US20060112693A1 - Method and apparatus for power generation using waste heat - Google Patents

Method and apparatus for power generation using waste heat Download PDF

Info

Publication number
US20060112693A1
US20060112693A1 US11/000,112 US11204A US2006112693A1 US 20060112693 A1 US20060112693 A1 US 20060112693A1 US 11204 A US11204 A US 11204A US 2006112693 A1 US2006112693 A1 US 2006112693A1
Authority
US
United States
Prior art keywords
condenser
refrigerant
generator
turbo
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/000,112
Inventor
Timothy Sundel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Priority to US11/000,112 priority Critical patent/US20060112693A1/en
Assigned to CARRIER CORPORATION reassignment CARRIER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNDEL, TIMOTHY N.
Priority to KR1020077013530A priority patent/KR100844634B1/en
Priority to EP05825495.4A priority patent/EP1828550B1/en
Priority to CN2005800471259A priority patent/CN101107425B/en
Priority to JP2007543437A priority patent/JP2008522081A/en
Priority to PCT/US2005/042441 priority patent/WO2006060253A1/en
Priority to CA2589781A priority patent/CA2589781C/en
Publication of US20060112693A1 publication Critical patent/US20060112693A1/en
Priority to NO20073280A priority patent/NO20073280L/en
Priority to HK08107549.3A priority patent/HK1116848A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K1/00Steam accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the present invention relates to methods and apparatus for power generation using waste heat from a power plant in general, and to those methods and apparatus that utilize an organic Rankine cycle in particular.
  • Rankine cycle systems can include a turbine coupled to an electrical generator, a condenser, a pump, and a vapor generator.
  • the vapor generator is subjected to a heat source (e.g., geothermal energy source).
  • the energy from the heat source is transferred to a fluid passing through the vapor generator.
  • the energized fluid subsequently powers the turbine.
  • the condenser typically includes a plurality of airflow heat exchangers that transfer the thermal energy from the water to the ambient air.
  • RACER Rankine Cycle Energy Recovery
  • the present method and apparatus provides significant advantages. For example, the range of a marine vessel that burns liquid fossil fuel within its power plant is typically dictated by the fuel reserve it can carry. In most modern marine vessels, a portion of the fuel reserve is devoted to running a power plant that generates electrical energy. Hence, both the propulsion needs and the electrical energy needs draw on the fuel reserve.
  • the present method and apparatus decreases the fuel reserve requirements by generating electricity using waste heat generated by the power plant of the vessel rather than fossil fuel. Hence, the vessel is able to carry less fuel and have the same range, or carry the same amount of fuel and have a greater range. In addition, less fuel equates to lower weight, and lower weight enables increased vessel speed.
  • the weight of the fuel required to produce “N” units of electrical power using the vessel's existing main or auxiliary power plants far exceeds the weight of a present ORC device capable of producing the same “N” units of electrical power via waste heat.
  • consumption of liquid fuel changes the buoyancy characteristics of the vessel.
  • the weight of the present ORC device remains constant, thereby facilitating buoyancy control of the vessel.
  • the present inventor provides the additional benefits of an ORC device with increase efficiency disposed within a relatively compact unit.
  • Yet another advantage of the present invention results from the thermal energy removed from the exhaust gases of the marine vessel power plant.
  • the mass flow of the exhaust is a function of the volumetric flow and density of the exhaust.
  • the present method and apparatus enables the exhaust gases to be significantly cooled and consequently the density of the exhaust gases increased. As a result, the mass flow is substantially decreased, and the required size of the marine power plant exhaust duct is substantially less.
  • FIG. 1 is a diagrammatic perspective view of an embodiment of the present invention ORC device, having a single turbo-generator.
  • FIG. 2 is a diagrammatic perspective view of an embodiment of the present invention ORC device, having a pair of turbo-generators.
  • FIG. 3 is a diagrammatic perspective view of an embodiment of the present invention ORC device, having three turbo-generators and a single condenser.
  • FIG. 4 is a diagrammatic perspective view of an embodiment of the present invention ORC device, having three turbo-generators and a pair of condensers.
  • FIG. 5 is a sectional planar view of a condenser.
  • FIG. 7 is a schematic diagram of an ORC device that includes a single turbo-generator.
  • FIG. 8 is a schematic diagram of an ORC device that includes a pair of turbo-generators.
  • FIG. 9 is a schematic diagram of an ORC device that includes three turbo-generators.
  • FIG. 10 is a schematic diagram of an ORC device that includes three turbo-generators and a pair of condensers.
  • FIG. 11 is a diagrammatic pressure and enthalpy curve illustrating the Rankine Cycle.
  • the present method for utilizing waste heat includes an organic Rankine cycle (ORC) device 20 for waste heat utilization.
  • the ORC device 20 includes at least one of each of the following: 1) a turbine coupled with an electrical generator (together hereinafter referred to as the “turbo-generator 22 ”); 2) a condenser 24 ; 3) a refrigerant feed pump 26 ; 4) an evaporator 28 ; and 5) a control system.
  • the ORC device 20 is preferably a closed “hermetic” system with no fluid makeup. In the event of leaks, either non-condensables are automatically purged from the device 20 or charge is manually replenished from refrigerant gas cylinders.
  • the ORC device 20 uses a commercially available refrigerant as the working medium.
  • An example of an acceptable working medium is R-245fa (1,1,1,3,3, pentafluoropropane).
  • R-245fa is a non-flammable, non-ozone depleting fluid.
  • R-245fa has a saturation temperature near 300° F. and 300 PSIG that allows capture of waste heat over a wide range of IGT exhaust temperatures.
  • the turbo-generator includes a single-stage radial inflow turbine 30 that typically operates at about 18000 rpm, a gearbox 32 with integral lubrication system, and an induction generator 34 operating at 3600 rpm.
  • the gearbox 32 includes a lubrication system. In some instances, the gearbox lubrication system is integral with the gearbox 32 .
  • the turbo-generator 22 is derived from a commercially available refrigerant compressor-motor unit; e.g., a Carrier Corporation model 19XR compressor-motor.
  • a turbine the compressor is operated with a rotational direction that is opposite the direction it rotates when functioning as a compressor.
  • Modifications performed to convert the compressor into a turbine include: 1) replacing the impeller with a rotor having rotor blades shaped for use in a turbine application; 2) changing the shroud to reflect the geometry of the rotor blades; 3) altering the flow area of the diffuser to enable it to perform as a nozzle under a given set of operating conditions; and 4) eliminating the inlet guide vanes which modulate refrigerant flow in the compressor mode.
  • those elements are replaced or modified to accommodate the higher operating temperature of the turbine 30 .
  • the turbo-generator 22 includes peripheral components such as an oil cooler 36 (shown schematically in FIGS. 7-10 ) and oil reclaim eductor (not shown). Both the oil cooler 36 and the eductor and their associated plumbing are attached to the turbo-generator 22 .
  • Different refrigerant flow configurations through the evaporator 28 can be utilized; e.g., co-flow, co-counterflow, co-flow boiler/superheater and a counterflow preheater, etc.
  • the present evaporator 28 is not limited to any particular flow configuration.
  • the number of preheater tubes and the crossover point are selected in view of the desired hot gas exit temperature as well as the boiler section inlet subcooling.
  • a pair of vertical tube sheets 38 each disposed on an opposite end of the evaporator 28 , supports evaporator coils.
  • Insulated casings 40 surround the entire evaporator 28 with removable panels for accessible cleaning.
  • the number of evaporators 28 can be tailored to the application. For example, if there is more than one exhaust duct, an evaporator 28 can be disposed in each exhaust duct. More than one evaporator 28 disposed in a particular duct also offers the advantages of redundancy and the ability to handle a greater range of exhaust mass flow rates. At lower exhaust flow rates a single evaporator 28 may provide sufficient cooling, while still providing the energy necessary to power the turbo-generators 22 . At higher exhaust flow rates, a plurality of evaporators 28 may be used to provide sufficient cooling and the energy necessary to power the turbo-generators 22 .
  • the condenser 24 is a shell-and-tube type unit that is sized to satisfy the requirements of the ORC device.
  • the condenser 24 includes a housing 42 and a plurality of tubes 44 (hereinafter referred to as a “bank of tubes”) disposed within the housing 42 .
  • the housing 42 includes a working medium inlet port 46 , a working medium exit port 48 , a coolant inlet port 50 , and a coolant exit port 52 .
  • the coolant inlet and exit ports 50 , 52 are connected to the bank of tubes 44 to enable cooling fluid to enter the condenser 24 housing, pass through the bank of tubes 44 , and subsequently exit the condenser housing 42 .
  • the working medium inlet and exit ports 46 , 48 are connected to the condenser housing 42 to enable working medium to enter the housing 42 , pass around the bank of tubes 44 , and subsequently exit the housing 42 .
  • one or more diffuser plates 54 are positioned adjacent the working medium inlet 46 to facilitate distribution of the working medium within the condenser 24 .
  • the housing 42 includes a removable access panel 56 at each axial end of the housing 42 .
