Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060111469 A1
Publication typeApplication
Application numberUS 11/039,355
Publication dateMay 25, 2006
Filing dateJan 18, 2005
Priority dateFeb 13, 2001
Also published asCN1509298A, EP1360217A2, US6518330, US6858659, US20020111434, US20030060569, WO2002064653A2, WO2002064653A3
Publication number039355, 11039355, US 2006/0111469 A1, US 2006/111469 A1, US 20060111469 A1, US 20060111469A1, US 2006111469 A1, US 2006111469A1, US-A1-20060111469, US-A1-2006111469, US2006/0111469A1, US2006/111469A1, US20060111469 A1, US20060111469A1, US2006111469 A1, US2006111469A1
InventorsScott White, Nancy Sottos, Philippe Geubelle, Jeffrey Moore, Suresh Sriram, Michael Kessler, Eric Brown
Original AssigneeWhite Scott R, Sottos Nancy R, Geubelle Philippe H, Moore Jeffrey S, Sriram Suresh R, Kessler Michael R, Brown Eric N
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multifunctional autonomically healing composite material
US 20060111469 A1
Abstract
A composite material, contains a polymer, a polymerizer, a corresponding catalyst for the polymerizer, and a plurality of capsules. The polymerizer is in the capsules. The composite material is self-healing.
Images(2)
Previous page
Next page
Claims(29)
1-12. (canceled)
13. A composite material, comprising:
(i) a polymer,
(ii) a polymerizer,
(iii) a corresponding activator for the polymerizer, and
(iv) a first plurality of capsules,
wherein the polymerizer is in the capsules, and
the corresponding activator is not a native activating moiety.
14-23. (canceled)
24. A composite material, comprising:
(i) a polymer,
(ii) a polymerizer,
(iii) a corresponding initiator for the polymerizer, and
(iv) a plurality of capsules,
wherein the polymerizer is in the capsules.
25. The composite material of claim 24, wherein the polymerizer comprises at least one monomer selected from the group consisting of cyclic olefins, lactones, lactams, acrylates, acrylic acids, alkyl acrylates, alkyl acrylic acids, styrenes, isoprene and butadiene.
26. The composite material of claim 24, wherein the polymerizer comprises cyclic olefins.
27. The composite material of claim 24, wherein the polymer comprises at least one member selected from the group consisting of polyamides, polyesters, polycarbonates, polyethers, polyimides, phenol-formaldehyde resins, amine-formaldehyde resins, polysulfones, poly(acrylonitrile-butadiene-styrene), polyurethanes, polyolefins, and polysilanes.
28. The composite material of claim 24, wherein the polymer comprises at least one member selected from the group consisting of polyesters and polyethers.
29. The composite material of claim 24, wherein the capsules have an aspect ratio of 1:1 to 1:2, and an average diameter of 10 nm to 1 mm.
30. The composite material of claim 24, wherein the capsules comprise a polymer of urea and formaldehyde, gelatin, polyurea, and polyamide.
31. The composite material of claim 13, further comprising a second plurality of capsules, wherein said activator is in the second plurality of capsules.
32. The composite material of claim 13, wherein said corresponding activator is a monomer.
33. The composite material of claim 13, wherein the polymer comprises at least one member selected from the group consisting of polyamides, polyesters, polycarbonates, polyethers, polyimides, phenol-formaldehyde resins, amine-formaldehyde resins, polysutfones, poly(acrylonitrile-butadiene-styrene), polyurethanes, potyolefins, and polysilanes.
34. The composite material of claim 13, wherein the polymer comprises at least one member selected from the group consisting of polyesters and polyethers.
35. The composite material of claim 13, wherein the capsules have an aspect ratio of 1:1 to 1:2, and an average diameter of 10 nm to 1 mm.
36. The composite material of claim 13, wherein the capsules comprise a polymer of urea and formaldehyde, gelatin, polyurea, and polyamide.
37. A method for making the composite of claim 13, comprising:
dispersing the capsules and the corresponding activator into the polymer.
38. A composite material, comprising:
(i) a polymer,
(ii) a polymerizer,
(iii) a corresponding catalyst for the polymerizer, and
(iv) a plurality of capsules,
wherein the polymerizer is separated from the catalyst by the capsules.
39. The composite material of claim 38, wherein the polymerizer comprises at least one monomer selected from the group consisting of cyclic olefins, lactones, lactams, acrylates, acrylic acids, alkyl acrylates, alkyl acrylic acids, styrenes, isoprene and butadiene.
40. The composite material of claim 38, wherein the polymerizer comprises cyclic olefins.
41. The composite material of claim 38, wherein the polymer comprises at least one member selected from the group consisting of polyamides, polyesters, polycarbonates, polyethers, polyimides, phenol-formaldehyde resins, amine-formaldehyde resins, polysulfones, poly(acrylonitrile-butadiene-styrene), polyurethanes, polyolefins, and polysilanes.
42. The composite material of claim 38, wherein the polymer comprises at least one member selected from the group consisting of polyesters and polyethers.
43. The composite material of claim 38, wherein the corresponding catalyst for the polymerizer comprises at least one monomer selected from the group consisting of ROMP catalysts and cyclic ester polymerization catalysts.
