is a photochemical sensor which is less than ten microns in diameter. Again, the portion 70 is small enough that it can pass through the membrane of a cell to monitor the concentration and nature of chemicals within the cell.
  • [0029]
    The tip device 38 may have specific chemical sensitivities based upon the properties of a dye matrix. A dye may be chemically activated by a different chemical compound which enables sensing of a specific chemical property within a sample or a substance. The tip device. 38 provides for enhanced sensitivity, selectivity, and stability when detecting a concentration within a sample or substance. The tip portion or device 38 may comprise a biologically active compound that is immobilized in an environment that is optically reactive. Additionally, the biologically active compound can, in itself, be optically active. The sensor device 10 interacts with the substance or sample to detect a specific chemical or concentration within the substance.
  • [0030]
    With reference now to FIGS. 1, 2, and 4, the operation of the device 10 will be explained in detail. In order to operate the device 10, the on/off switch 22 is pressed to initialize the device 10. Once powered, the device 10 may be inserted into a sample 80 to test for a particular concentration of material within the sample 80. As shown in FIG. 4, the sample to be tested is a liquid 82 in a beaker 84. The tip portion 70 is inserted into the liquid 82 and at this point in time a beam of light, such as the beam of light 36, is transmitted into the liquid 82. With the tip portion 70 being in contact with the liquid 82, the liquid 82 reacts chemically with the tip portion 70 and the color of the chemical composing the sensor device 10 changes. As a result of this change, the color of the light reflected back into the tip portion 70 changes, such as reflected beam of light 40, as compared to the beam of light 36. The amount of this change can be quantified by the detector 42. Once quantified signals are provided to the computer 44 which performs a calculation to determine the concentration of the particular chemical being sensed and the result may be displayed in the display 20.
  • [0031]
    In further detail and again with reference to FIGS. 1, 2, and 4, once the device 10 is actuated by pressing the switch 22, the beam of light 32 is sent from the light source 30 through the optical transmission member 34 which transmits the beam of light 36 through the tip device 38 into the liquid 82. The reflected beam of light 40 is reflected from the liquid 82 into the tip device 38 to the detector 42. The detector 42 provides signals to the computer 44 and the computer 44 determines the concentration of a particular chemical within the liquid 82. This process may be termed photochemical optical fiber sensing. Additionally, the chemical properties of the tip portion 70 of the sensor portion 14 may be changed to react with another chemical to detect some other chemical within a sample. Further, instead of changing the chemical properties of the tip portion 70, it may only be necessary to change the light source 30 to detect some other chemical within a sample.
  • [0032]
    FIG. 5 illustrates another preferred embodiment of a sensor device 100 which comprises a computer 102 which is connected to a light source 104 by a wire 106. The light source 104 operates to provide light, represented by a light beam 108, to be projected at an optical device 110. The optical device 110 may be a mirror which allows light, which is represented by a light beam 112, of a particular or predetermined wavelength or frequency to pass through the device 110 to be directed at an optical transmission member 114. The optical transmission member 114 is connected to a connector device 116 and the optical transmission member 114 passes light, such as light beam 118, through to the connector device 116. A beam of light 120 is transmitted from the connector device 116 to a sensor device 122. The sensor device 122 is similar to the tip portion or device 38 which was shown in FIGS. 2 and 3. Light, such as light beam 124, which may be reflected back from a sample (not shown) and through the sensor device 122, is directed to the connector device 116. A light beam 126 is transmitted from the connector device 116 to the optical transmission member 114. The optical transmission member 114 in turn directs a light beam 128 to the optical device 110. The optical device 110 provides a light beam 130 of a particular or predetermined wavelength or frequency to be directed at an optical detector device 132. The optical detector 132 is connected by a wire 134 to the computer 102 and provides signals to the computer 102. The computer 102 is operatively programmed to use the signals provided from the optical detector 132 to calculate or determine the concentration of a substance within a sample.
  • [0033]
    Referring now to FIG. 6, the sensor device 100 is further shown comprising a pencil like body 150 which includes a central body portion 152, an end cap 154, and a tip portion 156. The central body portion 152 has a display 158 for displaying information such as glucose concentration. An ON/OFF switch 160 is also included in the central body portion 152 for controlling operation of the sensor device 100. The sensor device 100 is illustrated having the tip portion 156 inserted into a hand 162 of a patient. As has been previously discussed, the tip portion 156 is of an extremely small size and because of its small size insertion of the tip portion 156 into the hand 162 will produce little or no sensation. The other components of the sensor device 100, which were discussed with reference to FIG. 5, are all housed within the central body portion 152.