  • one of the access panels 56 is pivotally attached to one circumferential side of the housing 42 and attachable to the opposite circumferential side via a selectively operable latch (not shown) so that the access panel 56 may be readily pivoted to provide access to the bank of tubes 44 .
  • a non-condensable purge unit 58 (shown schematically in FIGS. 7-9 ) is attached to the condenser 24 .
  • the purge unit 58 is operable to extract air and water vapor that may accumulate in the vapor region of a condenser housing 42 to minimize or eliminate their contribution to oil hydrolysis or component corrosion.
  • the purge unit 58 is actuated only when the system controller thermodynamically identifies the presence of non-condensable gas.
  • the ORC device 20 includes a recuperator 60 for preheating the working medium prior to its entry into the evaporator 28 .
  • the recuperator 60 is operable to receive thermal energy from at least a portion of the working medium exiting the turbo-generator 22 and use it to preheat working medium entering the evaporator 28 .
  • the recuperator 60 includes a plurality of ducts 62 disposed within the housing 42 of the condenser 24 .
  • the ducts 62 are connected inline downstream of the working medium exit port 48 of the condenser 24 and upstream of the evaporator 28 .
  • a partition 64 partially surrounds the recuperator ducts 62 to separate them from the remainder of the condenser 24 .
  • Working medium enters the condenser 24 through the working medium inlet port 46 and passes through the recuperator 60 prior to entering the remainder of the condenser 24 .
  • One or more diffusers 54 can be disposed within the recuperator to facilitate distribution of the working medium within the recuperator 60 . Placing the recuperator 60 within the condenser 24 advantageously minimizes the size of the ORC device 20 .
  • a recuperator 60 disposed outside of the condenser 24 can be used alternatively, however.
  • the ORC device 20 includes one or more variable speed refrigerant feed pumps 26 to supply liquid refrigerant to the evaporator 28 .
  • the refrigerant feed pump 26 is a turbine regenerative pump that supplies liquid refrigerant to the evaporator 28 with relatively low net pump suction head (NPSH).
  • NPSH net pump suction head
  • This design combined with the relatively low system pressure difference, allows the feed pump 26 and condenser 24 to be mounted at the same elevation and obviates the need for separate condensate and feed pumps.
  • the refrigerant feed pump 26 may be a side channel centrifugal pump or an axial inlet centrifugal pump.
  • the refrigerant feed pump 26 is equipped with an inverter to allow fully proportional variable speed operation across the full range of exhaust conditions. Other pump controls may be used alternatively. Applications using two or more refrigerant feed pumps 26 offer the advantage of redundancy.
  • the piping 74 disposed immediately aft of each of the feed pumps 26 are connected to one another by a cross-over piping segment 76 .
  • Multiple refrigerant feed pumps 26 and the cross-over segment 76 enhance the ability of the ORC device 20 to accommodate a marine environment having significant pitch and roll by collecting working medium at different locations in the condenser 24 .
  • ORC configurations having more than one turbo-generator 22 and more than one refrigerant feed pump 26 are provided with valves 66 (see FIGS.
  • each turbo-generator 22 or feed pump 26 may be selectively removed from the working medium flow pattern.
  • a feed pump 26 may be associated with each turbo-generator 22 , and selective actuation of the associated feed pump 26 can be used to engage/disengage the associated turbo-generator 22 .
  • the ORC device 20 configurations shown in FIGS. 7-10 each includes a cooling circuit 68 used in marine applications, wherein a cooling medium (e.g., seawater) is accessed from a cooling medium source 70 (e.g., the body of water in the environment surrounding the marine vessel) and circuitously passed through the condenser 24 (via the coolant inlet and exit ports 50 , 52 ) and returned to the cooling medium source 70 .
  • a cooling medium e.g., seawater
  • the cooling circuit 68 includes a heat exchanger (e.g., a cooling tower) to remove thermal energy from the cooling medium.
  • ORC device 20 configurations are shown schematically in FIGS. 7-10 . These configurations represent examples of ORC device 20 configurations and should not be interpreted as the only configurations possible within the present invention. Arrows indicate the working medium flow pattern within each configuration.
  • working medium is pumped toward an evaporator 28 .
  • the working medium passes through a recuperator 60 , wherein the working medium is preheated.
  • the evaporator 28 is disposed within an exhaust duct that receives exhaust products from the vessel's power plant.
  • Working medium exiting the evaporator 28 subsequently travels toward the turbo-generator 22 .
  • a bypass valve 72 disposed between the evaporator 28 and the turbo-generator 22 , enables the selective diversion of working medium around the turbo-generator 22 and toward the condenser 24 .
  • An orifice 73 is disposed downstream of the bypass valve 72 to produce a flow-restriction.
  • the bypass valve 72 is operable to fully bypass working medium around the turbo-generator 22 .
  • the bypass valve 72 can operate to selectively vary the amount of working medium that is introduced into the turbo-generator 22 .
  • the working medium enters the turbine 30 portion of the turbo-generator 22 and provides the energy necessary to power the turbo-generator 22 .
  • the working medium travels toward the condenser 24 .
  • Working medium that is diverted around the turbo-generator 22 also travels toward the condenser 24 .
  • a perspective view of this configuration of the ORC device 20 is shown in FIG. 1 , less the evaporator 28 .
  • a second ORC device 20 configuration is schematically shown in FIG. 8 that includes a pair of turbo-generators 22 .
  • the turbine inlets are connected to a feed conduit from the evaporator 28 .
  • a turbine inlet valve 66 a is disposed immediately upstream of each turbo-generator 22 .
  • a turbine exit valve 66 b is disposed immediately downstream of each turbo-generator 22 .
  • a safety pressure bleed is provided connected to the low pressure side of the ORC device.
  • the second ORC device 20 configuration also includes a plurality of evaporators 28 .
  • An evaporator inlet valve 78 is disposed immediately upstream of each evaporator 28 .
  • an evaporator exit valve 80 is disposed immediately downstream of each evaporator 28 .
  • a perspective view of this configuration of the ORC device 20 is shown in FIG. 2 , less the evaporator 28 .
  • a third ORC device 20 configuration is schematically shown in FIG. 9 that includes three turbo-generators 22 .
  • a perspective view of a portion of this configuration of the ORC device 20 is shown in FIG. 3 , less the evaporator 28 .
  • a fourth ORC device 20 configuration is schematically shown in FIG. 10 that includes three turbo-generators 22 and a pair of condensers 24 .
  • a perspective view of a portion of this configuration of the ORC device 20 is shown in FIG. 4 , less the evaporator 28 .
  • the ORC controls maintain the ORC device 20 along a highly predictable programmed turbine inlet superheat/pressure curve through the use of the variable speed feed pump 26 in a closed hermetic environment.
  • An example of such a curve is shown in FIG. 11 .
  • the condenser load is regulated via the feed pump(s) 26 to maintain condensing pressure as the system load changes.
  • the ORC controls can also be used to control: 1) net exported power generation by controlling either hot gas blower speed or bypass valve 72 position depending on the application; 2) selective staging of the generator 34 and gearbox 32 oil flow; and 3) actuation of the purge unit 58 .
  • the ORC controls can also be used to monitor all ORC system sensors and evaluate if any system operational set point ranges are exceeded.
  • Alerts and alarms can be generated and logged in a manner analogous to the operation of a commercially available chillers, with the control system initiating a protective shutdown sequence (and potentially a restart lockout) in the event of an alarm.
  • the specific details of the ORC controls will depend upon the specific configuration involved and the application at hand.
  • the present invention ORC device 20 can be designed for fully automated unattended operation with appropriate levels of prognostics and diagnostics.
  • the ORC device 20 can be equipped with a system enable relay that can be triggered from the ORC controls or can be self-initiating using a hot gas temperature sensor. After the ORC device 20 is activated, the system will await the enable signal to begin the autostart sequence. Once the autostart sequence is triggered, fluid supply to the evaporator 28 is ramped up at a controlled rate to begin building pressure across the bypass valve 72 while the condenser load is matched to the system load. When the control system determines that turbine superheat is under control, the turbine oil pump is activated and the generator 34 is energized as an induction motor. The turbine speed is thus locked to the grid frequency with no requirement for frequency synchronization. With the turbine at speed, the turbine inlet valve 66 a opens automatically and power inflow to the generator seamlessly transitions into electrical power generation.
  • the control system begins continuous superheat control and alarm monitoring.
  • the control system will track all hot gas load changes within a specified turndown ratio. Very rapid load changes can be tracked. During load increases, significant superheat overshoot can be accommodated until the system reaches a new equilibrium. During load decreases, the system can briefly transition to turbine bypass until superheat control is re-established. If the supplied heat load becomes too high or low, superheat will move outside qualified limits and the system will (currently) shutdown. From this state, the ORC device 20 will again initiate the autostart sequence after a short delay if evaporator high temperature is present.