44. The composite material of claim 38, wherein the corresponding catalyst for the polymerizer comprises a ROMP catalyst.
45. The composite material of claim 38, wherein the capsules have an aspect ratio of 1:1 to 1:2, and an average diameter of 10 nm to 1 mm.
46. The composite material of claim 38, wherein the capsules comprise a polymer of urea and formaldehyde, gelatin, polyurea, and polyamide.
47. The composite material of claim 38, wherein
the polymerizer comprises DCPD,
the polymer comprises epoxy,
the corresponding catalyst for the polymerizer comprises a Grubbs catalyst,
the capsules have an aspect ratio of 1:1 to 1:1.5, and an average diameter of 30-300 pm, and
the capsules comprise a polymer of urea and formaldehyde.
48. The composite material of claim 38, wherein
the polymerizer comprises DCPD,
the polymer comprises poly(DCPD),
the corresponding catalyst for the polymerizer comprises a Grubbs catalyst, and
the capsules have an aspect ratio of 1:1 to 1:1.5, and an average diameter of 30-300 pm.
49. The composite material of claim 38, wherein
the polymerizer comprises caprolactone,
the polymer comprises poly(caprolactone),
the corresponding catalyst for the polymerizer comprises a scandium triflate, and
the capsules have an aspect ratio of 1:1 to 1:1.5, and an average diameter of 30-300 pm.
Description
    FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • [0001]
    The subject matter of this application may in part have been funded by the Air Force (AFOSR Grant no. F49620-00-1-0094/White). The government may have certain rights in this invention.
  • BACKGROUND
  • [0002]
    The present invention relates to self-healing composite materials.
  • [0003]
    Thermosetting polymers, used in a wide variety of applications ranging from microelectronics to composite airplane wings, are susceptible to damage in the form of cracking. Often these cracks form deep within the structure where detection is difficult and repair is virtually impossible. In fiber reinforced polymer composites, cracking in the form of fiber-matrix interfacial debonding, ply delamination, and simple matrix cracking leads to degradation. In microelectronics, polymer encapsulates and polymer matrix composite printed circuit boards suffer from similar forms of damage, but in addition to mechanical failure, cracks cause electrical failure of the component. Microcracking induced by thermal and mechanical fatigue is a longstanding problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Typically, previously reported methods of successful crack healing require some form of manual intervention.
  • [0004]
    A proposed method of self-healing is described in “Self-Healing Composites Using Embedded Microspheres” D. Jung et al. Composites and Functionally Graded Materials vol. MD-80, in Proceedings of the ASME International Mechanical Engineering Conference and Exposition, 265-275 (1997). The proposed method uses polyoxymethyleneurea (PMU) microspheres to store a crack filling agent to be released into the crack and rebond the crack faces. The repair mechanism uses naturally occurring functional sites in a polyester matrix network to trigger the repair action. Adding a reactive component to trigger the crack filler solidification was specifically investigated in the case of embedded epoxide components and embedded amine groups, and it was found that the amine groups did not retain sufficient activity and was determined to be not feasible. The PMU microcapsules used contained an epoxide monomer.
  • BRIEF SUMMARY
  • [0005]
    In a first aspect, the present invention is a composite material, containing: a polymer, a polymerizer, a corresponding catalyst for the polymerizer, and a plurality of capsules. The polymerizer is in the capsules.
  • [0006]
    In a second aspect, the present invention is a composite material, containing: a polymer, a polymerizer, a corresponding activator for the polymerizer, and a first plurality of capsules. The polymerizer is in the capsules, and the corresponding activator is not a native activating moiety.
  • [0007]
    In a third aspect, the present invention is a method for making the above composites, including dispersing the capsules and the corresponding catalyst or activator into the polymer.
  • [0008]
    Definitions
  • [0009]
    A polymerizer is a composition that will form a polymer when it comes into contact with a corresponding activator for the polymerizer. Examples of polymerizers include monomers of polymers such as styrene, ethylene, (meth)acrylates, and dicyclopentadiene (DCPD); a monomer of a multi-monomer polymer system such as diols, diamines, and epoxide; and prepolymers such as partially polymerized monomers still capable of further polymerization.
  • [0010]
    An activator is anything that when contacted or mixed with a polymerizer will form a polymer. Examples of activators are catalysts, initiators, and native activating moieties. A corresponding activator for a polymerizer is an activator that when contacted or mixed with that specific polymerizer will form a polymer.
  • [0011]
    A catalyst is a compound or moiety that will cause a polymerizable composition to polymerize, and is not always consumed each time it causes polymerization. This is in contrast to initiators and native activating moieties. Examples of catalysts include ring opening polymerization (ROMP) catalysts such as Grubbs catalyst. A corresponding catalyst for a polymerizer is a catalyst that when contacted or mixed with that specific polymerizer will form a polymer.
  • [0012]
    An initiator is a compound that will cause a polymerizable composition to polymerize, and is always consumed at the time it causes polymerization. Examples of initiators are peroxides (which will form a radical to cause polymerization of an unsaturated monomer); a monomer of a multi-monomer polymer system such as diols, diamines, and epoxide; and amines (which will form a polymer with an epoxide). A corresponding initiator for a polymerizer is an initiator that when contacted or mixed with that specific polymerizer will form a polymer.
