Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060099084 A1
Publication typeApplication
Application numberUS 11/247,168
Publication dateMay 11, 2006
Filing dateOct 12, 2005
Priority dateNov 8, 2004
Publication number11247168, 247168, US 2006/0099084 A1, US 2006/099084 A1, US 20060099084 A1, US 20060099084A1, US 2006099084 A1, US 2006099084A1, US-A1-20060099084, US-A1-2006099084, US2006/0099084A1, US2006/099084A1, US20060099084 A1, US20060099084A1, US2006099084 A1, US2006099084A1
InventorsShizuo Otaki, Shinji Fujiwara, Kazuhiro Harada
Original AssigneeMatsushita Electric Industrial Co., Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electric blower
US 20060099084 A1
Abstract
The present invention provides an electric blower that performs: measuring an amount of airflow against a fan rotation speed of the blower with a load magnitude detected previously; determining an empirical formula to calculate a fan rotation speed to discharge an amount of target airflow in response to the magnitude of a load of the blower according to the data obtained from the above measurement repeated a plurality of times varying the magnitude of the load on the blower; operating, firstly in practice, the blower to detect the magnitude of the load of the blower, then to calculate the fan rotation speed to discharge the amount of target airflow using the empirical formula; and then changing the blower operation to the fan rotation speed given by the calculation.
Images(4)
Previous page
Next page
Claims(8)
1. An electric blower comprising:
an electric motor;
a blower with a fan driven to rotate by the electric motor; and
a controller to control a driving of the electric motor; and
the controller comprising:
a load-detector to detect and to output data on a magnitude of a load of the blower;
a rotation-speed-calculator to calculate and to output data on a fan rotation speed required for the blower to discharge an amount of target airflow according to the magnitude of the load of the fan output from the load-detector and the given target amount of airflow;
a rotation-speed-selector to switch over a rotation speed from a load-detection-rotation-speed determined previously to the rotation speed required for the blower to discharge the amount of target airflow according to the data output from the rotation-speed-calculator; and
a timing device to determine a starting time for the load-detector, the rotation-speed-calculator and the rotation-speed-selector respectively.
2. The electric blower of claim 1, wherein the load detector measures an input current to the electric motor on the load detection rotation speed and to output data on a magnitude of a load of the blower according to the current to the electric motor.
3. The electric blower of claim 2, wherein the rotation speed calculator calculates a rotation speed required for the blower to discharge the amount of target airflow according to a plurality of values determined independently on a load of the blower, a value to show a magnitude of the load of the blower, and a value of the given amount of target airflow.
4. The electric blower of claim 3, wherein the amount of target airflow is a value obtained by measuring an amount of airflow of the blower against a fan rotation speed, varying the fan rotation speed leaving a load of the blower kept constant.
5. The electric blower of claim 1, wherein the electric motor is a DC motor.
6. The electric blower of claim 1, wherein the timing device begins to work at the start of the electric blower.
7. The electric blower of claim 1, wherein the timing device works at regular time intervals.
8. The electric blower of claim 1, wherein the timing device works when a load of the blower has changed.
Description
TECHNICAL FIELD

The present invention relates to an electric blower for use in an air conditioner or the like coupled to a duct to supply an airflow necessary to a refrigerating cycle or the like in response to the duct condition.

BACKGROUND ART

There has been the kind of conventional electric blower that, observing always a fan rotation speed and the PWM (Pulse Width Modulation) signal for an electric motor to calculate the amount of airflow to compare the calculated amount of airflow with an amount of target airflow, corrects the control signal sent to the electric motor if there is a difference between the two, which is so-called a feedback control method. The technology is disclosed for instance in Japanese Patent Unexamined Publication No. H07-301450 (hereafter referred to as patent document 1).

FIG. 3 shows a process flowchart of a conventional electric blower described in patent-document 1. As shown in FIG. 3, the control process of the conventional electric blower comprises; step 135 to recognize the amount of target airflow; step 140 to calculate the amount of airflow by using the PWM signal sent to the electric motor at present and the fan rotational speed; steps 145 and 150 to compare the calculated amount of airflow with the amount of target airflow; steps 155 and 165 to correct the PWM signal according to the comparison results; and step 160 to send the corrected PWM signal to the motor controller, repeating from step 135 to step 160 constantly.