  • [0034]
    With particular reference now to FIGS. 5 and 6, in operation, the tip portion 156 of the sensor device 100 is inserted into a sample, such as the hand 162, to detect the presence of a concentration of material, such as for example glucose. Once inserted into the hand 162, the ON/OFF switch 160 is pressed by the user to initiate operation of the sensor device 100. Actuation of the sensor device 100 causes the computer 102 to operate the light source 104. The light beam 108 is sent to the optical device 110 which causes the light beam 112 to be directed at the optical transmission member 114 which in turn produces the light beam 118. The light beam 118 passes into the connector 116 and emerges as the light beam 120 which is provided to the sensor device 122. With the sensor device 122 being in contact with the hand 162, the sensor device 122 reacts chemically with the hand 162 and the color of the chemical composing the sensor device 122 changes. The color of the light beam 124 which is reflected back into the sensor device 122 is then directed back into the connector 116. The beam of light 126 is transmitted from the connector 116 to the optical transmission member 114 which in turn transmits the beam of light 128 to the optical device 110. The optical device allows the light beam 130 to be directed to the optical detector 134. The optical detector 134 provides signals to the computer 102 which then determines the concentration of glucose within the hand 162. The result may then be displayed in the display 158 of the sensor device 100. Once the result is displayed, the user may remove the sensor device 100 from the hand 162 and press the ON/OFF switch 160 to turn the sensor device 100 off. The sensor device 100 may be used again to determine the glucose concentration.
  • [0035]
    The sensor device 100 in actual construction is a small device and sized and shaped to be pencil like. Because of its small size the sensor device 100 may be used as a portable monitoring device. Additionally, the computer 102 may be a microprocessor chip, a customized integrated circuit chip such as an ASIC chip, or any other device which is capable of processing electrical signals. Although not shown or made reference to, a rechargeable battery or a replaceable battery may be used to power the sensor device 100. Further both devices 10 and 100 may have incorporated therein a memory for storing information such as, for example, a log of monitoring of the patient's glucose concentration, time of day of monitoring, and date of monitoring.
  • [0036]
    FIG. 7 depicts a block diagram of a third embodiment of a micro optical sensor device 200. The sensor device 200 comprises a computer 202 which is connected to a light source 204 via a wire 206. The light source 204 projects a beam of light 208 into a section or portion of a optical transmission member 210. The optical transmission member 210 is connected to a tip portion or device 212 and passes a beam of light 214 to the tip device 212. The tip portion or device 212 is similar in several respects to the tip device 38 which was illustrated in FIGS. 2 and 3, however, the tip device 212 is different in one respect. In fabricating the tip device 212, as discussed in U.S. Pat. Nos. 5,361,314 and 5,627,922, the tip device 212 uses a multi-dye matrix tip which is photochemically attached to the tip device 212 to form a multi-functional sensor having an extremely small size. The multi-dye configuration allows for a multi-function sensor in which each dye may be chemically activated by a different chemical compound. This enables the tip device 212 to sense, detect, or monitor more than one chemical.
  • [0037]
    Since the tip device 212 is capable of monitoring two different chemicals, two different light beams, such as light beams 216 and 218, will be reflected back from a sample and through the tip device 212. Each of the light beams 216 and 218 are directed to a detector 220 and 222, respectively. Although not shown, it is possible to have an optical component, such as band pass filters, placed between the tip device 212 and the detectors 220 and 222 to direct the light beams 216 and 218 to a specific detector 220 or 222. The detector 220 is connected to the computer 202 by a wire 224 and electrical signals indicative of the concentration of a particular chemical within a sample is provided to the computer 202. Additionally, the detector 222 is connected to the computer 202 by another wire 226 and signals indicative of another chemical within the sample are provided to the computer 202. In this manner, the computer 202 is programmed to receive the signals from the detectors 220 and 222 and calculate or determine the concentrations of the two chemicals within the sample. Additionally, the sensor device 200 may include a display (not shown) which would display the results of the calculations. The sensor device 200 may also be provided with a power supply 228 which is operatively connected by a wire 230 to the computer 202. Although the device 200 is depicted to show the monitoring of at least two different chemical compounds it is also contemplated that more than two chemical compounds may be sensed, detected, or monitored by the device 200 by adding additional components, as has been taught and illustrated.