  • [0013]
    A native activating moiety is a moiety of a polymer that when mixed or contacted with a polymerizer will form a polymer, and is always consumed at the time it causes polymerization. Examples of a native activating moiety is an amine moiety (which will form a polymer with an epoxide).
  • [0014]
    A compound is a molecule that contains at most 100 repeating units. This is in contrast to a polymer, which contains more than 100 repeating units.
  • [0015]
    A capsule is a hollow closed object having an aspect ratio of 1:1 to 1:10. The aspect ratio of an object is the ratio of the shortest axis to the longest axis; these axes need to be perpendicular. A capsule may have any shape that falls within this aspect ratio, such as a sphere, a toroid, or an irregular ameboid shape. The surface of a capsule may have any texture, for example rough or smooth.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0016]
    Various other objects, features and attendant advantages of the present invention will be more fully appreciated as the same becomes better understood from the following detailed description when considered in connection with the accompanying drawings in which like reference characters designate like or corresponding parts throughout the several views and wherein:
  • [0017]
    FIG. 1 illustrates an embodiment of a self-healing composite; and
  • [0018]
    FIG. 2 shows crack healing efficiency of the composite materials.
  • DETAILED DESCRIPTION
  • [0019]
    Further investigations by the group that published “Self-Healing Composites Using Embedded Microspheres” found that the use of natural functionality was, in fact, not feasible. Approaches that had been previously eliminated were reconsidered, resulting in the discovery that systems that do not use a corresponding native activating moiety will allow for a self-healing composite. Preferably, systems that use a catalyst added to the polymer are used. Not only can damage to the composite be repaired, but also in some cases the achieved healed strengths are greater than the strength of the original matrix material.
  • [0020]
    The present invention includes a composite material, containing capsules in a polymer. The capsules contain a polymerizer, and the composite material includes an activator that is not a corresponding native activating moiety. Preferably, the activator is a corresponding catalyst for the polymerizer. When a crack forms in the composite material, some of the capsules are broken, and the polymerizer moves into the crack, coming into contact with the activator and forming a polymer. This repairs the crack.
  • [0021]
    The capsules contain a polymerizer. The polymerizer contains a polymerizable compound such as a monomer or prepolymer, and may optionally contain other ingredients, such as other monomers and/or prepolymers, stabilizers, solvents, viscosity modifiers such as polymers, odorants, colorant and dyes, blowing agents, antioxidants, and co-catalysts. Preferably, the polymerizer is a liquid.
  • [0022]
    The polymer contains both capsules and a corresponding activator for the polymerizer. Preferably, the activator is a catalyst or an initiator. Examples of polymerizable compounds are cyclic olefins, preferably containing 4-50 carbon atoms and optionally containing heteratoms, such as DCPD, substituted DCPDs, norbornene, substituted norbornene, cyclooctadiene, and substituted cyclooctadiene. Corresponding catalysts for these are ring opening metathesis polymerization (ROMP) catalysts such as Schrock catalysts (Bazan, G. C.; Schrock, R. R.; Cho, H.-N.; Gibson, V. C. Macromolecules 24, 4495-4502 (1991)) and Grubbs catalysts (Grubbs, R. H.; Chang, S. Tetrahedron 54, 4413-4450 (1998)).
  • [0023]
    Another example of polymerizable compounds are lactones such as caprolactone, and lactams, that when polymerized will form polyesters and nylons, respectively. Corresponding catalysts for these are cyclic ester polymerization catalysts and cyclic amide polymerization catalysts, such as scandium triflate.
  • [0024]
    Furthermore, a polymerizer may contain a polymerizable compound and one part of a two-part catalyst, with a corresponding initiator being the other part of the two-part catalyst. For example, the polymerizable compound may be a cyclic olefin; one part of a two-part catalyst may be a tungsten compound, such as an organoammonium tungstate, an organoarsonium tungstate, or an organophosphonium tungstate; or a molybdenum compound, such as organoammonium molybdate, an organoarsonium molybdate, or an organophosphonium molybdate. The second part of the two-part catalyst may be an alkyl aluminum compound, such as an alkoxyalkylaluminum halide, an aryloxyalkylaluminum halide, or a metaloxyalkylaluminum halide in which the metal in the compound is tin, lead, or aluminum; or an organic tin compound, such as a tetraalkyltin, a trialkyltin hydride, or a triaryltin hydride.
  • [0025]
    In another such system, the polymerizable compound may be unsaturated compounds such as acrylates; acrylic acids; alkyl acrylates; alkyl acrylic acids; styrenes; isoprene; and butadiene. In this case, atom transfer radical polymerization (ATRP) may be used, with one of the two components being mixed with the polymerizable compound and the other acting as the initiator: one component being an organohalide such as 1-chloro-1-phenylethane, and the other component could be a copper(I) source such as copper(I) bipyridyl complex. Alternatively, one component could be a peroxide such as benzoyl peroxide, and the other component could be a nitroxo precursor such as 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO). These systems are described in Malcolm P. Stevens; Polymer Chemistry: An Introduction, 3rd Edition; New York: Oxford University Press, 1999, p. 184-186.