Abstract

According to the present invention, a method and apparatus for generating power aboard a marine vessel is provided. The method comprises the steps of: (a) providing a Rankine Cycle device that includes at least one of each of an evaporator, a turbo-generator that includes a turbine coupled with an electrical generator, a condenser, and a refrigerant feed pump; (b) disposing the one or more evaporators within an exhaust duct of a power plant of the marine vessel; (c) operating the power plant; and (d) selectively pumping refrigerant through the Rankine Cycle device, wherein refrigerant exiting the evaporator powers the turbine, which in turn powers the generator to produce power.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates to methods and apparatus for power generation using waste heat from a power plant in general, and to those methods and apparatus that utilize an organic Rankine cycle in particular.
  • 2. Background Information
  • Marine and land based power plants can produce exhaust products in a temperature range of 350-1850° F. In most applications, the exhaust products are released to the environment and the thermal energy is lost. In some instances, however, the thermal energy is further utilized. For example, the thermal energy from the exhaust of an industrial gas turbine engine (IGT) has been used as the energy source to drive a Rankine cycle system.
  • Rankine cycle systems can include a turbine coupled to an electrical generator, a condenser, a pump, and a vapor generator. The vapor generator is subjected to a heat source (e.g., geothermal energy source). The energy from the heat source is transferred to a fluid passing through the vapor generator. The energized fluid subsequently powers the turbine. After exiting the turbine, the fluid passes through the condenser and is subsequently pumped back into the vapor generator. In land-based applications, the condenser typically includes a plurality of airflow heat exchangers that transfer the thermal energy from the water to the ambient air.
  • In the 1970's and 1980's the United States Navy investigated a marine application of a Rankine cycle system, referred to as the Rankine Cycle Energy Recovery (RACER) System. The RACER system, which utilized high-pressure steam as the working medium, was coupled to the drive system to augment propulsion horsepower. RACER could not be used to power any accessories because it as coupled to the drive system; i.e., if the drive system was not engaged, neither was the RACER system. The RACER system was never fully implemented and the program was cancelled because of problems associated with using high-pressure steam in a marine application.
  • What is needed is a method and apparatus for power generation using waste heat from a power plant that can be used in a marine environment, and one that overcomes the problems associated with the prior art systems.
  • SUMMARY OF THE INVENTION
  • According to the present invention, a method and apparatus for generating power aboard a marine vessel is provided. The method comprises the steps of: (a) providing a Rankine Cycle device that includes at least one of each of an evaporator, a turbo-generator that includes a turbine coupled with an electrical generator, a condenser, and a refrigerant feed pump; (b) disposing the one or more evaporators within an exhaust duct of a power plant of the marine vessel; (c) operating the power plant; and (d) selectively pumping refrigerant through the Rankine Cycle device, wherein refrigerant exiting the evaporator powers the turbine, which in turn powers the generator to produce electric power.
  • The present method and apparatus provides significant advantages. For example, the range of a marine vessel that burns liquid fossil fuel within its power plant is typically dictated by the fuel reserve it can carry. In most modern marine vessels, a portion of the fuel reserve is devoted to running a power plant that generates electrical energy. Hence, both the propulsion needs and the electrical energy needs draw on the fuel reserve. The present method and apparatus decreases the fuel reserve requirements by generating electricity using waste heat generated by the power plant of the vessel rather than fossil fuel. Hence, the vessel is able to carry less fuel and have the same range, or carry the same amount of fuel and have a greater range. In addition, less fuel equates to lower weight, and lower weight enables increased vessel speed.
  • If one considers the amount of fossil fuel that would be required to produce the electrical energy that can be created by the present method and apparatus via waste heat, it is clear that several other advantages are provided by the present invention. For example, the weight of the fuel required to produce “N” units of electrical power using the vessel's existing main or auxiliary power plants far exceeds the weight of a present ORC device capable of producing the same “N” units of electrical power via waste heat. In addition, consumption of liquid fuel changes the buoyancy characteristics of the vessel. The weight of the present ORC device remains constant, thereby facilitating buoyancy control of the vessel.
  • For those embodiments that utilize a recuperator disposed within the condenser, the present inventor provides the additional benefits of an ORC device with increase efficiency disposed within a relatively compact unit.
  • Yet another advantage of the present invention results from the thermal energy removed from the exhaust gases of the marine vessel power plant. The mass flow of the exhaust is a function of the volumetric flow and density of the exhaust. The present method and apparatus enables the exhaust gases to be significantly cooled and consequently the density of the exhaust gases increased. As a result, the mass flow is substantially decreased, and the required size of the marine power plant exhaust duct is substantially less.
  • These and other objects, features and advantages of the present invention will become apparent in light of the detailed description of the best mode embodiment thereof, as illustrated in the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic perspective view of an embodiment of the present invention ORC device, having a single turbo-generator.
  • FIG. 2 is a diagrammatic perspective view of an embodiment of the present invention ORC device, having a pair of turbo-generators.
  • FIG. 3 is a diagrammatic perspective view of an embodiment of the present invention ORC device, having three turbo-generators and a single condenser.
  • FIG. 4 is a diagrammatic perspective view of an embodiment of the present invention ORC device, having three turbo-generators and a pair of condensers.
  • FIG. 5 is a sectional planar view of a condenser.
  • FIG. 6 is a diagrammatic perspective view of an evaporator.
  • FIG. 7 is a schematic diagram of an ORC device that includes a single turbo-generator.
  • FIG. 8 is a schematic diagram of an ORC device that includes a pair of turbo-generators.
  • FIG. 9 is a schematic diagram of an ORC device that includes three turbo-generators.
  • FIG. 10 is a schematic diagram of an ORC device that includes three turbo-generators and a pair of condensers.
  • FIG. 11 is a diagrammatic pressure and enthalpy curve illustrating the Rankine Cycle.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIGS. 1-6, the present method for utilizing waste heat includes an organic Rankine cycle (ORC) device 20 for waste heat utilization. The ORC device 20 includes at least one of each of the following: 1) a turbine coupled with an electrical generator (together hereinafter referred to as the “turbo-generator 22”); 2) a condenser 24; 3) a refrigerant feed pump 26; 4) an evaporator 28; and 5) a control system. The ORC device 20 is preferably a closed “hermetic” system with no fluid makeup. In the event of leaks, either non-condensables are automatically purged from the device 20 or charge is manually replenished from refrigerant gas cylinders.
  • The ORC device 20 uses a commercially available refrigerant as the working medium. An example of an acceptable working medium is R-245fa (1,1,1,3,3, pentafluoropropane). R-245fa is a non-flammable, non-ozone depleting fluid. R-245fa has a saturation temperature near 300° F. and 300 PSIG that allows capture of waste heat over a wide range of IGT exhaust temperatures.
  • Now referring to FIGS. 1-4, the turbo-generator includes a single-stage radial inflow turbine 30 that typically operates at about 18000 rpm, a gearbox 32 with integral lubrication system, and an induction generator 34 operating at 3600 rpm. The gearbox 32 includes a lubrication system. In some instances, the gearbox lubrication system is integral with the gearbox 32.
  • In one embodiment, the turbo-generator 22 is derived from a commercially available refrigerant compressor-motor unit; e.g., a Carrier Corporation model 19XR compressor-motor. As a turbine, the compressor is operated with a rotational direction that is opposite the direction it rotates when functioning as a compressor. Modifications performed to convert the compressor into a turbine include: 1) replacing the impeller with a rotor having rotor blades shaped for use in a turbine application; 2) changing the shroud to reflect the geometry of the rotor blades; 3) altering the flow area of the diffuser to enable it to perform as a nozzle under a given set of operating conditions; and 4) eliminating the inlet guide vanes which modulate refrigerant flow in the compressor mode. To the extent that there are elements within the 19XR compressor that have a maximum operating temperature below the operating temperature of the turbine 30, those elements are replaced or modified to accommodate the higher operating temperature of the turbine 30.
  • In some embodiments, the turbo-generator 22 includes peripheral components such as an oil cooler 36 (shown schematically in FIGS. 7-10) and oil reclaim eductor (not shown). Both the oil cooler 36 and the eductor and their associated plumbing are attached to the turbo-generator 22.
  • Referring to FIG. 6, a number of different evaporators 28 can be used with the ORC device 20. A single pressure once-through evaporator 28 with vertical hot gas flow and horizontal flow of refrigerant through fin-tube parallel circuits serviced by vertical headers is an acceptable type of evaporator 28. Examples of acceptable evaporator tube materials include carbon steel tubes with carbon steel fins, and stainless steel tubes with carbon steel fins, both of which have been successfully demonstrated in exhaust gas flows at up to 900° F. Other evaporator tube materials may be used alternatively. Inlet header flow orifices are used to facilitate refrigerant flow distribution. Different refrigerant flow configurations through the evaporator 28 can be utilized; e.g., co-flow, co-counterflow, co-flow boiler/superheater and a counterflow preheater, etc. The present evaporator 28 is not limited to any particular flow configuration.
  • In all the evaporator 28 embodiments, the number of preheater tubes and the crossover point are selected in view of the desired hot gas exit temperature as well as the boiler section inlet subcooling. A pair of vertical tube sheets 38, each disposed on an opposite end of the evaporator 28, supports evaporator coils. Insulated casings 40 surround the entire evaporator 28 with removable panels for accessible cleaning.
  • The number of evaporators 28 can be tailored to the application. For example, if there is more than one exhaust duct, an evaporator 28 can be disposed in each exhaust duct. More than one evaporator 28 disposed in a particular duct also offers the advantages of redundancy and the ability to handle a greater range of exhaust mass flow rates. At lower exhaust flow rates a single evaporator 28 may provide sufficient cooling, while still providing the energy necessary to power the turbo-generators 22. At higher exhaust flow rates, a plurality of evaporators 28 may be used to provide sufficient cooling and the energy necessary to power the turbo-generators 22.