However, owing to pulsations occurring inevitably in the airflow of electric blowers, conventional electric blowers cannot continue to operate stably matching the amount of target airflow with the calculated amount of airflow, but is operated always fluctuated in the rotation speed. Moreover, elements having big inertia such as the electric motor and fan included in the feedback control system could cause overshooting or depending on conditions the pulsation could be amplified to cause an unstable rotation speed fluctuating largely

SUMMARY OF THE INVENTION

The present invention aims at providing an electric blower to solve the above-mentioned drawbacks, which can operate stably keeping an amount of target airflow in response to conditions of duct.

To solve the above-mentioned drawbacks the electric blower of the present invention includes an electric motor, a blower with a fan driven to rotate by the electric motor, and a controller to control the electric motor. The controller comprises: a load-detector to detect output data on the magnitude of the load; a rotation-speed-calculator to calculate output data on the fan rotation speed required for the blower to discharge the amount of target airflow according to the magnitude of the load of the fan output from the load-detector and the given amount of target airflow; a rotation-speed-selector to switch over the rotation speed from the load-detection-rotation-speed determined previously to the rotation speed required for the blower to discharge the amount of target airflow according to the data output from the rotation speed calculator; and a timing-device to determine the operation timing for the load-detector, rotation-speed-calculator and rotation-speed-selector respectively.

The configuration can perform a stable operation for the controlled airflow without amplifying the pulsation in the rotation speed, because the timing device is allowed to work according to need such as before the operation starts or when a load condition varies to detect the duct condition beforehand and can operate the blower at a rotation speed capable of discharging the amount of target airflow in response to the duct condition detected.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of the electric blower used in exemplary embodiment 1 of the present invention.

FIG. 2 illustrates a characteristic showing a relation between the amount of airflow and rotation speed of the electric blower used in exemplary embodiment 1 of the present invention.

FIG. 3 illustrates a flowchart of a conventional electric blower.

DETAILED DESCRIPTION OF THE INVENTION Exemplary Embodiment 1

Generally, an amount of airflow is proportional to a rotation speed of a fan included in a duct when the duct condition is determined and the duct condition affects relative gradients or the like. If, therefore, the duct condition is detected somehow the relation between the amount of airflow and rotation speed can be determined. The duct condition is detectable as a load of the blower and the load of the blower is detectable as an output force of an electric motor as well. Moreover, because the output force of the electric motor is proportional to the product of the rotation speed and torque of the fan, the duct condition can be detected from the torque of the electric motor when the rotation speed is kept constant. In case of a DC motor, whose torque is proportional to the input current, the torque can be detected by measuring the motor input current. Therefore, the duct conditions can be detected by measuring the motor input current.

The present invention is to detect the duct condition according to a value showing the magnitude of the load of the blower (hereafter referred to as a blower-load-variable) obtained from the input current of the electric motor operating at a predetermined rotation speed. To measure the blower-load-variable, the blower must operate at a predetermined rotation speed.

Namely, through the operation to detect the load by measuring the input current of the electric motor operating at a predetermined rotation speed, the duct condition is detected as a blower-load-variable. A fan rotation speed to discharge the amount of target airflow in response to the duct condition is calculated according to an empirical formula having been obtained from the characteristics of the blower. Subsequently, controlling the motor to rotate the fan at the given rotation speed can realize an operation for a stable airflow without doing any constant feedback control.

Now, exemplary embodiment of the present invention is described with reference to the drawings. The present invention is not limited to the exemplary embodiment only.

FIG. 1 is a block diagram of the electric blower used in exemplary embodiment 1 of the present invention. In FIG. 1, electric blower 1 of the present invention includes electric motor 25, blower 20 and controller 10.

Electric motor 25 supplies a driving force necessary to rotate blower 20. A DC brush-less motor is employed in the exemplary embodiment. The driving shaft of electric motor 25 is coupled to blower 20 directly.

Blower 20 flows air through duct system 15 forming an air-path. A sirocco fan is used in the blower of the exemplary embodiment.

