Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060030882 A1
Publication typeApplication
Application numberUS 11/245,535
Publication dateFeb 9, 2006
Filing dateOct 7, 2005
Priority dateMar 6, 2002
Also published asUS7004958, US20030171776, WO2003075748A2, WO2003075748A3
Publication number11245535, 245535, US 2006/0030882 A1, US 2006/030882 A1, US 20060030882 A1, US 20060030882A1, US 2006030882 A1, US 2006030882A1, US-A1-20060030882, US-A1-2006030882, US2006/0030882A1, US2006/030882A1, US20060030882 A1, US20060030882A1, US2006030882 A1, US2006030882A1
InventorsJohn Adams, Scott Wolf
Original AssigneeAdams John M, Wolf Scott J
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Transvenous staples, assembly and method for mitral valve repair
US 20060030882 A1
Abstract
A mitral valve staple device treats mitral regurgitation of a heart. The device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions. The connection portion has an initial stressed and distorted configuration to separate the first and second leg portion by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance which is shorter than the first distance. The device is deployed within the heart transvenously through a catheter positioned in the coronary sinus adjacent the mitral valve annulus. A tool forces the mitral valve staple device through the wall of the catheter for deployment in the heart.
Images(5)
Previous page
Next page
Claims(5)
1. A device for effecting mitral valve annulus geometry of a heart, the device comprising:
first and second leg portions, each leg portion terminating in a tissue piercing end; and
a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
2. The device of claim 1 wherein the leg portions and connection portion are formed of the same material stock.
3. The device of claim 2 wherein the leg portions and the connection portion are formed from Nitinol.
4. A device for effecting mitral valve annulus geometry of a heart, the device comprising:
first and second tissue piercing portions, each tissue piercing portion terminating in a tissue piercing end; and
a connection portion extending between the first and second tissue piercing portions, the connection portion having an initial stressed and distorted configuration to separate the first and second tissue piercing portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second tissue piercing portions by a second distance, the second distance being shorter than the first distance.
5. A device for effecting tissue geometry of an organ, the device comprising:
first and second leg portions, each leg portion terminating in a tissue piercing end; and
a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the tissue and a final unstressed and undistorted configuration after the tissue piercing ends pierce the tissue to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
Description
    CROSS-REFERENCE
  • [0001]
    This application is a continuation application of Ser. No. 10/093,323, filed Mar. 6, 2002, which is incorporated herein by reference in its entirety and to which application we claim priority under 35 USC 120.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention generally relates to a device, assembly and method for treating dilated cardiomyopathy of a heart. The present invention more particularly relates to mitral valve annulus staple devices and an assembly and method for deploying such staple device to reshape the mitral valve annulus.
  • BACKGROUND OF THE INVENTION
  • [0003]
    The human heart generally includes four valves. Of these valves, a most critical one is known as the mitral valve. The mitral valve is located in the left atrial ventricular opening between the left atrium and left ventricle. The mitral valve is intended to prevent regurgitation of blood from the left ventricle into the left atrium when the left ventricle contracts. In preventing blood regurgitation the mitral valve must be able to withstand considerable back pressure as the left ventricle contracts.
  • [0004]
    The valve cusps of the mitral valve are anchored to muscular wall of the heart by delicate but strong fibrous cords in order to support the cusps during left ventricular contraction. In a healthy mitral valve, the geometry of the mitral valve ensures that the cusps overlie each other to preclude regurgitation of the blood during left ventricular contraction.
  • [0005]
    The normal functioning of the mitral valve in preventing regurgitation can be impaired by dilated cardiomyopathy caused by disease or certain natural defects. For example, certain diseases may cause dilation of the mitral valve annulus. This can result in deformation of the mitral valve geometry to cause ineffective closure of the mitral valve during left ventricular contraction. Such ineffective closure results in leakage through the mitral valve and regurgitation. Diseases such as bacterial inflammations of the heart or heart failure can cause the aforementioned distortion or dilation of the mitral valve annulus. Needless to say, mitral valve regurgitation must not go uncorrected.
  • [0006]
    One method of repairing a mitral valve heaving impaired function is to completely replace the valve. This method has been found to be particularly suitable for replacing a mitral valve when one of the cusps has been severely damaged or deformed. While the replacement of the entire valve eliminates the immediate problem associated with a dilated mitral valve annulus, presently available prosthetic heart valves do not possess the same durability as natural heart valves.
  • [0007]
    Various other surgical procedures have been developed to correct the deformation of the mitral valve annulus and thus retain the intact natural heart valve function. These surgical techniques involve repairing the shape of the dilated or deformed valve annulus. Such techniques, generally known as annuloplasty, require surgically restricting the valve annulus to minimize dilation. Here, a prosthesis is typically sutured about the base of the valve leaflets to reshape the valve annulus and restrict the movement of the valve annulus during the opening and closing of the mitral valve.
  • [0008]
    Many different types of prostheses have been developed for use in such surgery. In general, prostheses are annular or partially annular shaped members which fit about the base of the valve annulus. The annular or partially annular shaped members may be formed from a rigid material, such as a metal, or from a flexible material.
  • [0009]
    While the prior art methods mentioned above have been able to achieve some success in treating mitral regurgitation, they have not been without problems and potential adverse consequences. For example, these procedures require open heart surgery. Such procedures are expensive, are extremely invasive requiring considerable recovery time, and pose the concomitant mortality risks associated with such procedures. Moreover, such open heart procedures are particularly stressful on patients with a comprised cardiac condition. Given these factors, such procedures are often reserved as a last resort and hence are employed late in the mitral regurgitation progression. Further, the effectiveness of such procedures is difficult to assess during the procedure and may not be known until a much later time. Hence, the ability to make adjustments to or changes in the prostheses to obtain optimum effectiveness is extremely limited. Later corrections, if made at all, require still another open heart surgery.