  • Referring to FIGS. 1-5, the condenser 24 is a shell-and-tube type unit that is sized to satisfy the requirements of the ORC device. The condenser 24 includes a housing 42 and a plurality of tubes 44 (hereinafter referred to as a “bank of tubes”) disposed within the housing 42. The housing 42 includes a working medium inlet port 46, a working medium exit port 48, a coolant inlet port 50, and a coolant exit port 52. The coolant inlet and exit ports 50,52 are connected to the bank of tubes 44 to enable cooling fluid to enter the condenser 24 housing, pass through the bank of tubes 44, and subsequently exit the condenser housing 42. Likewise, the working medium inlet and exit ports 46,48 are connected to the condenser housing 42 to enable working medium to enter the housing 42, pass around the bank of tubes 44, and subsequently exit the housing 42. In some embodiments, one or more diffuser plates 54 (see FIG. 5) are positioned adjacent the working medium inlet 46 to facilitate distribution of the working medium within the condenser 24. In the embodiment shown in FIGS. 1-4, the housing 42 includes a removable access panel 56 at each axial end of the housing 42. In a preferred embodiment, one of the access panels 56 is pivotally attached to one circumferential side of the housing 42 and attachable to the opposite circumferential side via a selectively operable latch (not shown) so that the access panel 56 may be readily pivoted to provide access to the bank of tubes 44.
  • In some embodiments, a non-condensable purge unit 58 (shown schematically in FIGS. 7-9) is attached to the condenser 24. The purge unit 58 is operable to extract air and water vapor that may accumulate in the vapor region of a condenser housing 42 to minimize or eliminate their contribution to oil hydrolysis or component corrosion. The purge unit 58 is actuated only when the system controller thermodynamically identifies the presence of non-condensable gas.
  • Referring to FIG. 5, in some embodiments, the ORC device 20 includes a recuperator 60 for preheating the working medium prior to its entry into the evaporator 28. The recuperator 60 is operable to receive thermal energy from at least a portion of the working medium exiting the turbo-generator 22 and use it to preheat working medium entering the evaporator 28. In the embodiment shown in FIG. 5, the recuperator 60 includes a plurality of ducts 62 disposed within the housing 42 of the condenser 24. The ducts 62 are connected inline downstream of the working medium exit port 48 of the condenser 24 and upstream of the evaporator 28. A partition 64 partially surrounds the recuperator ducts 62 to separate them from the remainder of the condenser 24. Working medium enters the condenser 24 through the working medium inlet port 46 and passes through the recuperator 60 prior to entering the remainder of the condenser 24. One or more diffusers 54 can be disposed within the recuperator to facilitate distribution of the working medium within the recuperator 60. Placing the recuperator 60 within the condenser 24 advantageously minimizes the size of the ORC device 20. A recuperator 60 disposed outside of the condenser 24 can be used alternatively, however.
  • Referring to FIGS. 1-4, the ORC device 20 includes one or more variable speed refrigerant feed pumps 26 to supply liquid refrigerant to the evaporator 28. In one embodiment, the refrigerant feed pump 26 is a turbine regenerative pump that supplies liquid refrigerant to the evaporator 28 with relatively low net pump suction head (NPSH). This design, combined with the relatively low system pressure difference, allows the feed pump 26 and condenser 24 to be mounted at the same elevation and obviates the need for separate condensate and feed pumps. In alternative embodiments, the refrigerant feed pump 26 may be a side channel centrifugal pump or an axial inlet centrifugal pump. The refrigerant feed pump 26 is equipped with an inverter to allow fully proportional variable speed operation across the full range of exhaust conditions. Other pump controls may be used alternatively. Applications using two or more refrigerant feed pumps 26 offer the advantage of redundancy. In some embodiments, the piping 74 disposed immediately aft of each of the feed pumps 26 are connected to one another by a cross-over piping segment 76. Multiple refrigerant feed pumps 26 and the cross-over segment 76 enhance the ability of the ORC device 20 to accommodate a marine environment having significant pitch and roll by collecting working medium at different locations in the condenser 24. ORC configurations having more than one turbo-generator 22 and more than one refrigerant feed pump 26 are provided with valves 66 (see FIGS. 7-10) that enable each turbo-generator 22 or feed pump 26 to be selectively removed from the working medium flow pattern. Alternatively, a feed pump 26 may be associated with each turbo-generator 22, and selective actuation of the associated feed pump 26 can be used to engage/disengage the associated turbo-generator 22.
  • The ORC device 20 configurations shown in FIGS. 7-10 each includes a cooling circuit 68 used in marine applications, wherein a cooling medium (e.g., seawater) is accessed from a cooling medium source 70 (e.g., the body of water in the environment surrounding the marine vessel) and circuitously passed through the condenser 24 (via the coolant inlet and exit ports 50,52) and returned to the cooling medium source 70. In alternative embodiments, the cooling circuit 68 includes a heat exchanger (e.g., a cooling tower) to remove thermal energy from the cooling medium.
  • ORC device 20 configurations are shown schematically in FIGS. 7-10. These configurations represent examples of ORC device 20 configurations and should not be interpreted as the only configurations possible within the present invention. Arrows indicate the working medium flow pattern within each configuration.
  • Referring to a first configuration shown in FIG. 7, beginning at a pair of refrigerant feed pumps 26, working medium is pumped toward an evaporator 28. In the embodiment shown in FIG. 7, prior to entering the evaporator 28, the working medium passes through a recuperator 60, wherein the working medium is preheated. In a marine application, the evaporator 28 is disposed within an exhaust duct that receives exhaust products from the vessel's power plant. Working medium exiting the evaporator 28 subsequently travels toward the turbo-generator 22. A bypass valve 72, disposed between the evaporator 28 and the turbo-generator 22, enables the selective diversion of working medium around the turbo-generator 22 and toward the condenser 24. An orifice 73 is disposed downstream of the bypass valve 72 to produce a flow-restriction. As will be discussed below, the bypass valve 72 is operable to fully bypass working medium around the turbo-generator 22. Alternatively, the bypass valve 72 can operate to selectively vary the amount of working medium that is introduced into the turbo-generator 22. Assuming some, or all, of the working medium has not been diverted around the turbo-generator 22, the working medium enters the turbine 30 portion of the turbo-generator 22 and provides the energy necessary to power the turbo-generator 22. Once through the turbo-generator 22, the working medium travels toward the condenser 24. Working medium that is diverted around the turbo-generator 22 also travels toward the condenser 24. A perspective view of this configuration of the ORC device 20 is shown in FIG. 1, less the evaporator 28.
  • A second ORC device 20 configuration is schematically shown in FIG. 8 that includes a pair of turbo-generators 22. The turbine inlets are connected to a feed conduit from the evaporator 28. A turbine inlet valve 66 a is disposed immediately upstream of each turbo-generator 22. In some embodiments, a turbine exit valve 66 b is disposed immediately downstream of each turbo-generator 22. In those embodiments, a safety pressure bleed is provided connected to the low pressure side of the ORC device. The second ORC device 20 configuration also includes a plurality of evaporators 28. An evaporator inlet valve 78 is disposed immediately upstream of each evaporator 28. In some embodiments, an evaporator exit valve 80 is disposed immediately downstream of each evaporator 28. A perspective view of this configuration of the ORC device 20 is shown in FIG. 2, less the evaporator 28.
  • A third ORC device 20 configuration is schematically shown in FIG. 9 that includes three turbo-generators 22. A perspective view of a portion of this configuration of the ORC device 20 is shown in FIG. 3, less the evaporator 28.
  • A fourth ORC device 20 configuration is schematically shown in FIG. 10 that includes three turbo-generators 22 and a pair of condensers 24. A perspective view of a portion of this configuration of the ORC device 20 is shown in FIG. 4, less the evaporator 28.
  • In all of the configurations, the ORC controls maintain the ORC device 20 along a highly predictable programmed turbine inlet superheat/pressure curve through the use of the variable speed feed pump 26 in a closed hermetic environment. An example of such a curve is shown in FIG. 11.
  • The condenser load is regulated via the feed pump(s) 26 to maintain condensing pressure as the system load changes. In addition to the primary feed pump speed/superheat control loop, the ORC controls can also be used to control: 1) net exported power generation by controlling either hot gas blower speed or bypass valve 72 position depending on the application; 2) selective staging of the generator 34 and gearbox 32 oil flow; and 3) actuation of the purge unit 58. The ORC controls can also be used to monitor all ORC system sensors and evaluate if any system operational set point ranges are exceeded. Alerts and alarms can be generated and logged in a manner analogous to the operation of a commercially available chillers, with the control system initiating a protective shutdown sequence (and potentially a restart lockout) in the event of an alarm. The specific details of the ORC controls will depend upon the specific configuration involved and the application at hand. The present invention ORC device 20 can be designed for fully automated unattended operation with appropriate levels of prognostics and diagnostics.
  • The ORC device 20 can be equipped with a system enable relay that can be triggered from the ORC controls or can be self-initiating using a hot gas temperature sensor. After the ORC device 20 is activated, the system will await the enable signal to begin the autostart sequence. Once the autostart sequence is triggered, fluid supply to the evaporator 28 is ramped up at a controlled rate to begin building pressure across the bypass valve 72 while the condenser load is matched to the system load. When the control system determines that turbine superheat is under control, the turbine oil pump is activated and the generator 34 is energized as an induction motor. The turbine speed is thus locked to the grid frequency with no requirement for frequency synchronization. With the turbine at speed, the turbine inlet valve 66 a opens automatically and power inflow to the generator seamlessly transitions into electrical power generation.
  • Shutdown of the ORC device 20 is equally straightforward. When the temperature of the exhaust products passing through the evaporator(s) 28 falls below the operational limit, or if superheat cannot be maintained at minimum power, the ORC controls system begins an auto-shutdown sequence. With the generator 34 still connected to the grid, the turbine inlet valve 66 a closes and the turbine bypass valve 72 opens. The generator 34 once again becomes a motor (as opposed to a generator) and draws power momentarily before power is removed and the unit coasts to a stop. The refrigerant feed pump 26 continues to run to cool the evaporator 28 while the condenser 24 continues to reject load, eventually resulting in a continuous small liquid circulation through the system. Once system temperature and pressure are adequate for shutdown, the refrigerant feed pump 26, turbine oil pump, and condenser 24 are secured and the system is ready for the next enable signal.
  • When the autostart sequence is complete, the control system begins continuous superheat control and alarm monitoring. The control system will track all hot gas load changes within a specified turndown ratio. Very rapid load changes can be tracked. During load increases, significant superheat overshoot can be accommodated until the system reaches a new equilibrium. During load decreases, the system can briefly transition to turbine bypass until superheat control is re-established. If the supplied heat load becomes too high or low, superheat will move outside qualified limits and the system will (currently) shutdown. From this state, the ORC device 20 will again initiate the autostart sequence after a short delay if evaporator high temperature is present.
  • Although this invention has been shown and described with respect to the detailed embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail thereof may be made without departing from the spirit and the scope of the invention.