  • [0038]
    From all that has been said, it will be clear that there has thus been shown and described herein a micro optical sensor device which fulfills the various objects and advantages sought therefor. It will be apparent to those skilled in the art, however, that many changes, modifications, variations, and other uses and applications of the subject micro optical sensor device are possible and contemplated. All changes, modifications, variations, and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is limited only by the claims which follow.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3543746 *Oct 17, 1967Dec 1, 1970Hotchkiss Instr IncEndoscope having improved illumination system
US4321057 *Sep 20, 1979Mar 23, 1982Buckles Richard GMethod for quantitative analysis using optical fibers
US4399099 *Sep 14, 1981Aug 16, 1983Buckles Richard GOptical fiber apparatus for quantitative analysis
US4637403 *Jun 14, 1985Jan 20, 1987Garid, Inc.Glucose medical monitoring system
US4655225 *Apr 18, 1985Apr 7, 1987Kurabo Industries Ltd.Spectrophotometric method and apparatus for the non-invasive
US4671288 *Jun 13, 1985Jun 9, 1987The Regents Of The University Of CaliforniaElectrochemical cell sensor for continuous short-term use in tissues and blood
US4682895 *Aug 6, 1985Jul 28, 1987Texas A&M UniversityFiber optic probe for quantification of colorimetric reactions
US4752115 *Feb 7, 1985Jun 21, 1988Spectramed, Inc.Optical sensor for monitoring the partial pressure of oxygen
US4787398 *Jul 25, 1986Nov 29, 1988Garid, Inc.Glucose medical monitoring system
US4805623 *Sep 4, 1987Feb 21, 1989Vander CorporationSpectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US4846548 *May 6, 1987Jul 11, 1989St&E, Inc.Fiber optic which is an inherent chemical sensor
US4882492 *Jan 19, 1988Nov 21, 1989Biotronics Associates, Inc.Non-invasive near infrared measurement of blood analyte concentrations
US4886338 *Oct 11, 1988Dec 12, 1989Minnesota Mining And Manufacturing CompanyOptical fiber event sensor
US4925268 *Jul 25, 1988May 15, 1990Abbott LaboratoriesFiber-optic physiological probes
US4927502 *Jan 31, 1989May 22, 1990Board Of Regents, The University Of TexasMethods and apparatus using galvanic immunoelectrodes
US4981779 *Jun 26, 1986Jan 1, 1991Becton, Dickinson And CompanyApparatus for monitoring glucose
US4999306 *Apr 28, 1988Mar 12, 1991Minnesota Mining And Manufacturing CompanyComposition, apparatus and method for sensing ionic components
US5000901 *Mar 9, 1990Mar 19, 1991Abbott LaboratoriesFiber-optic physiological probes
US5001054 *Jul 31, 1990Mar 19, 1991Becton, Dickinson And CompanyMethod for monitoring glucose
US5127077 *Dec 18, 1990Jun 30, 1992Abbott LaboratoriesFiber-optic physiological probes
US5143066 *May 8, 1990Sep 1, 1992University Of PittsburghOptical fiber sensors for continuous monitoring of biochemicals and related method
US5179951 *Dec 20, 1991Jan 19, 1993Inomet, Inc.Blood constituent measurement
US5244387 *Jun 26, 1992Sep 14, 1993Dieter FuiererMeasuring probe to detect pocket depth of a tooth holding apparatus
US5271073 *Aug 10, 1990Dec 14, 1993Puritan-Bennett CorporationOptical fiber sensor and method of manufacture
US5341805 *Apr 6, 1993Aug 30, 1994Cedars-Sinai Medical CenterGlucose fluorescence monitor and method
US5342789 *Dec 14, 1989Aug 30, 1994Sensor Technologies, Inc.Method and device for detecting and quantifying glucose in body fluids
US5361314 *Sep 4, 1992Nov 1, 1994The Regents Of The University Of MichiganMicro optical fiber light source and sensor and method of fabrication thereof
US5398681 *Jan 22, 1993Mar 21, 1995Sunshine Medical Instruments, Inc.Pocket-type instrument for non-invasive measurement of blood glucose concentration
US5429128 *Feb 24, 1993Jul 4, 1995Cme Telemetrix Inc.Finger receptor
US5434084 *Sep 6, 1989Jul 18, 1995The Washington Research FoundationFlow optrode having separate reaction and detection chambers
US5435307 *Mar 29, 1991Jul 25, 1995The United States Of America As Represented By The Secretary Of The Department Of Health And Human ServicesSurface fluorescent monitor
US5436454 *Oct 15, 1993Jul 25, 1995Nicolet Instrument CorporationOptical probe for remote attenuated total reflectance measurements
US5448992 *Jun 1, 1993Sep 12, 1995Sunshine Medical Instruments, Inc.Method and apparatus for non-invasive phase sensitive measurement of blood glucose concentration