  • [0010]
    An improved therapy to treat mitral regurgitation without resorting to open heart surgery has recently been proposed. This is rendered possible by the realization that the coronary sinus of a heart is near to and at least partially encircles the mitral valve annulus and then extends into a venous system including the great cardiac vein. As used herein, the term “coronary sinus” is meant to refer to not only the coronary sinus itself but in addition, the venous system associated with the coronary sinus including the great cardiac vein. The therapy contemplates the use of a device introduced into the coronary sinus to reshape and advantageously effect the geometry of the mitral valve annulus.
  • [0011]
    The device includes a resilient member having a cross sectional dimension for being received within the coronary sinus of the heart and a longitudinal dimension having an unstressed arched configuration when placed in the coronary sinus. The device partially encircles and exerts an inward pressure on the mitral valve. The inward pressure constricts the mitral valve annulus, or at least a portion of it, to essentially restore the mitral valve geometry. This promotes effective valve sealing action and eliminates mitral regurgitation.
  • [0012]
    The device may be implanted in the coronary sinus using only percutaneous techniques similar to the techniques used to implant cardiac leads such as pacemaker leads. One proposed system for implanting the device includes an elongated introducer configured for being releasably coupled to the device. The introducer is preferably flexible to permit it to advance the device into the heart and into the coronary sinus through the coronary sinus ostium. To promote guidance, an elongated sheath is first advanced into the coronary sinus. Then, the device and introducer are moved through a lumen of the sheath until the device is in position within the coronary sinus. Because the device is formed of resilient material, it conforms to the curvatures of the lumen as it is advanced through the sheath. The sheath is then partially retracted to permit the device to assume its unstressed arched configuration. Once the device is properly positioned, the introducer is then decoupled from the device and retracted through the sheath. The procedure is then completed by the retraction of the sheath. As a result, the device is left within the coronary sinus to exert the inward pressure on the mitral valve to restore mitral valve geometry.
  • [0013]
    The foregoing therapy has many advantages over the traditional open heart surgery approach. Since the device, system and method may be employed in a comparatively noninvasive procedure, mitral valve regurgitation may be treated at an early stage in the mitral regurgitation progression. Further, the device may be placed with relative ease by any minimally invasive cardiologist. Still further, since the heart remains completely intact throughout the procedure, the effectiveness of the procedure may be readily determined. Moreover, should adjustments be deemed desirable, such adjustments may be made during the procedure and before the patient is sent to recovery.
  • [0014]
    Another approach to treat mitral regurgitation with a device in the coronary sinus is based upon the observation that the application of a localized force against a discrete portion of the mitral valve annulus can terminate mitral regurgitation. This suggests that mitral regurgitation may be localized and nonuniform. Hence, the device applies a force to one or more discrete portions of the atrial wall of the coronary sinus to provide localized mitral valve annulus reshaping instead of generalized reshaping of the mitral valve annulus. Such localized therapy would have all the benefits of the generalized therapy. In addition, a localized therapy device may be easier to implant and adjust.
  • [0015]
    A still further approach to treat mitral regurgitation from the coronary sinus of the heart contemplates a device having a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent the mitral valve annulus within the heart, a cable fixed to the first anchor and extending proximally from the first anchor within the heart, a second anchor configured to be positioned in and fixed in the heart proximal to the first anchor and arranged to slidingly receive the cable, and a lock that locks the cable on the second anchor. When the first and second anchors are fixed within the heart, the cable may be drawn proximally and locked on the second anchor. The geometry of the mitral valve is thereby effected. This approach provides flexibility in that the second anchor may be positioned and fixed in the coronary sinus or alternatively, the second anchor may be positioned and fixed in the right atrium. This approach further allows adjustments in the cable tension after implant.
  • [0016]
    A still further alternative for treating mitral regurgitation contemplates a device having a first anchor configured to be positioned within and anchored to the coronary sinus of the heart adjacent the mitral valve annulus within the heart. A second anchor is configured to be positioned within the heart proximal to the first anchor and adjacent the mitral valve annulus within the heart. A connecting member, having a fixed length, is permanently attached to the first and second anchors. As a result, when the first and second anchors are within the heart with the first anchor anchored in the coronary sinus, the second anchor may be displaced proximally to effect the geometry of the mitral valve annulus and released to maintain the effect on the mitral valve geometry. The second anchor may be configured, when deployed, to anchor against distal movement but be moveable proximally within the coronary sinus. The present invention provides a still further approach for treating mitral regurgitation.
  • SUMMARY OF THE INVENTION
  • [0017]
    The invention provides a device for effecting tissue geometry of an organ. The device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the tissue and a final unstressed and undistorted configuration after the tissue piercing ends pierce the tissue to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
  • [0018]
    The present invention further provides a device for effecting mitral valve annulus geometry of a heart. The device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions. The connection portion has an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
  • [0019]
    The initial configuration of the connection portion may be a first arched configuration and the final configuration of the connection portion may be a second arched configuration, wherein the second arched configuration is arched in a direction opposite the first arched configuration. The device may be configured such that when the connection portion is in the second arched configuration, the tissue piercing ends of the leg portions point toward each other. The leg portions and connection portion are preferably formed of the same material stock, as from Nitinol, for example.
  • [0020]
    The invention further provides a device for effecting mitral valve annulus geometry of a heart. The device includes first and second tissue piercing portions, each tissue piercing portion terminating in a tissue piercing end, and a connection portion extending between the first and second tissue piercing portions, the connection portion having an initial stressed and distorted configuration to separate the first and second tissue piercing portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second tissue piercing portions by a second distance, the second distance being shorter than the first distance.
  • [0021]
    The invention further provides an assembly for effecting mitral valve annulus geometry of a heart. The assembly includes an elongated catheter being placeable in the coronary sinus of the heart adjacent the mitral valve annulus. The assembly further includes at least one staple carried within the catheter, the at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance. The assembly further includes a tool that forces the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration.
  • [0022]
    The at least one staple is preferably configured so that the tissue piercing ends of the first and second leg portions point away from each other when the connection portion is in the initial configuration and the tissue piercing ends of the first and second leg portions point toward each other when the connection portion is in the final configuration.