Claims (12)

1. An apparatus for generating power using exhaust from a marine power plant, the apparatus comprising:
an evaporator operable to be disposed within the exhaust from the marine power plant;
a turbo-generator that includes a turbine coupled with an electrical generator;
a condenser having a plurality of tubes disposed within a housing, wherein the tubes form a closed circuit within the housing that is sized to permit a flow of coolant into and out of the condenser; and
a refrigerant feed pump operable to pump refrigerant.
2. The apparatus of claim 1, further comprising a coolant source that provides the coolant flow into and out of the condenser.
3. The apparatus of claim 2, wherein the coolant source is environmental water.
4. The apparatus of claim 2, further comprising a selectively operable bypass valve disposed within the apparatus and positioned to provide a path between the evaporator and the condenser, so that refrigerant may be selectively bypassed around the turbo-generator.
5. The apparatus of claim 1, further comprising a recuperator disposed within the condenser, and the recuperator is positioned within the apparatus such that refrigerant from the refrigerant feed pump enters the recuperator and refrigerant exiting the recuperator passes into the evaporator.
6. The apparatus of claim 1, further comprising a pair of the refrigerant feed pumps operable to pump refrigerant, wherein one of the feed pumps is connected to the condenser adjacent a first lengthwise end of the condenser, and the other of the feed pumps is connected to the condenser adjacent a second lengthwise end of the condenser, opposite the first lengthwise end.
7. The apparatus of claim 1, wherein the condenser has a selectively removable access panel attached to a first lengthwise end of the housing, wherein removal of the access panel permits access to the plurality of tubes.
8. A method for generating power aboard a marine vessel, comprising the steps of:
providing a Rankine Cycle device that includes at least one of each of an evaporator, a turbo-generator that includes a turbine coupled with an electrical generator, a condenser, and a refrigerant feed pump;
disposing the one or more evaporators within an exhaust duct of a power plant of the marine vessel;
operating the power plant; and
selectively pumping refrigerant through the Rankine Cycle device.
9. The method of claim 8, further comprising the steps of:
disposing a selectively operable bypass valve disposed within the device, positioned to provide a path between the evaporator and the condenser; and
selectively operating the bypass valve to bypass at least a portion of the refrigerant flow around the turbo-generator.
10. The method of claim 9, wherein the bypass valve is selectively operated to bypass refrigerant around the turbo-generator during start-up of the Rankine Cycle device and during shut-down of the Rankine Cycle device.
11. The method of claim 9, wherein the bypass valve is selectively operated to bypass refrigerant around the turbo-generator when the turbo-generator is inoperable.
12. A method for generating power, comprising the steps of:
providing a Rankine Cycle device that includes at least one of each of an evaporator, a turbo-generator that includes a turbine coupled with an electrical generator, a condenser, and a refrigerant feed pump;
disposing the one or more evaporators within an exhaust duct of a power plant of a marine vessel;
operating the power plant; and
selectively pumping refrigerant through the Rankine Cycle device.
US11/000,112 2004-11-30 2004-11-30 Method and apparatus for power generation using waste heat Abandoned US20060112693A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US11/000,112 US20060112693A1 (en) 2004-11-30 2004-11-30 Method and apparatus for power generation using waste heat
CA2589781A CA2589781C (en) 2004-11-30 2005-11-22 Method and apparatus for power generation using waste heat
JP2007543437A JP2008522081A (en) 2004-11-30 2005-11-22 Waste heat power generation method and apparatus
EP05825495.4A EP1828550B1 (en) 2004-11-30 2005-11-22 Method and apparatus for power generation using waste heat
CN2005800471259A CN101107425B (en) 2004-11-30 2005-11-22 Method and apparatus for power generation using waste heat
KR1020077013530A KR100844634B1 (en) 2004-11-30 2005-11-22 Method And Apparatus for Power Generation Using Waste Heat
PCT/US2005/042441 WO2006060253A1 (en) 2004-11-30 2005-11-22 Method and apparatus for power generation using waste heat
NO20073280A NO20073280L (en) 2004-11-30 2007-06-27 Method and apparatus for energy supply using waste heat
HK08107549.3A HK1116848A1 (en) 2004-11-30 2008-07-09 Method and apparatus for power generation using waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/000,112 US20060112693A1 (en) 2004-11-30 2004-11-30 Method and apparatus for power generation using waste heat

Publications (1)

Publication Number Publication Date
US20060112693A1 true US20060112693A1 (en) 2006-06-01

Family

ID=36565361

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/000,112 Abandoned US20060112693A1 (en) 2004-11-30 2004-11-30 Method and apparatus for power generation using waste heat

Country Status (9)

Country Link
US (1) US20060112693A1 (en)
EP (1) EP1828550B1 (en)
JP (1) JP2008522081A (en)
KR (1) KR100844634B1 (en)
CN (1) CN101107425B (en)
CA (1) CA2589781C (en)
HK (1) HK1116848A1 (en)
NO (1) NO20073280L (en)
WO (1) WO2006060253A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080115922A1 (en) * 2006-11-15 2008-05-22 Jon Horek Heat recovery system and method
US20100154406A1 (en) * 2008-12-19 2010-06-24 Spx Corporation Cooling tower apparatus and method with waste heat utilization
CN101765704A (en) * 2007-07-27 2010-06-30 Utc电力公司 Oil removal from a turbine of an organic rankine cycle (ORC) system
WO2011066089A1 (en) 2009-11-30 2011-06-03 Nuovo Pignone S.P.A. Direct evaporator system and method for organic rankine cycle systems
US20110162366A1 (en) * 2005-09-19 2011-07-07 Solvay Fluor Gmbh Working Fluid For An ORC Process, ORC Process and ORC Apparatus
US20110185729A1 (en) * 2009-09-17 2011-08-04 Held Timothy J Thermal energy conversion device
US20120260655A1 (en) * 2011-04-18 2012-10-18 Ormat Technologies Inc. Geothermal binary cycle power plant with geothermal steam condensate recovery system
EP2532844A1 (en) * 2011-06-09 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Power generation apparatus
WO2012000002A3 (en) * 2010-07-01 2013-03-21 Psw Systems Ag Arrangement for converting thermal energy and apparatus for heating and cooling a medium
US20130133321A1 (en) * 2010-07-23 2013-05-30 Bayerische Motoren Werke Aktiengesellschaft Drive System for a Vehicle
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US20140099184A1 (en) * 2011-03-29 2014-04-10 Antonio Asti Sealing systems for turboexpanders for use in organic rankine cycles
US20140109574A1 (en) * 2011-08-03 2014-04-24 Dresser-Rand Company Combined heat exchanger expander mounting system
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8813498B2 (en) 2010-06-18 2014-08-26 General Electric Company Turbine inlet condition controlled organic rankine cycle
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US9091278B2 (en) 2012-08-20 2015-07-28 Echogen Power Systems, Llc Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
WO2015124325A1 (en) * 2014-02-20 2015-08-27 Siemens Aktiengesellschaft Device and method for an orc process with multi-stage expansion
US20160084115A1 (en) * 2012-07-24 2016-03-24 Electratherm, Inc. Heat energy distribution systems and methods for power recovery
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9429040B2 (en) 2011-01-04 2016-08-30 Exergy S.P.A. Expansion turbine
US9441504B2 (en) 2009-06-22 2016-09-13 Echogen Power Systems, Llc System and method for managing thermal issues in one or more industrial processes
US20160290723A1 (en) * 2014-01-23 2016-10-06 Mitsubishi Hitachi Power Systems, Ltd. Condenser
US20160341480A1 (en) * 2014-03-19 2016-11-24 Mitsubishi Hitachi Powers Systems, Ltd. Condenser and turbine equipment
US20160376932A1 (en) * 2014-03-12 2016-12-29 Orcan Energy Ag Orc stack-system control
EP3112622A1 (en) * 2015-06-30 2017-01-04 Anest Iwata Corporation Binary power generation system and binary power generation method
EP3112621A1 (en) * 2015-07-01 2017-01-04 Anest Iwata Corporation Power generation system and power generation method
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US20180051652A1 (en) * 2015-01-30 2018-02-22 Claudio Filippone Waste heat recovery and conversion
CN110411232A (en) * 2019-06-13 2019-11-05 南京康立瑞生物科技有限公司 A kind of modified condensing unit
EP3569829A1 (en) * 2018-04-18 2019-11-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device and method for installation of thermal energy recovery device
FR3099206A1 (en) * 2019-07-26 2021-01-29 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of producing electrical energy using several combined Rankine cycles
US10935323B2 (en) 2016-12-26 2021-03-02 T.Rad Co., Ltd. Structure joined by nickel brazing
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US11187185B1 (en) * 2021-04-05 2021-11-30 Cummins Inc. Waste heat recovery lube oil management
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11199112B2 (en) * 2017-08-18 2021-12-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and system for heat recovery
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
CN114439561A (en) * 2021-12-20 2022-05-06 华电电力科学研究院有限公司 Boiler flue gas waste heat recovery power generation system and method thereof
NO346447B1 (en) * 2021-07-16 2022-08-22 Skomsvold Aage Joergen Device for producing higher pressure and temperature of a gas
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007278810A1 (en) * 2006-07-26 2008-01-31 James Richard Hunt Energy supply system
BRPI0823063A2 (en) * 2008-09-10 2015-06-16 United Technologies Corp Steam expansion system and method for controlling a steam expansion system
KR101025050B1 (en) * 2008-09-26 2011-03-25 현대중공업 주식회사 Additional Steam Generator and Steam Superheater Using Hot Cooling Water From Marine Engines for Power Generation Utilizing Ship Waste Heat
US20110061388A1 (en) * 2009-09-15 2011-03-17 General Electric Company Direct evaporator apparatus and energy recovery system
KR101291170B1 (en) * 2010-12-17 2013-07-31 삼성중공업 주식회사 Waste heat recycling apparatus for ship
IT1404174B1 (en) 2011-02-18 2013-11-15 Exergy Orc S R L Ora Exergy S P A PLANT AND PROCESS FOR ENERGY PRODUCTION THROUGH ORGANIC CYCLE RANKINE
ITMI20110243A1 (en) * 2011-02-18 2012-08-19 Exergy Orc S R L PLANT AND CO-GENERATIVE PROCESS FOR ENERGY PRODUCTION THROUGH ORGANIC CYCLE RANKINE
FR2972761A1 (en) * 2011-03-14 2012-09-21 Helios Energy Partners METHOD FOR THE MECHANICAL ENERGY TRANSFORMATION OF LOW TEMPERATURE THERMAL ENERGY, AND DEVICE APPLYING
JP5596606B2 (en) * 2011-03-24 2014-09-24 株式会社神戸製鋼所 Power generator
KR101259028B1 (en) * 2011-05-13 2013-04-29 삼성중공업 주식회사 Waste Heat Recycling System for ship
JP5460663B2 (en) * 2011-09-07 2014-04-02 株式会社神戸製鋼所 Power generator
CN102628412A (en) * 2012-04-20 2012-08-08 江苏科技大学 Waste heat power generation system of marine diesel engine based on organic Rankine cycle
US9145865B2 (en) 2012-06-29 2015-09-29 General Electric Company Electric fluid pump
CN104619959A (en) * 2012-08-03 2015-05-13 特力奥根集团公司 System for recovering through an organic rankine cycle (ORC) energy from a plurality of heat sources
US9874112B2 (en) * 2013-09-05 2018-01-23 Echogen Power Systems, Llc Heat engine system having a selectively configurable working fluid circuit
CN104594965B (en) * 2013-10-31 2016-06-01 北京华航盛世能源技术有限公司 A kind of organic Rankine cycle power generation system
CN103993919A (en) * 2014-06-11 2014-08-20 林冠坤 Circulation type energy-saving steam drive engine
JP6254918B2 (en) * 2014-09-08 2017-12-27 株式会社神戸製鋼所 Energy recovery device and ship, and installation method of energy recovery device
DE102016216303A1 (en) * 2016-08-30 2018-03-01 Robert Bosch Gmbh Waste heat recovery system
US20220316452A1 (en) 2021-04-02 2022-10-06 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic rankine cycle operation during hydrocarbon production based on working fluid temperature
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig

Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220229A (en) * 1963-12-13 1965-11-30 Gen Motors Corp Clothes washer and dryer
US3302401A (en) * 1965-01-26 1967-02-07 United Aircraft Corp Underwater propulsion system
US3613368A (en) * 1970-05-08 1971-10-19 Du Pont Rotary heat engine
US3873817A (en) * 1972-05-03 1975-03-25 Westinghouse Electric Corp On-line monitoring of steam turbine performance
US4166361A (en) * 1977-09-12 1979-09-04 Hydragon Corporation Components and arrangement thereof for Brayton-Rankine turbine
US4214450A (en) * 1977-04-19 1980-07-29 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for recovering heat from exhaust gases of marine prime movers
US4244191A (en) * 1978-01-03 1981-01-13 Thomassen Holland B.V. Gas turbine plant
US4276747A (en) * 1978-11-30 1981-07-07 Fiat Societa Per Azioni Heat recovery system
US4342200A (en) * 1975-11-12 1982-08-03 Daeco Fuels And Engineering Company Combined engine cooling system and waste-heat driven heat pump
US4386499A (en) * 1980-11-24 1983-06-07 Ormat Turbines, Ltd. Automatic start-up system for a closed rankine cycle power plant
US4407131A (en) * 1980-08-13 1983-10-04 Battelle Development Corporation Cogeneration energy balancing system
US4422297A (en) * 1980-05-23 1983-12-27 Institut Francais Du Petrole Process for converting heat to mechanical power with the use of a fluids mixture as the working fluid
US4516403A (en) * 1983-10-21 1985-05-14 Mitsui Engineering & Shipbuilding Co., Ltd. Waste heat recovery system for an internal combustion engine
US4590384A (en) * 1983-03-25 1986-05-20 Ormat Turbines, Ltd. Method and means for peaking or peak power shaving
US4593527A (en) * 1984-01-13 1986-06-10 Kabushiki Kaisha Toshiba Power plant
US4604714A (en) * 1983-11-08 1986-08-05 Westinghouse Electric Corp. Steam optimization and cogeneration system and method
US4617808A (en) * 1985-12-13 1986-10-21 Edwards Thomas C Oil separation system using superheat
US4753077A (en) * 1987-06-01 1988-06-28 Synthetic Sink Multi-staged turbine system with bypassable bottom stage
US4760705A (en) * 1983-05-31 1988-08-02 Ormat Turbines Ltd. Rankine cycle power plant with improved organic working fluid
US4901531A (en) * 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
US5000003A (en) * 1989-08-28 1991-03-19 Wicks Frank E Combined cycle engine
US5038567A (en) * 1989-06-12 1991-08-13 Ormat Turbines, Ltd. Method of and means for using a two-phase fluid for generating power in a rankine cycle power plant
US5113927A (en) * 1991-03-27 1992-05-19 Ormat Turbines (1965) Ltd. Means for purging noncondensable gases from condensers
US5119635A (en) * 1989-06-29 1992-06-09 Ormat Turbines (1965) Ltd. Method of a means for purging non-condensable gases from condensers
US5174120A (en) * 1991-03-08 1992-12-29 Westinghouse Electric Corp. Turbine exhaust arrangement for improved efficiency
US5339632A (en) * 1992-12-17 1994-08-23 Mccrabb James Method and apparatus for increasing the efficiency of internal combustion engines
US5509466A (en) * 1994-11-10 1996-04-23 York International Corporation Condenser with drainage member for reducing the volume of liquid in the reservoir
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
US5598706A (en) * 1993-02-25 1997-02-04 Ormat Industries Ltd. Method of and means for producing power from geothermal fluid
US5632143A (en) * 1994-06-14 1997-05-27 Ormat Industries Ltd. Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
US5640842A (en) * 1995-06-07 1997-06-24 Bronicki; Lucien Y. Seasonally configurable combined cycle cogeneration plant with an organic bottoming cycle
US5647221A (en) * 1995-10-10 1997-07-15 The George Washington University Pressure exchanging ejector and refrigeration apparatus and method
US5664419A (en) * 1992-10-26 1997-09-09 Ormat Industries Ltd Method of and apparatus for producing power using geothermal fluid
US5761921A (en) * 1996-03-14 1998-06-09 Kabushiki Kaisha Toshiba Air conditioning equipment
US5799484A (en) * 1997-04-15 1998-09-01 Allied Signal Inc Dual turbogenerator auxiliary power system
US5809782A (en) * 1994-12-29 1998-09-22 Ormat Industries Ltd. Method and apparatus for producing power from geothermal fluid
US5843214A (en) * 1995-10-31 1998-12-01 California Energy Commission Condensable vapor capture and recovery in industrial applications
US5860279A (en) * 1994-02-14 1999-01-19 Bronicki; Lucien Y. Method and apparatus for cooling hot fluids
US6000000A (en) * 1995-10-13 1999-12-07 3Com Corporation Extendible method and apparatus for synchronizing multiple files on two different computer systems
US6009711A (en) * 1997-08-14 2000-01-04 Ormat Industries Ltd. Apparatus and method for producing power using geothermal fluid
US6052997A (en) * 1998-09-03 2000-04-25 Rosenblatt; Joel H. Reheat cycle for a sub-ambient turbine system
US6101813A (en) * 1998-04-07 2000-08-15 Moncton Energy Systems Inc. Electric power generator using a ranking cycle drive and exhaust combustion products as a heat source
US20020100271A1 (en) * 2000-05-12 2002-08-01 Fermin Viteri Semi-closed brayton cycle gas turbine power systems
US20020148225A1 (en) * 2001-04-11 2002-10-17 Larry Lewis Energy conversion system
US6497090B2 (en) * 1994-02-28 2002-12-24 Ormat Industries Ltd. Externally fired combined cycle gas turbine system
US20030029169A1 (en) * 2001-08-10 2003-02-13 Hanna William Thompson Integrated micro combined heat and power system
US6539723B2 (en) * 1995-08-31 2003-04-01 Ormat Industries Ltd. Method of and apparatus for generating power
US6539718B2 (en) * 2001-06-04 2003-04-01 Ormat Industries Ltd. Method of and apparatus for producing power and desalinated water
US6539720B2 (en) * 2000-11-06 2003-04-01 Capstone Turbine Corporation Generated system bottoming cycle
US20030089110A1 (en) * 1999-12-10 2003-05-15 Hiroyuki Niikura Waste heat recovery device of multi-cylinder internal combustion engine
US6571548B1 (en) * 1998-12-31 2003-06-03 Ormat Industries Ltd. Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US20030167769A1 (en) * 2003-03-31 2003-09-11 Desikan Bharathan Mixed working fluid power system with incremental vapor generation
US6698423B1 (en) * 1997-06-16 2004-03-02 Sequal Technologies, Inc. Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator
US20040088983A1 (en) * 2002-11-13 2004-05-13 Carrier Corporation Dual-use radial turbomachine
US20040088986A1 (en) * 2002-11-13 2004-05-13 Carrier Corporation Turbine with vaned nozzles
US20040088985A1 (en) * 2002-11-13 2004-05-13 Carrier Corporation Organic rankine cycle waste heat applications
US6880344B2 (en) * 2002-11-13 2005-04-19 Utc Power, Llc Combined rankine and vapor compression cycles
US6892522B2 (en) * 2002-11-13 2005-05-17 Carrier Corporation Combined rankine and vapor compression cycles
US20060026961A1 (en) * 2004-08-04 2006-02-09 Bronicki Lucien Y Method and apparatus for using geothermal energy for the production of power
US7121906B2 (en) * 2004-11-30 2006-10-17 Carrier Corporation Method and apparatus for decreasing marine vessel power plant exhaust temperature
US7146813B2 (en) * 2002-11-13 2006-12-12 Utc Power, Llc Power generation with a centrifugal compressor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB595668A (en) * 1942-02-05 1947-12-12 Werkspoor Nv Improvements in and relating to steam power plants for the propulsion of vessels
DE685009C (en) * 1936-05-09 1939-12-09 Kloeckner Humboldt Deutz Akt G Steam generating system heated by engine exhaust gases to operate auxiliary steam engines on ships powered by gas generator engines
GB669945A (en) * 1949-09-15 1952-04-09 Vickers Electrical Co Ltd Improvements in or relating to marine propulsion power plant
GB743037A (en) * 1953-08-27 1956-01-04 Oscar Johnson Baggerud Improvements in or relating to marine power plants
GB1159090A (en) * 1968-05-20 1969-07-23 Warnowwerft Warnemuende Veb Combined Propulsion Plant for Ships.
JPS543220A (en) * 1977-06-08 1979-01-11 Kawasaki Heavy Ind Ltd Exhausttgas turbogenerator for vessel
JPS5724406A (en) * 1980-07-19 1982-02-09 Ishikawajima Harima Heavy Ind Co Ltd Method of controlling turbine-driven electricity generator directly coupled to main engine
DE3245351A1 (en) * 1982-12-08 1984-06-14 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Drive device for an auxiliary-power generating system of a ship
JPS62184108A (en) * 1986-02-10 1987-08-12 Asahi Chem Ind Co Ltd Polymeric porous hollow fiber
JPS63134867A (en) * 1986-11-27 1988-06-07 Mitsubishi Heavy Ind Ltd Ocean temperature difference power generation set
JPH073166B2 (en) * 1987-02-12 1995-01-18 川崎重工業株式会社 Control method for parallel operation of exhaust gas turbo generator and diesel generator
JP2595232B2 (en) * 1987-03-03 1997-04-02 株式会社日阪製作所 Optimal operation method of heat recovery equipment
JP2558520B2 (en) * 1989-04-10 1996-11-27 鹿島建設株式会社 Binary cycle power recovery device
JP2680674B2 (en) * 1989-04-12 1997-11-19 財団法人電力中央研究所 Ocean / waste heat temperature difference power generation system
FR2661453B1 (en) * 1990-04-26 1994-07-08 Bertin & Cie AUTONOMOUS THERMAL ENERGY GENERATOR AND UNDERWATER ENERGY MODULE COMPRISING SUCH A GENERATOR.
JPH11223106A (en) * 1998-02-03 1999-08-17 Mayekawa Mfg Co Ltd Power generator containing generating device having turbine with built-in integral structure drive body
JP2000111278A (en) * 1998-10-06 2000-04-18 Usui Internatl Ind Co Ltd Multitubular heat exchanger
DE10008721A1 (en) * 2000-02-24 2001-08-30 Siemens Ag Gas and steam turbine drive for a ship
JP2002162178A (en) * 2000-11-21 2002-06-07 Mitsubishi Heavy Ind Ltd Heat exchanger and baffle thereof
DE10227709B4 (en) * 2001-06-25 2011-07-21 Alstom Technology Ltd. Steam turbine plant and method for its operation