US5452716 *Sep 24, 1993Sep 26, 1995Novo Nordisk A/SMethod and device for in vivo measuring the concentration of a substance in the blood
US5517313 *Feb 21, 1995May 14, 1996Colvin, Jr.; Arthur E.Fluorescent optical sensor
US5529755 *Feb 16, 1995Jun 25, 1996Minolta Co., Ltd.Apparatus for measuring a glucose concentration
US5533509 *Aug 12, 1993Jul 9, 1996Kurashiki Boseki Kabushiki KaishaMethod and apparatus for non-invasive measurement of blood sugar level
US5553613 *Aug 17, 1994Sep 10, 1996Pfizer Inc.Non invasive blood analyte sensor
US5553616 *Nov 30, 1993Sep 10, 1996Florida Institute Of TechnologyDetermination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator
US5582184 *Oct 11, 1994Dec 10, 1996Integ IncorporatedInterstitial fluid collection and constituent measurement
US5605152 *Jul 18, 1994Feb 25, 1997Minimed Inc.Optical glucose sensor
US5617852 *Apr 6, 1995Apr 8, 1997Macgregor; Alastair R.Method and apparatus for non-invasively determining blood analytes
US5627922 *Mar 2, 1995May 6, 1997Regents Of The University Of MichiganMicro optical fiber light source and sensor and method of fabrication thereof
US5680858 *Dec 10, 1993Oct 28, 1997Novo Nordisk A/SMethod and apparatus for in vivo determination of the concentration in a body fluid of metabolically significant substances
US5695949 *Apr 7, 1995Dec 9, 1997Lxn Corp.Combined assay for current glucose level and intermediate or long-term glycemic control
US5713353 *Apr 19, 1996Feb 3, 1998Castano; Jaime A.Optical method and device for determining blood glucose levels
US5718842 *Jan 29, 1997Feb 17, 1998Joanneum Reserach Forschungsgesellschaft MbhLuminescent dye comprising metallocomplex of a oxoporphyrin
US5746217 *Nov 8, 1995May 5, 1998Integ IncorporatedInterstitial fluid collection and constituent measurement
US5820570 *Aug 27, 1997Oct 13, 1998Integ IncorporatedInterstitial fluid collection and constituent measurement
US5844686 *Sep 9, 1996Dec 1, 1998Eppendorf-Netheler-Hinz, GmbhSystem for pipetting and photometrically evaluating samples
US5859937 *Apr 4, 1997Jan 12, 1999Neomecs IncorporatedMinimally invasive sensor
US5894351 *May 13, 1997Apr 13, 1999Colvin, Jr.; Arthur E.Fluorescence sensing device
US5910661 *May 13, 1997Jun 8, 1999Colvin, Jr.; Arthur E.Flourescence sensing device
US5951492 *May 16, 1997Sep 14, 1999Mercury Diagnostics, Inc.Methods and apparatus for sampling and analyzing body fluid
US5982959 *Jul 11, 1998Nov 9, 1999Hopenfeld; JoramCoated fiber optic sensor for the detection of substances
US6014577 *Nov 20, 1997Jan 11, 2000Abbot LaboratoriesDevice for the detection of analyte and administration of a therapeutic substance
US6040194 *Jun 6, 1995Mar 21, 2000Sensor Technologies, Inc.Methods and device for detecting and quantifying substances in body fluids
US6103535 *May 30, 1997Aug 15, 2000University Of MarylandOptical fiber evanescent field excited fluorosensor and method of manufacture
US6119031 *Jul 22, 1997Sep 12, 2000Boston Scientific CorporationMiniature spectrometer
US6157442 *Jun 19, 1998Dec 5, 2000Microsense International LlcMicro optical fiber sensor device
US6197257 *Aug 20, 1998Mar 6, 2001Microsense Of St. Louis, LlcMicro sensor device
US6197534 *Jul 15, 1999Mar 6, 2001Joseph R. LakowiczEngineered proteins for analyte sensing
US6277627 *Dec 31, 1998Aug 21, 2001Duke UniversityBiosensor
US6334856 *May 21, 1999Jan 1, 2002Georgia Tech Research CorporationMicroneedle devices and methods of manufacture and use thereof
US6382555 *Aug 19, 1964May 7, 2002Raytheon CompanyFiber optics assembly
US6383767 *Jan 21, 2000May 7, 2002Motorola, Inc.Luminescent in vivo glucose measurement
US6521446 *Jun 27, 2001Feb 18, 2003Duke UniversityBiosensor
US6535753 *Sep 22, 2000Mar 18, 2003Microsense International, LlcMicro-invasive method for painless detection of analytes in extra-cellular space
US6584335 *Aug 6, 1998Jun 24, 2003Roche Diagnostics GmbhAnalytical device for in vivo analysis in the body of a patient
US6904301 *Dec 31, 2002Jun 7, 2005Becton. Dickinson And CompanyMicro-invasive method for painless detection of analytes in extracellular space
US6922576 *Feb 11, 2003Jul 26, 2005Becton, Dickinson And CompanyMicro optical sensor device
US20020138049 *Dec 6, 2001Sep 26, 2002Allen Mark G.Microneedle devices and methods of manufacture and use thereof