  • [0026]
    In another such system, the polymerizable compound may contain isocyanate functional groups (—N═C═O) with hydroxyl functional groups (—OH). For this system, the polymerizable material may for example be a compound containing both an isocyanate group and a hydroxyl group, or two different compounds, one compound containing at least two isocyanate groups and the other compound containing at least two hydroxyl groups. The reaction between an isocyanate group and a hydroxyl group can form a urethane linkage (—N—C(═O)—O—) between the compounds, possibly releasing carbon dioxide. This carbon dioxide can provide for the creation of expanded polyurethane foam; optionally the polymerizer may contain a blowing agent, for example a volatile liquid such as dichloromethane. In this case, condensation polymerization may be used, with one of the two components being mixed with the polymerizable compound and the other acting as the initiator: for example, one component could be an alkyltin compound such as stannous 2-ethylhexanoate, and the other component could be a tertiary amine such as diazabicyclo[2.2.2]octane (DABCO). These systems are described in Malcolm P. Stevens; Polymer Chemistry: An Introduction, 3rd Edition; New York: Oxford University Press, 1999, p. 378-381.
  • [0027]
    Optionally, the activator, such as the catalyst or initiator may also be in a separate set of capsules. Furthermore, this separate set of capsules may also contain stabilizers, solvents, viscosity modifiers such as polymers, odorants, colorant and dyes, blowing agents, antioxidants, and co-catalysts. Optionally, a set of capsules may be present that contain one or more additional ingredients, such as stabilizers, solvents, viscosity modifiers such as polymers, odorants, colorant and dyes, blowing agents, antioxidants, and co-catalysts.
  • [0028]
    The capsules contain a polymerizer. Preferably, the capsules have an average diameter of 10 nm to 1 mm, more preferably 30-500 μm, most preferably to 50-300 μm. The capsules have an aspect ratio of 1:1 to 1:10, preferably 1:1 to 1:5, more preferably 1:1 to 1:3, and even more preferably 1:1 to 1:2, and most preferably 1:1 to 1:1.5.
  • [0029]
    The wall thickness of the capsules is preferably 100 nm to 3 μm. The selection of capsule walls thickness depends on the polymer in the composite. For example, capsule walls that are too thick will not rupture when a crack approaches, while capsules with very thin walls will break during processing.
  • [0030]
    The adhesion between the capsules and the polymer of the composite influences whether the capsules will rupture or debond in the presence of an approaching crack. To promote the adhesion between the polymer and capsule wall, various silane coupling agents may be used. Typically, these are compounds of the formula R—SiX3 Where R is preferably a reactive group R1 separated by a propylene group from silicon, and X is an alkoxy group (preferably methoxy), such as R1CH2CH2CH2Si(OCH3)3. Examples include silane coupling agents available from DOW CORNING (with reactive group following the name in parentheses): Z6020 (Diamino); Z6030 (Methacrylate); Z6032 (Styrylamine Cationic); Z6040 (Epoxy); and Z6075 (Vinyl).
  • [0031]
    To increase the adhesion between the capsules and a polymer in the composite, the capsules may be treated by washing them in a solution of the coupling agent. For example, urea-formaldehyde capsules may be washed in a solution of Silane Z6020 or Z6040 and hexane (1:20 wt.) followed by adding Silane Z6032 to the polymer (1% wt.).
  • [0032]
    Capsules may be made by a variety of techniques, and from a variety of materials, such as those described in Microencapsulation: Methods and Industrial Applications Ed. Benita, Simon Marcel Dekker, New York, 1996; Microencapsulation: Processes and Applications Ed. Vandegaer, J. Plenum Press, New York, 1974; and Microcapsule Processing and Technology Kondo, A. Marcel Dekker, New York, 1979. Examples of materials from which the capsules may be made, and the techniques for making them include: urea-formaldehyde, formed by in situ polymerization; gelatin, formed by complex coacervation; polyurea, formed by the reaction of isocyanates with a diamine or a triamine, depending on the degree of crosslinking desired (the extent of crosslinking also determines the brittleness of the capsule); and polyamide, formed by the use of a suitable acid chloride and a water soluble triamine.
  • [0033]
    The polymer may be any polymeric material into which the capsules may be dispersed. Examples include polyamides such as nylons; polyesters such as poly(ethylene terephthalate) and polycaprolactone; polycarbonates; polyethers such as epoxides; polyimides such as polypyromellitimide (for example KAPTAN); phenol-formaldehyde resins (for example BAKELITE); amine-formaldehyde resins such as a melamine resin; polysulfones; poly(acrylonitrile-butadiene-styrene) (ABS); polyurethanes; polyolefins such as polyethylene, polystyrene, polyacrylonitrile, polyvinyls, polyvinyl chloride, poly(DCPD) and poly(methyl methacrylate); polysilanes such as poly(carborane-siloxane); and polyphosphazenes.
  • [0034]
    The capsules and activator (such as the catalyst or initiator) may be dispersed into the polymer by forming the polymer around the capsules and activator, such as by polymerizing monomer to form the polymer with the capsules and activator mixed into the monomer. Particularly in the case of catalysts, the catalyst may serve as both a catalyst for the polymer and as the corresponding activator for the polymerizer in the capsules. Examples of this system include DCPD as the polymerizer, the polymer is poly(DPCD), and a Grubbs catalyst serves to form the poly(DPCD) and acts as the activator for the DCPD in the capsules; and caprolactone as the polymerizer, the polymer is poly(caprolactone), and scandium triflate acts as the activator for the caprolactone in the capsules.