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220229A (en) * 1963-12-13 1965-11-30 Gen Motors Corp Clothes washer and dryer
US3302401A (en) * 1965-01-26 1967-02-07 United Aircraft Corp Underwater propulsion system
US3613368A (en) * 1970-05-08 1971-10-19 Du Pont Rotary heat engine
US3873817A (en) * 1972-05-03 1975-03-25 Westinghouse Electric Corp On-line monitoring of steam turbine performance
US4342200A (en) * 1975-11-12 1982-08-03 Daeco Fuels And Engineering Company Combined engine cooling system and waste-heat driven heat pump
US4214450A (en) * 1977-04-19 1980-07-29 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for recovering heat from exhaust gases of marine prime movers
US4166361A (en) * 1977-09-12 1979-09-04 Hydragon Corporation Components and arrangement thereof for Brayton-Rankine turbine
US4244191A (en) * 1978-01-03 1981-01-13 Thomassen Holland B.V. Gas turbine plant
US4276747A (en) * 1978-11-30 1981-07-07 Fiat Societa Per Azioni Heat recovery system
US4422297A (en) * 1980-05-23 1983-12-27 Institut Francais Du Petrole Process for converting heat to mechanical power with the use of a fluids mixture as the working fluid
US4407131A (en) * 1980-08-13 1983-10-04 Battelle Development Corporation Cogeneration energy balancing system
US4386499A (en) * 1980-11-24 1983-06-07 Ormat Turbines, Ltd. Automatic start-up system for a closed rankine cycle power plant
US4590384A (en) * 1983-03-25 1986-05-20 Ormat Turbines, Ltd. Method and means for peaking or peak power shaving
US4760705A (en) * 1983-05-31 1988-08-02 Ormat Turbines Ltd. Rankine cycle power plant with improved organic working fluid
US4516403A (en) * 1983-10-21 1985-05-14 Mitsui Engineering & Shipbuilding Co., Ltd. Waste heat recovery system for an internal combustion engine
US4604714A (en) * 1983-11-08 1986-08-05 Westinghouse Electric Corp. Steam optimization and cogeneration system and method
US4593527A (en) * 1984-01-13 1986-06-10 Kabushiki Kaisha Toshiba Power plant
US4617808A (en) * 1985-12-13 1986-10-21 Edwards Thomas C Oil separation system using superheat
US4753077A (en) * 1987-06-01 1988-06-28 Synthetic Sink Multi-staged turbine system with bypassable bottom stage
US4901531A (en) * 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
US5038567A (en) * 1989-06-12 1991-08-13 Ormat Turbines, Ltd. Method of and means for using a two-phase fluid for generating power in a rankine cycle power plant
US5119635A (en) * 1989-06-29 1992-06-09 Ormat Turbines (1965) Ltd. Method of a means for purging non-condensable gases from condensers
US5000003A (en) * 1989-08-28 1991-03-19 Wicks Frank E Combined cycle engine
US5174120A (en) * 1991-03-08 1992-12-29 Westinghouse Electric Corp. Turbine exhaust arrangement for improved efficiency
US5113927A (en) * 1991-03-27 1992-05-19 Ormat Turbines (1965) Ltd. Means for purging noncondensable gases from condensers
US5664419A (en) * 1992-10-26 1997-09-09 Ormat Industries Ltd Method of and apparatus for producing power using geothermal fluid
US5339632A (en) * 1992-12-17 1994-08-23 Mccrabb James Method and apparatus for increasing the efficiency of internal combustion engines
US5598706A (en) * 1993-02-25 1997-02-04 Ormat Industries Ltd. Method of and means for producing power from geothermal fluid
US5860279A (en) * 1994-02-14 1999-01-19 Bronicki; Lucien Y. Method and apparatus for cooling hot fluids
US6497090B2 (en) * 1994-02-28 2002-12-24 Ormat Industries Ltd. Externally fired combined cycle gas turbine system
US5632143A (en) * 1994-06-14 1997-05-27 Ormat Industries Ltd. Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
US5509466A (en) * 1994-11-10 1996-04-23 York International Corporation Condenser with drainage member for reducing the volume of liquid in the reservoir
US5809782A (en) * 1994-12-29 1998-09-22 Ormat Industries Ltd. Method and apparatus for producing power from geothermal fluid
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
US5640842A (en) * 1995-06-07 1997-06-24 Bronicki; Lucien Y. Seasonally configurable combined cycle cogeneration plant with an organic bottoming cycle
US6539723B2 (en) * 1995-08-31 2003-04-01 Ormat Industries Ltd. Method of and apparatus for generating power
US5647221A (en) * 1995-10-10 1997-07-15 The George Washington University Pressure exchanging ejector and refrigeration apparatus and method
US6000000A (en) * 1995-10-13 1999-12-07 3Com Corporation Extendible method and apparatus for synchronizing multiple files on two different computer systems
US5843214A (en) * 1995-10-31 1998-12-01 California Energy Commission Condensable vapor capture and recovery in industrial applications
US5761921A (en) * 1996-03-14 1998-06-09 Kabushiki Kaisha Toshiba Air conditioning equipment
US5799484A (en) * 1997-04-15 1998-09-01 Allied Signal Inc Dual turbogenerator auxiliary power system
US6698423B1 (en) * 1997-06-16 2004-03-02 Sequal Technologies, Inc. Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator
US6009711A (en) * 1997-08-14 2000-01-04 Ormat Industries Ltd. Apparatus and method for producing power using geothermal fluid
US6101813A (en) * 1998-04-07 2000-08-15 Moncton Energy Systems Inc. Electric power generator using a ranking cycle drive and exhaust combustion products as a heat source
US6052997A (en) * 1998-09-03 2000-04-25 Rosenblatt; Joel H. Reheat cycle for a sub-ambient turbine system
US6571548B1 (en) * 1998-12-31 2003-06-03 Ormat Industries Ltd. Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US20030089110A1 (en) * 1999-12-10 2003-05-15 Hiroyuki Niikura Waste heat recovery device of multi-cylinder internal combustion engine
US20020100271A1 (en) * 2000-05-12 2002-08-01 Fermin Viteri Semi-closed brayton cycle gas turbine power systems
US6539720B2 (en) * 2000-11-06 2003-04-01 Capstone Turbine Corporation Generated system bottoming cycle
US20020148225A1 (en) * 2001-04-11 2002-10-17 Larry Lewis Energy conversion system
US6539718B2 (en) * 2001-06-04 2003-04-01 Ormat Industries Ltd. Method of and apparatus for producing power and desalinated water
US20030029169A1 (en) * 2001-08-10 2003-02-13 Hanna William Thompson Integrated micro combined heat and power system
US20040088983A1 (en) * 2002-11-13 2004-05-13 Carrier Corporation Dual-use radial turbomachine
US20040088986A1 (en) * 2002-11-13 2004-05-13 Carrier Corporation Turbine with vaned nozzles
US20040088985A1 (en) * 2002-11-13 2004-05-13 Carrier Corporation Organic rankine cycle waste heat applications
US6880344B2 (en) * 2002-11-13 2005-04-19 Utc Power, Llc Combined rankine and vapor compression cycles
US6892522B2 (en) * 2002-11-13 2005-05-17 Carrier Corporation Combined rankine and vapor compression cycles
US7146813B2 (en) * 2002-11-13 2006-12-12 Utc Power, Llc Power generation with a centrifugal compressor
US20030167769A1 (en) * 2003-03-31 2003-09-11 Desikan Bharathan Mixed working fluid power system with incremental vapor generation
US20060026961A1 (en) * 2004-08-04 2006-02-09 Bronicki Lucien Y Method and apparatus for using geothermal energy for the production of power
US7121906B2 (en) * 2004-11-30 2006-10-17 Carrier Corporation Method and apparatus for decreasing marine vessel power plant exhaust temperature