Controller 10 includes variable-motor-controller 30, airflow-controller 35 and system-controller 40.

Variable-motor-controller 30 controls the rotation speed of the electric motor, in response to control-signal Fo produced in airflow-controller 35. Additionally, variable-motor-controller 30 detects the motor rotation speed, and sends it to airflow-controller 35 as motor-rotation-speed-signal Rm.

Airflow-controller 35 includes timing-device 100, load-detector 105, rotation-speed-calculator 110, rotation-speed-selector 120 and control signal feeder 90.

Timing-device 100 allows to start load-detector 105 at a prescribed timing.

Load-detector 105, receiving signals from timing-device 100, outputs load-detection-rotation-signal Fra to drive electric motor 25 at a load detection rotation speed. Load-detector 105, additionally, outputs blower-load-variable Tra according to the electric motor input current Im measured at this time.

System-controller 40, varying the operation capacity of a variable compressor (not shown) in response to an air-conditioning capacity required, sends rotation-speed-calculator 110 information on an amount of airflow, as target airflow Q, corresponding to the varied compressor capacity.

Rotation-speed-calculator 110 calculates the fan rotation speed for the fan to discharge the amount of target airflow Q by substituting blower-load-variable Tra output from load-detector 105 and the amount of target airflow Q sent from system controller 40 into formula (a) described later. The fan-rotation-speed is then output as fan-rotation-speed-signal Fr.

Rotation-speed-selector 120 switches over rotation-speed-signal Fs input into control signal feeder 90 from load-detection-rotation-signal Fra to fan-rotation-speed-signal Fr according to fan-rotation-speed-signal Fr output from rotation-speed-calculator 110.

Control-signal-feeder 90 sends rotation-speed-control-signal Fo to variable-motor-controller 30 so that rotation-speed-signal Fs from rotation-speed-selector 120 matches with motor-rotation-speed-signal Rm from variable-motor-controller 30.

Formula (a) is determined according to the following procedure.

(1) The blower load condition is detected to determine the blower-load-variable by measuring the input current of the electric motor driving the blower at a predetermined rotation speed.

(2) The fan rotation speed is varied leaving the blower-load-variable kept constant, and then the amount of airflow of the blower is measured in each varied fan rotation speed.

(3) The empirical formula is determined as formula (a) from the relationship between the amount of airflow of the blower and the fan rotation speed in the above experiment by using the least-square method.

An input current value of the electric motor can be directly used as the blower-load-variable, or other value determined unambiguously from the input current value of the electric motor such as the ratio of the electric motor input current to the rated current may also be used as the variable.

Duct system 15 is a conduit tube used to deliver airflow for certain regions to be conditioned. Duct system 15 is for instance installed in a building to supply conditioned airflow to rooms requiring the air. The static air pressure in duct system 15 is affected by form and length of the duct, damper 45, filter 50 and heat exchanger 55.

Now, the work and function of electric blower 1 with aforementioned configuration is described.

A command from timing device 100 starts electric motor 25 at a predetermined rotation speed, which rotates blower 20. When blower 20 reaches a stable rotation speed, rotation-speed-calculator 110 measures blower-load-variable Tra output from load-detector 105. Blower-load-variable Tra thus measured is what reflects the duct conditions determined by the static air pressure in duct system 15, the form and length of the duct, filter 50 and heat exchanger 55.

FIG. 2 illustrates characteristic curves showing relations between the amount of airflow and rotation speed of the blower from the aforementioned formula (a). The amount of airflow of the blower is proportional to the fan rotation speed, and the values of blower-load-variable Tra (Tra1 to Tra4) affect the gradient of lines as shown in FIG. 2.

For example, the rotation speed Fr is given by the following formula (a), using blower-load-variable Tra and amount of target airflow Q at a load detection rotation speed of 600 r/min.
Fr=−642.75+6.0837 Tra+19598.1/Tra+(−121.96+1.819 Tra+4134.1/Tra)Q
Where

    • Fr: rotation speed in r/min
    • Tra: blower-load-variable
    • Q: amount of airflow

With stored data of measured blower-load-variable Tra, rotation speed Fr for the amount of target airflow Q can be calculated by substituting the amount of target airflow signal Q sent from system controller 40 into the above formula (a). The amount of target airflow is supplied to the duct when control signal Fo corresponding to the rotation speed is sent to variable motor controller 30.