  • [0023]
    The catheter preferably includes a tubular wall wherein the tool forces the at least one staple through the tubular wall of the catheter. To that end, the tubular wall may include a break-away slot adjacent the at least one staple that permits the at least one staple to be forced therethrough.
  • [0024]
    The at least one staple may comprise a plurality of staples. The catheter tubular wall may in turn include a plurality of break-away slots, each slot being adjacent to a respective given one of the staples, the slots permitting the staples to be forced through the tubular wall of the catheter and into the mitral valve annulus. The tool is preferably configured to force the plurality of staples from the catheter substantially simultaneously.
  • [0025]
    The assembly may further include an urging member that urges the catheter along and against a wall of the coronary sinus adjacent to the mitral valve annulus. The urging member may be an elongated balloon carried by the catheter.
  • [0026]
    The invention still further provides a method of effecting mitral valve annulus geometry of a heart. The method includes the steps of providing at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance, placing the at least one staple into a catheter, and locating the catheter in the coronary sinus of the heart so that the at least one staple is adjacent the mitral valve annulus. The method includes the further step of releasing the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration and causing the connection portion to assume the final configuration.
  • [0027]
    The invention still further provides an assembly for effecting mitral valve annulus geometry of a heart. The assembly includes
  • INCORPORATION BY REFERENCE
  • [0028]
    All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0029]
    The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • [0030]
    The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further aspects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify identical elements, and wherein:
  • [0031]
    FIG. 1 is a superior view of a human heart with the atria removed;
  • [0032]
    FIG. 2 is a side plan view of a staple device embodying the present invention shown in an initial stressed and distorted configuration within a deployment catheter;
  • [0033]
    FIG. 3 is a side plan view of the staple device of FIG. 2 shown in a final unstressed and undistorted configuration;
  • [0034]
    FIG. 4 is a side view of the deployment catheter illustrating a slot portion through which the staple device may be forced for deployment;
  • [0035]
    FIG. 5 is a side view illustrating the staple after being forced through the slot portion of the catheter;
  • [0036]
    FIG. 6 is a side view of an assembly embodying the present invention shown within a coronary sinus and ready for deployment of a plurality of staple devices in accordance with the present invention;
  • [0037]
    FIG. 7 is a superior view of a human heart similar to FIG. 1 illustrating a first step in the deployment of mitral valve staple devices embodying the present invention;
  • [0038]
    FIG. 8 is a view similar to FIG. 7 illustrating a further step in the deployment of the staple devices; and
  • [0039]
    FIG. 9 is a superior view of a human heart similar to FIG. 7 illustrating the mitral valve staple devices deployed in the heart.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0040]
    While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
  • [0041]
    Referring now to FIG. 1, it is a superior view of a human heart 10 with the atria removed to expose the mitral valve 12, the coronary sinus 14, the coronary artery 15, and the circumflex artery 17 of the heart 10 to lend a better understanding of the present invention. Also generally shown in FIG. 1 are the pulmonary valve 22, the aortic valve 24, and the tricuspid valve 26 of the heart 10.
  • [0042]
    The mitral valve 12 includes an anterior cusp 16, a posterior cusp 18 and an annulus 20. The annulus encircles the cusps 16 and 18 and maintains their spacing to provide a complete closure during a left ventricular contraction. As is well known, the coronary sinus 14 partially encircles the mitral valve 12 adjacent to the mitral valve annulus 20. As is also known, the coronary sinus is part of the venus system of the heart and extends along the AV groove between the left atrium and the left ventricle. This places the coronary sinus essentially within the same plane as the mitral valve annulus making the coronary sinus available for placement of the mitral valve therapy staple devices of the present invention therein.
  • [0043]
    FIG. 2 shows a mitral valve therapy staple device 30 embodying the present invention. The device 30 is shown confined within a deployment catheter 40 which will be described subsequently. The device 30 includes first and second tissue piercing leg portions 32 and 34 and a connection portion 36 between the leg portions 32 and 34. The leg portions 32 and 34 terminate in tissue piercing ends 33 and 35, respectively.
  • [0044]
    The device 30 is confined within the catheter 40 in a first or initial configuration. The initial configuration is exhibited by the connecting member 36 having a first arcuate or arched configuration, as illustrated, with the tissue piercing ends 33 and 35 pointing away from each other.
  • [0045]
    The device 30 is formed of a material having shape memory so that once deployed, the connection portion 36 assumes a second or final configuration to be described with respect to FIG. 3 wherein the connection portion assumes a second arched configuration which is arched in a direction opposite than the first arched configuration illustrated in FIG. 2. To that end, the device 30 may be formed of, for example, Nitinol, a material well known for shape memory characteristics. Other suitable materials may include stainless steel or biocompatible plastic materials. Preferably, the connection portion 36 and leg portions 32 and 34 are formed of the same material stock as, for example, from a strip of Nitinol.
  • [0046]
    When the staple device 30 is deployed in the heart, the device 30 assumes its final configuration illustrated in FIG. 3. Here it may be seen that the connection member 36 has assumed an arched configuration opposite than that shown in FIG. 2. The final configuration of the connection member 36 causes the leg portions 32 and 34 to be more closely spaced together. In addition, in accordance with this preferred embodiment, when the device 30 is in its final configuration, the tissue piercing ends 33 and 35 point towards each other.
  • [0047]
    Referring now to FIGS. 4 and 5, they illustrate the deployment catheter 40 in greater detail. Here it may be seen that the deployment catheter 40 includes a tubular wall 42 in which a slot 44 is formed. The staple device 30 is positioned adjacent the slot 44 to permit the staple device 30 to be forced through the tubular sidewall 42 and more particularly through the slot 44 for deployment in the heart. The slot 44 preferably comprises a reduced thickness of the tubular wall 42 to provide an effective seal prior to deployment but permitting a relatively modest force to urge the device 30 through the slot 44 and into the mitral valve annulus as will be described hereinafter. Hence, the slot 44 is a break-away slot providing seal integrity prior to deployment but permitting the staple 30 to be forced through the tubular wall 42 of the catheter 40 into the heart.