  • [0035]
    Alternatively, the polymer may be first formed, and then the capsules and activator mixed in. For example, the polymer may be dissolved in a solvent and the capsules and activator mixed into the solution, followed by removal of the solvent. The activator may be coated onto the capsules prior to dispersing the capsules into the polymer. Furthermore, other components may be added to the polymer, such as fibers, fillers, adhesion modifiers, blowing agents, anti-oxidants, colorants and dyes, and fragrances.
  • [0036]
    FIG. 1 illustrates an embodiment of a self-healing composite. An approaching crack ruptures embedded capsules (referred to as microcapsules in the figure) releasing polymerizer (referred to as healing agent in the figure) into the crack plane through capillary action. Polymerization of the healing agent may be triggered by contact with the activator (here a catalyst), bonding the crack faces. The damage-induced triggering mechanism provides site-specific autonomic control of the repair. As shown in FIG. 1, an encapsulated healing agent is embedded in a structural composite matrix containing a catalyst capable of polymerizing the healing agent: (i) cracks form in the matrix wherever damage occurs, (ii) The crack ruptures the microcapsules, releasing the healing agent into the crack plane through capillary action, (iii) The healing agent contacts the catalyst triggering polymerization that bonds the crack faces closed.
  • EXAMPLES
  • [0037]
    The following examples and preparations are provided merely to further illustrate the invention. The scope of the invention is not construed as merely consisting of the following examples.
  • [0000]
    General Procedure for Preparation of Capsules by In Situ Polymerization
  • [0038]
    In a 600 mL beaker is dissolved urea (0.11 mol, 7.0 g) followed by resorcinol (0.5 g) and ammonium chloride (0.5 g) in water (150 ml). A 5 wt. % solution of ethylene maleic anhydride copolymer (100 mL) is added to the reaction mixture, and the pH of the reaction mixture is adjusted to 3.5 using 10% NaOH solution. The reaction mixture is agitated at 454 rpm, and to the stirred solution is added 60 mL of dicyclopentadiene to achieve an average droplet size of 200 μm. To the agitated emulsion is added 37% formaldehyde (0.23 mol, 18.91 g) solution, and then the temperature of the reaction mixture is raised to 50° C. and maintained for 2 h. After 2 h, 200 mL of water is added to the reaction mixture. After 4 h, the reaction mixture is cooled to room temperature, and capsules are separated. The capsule slurry is diluted with an additional 200 mL of water and washed with water (3×500 mL). The capsules are isolated by vacuum filtration, and air-dried. Yield: 80%. Average size: 220 μm.
  • [0000]
    Composite Epoxy Specimen Manufacture
  • [0039]
    The epoxy matrix composite was prepared by mixing 100 parts EPON 828 (Shell Chemicals Inc.) epoxide with 12 parts DETA (diethylenetriamine) curing agent (Shell Chemicals Inc.). Composite epoxy specimens were prepared by mixing 2.5% (by wt.) Grubbs' catalyst and 10% (by wt.) capsules with the resin mixture described above. The resin was then poured into silicone rubber molds and cured for 24 h at room temperature, followed by postcuring at 40° C. for 24 h.
  • EXAMPLE
  • [0040]
    DCPD filled capsules (50-200 μm average diameter) with a urea-formaldehyde shell were prepared using standard microencapsulation techniques. The capsule shell provides a protective barrier between the catalyst and DCPD to prevent polymerization during the preparation of the composite.
  • [0041]
    The reaction scheme for the polymerization of DCPD is shown below
  • [0042]
    To assess the crack healing efficiency of these composite materials, fracture tests were performed using a tapered double-cantilever beam (TDCB) specimen (FIG. 2). Self-healing composite and control samples were fabricated. Control samples consisted of: (1) neat epoxy containing no Grubbs' catalyst or capsules, (2) epoxy with Grubbs' catalyst but no capsules and (3) epoxy with capsules but no catalyst. A sharp pre-crack was created in the tapered samples by gently tapping a razor blade into a molded starter notch. Load was applied in a direction perpendicular to the pre-crack (Mode I) with pin loading grips as shown in FIG. 2. The virgin fracture toughness was determined from the critical load to propagate the crack and fail the specimen. After failure, the load was removed and the crack allowed to heal at room temperature with no manual intervention. Fracture tests were repeated after 48 hours to quantify the amount of healing.
  • [0043]
    A representative load-displacement curve is plotted in FIG. 2 demonstrating ca. 75% recovery of the virgin fracture load. In great contrast, all three types of control samples showed no healing and were unable to carry any load upon reloading. A set of four independently prepared self-healing composite samples showed an average healing efficiency of 60%. When the healing efficiency is calculated relative to the critical load for the virgin, neat resin control (upper horizontal line in FIG. 2), a value slightly greater than 100% is achieved. The average critical load for virgin self-healing samples containing cabsules and Grubbs' catalyst was 20% larger than the average value for the neat epoxy control samples, indicating that the addition of capsules and catalyst increases the inherent toughness of the epoxy.