The aforementioned configuration can adjust the airflow to an amount of target airflow in response to the coupled duct conditions stably, because blower 20 operates at a rotation speed corresponding to the amount of target airflow required for a duct condition detected previously.

Load-detector 105, rotation-speed-calculator 110 and rotation-speed-selector 120 could start sequentially, and any case such as sequential starting following output from the precedent elements or sequential starting by control means such as timing device or the like could perform the aim of the present invention.

Timing-device 100 may be a type that starts together with electric blower 1. In a newly installed air-conditioner, the type of timing device 100 can detect duct conditions automatically at the start of electric blower 1 instead of having to detect the duct conditions separately. For example, when an operation switch is turned on to operate a compressor (not shown), the load detection operation starts automatically to detect the duct condition by measuring blower-load-variable Tra previously.

Moreover, timing device 100 may be a type that detects the duct condition regularly. For example, by starting a load detection operation at 12 o'clock every day to measure blower-load-variable Tra and to store the data until 12 o'clock next day, the blower can respond to a change of duct conditions in the case of increase in resistance to the airflow owing to a pile of dust on filter 50 in duct system 15.

Additionally, timing device 100 may be a type that operates at the change of airflow condition in duct system 15, and then starts operation of load detector 105. The configuration can detect open/shut condition of dampers installed in branches coupled to the duct.

As described above, the electric blower of the present invention can discharge an amount of target airflow in response to the duct condition and is useful for duct type air conditioners or the like accordingly.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8054018Jan 18, 2008Nov 8, 2011Sntech Inc.Multi-level programming of motor for a ventilation system
US8118565 *Sep 29, 2006Feb 21, 2012Panasonic CorporationBlower and electric device with such blower mounted thereon
US8134319Jan 18, 2008Mar 13, 2012Sntech Inc.Compensation of motor control using current-RPM relation for a ventilation system
US8251671 *Nov 9, 2007Aug 28, 2012Oyl Research And Development Centre Sdn. Bhd.Apparatus for controlling an air distribution system
US8287244Jan 18, 2008Oct 16, 2012Sntech, Inc.Motor control apparatus for a ventilation system
US8292595 *Jan 18, 2008Oct 23, 2012Sntech, Inc.Method of constant airflow control for a ventilation system
US8356983 *May 7, 2008Jan 22, 2013Oyl Research And Development Centre Sdn. Bhd.Airflow control for variable speed blowers
US20090097988 *May 7, 2008Apr 16, 2009Oyl Research And Development Centre Sdn. Bhd.Airflow control for variable speed blowers
US20120058717 *Aug 22, 2011Mar 8, 2012SMAY Sp. z o.oOverpressure-based System to protect vertical evacuation routes against smoke infiltration
EP2660527A1 *May 3, 2012Nov 6, 2013ABB OyMethod for tuning a ventilation system
Classifications
U.S. Classification417/42, 417/423.1
International ClassificationF04B17/00, F04B49/00
Cooperative ClassificationF24F11/0001, F24F2011/0073, F04D27/004, F24F11/0079, Y02B30/746
European ClassificationF04D27/00F, F24F11/00R7B, F24F11/00C
Legal Events
DateCodeEventDescription
Nov 24, 2008ASAssignment
Owner name: PANASONIC CORPORATION, JAPAN
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021897/0707
Effective date: 20081001
Owner name: PANASONIC CORPORATION,JAPAN
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100203;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100216;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100223;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100309;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100316;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100323;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100329;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100330;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100406;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100413;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100420;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100427;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100511;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;US-ASSIGNMENT DATABASE UPDATED:20100525;REEL/FRAME:21897/707
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:21897/707
Dec 20, 2005ASAssignment
Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OTAKI, SHIZUO;FUJIWARA, SHINJI;HARADA, KAZUHIRO;REEL/FRAME:016923/0384;SIGNING DATES FROM 20050914 TO 20050915