  • [0048]
    FIG. 6 is a side view showing the catheter 40 within the coronary sinus 14. Also illustrated in FIG. 6 is a tool 50 which may be utilized for forcing the staples 30 through the tubular wall 42 of the catheter 40. Also shown in FIG. 6 is an urging member 60 which urges the catheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus.
  • [0049]
    More specifically, the tool 50 includes a surface contour 52 which corresponds to the contour of the staple devices 30 when in the initial configuration. Displacement of the tool 50 in a proximal direction as indicated by the arrow 54 causes the tool 50 to urge or force the staple devices 30 through the tubular wall 42 of the catheter 40. As noted in FIG. 6, the plurality of staple devices 30 are urged or forced through the tubular wall 42 for deployment substantially simultaneously.
  • [0050]
    The urging member 60 preferably takes the form of an inflatable balloon 62. Preferably, the inflatable balloon 62 is inflatable by a conduit 64 and is carried by the catheter 40. Prior to deployment of the staple devices 30, the catheter 40 is placed in the coronary sinus adjacent the mitral valve annulus with the balloon 62 deflated. Thereafter, the balloon 62 is inflated so as to urge the catheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus as illustrated. Thereafter, the tool 50 may be displaced proximally to urge or force the staple devices 30 through the tubular wall 42 of the catheter 40 for deployment.
  • [0051]
    The deployment of the staple devices 30 is shown more particularly in FIGS. 7 and 8. In FIG. 7, it can be seen that the catheter 40 is positioned within the coronary sinus 14 adjacent to the mitral valve annulus 20. The balloon 62 has been inflated so as to urge the catheter 40 against the wall of the coronary sinus 14 which is adjacent the mitral valve annulus 20. The assembly is now ready to deploy the mitral valve staple devices 30.
  • [0052]
    Referring now to FIG. 8, it will be noted that the tool 50 is being displaced proximally and is forcing the staple devices 30 through the tubular wall 42 of the catheter 40. The leg portions are extending through the wall of the coronary sinus into the mitral valve annulus 20 or at least near to the annulus. Once the mitral valve staple devices 30 have been forced through the catheter sidewall with the leg portions piercing the mitral valve annulus, the staple devices will assume their final configuration. This is shown more particularly in FIG. 9.
  • [0053]
    In FIG. 9, it can be seen that the connection portions 36 of the mitral valve staple devices 30 have assumed their final configuration. During the process of transitioning from the initial configuration to the final configuration, the tissue piercing leg portions have gathered-up mitral valve annulus tissue to tighten the mitral valve annulus. More specifically, as will be noted in FIG. 9, the radius of curvature of the mitral valve annulus 20 in a portion designated 70 has been dramatically increased. This tightening up of the mitral valve annulus will promote more efficient mitral valve action and advantageously terminate mitral regurgitation. While the tissue piercing leg portions are illustrated as piercing entirely through the mitral valve annulus, it will be appreciated by those skilled in the art that the mitral valve annulus wall need not necessarily be pierced entirely through and that the tissue piercing leg portions need only pierce into the mitral valve annulus.
  • [0054]
    While particular embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention as defined by the claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4055861 *Apr 9, 1976Nov 1, 1977Rhone-Poulenc IndustriesSupport for a natural human heart valve
US4164046 *May 16, 1977Aug 14, 1979Cooley DentonValve prosthesis
US4362413 *Dec 10, 1979Dec 7, 1982Exxon Production Research Co.Retrievable connector assembly
US4485816 *Jun 25, 1981Dec 4, 1984AlchemiaShape-memory surgical staple apparatus and method for use in surgical suturing
US4550870 *Oct 13, 1983Nov 5, 1985Alchemia Ltd. PartnershipStapling device
US4588395 *Oct 28, 1980May 13, 1986Lemelson Jerome HCatheter and method
US4830023 *Nov 27, 1987May 16, 1989Medi-Tech, IncorporatedMedical guidewire
US5061277 *Sep 2, 1988Oct 29, 1991Baxter International Inc.Flexible cardiac valvular support prosthesis
US5250071 *Sep 22, 1992Oct 5, 1993Target Therapeutics, Inc.Detachable embolic coil assembly using interlocking clasps and method of use
US5261916 *Dec 12, 1991Nov 16, 1993Target TherapeuticsDetachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5265601 *May 1, 1992Nov 30, 1993Medtronic, Inc.Dual chamber cardiac pacing from a single electrode
US5350420 *May 25, 1993Sep 27, 1994Baxter International Inc.Flexible annuloplasty ring and holder
US5474557 *Sep 16, 1994Dec 12, 1995Mai; ChristianMultibranch osteosynthesis clip with dynamic compression and self-retention
US5514161 *Apr 4, 1995May 7, 1996Ela Medical S.A.Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5554177 *Mar 27, 1995Sep 10, 1996Medtronic, Inc.Method and apparatus to optimize pacing based on intensity of acoustic signal
US5562698 *Nov 8, 1994Oct 8, 1996Cook IncorporatedIntravascular treatment system