  • [0044]
    Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3041289 *Jan 2, 1959Jun 26, 1962Ncr CoMethod of making walled clusters of capsules
US3069370 *Dec 22, 1958Dec 18, 1962Upjohn CoCoacervation process for encapsulation of lipophilic materials
US3868199 *Aug 8, 1973Feb 25, 1975Fera JoseApparatus for producing powered paraffin
US4080238 *Jul 14, 1976Mar 21, 1978Pratt & Lambert, Inc.One-liquid cold setting adhesive with encapsulated catalyst initiator
US4301306 *Mar 27, 1980Nov 17, 1981The B. F. Goodrich CompanyNorbornenyl phenolic compounds
US4324717 *Jun 23, 1980Apr 13, 1982The B. F. Goodrich CompanyNorbornene polymers stabilized with hindered aromatic alcohols
US4380617 *Jan 20, 1982Apr 19, 1983The B. F. Goodrich CompanyPreparation of polymers from cycloolefins
US4461854 *Aug 11, 1982Jul 24, 1984General Electric CompanyRoom temperature vulcanizable polysiloxane having a heat-activated catalyst
US4708969 *Jun 13, 1986Nov 24, 1987Hercules IncorporatedCycloolefin composition and method for making high TG fiber reinforced polymeric product
US4755588 *Aug 22, 1986Jul 5, 1988General Electric CompanyComposition and method for controlling polymerization rate of cyclic polycarbonate oligomer with encapsulated catalyst
US4758400 *Jan 27, 1987Jul 19, 1988Ashland Oil, Inc.Thermosetting molding compounds
US4804427 *Nov 5, 1986Feb 14, 1989Allied-Signal Inc.Composites via in-situ polymerization of composite matrices using a polymerization initiator bound to a fiber coating
US4853434 *Oct 2, 1987Aug 1, 1989Hanse Chemie GmbhModified thermosetting resin, a method for its production and its use
US4902560 *Jun 1, 1988Feb 20, 1990Hercules IncorporatedImproving the physical properties of glass composite polydicyclopentadiene by heat treatment
US4940645 *Jan 19, 1989Jul 10, 1990The Mead CorporationImaging material employing photosensitive microcapsules containing tertiary amines as coinitiators
US4943621 *Aug 4, 1988Jul 24, 1990The B. F. Goodrich CompanyStorage stable components of reactive formulations for bulk polymerization of cycloolefin monomers
US5063103 *Jun 19, 1989Nov 5, 1991Nippon Zeon Co., Ltd.Reinforced polymeric matrix
US5185108 *Jul 10, 1991Feb 9, 1993The B. F. Goodrich CompanyMethod for producing wax microspheres
US5312940 *Apr 3, 1992May 17, 1994California Institute Of TechnologyRuthenium and osmium metal carbene complexes for olefin metathesis polymerization
US5324616 *Apr 1, 1992Jun 28, 1994Xerox CorporationEncapsulated toner compositions and processes thereof
US5342909 *Aug 13, 1993Aug 30, 1994California Institute Of TechnologyRuthenium and osmium metal carbene complexes for olefin metathesis polymerization
US5413924 *Aug 27, 1992May 9, 1995Kosak; Kenneth M.Preparation of wax beads containing a reagent for release by heating
US5427880 *Feb 1, 1994Jun 27, 1995Ricoh Company, Ltd.Electrophotographic Photoconductor
US5504176 *Apr 8, 1994Apr 2, 1996Shin-Etsu Chemical Co., Ltd.Silicone rubber composition
US5550044 *Jun 10, 1994Aug 27, 1996Kosak; Kenneth M.Preparation of wax beads containing a reagent using liquid nitrogen for cooling and solidifying
US5561173 *Jun 6, 1995Oct 1, 1996Carolyn M. DrySelf-repairing, reinforced matrix materials
US5575841 *Dec 29, 1993Nov 19, 1996Carolyn M. DryCementitious materials
US5643764 *Mar 1, 1995Jul 1, 1997Kosak; Kenneth M.Reactions using heat-releasable reagents in wax beads
US5660624 *Sep 29, 1995Aug 26, 1997Dry; Carolyn M.Self-repairing, reinforced matrix materials
US5789494 *Jun 7, 1995Aug 4, 1998Medlogic Global CorporationEncapsulated materials
US5801033 *Jun 7, 1995Sep 1, 1998The Board Of Regents, The University Of Texas SystemGels for encapsulation of biological materials
US5803963 *Nov 8, 1995Sep 8, 1998Dry; Carolyn M.Smart-fiber-reinforced matrix composites
US5840238 *May 13, 1997Nov 24, 1998Ciba Specialty Chemicals CorporationProcess for the manufacture of fibre-reinforced composites
US5958325 *Jun 7, 1995Sep 28, 1999Tpi Technology, Inc.Large composite structures and a method for production of large composite structures incorporating a resin distribution network
US5989334 *Aug 22, 1997Nov 23, 1999Dry; Carolyn M.Self-repairing, reinforced matrix materials
US6001909 *Oct 28, 1996Dec 14, 1999Ciba Specialty Chemicals Corp.Curable compositions containing cycloolefin and filler
US6040363 *Sep 4, 1998Mar 21, 2000A. O. Smith CorporationMetathesis polymerizered olefin composites including sized reinforcement material
US6048488 *Oct 23, 1997Apr 11, 2000The United States Of America As Represented By The Secretary Of The ArmyOne-step resin transfer molding of multifunctional composites consisting of multiple resins