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7875047Jan 25, 2007Jan 25, 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7892183Feb 22, 2011Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US7901365Mar 8, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7909774Mar 22, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7909775Mar 22, 2011Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7909777Sep 29, 2006Mar 22, 2011Pelikan Technologies, IncMethod and apparatus for penetrating tissue
US7909778Apr 20, 2007Mar 22, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7914465Feb 8, 2007Mar 29, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7938787May 10, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7959582Mar 21, 2007Jun 14, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7976476Jul 12, 2011Pelikan Technologies, Inc.Device and method for variable speed lancet
US7981055Dec 22, 2005Jul 19, 2011Pelikan Technologies, Inc.Tissue penetration device
US7981056Jun 18, 2007Jul 19, 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US7988644Aug 2, 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7988645Aug 2, 2011Pelikan Technologies, Inc.Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446Aug 30, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8016774Dec 22, 2005Sep 13, 2011Pelikan Technologies, Inc.Tissue penetration device
US8062231Nov 22, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8079960Oct 10, 2006Dec 20, 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US8123700Jun 26, 2007Feb 28, 2012Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8157748Jan 10, 2008Apr 17, 2012Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US8162853Apr 24, 2012Pelikan Technologies, Inc.Tissue penetration device
US8197421Jul 16, 2007Jun 12, 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8197423Dec 14, 2010Jun 12, 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8202231Apr 23, 2007Jun 19, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8206317Dec 22, 2005Jun 26, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8206319Jun 26, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8211037Jul 3, 2012Pelikan Technologies, Inc.Tissue penetration device
US8216154Jul 10, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8221334Jul 17, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8235915Dec 18, 2008Aug 7, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8251921Jun 10, 2010Aug 28, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US8262614Jun 1, 2004Sep 11, 2012Pelikan Technologies, Inc.Method and apparatus for fluid injection
US8267870May 30, 2003Sep 18, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling with hybrid actuation
US8282576Sep 29, 2004Oct 9, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
US8282577Oct 9, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8296918Aug 23, 2010Oct 30, 2012Sanofi-Aventis Deutschland GmbhMethod of manufacturing a fluid sampling device with improved analyte detecting member configuration
US8333710Dec 18, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8337419Oct 4, 2005Dec 25, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8337420Mar 24, 2006Dec 25, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8337421Dec 16, 2008Dec 25, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8343075Dec 23, 2005Jan 1, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8360991Dec 23, 2005Jan 29, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8360992Nov 25, 2008Jan 29, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8366637Feb 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8372016Feb 12, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US8382682Feb 26, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8382683Feb 26, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8388551May 27, 2008Mar 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for multi-use body fluid sampling device with sterility barrier release
US8403864May 1, 2006Mar 26, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8414503Apr 9, 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US8430828Jan 26, 2007Apr 30, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190Jan 19, 2007May 7, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8439872Apr 26, 2010May 14, 2013Sanofi-Aventis Deutschland GmbhApparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8491500Apr 16, 2007Jul 23, 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US8496601Apr 16, 2007Jul 30, 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US8556829Jan 27, 2009Oct 15, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8562545Dec 16, 2008Oct 22, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8574168Mar 26, 2007Nov 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for a multi-use body fluid sampling device with analyte sensing