US5601600 *Sep 8, 1995Feb 11, 1997Conceptus, Inc.Endoluminal coil delivery system having a mechanical release mechanism
US5676671 *Sep 3, 1996Oct 14, 1997Inoue; KanjiDevice for introducing an appliance to be implanted into a catheter
US5733325 *May 6, 1996Mar 31, 1998C. R. Bard, Inc.Non-migrating vascular prosthesis and minimally invasive placement system
US5794701 *Jun 12, 1996Aug 18, 1998Oceaneering International, Inc.Subsea connection
US5824071 *Feb 12, 1997Oct 20, 1998Circulation, Inc.Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US5891193 *Apr 11, 1997Apr 6, 1999C.R. Bard, Inc.Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5895391 *Sep 27, 1996Apr 20, 1999Target Therapeutics, Inc.Ball lock joint and introducer for vaso-occlusive member
US5899882 *Apr 4, 1996May 4, 1999Novoste CorporationCatheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5908404 *Mar 3, 1998Jun 1, 1999Elliott; James B.Methods for inserting an implant
US5928258 *Sep 26, 1997Jul 27, 1999Corvita CorporationMethod and apparatus for loading a stent or stent-graft into a delivery sheath
US5935161 *Apr 11, 1997Aug 10, 1999C. R. Bard, Inc.Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5961545 *Jan 17, 1997Oct 5, 1999Meadox Medicals, Inc.EPTFE graft-stent composite device
US5984944 *Feb 20, 1998Nov 16, 1999B. Braun Medical, Inc.Introducer for an expandable vascular occlusion device
US6027517 *May 13, 1997Feb 22, 2000Radiance Medical Systems, Inc.Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon
US6077295 *Jul 15, 1996Jun 20, 2000Advanced Cardiovascular Systems, Inc.Self-expanding stent delivery system
US6077297 *Jan 12, 1998Jun 20, 2000C. R. Bard, Inc.Non-migrating vascular prosthesis and minimally invasive placement system therefor
US6096064 *Sep 19, 1997Aug 1, 2000Intermedics Inc.Four chamber pacer for dilated cardiomyopthy
US6099549 *Jun 11, 1999Aug 8, 2000Cordis CorporationVascular filter for controlled release
US6099552 *Nov 12, 1997Aug 8, 2000Boston Scientific CorporationGastrointestinal copression clips
US6129755 *Jan 9, 1998Oct 10, 2000Nitinol Development CorporationIntravascular stent having an improved strut configuration
US6171320 *Oct 7, 1997Jan 9, 2001Niti Alloys Technologies Ltd.Surgical clip
US6190406 *Feb 2, 1999Feb 20, 2001Nitinal Development CorporationIntravascular stent having tapered struts
US6210432 *Jun 30, 1999Apr 3, 2001Jan Otto SolemDevice and method for treatment of mitral insufficiency
US6254628 *Dec 9, 1996Jul 3, 2001Micro Therapeutics, Inc.Intracranial stent
US6275730 *Sep 7, 1999Aug 14, 2001Uab Research FoundationMethod and apparatus for treating cardiac arrythmia
US6299613 *Oct 20, 1999Oct 9, 2001Sdgi Holdings, Inc.Method for the correction of spinal deformities through vertebral body tethering without fusion
US6342067 *Jan 9, 1998Jan 29, 2002Nitinol Development CorporationIntravascular stent having curved bridges for connecting adjacent hoops
US6345198 *Jul 29, 1999Feb 5, 2002Pacesetter, Inc.Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US6352553 *Jul 18, 1997Mar 5, 2002Gore Enterprise Holdings, Inc.Stent-graft deployment apparatus and method
US6352561 *Dec 23, 1996Mar 5, 2002W. L. Gore & AssociatesImplant deployment apparatus
US6358195 *Mar 9, 2000Mar 19, 2002Neoseed Technology LlcMethod and apparatus for loading radioactive seeds into brachytherapy needles
US6395017 *Nov 15, 1996May 28, 2002C. R. Bard, Inc.Endoprosthesis delivery catheter with sequential stage control
US6402781 *Jan 31, 2000Jun 11, 2002MitralifePercutaneous mitral annuloplasty and cardiac reinforcement
US6419696 *Jul 6, 2000Jul 16, 2002Paul A. SpenceAnnuloplasty devices and related heart valve repair methods
US6442427 *Apr 27, 2000Aug 27, 2002Medtronic, Inc.Method and system for stimulating a mammalian heart
US6503271 *Dec 7, 2000Jan 7, 2003Cordis CorporationIntravascular device with improved radiopacity
US6537314 *Jan 30, 2001Mar 25, 2003Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty and cardiac reinforcement
US6569198 *Mar 30, 2001May 27, 2003Richard A. WilsonMitral or tricuspid valve annuloplasty prosthetic device
US6589208 *May 30, 2001Jul 8, 2003Applied Medical Resources CorporationSelf-deploying catheter assembly
US6602288 *Oct 5, 2000Aug 5, 2003Edwards Lifesciences CorporationMinimally-invasive annuloplasty repair segment delivery template, system and method of use
US6602289 *Jun 8, 1999Aug 5, 2003S&A Rings, LlcAnnuloplasty rings of particular use in surgery for the mitral valve
US6623521 *Dec 14, 2000Sep 23, 2003Md3, Inc.Expandable stent with sliding and locking radial elements
US6626899 *Jul 3, 2001Sep 30, 2003Nidus Medical, LlcApparatus and methods for treating tissue
US6676702 *May 14, 2001Jan 13, 2004Cardiac Dimensions, Inc.Mitral valve therapy assembly and method
US6716158 *Sep 6, 2002Apr 6, 2004Mardil, Inc.Method and apparatus for external stabilization of the heart
US6718985 *May 25, 2001Apr 13, 2004Edwin J. HlavkaMethod and apparatus for catheter-based annuloplasty using local plications
US6723038 *Oct 6, 2000Apr 20, 2004Myocor, Inc.Methods and devices for improving mitral valve function
US6764510 *Jan 9, 2002Jul 20, 2004Myocor, Inc.Devices and methods for heart valve treatment
US6776784 *Sep 6, 2001Aug 17, 2004Core Medical, Inc.Clip apparatus for closing septal defects and methods of use
US6790231 *Feb 5, 2002Sep 14, 2004Viacor, Inc.Apparatus and method for reducing mitral regurgitation