US6075072 *Mar 13, 1998Jun 13, 20003M Innovative Properties CompanyLatent coating for metal surface repair
US6100323 *Mar 6, 1997Aug 8, 2000Ciba Specialty Chemicals Corp.Curable composition comprising a diels-alder-adduct of cyclopentadiene and a filler
US6113728 *Jun 5, 1995Sep 5, 2000Hitachi Chemical Company, Ltd.Process for connecting circuits and adhesive film used therefor
US6224793 *Apr 27, 1999May 1, 2001The Dow Chemical CompanyEncapsulated active materials
US6235856 *Dec 11, 1995May 22, 2001Ciba Specialty Chemicals CorporationPolymerization of dicyclopentadiene
US6258870 *Jan 13, 1997Jul 10, 2001Board Of Regents, The University Of Texas SystemsGels for encapsulation of biological materials
US6261360 *Nov 23, 1999Jul 17, 2001Carolyn M. DrySelf-repairing, reinforced matrix materials
US6287992 *Apr 20, 1998Sep 11, 2001The Dow Chemical CompanyPolymer composite and a method for its preparation
US6316194 *Dec 16, 1999Nov 13, 2001RibotargetsMethods and kits for discovery of RNA-binding antimicrobials
US6388865 *Nov 16, 1998May 14, 2002Matsushita Electric Industrial Co., Ltd.Laminate and capacitor
US6479167 *Feb 1, 2001Nov 12, 2002Shin-Etsu Chemical Co., Ltd.Sealing material for flip-chip semiconductor device, and flip-chip semiconductor device made therewith
US6518330 *Feb 13, 2001Feb 11, 2003Board Of Trustees Of University Of IllinoisMultifunctional autonomically healing composite material
US6527849 *Jul 17, 2001Mar 4, 2003Carolyn M. DrySelf-repairing, reinforced matrix materials
US6669961 *Aug 15, 2001Dec 30, 2003Board Of Trustees Of University Of IllinoisMicroparticles
US6808461 *Jun 21, 2002Oct 26, 2004Acushnet CompanyGolf ball compositions with microencapsulated healing agent
US6858659 *Oct 25, 2002Feb 22, 2005The Board Of Trustess Of The University Of IllinoisMultifunctional autonomically healing composite material
US7022179 *Feb 28, 2003Apr 4, 2006Dry Carolyn MSelf-repairing, reinforced matrix materials
US7045562 *Oct 16, 2003May 16, 2006International Business Machines CorporationMethod and structure for self healing cracks in underfill material between an I/C chip and a substrate bonded together with solder balls
US7192993 *Mar 4, 2003Mar 20, 2007The United States Of America As Represented By The Secretary Of The ArmySelf-healing coating and microcapsules to make same
US7276252 *May 18, 2001Oct 2, 2007Massachusetts Institute Of TechnologyMethod and form of a drug delivery device, such as encapsulating a toxic core within a non-toxic region in an oral dosage form
US20020111434 *Feb 13, 2001Aug 15, 2002White Scott R.Multifunctional autonomically healing composite material
US20040007784 *Jul 15, 2002Jan 15, 2004Motorola, Inc.Self-healing polymer compositions
US20040055686 *Jul 22, 2003Mar 25, 2004Cowger Katharine M.Tire components having improved durability
US20050038173 *Sep 3, 2004Feb 17, 2005Harris Kevin M.Lipid-based nanotubules for controlled release of healing agents in golf ball layers
US20050085564 *Oct 16, 2003Apr 21, 2005International Business Machines CorporationMethod and structure for self healing cracks in underfill material between an I/C chip and a substrate bonded together with solder balls
US20050250878 *May 7, 2004Nov 10, 2005Moore Jeffrey SWax particles for protection of activators, and multifunctional autonomically healing composite materials
US20060252852 *May 6, 2005Nov 9, 2006Braun Paul VSelf-healing polymers
US20060281834 *Jul 3, 2004Dec 14, 2006Kyung-Woo LeeMethod for preparing microcapsule by miniemulsion polymerization
US20070166542 *Jan 5, 2007Jul 19, 2007Braun Paul VSelf-healing coating system
US20070282059 *Jun 2, 2006Dec 6, 2007Michael W KellerSelf-healing elastomer system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7566747May 7, 2004Jul 28, 2009The Board Of Trustees Of The University Of IllinoisWax particles for protection of activators, and multifunctional autonomically healing composite materials
US7569625Jun 2, 2006Aug 4, 2009The Board Of Trustees Of The University Of IllinoisSelf-healing elastomer system
US7612152May 6, 2005Nov 3, 2009The Board Of Trustees Of The University Of IllinoisSelf-healing polymers
US7723405Jan 5, 2007May 25, 2010The Board Of Trustees Of The University Of IllinoisSelf-healing coating system
US8236914Jan 26, 2010Aug 7, 2012Board of Trust of the University of IllinoisSelf-assessing mechanochromic materials
US8383697Apr 29, 2010Feb 26, 2013Board Of Trustees Of The University Of IllinoisSystems for self-healing composite materials