US8574895Dec 30, 2003Nov 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US8579831Oct 6, 2006Nov 12, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8622930Jul 18, 2011Jan 7, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8636673Dec 1, 2008Jan 28, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8641643Apr 27, 2006Feb 4, 2014Sanofi-Aventis Deutschland GmbhSampling module device and method
US8641644Apr 23, 2008Feb 4, 2014Sanofi-Aventis Deutschland GmbhBlood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8652831Mar 26, 2008Feb 18, 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte measurement test time
US8668656Dec 31, 2004Mar 11, 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for improving fluidic flow and sample capture
US8679033Jun 16, 2011Mar 25, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8690796Sep 29, 2006Apr 8, 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8702624Jan 29, 2010Apr 22, 2014Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US8721671Jul 6, 2005May 13, 2014Sanofi-Aventis Deutschland GmbhElectric lancet actuator
US8784335Jul 25, 2008Jul 22, 2014Sanofi-Aventis Deutschland GmbhBody fluid sampling device with a capacitive sensor
US8808201Jan 15, 2008Aug 19, 2014Sanofi-Aventis Deutschland GmbhMethods and apparatus for penetrating tissue
US8828203May 20, 2005Sep 9, 2014Sanofi-Aventis Deutschland GmbhPrintable hydrogels for biosensors
US8845549Dec 2, 2008Sep 30, 2014Sanofi-Aventis Deutschland GmbhMethod for penetrating tissue
US8845550Dec 3, 2012Sep 30, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8905945Mar 29, 2012Dec 9, 2014Dominique M. FreemanMethod and apparatus for penetrating tissue
US8945910Jun 19, 2012Feb 3, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
US8965476Apr 18, 2011Feb 24, 2015Sanofi-Aventis Deutschland GmbhTissue penetration device
US9034639Jun 26, 2012May 19, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US9042967May 20, 2009May 26, 2015University Health NetworkDevice and method for wound imaging and monitoring
US9072842Jul 31, 2013Jul 7, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US9089294Jan 16, 2014Jul 28, 2015Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US9089678May 21, 2012Jul 28, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US9144401Dec 12, 2005Sep 29, 2015Sanofi-Aventis Deutschland GmbhLow pain penetrating member
US9186468Jan 14, 2014Nov 17, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US9226699Nov 9, 2010Jan 5, 2016Sanofi-Aventis Deutschland GmbhBody fluid sampling module with a continuous compression tissue interface surface
US9248267Jul 18, 2013Feb 2, 2016Sanofi-Aventis Deustchland GmbhTissue penetration device
US9261476Apr 1, 2014Feb 16, 2016Sanofi SaPrintable hydrogel for biosensors
US9314194Jan 11, 2007Apr 19, 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US9339612Dec 16, 2008May 17, 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US9351680Oct 14, 2004May 31, 2016Sanofi-Aventis Deutschland GmbhMethod and apparatus for a variable user interface
US9375169Jan 29, 2010Jun 28, 2016Sanofi-Aventis Deutschland GmbhCam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944Apr 10, 2009Jul 12, 2016Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte detecting device
US20060195130 *Dec 23, 2005Aug 31, 2006Dominique FreemanTissue penetration device
US20070043386 *Dec 22, 2005Feb 22, 2007Dominique FreemanTissue penetration device
US20080210574 *Mar 26, 2008Sep 4, 2008Dirk BoeckerMethod and apparatus for analyte measurement test time
US20090054811 *Dec 30, 2005Feb 26, 2009Dirk BoeckerMethod and apparatus for analyte measurement test time
US20090192411 *Jul 30, 2009Dominique FreemanMethod and apparatus for penetrating tissue
Classifications
U.S. Classification600/316, 600/322, 600/317
International ClassificationG01N33/543, A61B5/00
Cooperative ClassificationG01N33/5438, G01N2400/00, G01N21/8507, A61B5/14532, G01N21/78
European ClassificationA61B5/145G, G01N21/78, G01N21/85B, G01N33/543K2B