US6800090 *May 14, 2001Oct 5, 2004Cardiac Dimensions, Inc.Mitral valve therapy device, system and method
US6810882 *Jul 19, 2001Nov 2, 2004Ev3 Santa Rosa, Inc.Transluminal mitral annuloplasty
US6908478 *Dec 5, 2001Jun 21, 2005Cardiac Dimensions, Inc.Anchor and pull mitral valve device and method
US7004958 *Mar 6, 2002Feb 28, 2006Cardiac Dimensions, Inc.Transvenous staples, assembly and method for mitral valve repair
US20010018611 *Feb 5, 2001Aug 30, 2001Solem Jan OttoMethod and device for treatment of mitral insufficiency
US20010044568 *Jul 19, 2001Nov 22, 2001Langberg Jonathan J.Endoluminal ventricular retention
US20020016628 *Oct 1, 2001Feb 7, 2002Langberg Jonathan J.Percutaneous mitral annuloplasty with hemodynamic monitoring
US20020042621 *Jun 22, 2001Apr 11, 2002Liddicoat John R.Automated annular plication for mitral valve repair
US20020042651 *Jun 29, 2001Apr 11, 2002Liddicoat John R.Method and apparatus for performing a procedure on a cardiac valve
US20020049468 *Jun 29, 2001Apr 25, 2002Streeter Richard B.Intravascular filter with debris entrapment mechanism
US20020055774 *Sep 7, 2001May 9, 2002Liddicoat John R.Fixation band for affixing a prosthetic heart valve to tissue
US20020065554 *Oct 25, 2001May 30, 2002Streeter Richard B.Mitral shield
US20020087173 *Dec 28, 2000Jul 4, 2002Alferness Clifton A.Mitral valve constricting device, system and method
US20020095167 *Oct 23, 2001Jul 18, 2002Liddicoat John R.Automated annular plication for mitral valve repair
US20020103533 *Jan 30, 2001Aug 1, 2002Langberg Jonathan J.Percutaneous mitral annuloplasty and cardiac reinforcement
US20020138044 *Oct 26, 2001Sep 26, 2002Streeter Richard B.Intracardiovascular access (ICVATM) system
US20020151961 *Jan 30, 2002Oct 17, 2002Lashinski Randall T.Medical system and method for remodeling an extravascular tissue structure
US20030018358 *Jul 3, 2002Jan 23, 2003Vahid SaadatApparatus and methods for treating tissue
US20030069636 *Nov 26, 2002Apr 10, 2003Solem Jan OttoMethod for treatment of mitral insufficiency
US20030078465 *Oct 11, 2002Apr 24, 2003Suresh PaiSystems for heart treatment
US20030078654 *Aug 14, 2002Apr 24, 2003Taylor Daniel C.Method and apparatus for improving mitral valve function
US20030083538 *Nov 1, 2001May 1, 2003Cardiac Dimensions, Inc.Focused compression mitral valve device and method
US20030088305 *Oct 25, 2002May 8, 2003Cook IncorporatedProstheses for curved lumens
US20030130730 *Oct 25, 2002Jul 10, 2003Cohn William E.Method and apparatus for reducing mitral regurgitation
US20030135267 *May 9, 2002Jul 17, 2003Solem Jan OttoDelayed memory device
US20030144697 *Jan 30, 2002Jul 31, 2003Cardiac Dimensions, Inc.Fixed length anchor and pull mitral valve device and method
US20040019377 *Jan 14, 2003Jan 29, 2004Taylor Daniel C.Method and apparatus for reducing mitral regurgitation
US20040039443 *Dec 24, 2002Feb 26, 2004Solem Jan OttoMethod and device for treatment of mitral insufficiency
US20040073302 *May 27, 2003Apr 15, 2004Jonathan RourkeMethod and apparatus for improving mitral valve function
US20040176840 *Mar 23, 2004Sep 9, 2004Langberg Jonathan J.Percutaneous mitral annuloplasty with hemodynamic monitoring
US20050197692 *May 2, 2005Sep 8, 2005Extensia Medical, Inc.Systems for heart treatment
US20050197693 *May 2, 2005Sep 8, 2005Extensia Medical, Inc.Systems for heart treatment
US20050197694 *May 2, 2005Sep 8, 2005Extensia Medical, Inc.Systems for heart treatment
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7666224Jul 7, 2005Feb 23, 2010Edwards Lifesciences LlcDevices and methods for heart valve treatment
US7670368Mar 2, 2010Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US7674287Mar 9, 2010Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7682385Jul 3, 2006Mar 23, 2010Boston Scientific CorporationArtificial valve
US7722666Apr 15, 2005May 25, 2010Boston Scientific Scimed, Inc.Valve apparatus, system and method
US7758639Jul 20, 2010Cardiac Dimensions, Inc.Mitral valve device using conditioned shape memory alloy
US7776053Dec 12, 2006Aug 17, 2010Boston Scientific Scimed, Inc.Implantable valve system
US7780627Aug 24, 2010Boston Scientific Scimed, Inc.Valve treatment catheter and methods
US7780722Aug 24, 2010Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US7794496Dec 19, 2003Sep 14, 2010Cardiac Dimensions, Inc.Tissue shaping device with integral connector and crimp
US7799038Jan 20, 2006Sep 21, 2010Boston Scientific Scimed, Inc.Translumenal apparatus, system, and method
US7814635Oct 19, 2010Cardiac Dimensions, Inc.Method of making a tissue shaping device
US7828841Nov 9, 2010Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7828842Nov 9, 2010Cardiac Dimensions, Inc.Tissue shaping device
US7828843Aug 24, 2004Nov 9, 2010Cardiac Dimensions, Inc.Mitral valve therapy device, system and method
US7837728Dec 19, 2003Nov 23, 2010Cardiac Dimensions, Inc.Reduced length tissue shaping device
US7837729Sep 20, 2004Nov 23, 2010Cardiac Dimensions, Inc.Percutaneous mitral valve annuloplasty delivery system
US7854755Dec 21, 2010Boston Scientific Scimed, Inc.Vascular catheter, system, and method
US7854761Dec 19, 2003Dec 21, 2010Boston Scientific Scimed, Inc.Methods for venous valve replacement with a catheter