US8703285Aug 18, 2009Apr 22, 2014The Board Of Trustees Of The University Of IllinoisInterfacial functionalization for self-healing composites
US8735463 *May 31, 2007May 27, 2014Creighton UniversitySelf-healing dental composites and related methods
US8920879Jun 8, 2007Dec 30, 2014Board Of Trustees Of The University Of IllinoisSelf-healing materials with microfluidic networks
US8987352 *Dec 23, 2010Mar 24, 2015Nei CorporationPhase separated self-healing polymer coatings
US9108364Oct 27, 2008Aug 18, 2015Board Of Trustees Of The University Of IllinoisSolvent-promoted self-healing materials
US9119774 *Sep 18, 2009Sep 1, 2015Premier Dental Products CompanySelf-healing dental restorative formulations and related methods
US9359467May 10, 2012Jun 7, 2016Arkema FranceThermoset/supramolecular hybrid composites and resins that can be hot-formed and recycled
US9415575Jan 26, 2009Aug 16, 2016The Board Of Trustees Of The University Of IllinoisSelf-healing laminate system
US20050250878 *May 7, 2004Nov 10, 2005Moore Jeffrey SWax particles for protection of activators, and multifunctional autonomically healing composite materials
US20060252852 *May 6, 2005Nov 9, 2006Braun Paul VSelf-healing polymers
US20070282059 *Jun 2, 2006Dec 6, 2007Michael W KellerSelf-healing elastomer system
US20080299391 *May 31, 2007Dec 4, 2008White Scott RCapsules, methods for making capsules, and self-healing composites including the same
US20080300340 *May 31, 2007Dec 4, 2008Gross Stephen MSelf-healing dental composites and related methods
US20080305343 *Jun 8, 2007Dec 11, 2008Toohey Kathleen SSelf-healing materials with microfluidic networks
US20090181254 *Jan 15, 2008Jul 16, 2009The Board Of Trustees Of The University Of IllinoisMulti-capsule system and its use for encapsulating active agents
US20090191402 *Jan 26, 2009Jul 30, 2009Board Of Trustees Of University Of IllinoisSelf-Healing Laminate System
US20090247694 *Mar 27, 2009Oct 1, 2009Carl Freudenberg KgSelf-healing elastomer system
US20100075134 *Aug 18, 2009Mar 25, 2010The Board Of Trustees Of The University Of IllinoisInterfacial Functionalization For Self-Healing Composites
US20100206088 *Jan 26, 2010Aug 19, 2010The Board Of Trustees Of The University Of IllinoisSelf-Assessing Mechanochromic Materials
US20100331445 *Apr 29, 2010Dec 30, 2010The Board Of Trustees Of The University Of IllinoisSystems For Self-Healing Composite Materials
US20110039980 *Oct 27, 2008Feb 17, 2011The Board of Trustees of the University of IIISolvent-Promoted Self-Healing Materials
US20110071234 *Sep 18, 2009Mar 24, 2011Gross Stephen MSelf-Healing dental restorative formulations and related methods
DE102011087849A1Dec 6, 2011Jun 6, 2013Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Coating material useful for coating e.g. metals and alloys, comprises a binder and a multiple of microcapsules comprising a shell material made of a cell wall and/or a cell membrane, and an active substance included in the shell material
DE102011087850A1Dec 6, 2011Jun 6, 2013Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Composite useful as e.g. components of primary structure and secondary structure of aircraft, and vehicles from a land- and sea transport e.g. roof components, bumpers and spoiler, comprises matrix material and several microcapsules
DE102012216190A1Sep 12, 2012Apr 10, 2014Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Composite e.g. fiber composite materials or composite coatings e.g. paint coatings, useful in a component, comprises a matrix material, and microcapsules comprising a shell material consisting of a cell wall and/or a cell membrane
EP2152224A1 *Jun 1, 2007Feb 17, 2010Creighton UniversitySelf-healing dental composites and related methods
EP2152224A4 *Jun 1, 2007Apr 16, 2014Univ CreightonSelf-healing dental composites and related methods
WO2013083693A1Dec 6, 2012Jun 13, 2013Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Composites and coating materials with active substances contained in biological enveloping material
Classifications
U.S. Classification523/200, 523/205
International ClassificationC08L51/00, C08F2/00, C08F291/00, B29C73/22, C08L51/08, B29C73/16, C08K9/00
Cooperative ClassificationY10T428/2982, C08L2207/53, C08F291/00, C08K9/10, C09D7/1291, B29D30/0685, C09D7/1275, C09D7/1266, B29D2030/0689, B29C73/163, C09D7/1283, C08L51/08, C08K5/01, B29C73/22, C08K5/101, C08L51/003, Y10T428/2985, C08K11/00
European ClassificationC09D7/12N2, C09D7/12S, C08F291/00, C08L51/00B, C09D7/12N3, C09D7/12N1, B29D30/06Z3, B29C73/22, C08L51/08, B29C73/16C, C08K11/00