US7857846May 2, 2003Dec 28, 2010Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7867274Jan 11, 2011Boston Scientific Scimed, Inc.Valve apparatus, system and method
US7883539Apr 23, 2002Feb 8, 2011Edwards Lifesciences LlcHeart wall tension reduction apparatus and method
US7887582May 5, 2004Feb 15, 2011Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US7892276Feb 22, 2011Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US7951189Jul 27, 2009May 31, 2011Boston Scientific Scimed, Inc.Venous valve, system, and method with sinus pocket
US7967853Jun 28, 2011Boston Scientific Scimed, Inc.Percutaneous valve, system and method
US8002824Jul 23, 2009Aug 23, 2011Boston Scientific Scimed, Inc.Cardiac valve, system, and method
US8006594Aug 11, 2008Aug 30, 2011Cardiac Dimensions, Inc.Catheter cutting tool
US8012198Sep 6, 2011Boston Scientific Scimed, Inc.Venous valve, system, and method
US8062358Nov 22, 2011Cardiac Dimensions, Inc.Body lumen device anchor, device and assembly
US8075608Dec 13, 2011Cardiac Dimensions, Inc.Medical device delivery system
US8128681Dec 19, 2003Mar 6, 2012Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US8133270Jan 8, 2008Mar 13, 2012California Institute Of TechnologyIn-situ formation of a valve
US8137394Jan 14, 2011Mar 20, 2012Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US8172898Mar 8, 2010May 8, 2012Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US8182529May 22, 2012Cardiac Dimensions, Inc.Percutaneous mitral valve annuloplasty device delivery method
US8250960Aug 29, 2011Aug 28, 2012Cardiac Dimensions, Inc.Catheter cutting tool
US8267852Jul 8, 2010Sep 18, 2012Edwards Lifesciences, LlcHeart wall tension reduction apparatus and method
US8348999Jan 8, 2013California Institute Of TechnologyIn-situ formation of a valve
US8414641Apr 9, 2013Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US8439971Dec 18, 2009May 14, 2013Cardiac Dimensions, Inc.Adjustable height focal tissue deflector
US8460173Jun 11, 2013Edwards Lifesciences, LlcHeart wall tension reduction apparatus and method
US8460365Jun 11, 2013Boston Scientific Scimed, Inc.Venous valve, system, and method with sinus pocket
US8470023Jun 22, 2011Jun 25, 2013Boston Scientific Scimed, Inc.Percutaneous valve, system, and method
US8512399Dec 28, 2009Aug 20, 2013Boston Scientific Scimed, Inc.Valve apparatus, system and method
US8672997Apr 24, 2012Mar 18, 2014Boston Scientific Scimed, Inc.Valve with sinus
US8721717Jan 27, 2012May 13, 2014Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US8828079Jul 26, 2007Sep 9, 2014Boston Scientific Scimed, Inc.Circulatory valve, system and method
US8932349Aug 22, 2011Jan 13, 2015Boston Scientific Scimed, Inc.Cardiac valve, system, and method
US8974525Oct 19, 2010Mar 10, 2015Cardiac Dimensions Pty. Ltd.Tissue shaping device
US9028542Sep 6, 2011May 12, 2015Boston Scientific Scimed, Inc.Venous valve, system, and method
US9301843Nov 10, 2010Apr 5, 2016Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US9320600Mar 9, 2015Apr 26, 2016Cardiac Dimensions Pty. Ltd.Tissue shaping device
US9370419Nov 30, 2010Jun 21, 2016Boston Scientific Scimed, Inc.Valve apparatus, system and method
US9408695Jan 17, 2008Aug 9, 2016Cardiac Dimensions Pty. Ltd.Fixed anchor and pull mitral valve device and method
US9421083Jun 24, 2013Aug 23, 2016Boston Scientific Scimed Inc.Percutaneous valve, system and method
US20020161275 *Apr 23, 2002Oct 31, 2002Schweich Cyril J.Heart wall tension reduction apparatus and method
US20040111095 *Dec 5, 2002Jun 10, 2004Cardiac Dimensions, Inc.Medical device delivery system
US20040158321 *Feb 12, 2003Aug 12, 2004Cardiac Dimensions, Inc.Method of implanting a mitral valve therapy device
US20040215339 *Oct 23, 2003Oct 28, 2004Drasler William J.Venous valve apparatus and method
US20040220657 *Dec 19, 2003Nov 4, 2004Cardiac Dimensions, Inc., A Washington CorporationTissue shaping device with conformable anchors
US20050010240 *May 5, 2004Jan 13, 2005Cardiac Dimensions Inc., A Washington CorporationDevice and method for modifying the shape of a body organ
US20050021121 *Jun 3, 2004Jan 27, 2005Cardiac Dimensions, Inc., A Delaware CorporationAdjustable height focal tissue deflector
US20050027351 *Dec 19, 2003Feb 3, 2005Cardiac Dimensions, Inc. A Washington CorporationMitral valve regurgitation treatment device and method
US20050065594 *Nov 10, 2004Mar 24, 2005Scimed Life Systems, Inc.Implantable prosthetic valve
US20050065598 *Aug 4, 2004Mar 24, 2005Mathis Mark L.Device, assembly and method for mitral valve repair
US20050137449 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc.Tissue shaping device with self-expanding anchors
US20050137450 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc., A Washington CorporationTapered connector for tissue shaping device
US20050137451 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc. A Washington CorporationTissue shaping device with integral connector and crimp
US20050137685 *Dec 19, 2003Jun 23, 2005Cardiac Dimensions, Inc., A Washington CorporationReduced length tissue shaping device
US20050149179 *Nov 19, 2004Jul 7, 2005Mathis Mark L.Body lumen device anchor, device and assembly
US20050149180 *Nov 19, 2004Jul 7, 2005Mathis Mark L.Body lumen device anchor, device and assembly
US20050149182 *Feb 28, 2005Jul 7, 2005Alferness Clifton A.Anchor and pull mitral valve device and method
US20050187619 *Nov 19, 2004Aug 25, 2005Mathis Mark L.Body lumen device anchor, device and assembly
US20050216077 *May 18, 2005Sep 29, 2005Mathis Mark LFixed length anchor and pull mitral valve device and method
US20050272969 *Aug 4, 2005Dec 8, 2005Alferness Clifton ADevice and method for modifying the shape of a body organ
US20060085066 *Dec 7, 2005Apr 20, 2006Boston Scientific CorporationBody lumen closure
US20060116758 *Feb 13, 2006Jun 1, 2006Gary SwinfordDevice, System and Method to Affect the Mitral Valve Annulus of a Heart
US20060142854 *May 2, 2003Jun 29, 2006Cardiac Dimensions, Inc.Device and method for modifying the shape of a body organ
US20060161169 *May 12, 2004Jul 20, 2006Cardiac Dimensions, Inc., A Delaware CorporationDevice and method for modifying the shape of a body organ
US20060167544 *Jan 19, 2006Jul 27, 2006Cardiac Dimensions, Inc.Tissue Shaping Device
US20060173490 *Feb 1, 2005Aug 3, 2006Boston Scientific Scimed, Inc.Filter system and method
US20060173536 *Nov 19, 2004Aug 3, 2006Mathis Mark LBody lumen device anchor, device and assembly
US20060178729 *Feb 7, 2005Aug 10, 2006Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US20060178730 *Feb 7, 2005Aug 10, 2006Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US20060190074 *Feb 23, 2005Aug 24, 2006Boston Scientific Scimed, Inc.Valve apparatus, system and method
US20060191121 *May 12, 2006Aug 31, 2006Lucas GordonTissue Shaping Device with Integral Connector and Crimp
US20060235509 *Apr 15, 2005Oct 19, 2006Boston Scientific Scimed, Inc.Valve apparatus, system and method
US20060247672 *Apr 27, 2005Nov 2, 2006Vidlund Robert MDevices and methods for pericardial access
US20060253189 *Jul 3, 2006Nov 9, 2006Boston Scientific CorporationArtificial valve
US20060276891 *Jul 17, 2006Dec 7, 2006Gregory NieminenMitral Valve Annuloplasty Device with Twisted Anchor
US20060282157 *Jun 10, 2005Dec 14, 2006Hill Jason PVenous valve, system, and method
US20070055293 *Aug 24, 2006Mar 8, 2007Alferness Clifton ADevice and method for modifying the shape of a body organ
US20070066879 *Oct 17, 2006Mar 22, 2007Mathis Mark LBody lumen shaping device with cardiac leads
US20070067021 *Sep 21, 2005Mar 22, 2007Boston Scientific Scimed, Inc.Venous valve, system, and method with sinus pocket
US20070129788 *Jan 11, 2007Jun 7, 2007Boston Scientific Scimed, Inc.Venous valve with sinus
US20070135912 *Jan 18, 2007Jun 14, 2007Mathis Mark LMitral valve device using conditioned shape memory alloy
US20070173930 *Jan 20, 2006Jul 26, 2007Boston Scientific Scimed, Inc.Translumenal apparatus, system, and method
US20070239270 *Apr 11, 2006Oct 11, 2007Mathis Mark LMitral Valve Annuloplasty Device with Vena Cava Anchor
US20080015407 *Jul 24, 2007Jan 17, 2008Mathis Mark LDevice and Method for Modifying the Shape of a Body Organ
US20080021382 *Jul 16, 2007Jan 24, 2008Boston Scientific Scimed, Inc.Valve treatment catheter and methods
US20080087608 *Oct 10, 2006Apr 17, 2008Multiphase Systems IntegrationCompact multiphase inline bulk water separation method and system for hydrocarbon production
US20080097594 *Dec 21, 2007Apr 24, 2008Cardiac Dimensions, Inc.Device and Method for Modifying the Shape of a Body Organ
US20080109059 *Jan 8, 2008May 8, 2008Cardiac Dimensions, Inc.Medical Device Delivery System
US20080126131 *Jul 17, 2006May 29, 2008Walgreen Co.Predictive Modeling And Risk Stratification Of A Medication Therapy Regimen
US20080140191 *Jan 17, 2008Jun 12, 2008Cardiac Dimensions, Inc.Fixed Anchor and Pull Mitral Valve Device and Method
US20080269877 *Feb 5, 2008Oct 30, 2008Jenson Mark LSystems and methods for valve delivery
US20080300678 *Feb 5, 2008Dec 4, 2008Eidenschink Tracee E JPercutaneous valve, system and method
US20080319542 *Apr 1, 2008Dec 25, 2008Gregory NieminenTissue Shaping Device
US20090030512 *Jul 26, 2007Jan 29, 2009Thielen Joseph MCirculatory valve, system and method
US20090164029 *Dec 21, 2007Jun 25, 2009Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US20090171456 *Dec 28, 2007Jul 2, 2009Kveen Graig LPercutaneous heart valve, system, and method
US20100031793 *Feb 11, 2010Hayner Louis RCatheter Cutting Tool
US20100100173 *Dec 28, 2009Apr 22, 2010Boston Scientific Scimed, Inc.Valve apparatus, system and method
US20100100175 *Dec 18, 2009Apr 22, 2010David ReuterAdjustable Height Focal Tissue Deflector
US20100274076 *Oct 28, 2010Edwards Lifesciences LlcHeart Wall Tension Reduction Apparatus and Method
US20100280602 *Nov 4, 2010Cardiac Dimensions, Inc.Mitral Valve Device Using Conditioned Shape Memory Alloy
US20110060405 *Nov 10, 2010Mar 10, 2011Boston Scientific Scimed, Inc.Venous valve apparatus, system, and method
US20110066234 *Nov 22, 2010Mar 17, 2011Gordon Lucas SPercutaneous Mitral Valve Annuloplasty Delivery System
US20110071625 *Mar 24, 2011Boston Scientific Scimed, Inc.Valve apparatus, system and method
US20110118831 *May 19, 2011Boston Scientific Scimed, Inc.Valve with delayed leaflet deployment
US20110230949 *Sep 22, 2011Boston Scientific Scimed, Inc.Venous Valve, System, and Method With Sinus Pocket
Classifications
U.S. Classification606/219
International ClassificationA61B17/08, A61B, A61B17/10, A61B17/068, A61B17/22, A61B17/00
Cooperative ClassificationA61F2/2451, A61B17/0684, A61B2017/00783, A61B2017/22052, A61B17/00234, A61B2017/00867
European ClassificationA61B17/00E, A61B17/068B2