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110162366A1 (en) * 2005-09-19 2011-07-07 Solvay Fluor Gmbh Working Fluid For An ORC Process, ORC Process and ORC Apparatus
US8245512B2 (en) * 2005-09-19 2012-08-21 Solvay Fluor Gmbh Working fluid comprising a fluorinated ketone for an ORC process, and ORC apparatus
US8495859B2 (en) 2006-11-15 2013-07-30 Modine Manufacturing Company Heat recovery system and method
US20080115922A1 (en) * 2006-11-15 2008-05-22 Jon Horek Heat recovery system and method
US8245491B2 (en) * 2006-11-15 2012-08-21 Modine Manufacturing Company Heat recovery system and method
CN101765704A (en) * 2007-07-27 2010-06-30 Utc电力公司 Oil removal from a turbine of an organic rankine cycle (ORC) system
US20110005237A1 (en) * 2007-07-27 2011-01-13 Utc Power Corporation Oil removal from a turbine of an organic rankine cycle (orc) system
US20100154406A1 (en) * 2008-12-19 2010-06-24 Spx Corporation Cooling tower apparatus and method with waste heat utilization
US8596067B2 (en) * 2008-12-19 2013-12-03 Spx Corporation Cooling tower apparatus and method with waste heat utilization
CN102257343A (en) * 2008-12-19 2011-11-23 Spx公司 Cooling tower apparatus and method with waste heat utilization
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
US9441504B2 (en) 2009-06-22 2016-09-13 Echogen Power Systems, Llc System and method for managing thermal issues in one or more industrial processes
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8794002B2 (en) 2009-09-17 2014-08-05 Echogen Power Systems Thermal energy conversion method
US8966901B2 (en) 2009-09-17 2015-03-03 Dresser-Rand Company Heat engine and heat to electricity systems and methods for working fluid fill system
US9458738B2 (en) 2009-09-17 2016-10-04 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US20110185729A1 (en) * 2009-09-17 2011-08-04 Held Timothy J Thermal energy conversion device
US9863282B2 (en) 2009-09-17 2018-01-09 Echogen Power System, LLC Automated mass management control
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US9115605B2 (en) * 2009-09-17 2015-08-25 Echogen Power Systems, Llc Thermal energy conversion device
WO2011066089A1 (en) 2009-11-30 2011-06-03 Nuovo Pignone S.P.A. Direct evaporator system and method for organic rankine cycle systems
EP2507483B1 (en) * 2009-11-30 2021-04-28 Nuovo Pignone S.p.A. Direct evaporator system and method for organic rankine cycle systems
AU2010325072B2 (en) * 2009-11-30 2016-05-26 Nuovo Pignone S.P.A Direct evaporator system and method for Organic Rankine Cycle systems
US20130133868A1 (en) * 2009-11-30 2013-05-30 Matthew Alexander Lehar Direct evaporator system and method for organic rankine cycle systems
US8813498B2 (en) 2010-06-18 2014-08-26 General Electric Company Turbine inlet condition controlled organic rankine cycle
WO2012000002A3 (en) * 2010-07-01 2013-03-21 Psw Systems Ag Arrangement for converting thermal energy and apparatus for heating and cooling a medium
US20130133321A1 (en) * 2010-07-23 2013-05-30 Bayerische Motoren Werke Aktiengesellschaft Drive System for a Vehicle
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US9410449B2 (en) 2010-11-29 2016-08-09 Echogen Power Systems, Llc Driven starter pump and start sequence
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US9429040B2 (en) 2011-01-04 2016-08-30 Exergy S.P.A. Expansion turbine
US9822790B2 (en) * 2011-03-29 2017-11-21 Antonio Asti Sealing systems for turboexpanders for use in organic Rankine cycles
US20140099184A1 (en) * 2011-03-29 2014-04-10 Antonio Asti Sealing systems for turboexpanders for use in organic rankine cycles
US8601814B2 (en) * 2011-04-18 2013-12-10 Ormat Technologies Inc. Geothermal binary cycle power plant with geothermal steam condensate recovery system
US20120260655A1 (en) * 2011-04-18 2012-10-18 Ormat Technologies Inc. Geothermal binary cycle power plant with geothermal steam condensate recovery system
US8794001B2 (en) * 2011-06-09 2014-08-05 Kobe Steel, Ltd. Power generation apparatus
KR101298821B1 (en) * 2011-06-09 2013-08-23 가부시키가이샤 고베 세이코쇼 Power generation apparatus
US20120312021A1 (en) * 2011-06-09 2012-12-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Power generation apparatus
EP2532844A1 (en) * 2011-06-09 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Power generation apparatus
US20140109574A1 (en) * 2011-08-03 2014-04-24 Dresser-Rand Company Combined heat exchanger expander mounting system
US8813500B2 (en) * 2011-08-03 2014-08-26 Dresser-Rand Company Combined heat exchanger expander mounting system
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US20180216500A1 (en) * 2012-07-24 2018-08-02 Electratherm, Inc. Heat energy distribution systems and methods for power recovery
US20160084115A1 (en) * 2012-07-24 2016-03-24 Electratherm, Inc. Heat energy distribution systems and methods for power recovery
US9926813B2 (en) * 2012-07-24 2018-03-27 ElectraTherma, Inc. Heat energy distribution systems and methods for power recovery
US9091278B2 (en) 2012-08-20 2015-07-28 Echogen Power Systems, Llc Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
CN105102772A (en) * 2012-10-12 2015-11-25 艾克竣电力系统股份有限责任公司 Heat engine system with a supercritical working fluid and processes thereof
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US10502492B2 (en) * 2014-01-23 2019-12-10 Mitsubishi Hitachi Power Systems, Ltd. Condenser for condensing steam from a steam turbine
US20160290723A1 (en) * 2014-01-23 2016-10-06 Mitsubishi Hitachi Power Systems, Ltd. Condenser
WO2015124325A1 (en) * 2014-02-20 2015-08-27 Siemens Aktiengesellschaft Device and method for an orc process with multi-stage expansion
US20160376932A1 (en) * 2014-03-12 2016-12-29 Orcan Energy Ag Orc stack-system control
US10570782B2 (en) * 2014-03-12 2020-02-25 Orcan Energy Ag ORC stack-system control
US10190827B2 (en) * 2014-03-19 2019-01-29 Mitsubishi Hitachi Power Systems, Ltd. Condenser and turbine equipment
US20160341480A1 (en) * 2014-03-19 2016-11-24 Mitsubishi Hitachi Powers Systems, Ltd. Condenser and turbine equipment
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US20180051652A1 (en) * 2015-01-30 2018-02-22 Claudio Filippone Waste heat recovery and conversion
US10544753B2 (en) * 2015-01-30 2020-01-28 Claudio Filippone Waste heat recovery and conversion
EP3112622A1 (en) * 2015-06-30 2017-01-04 Anest Iwata Corporation Binary power generation system and binary power generation method
EP3112621A1 (en) * 2015-07-01 2017-01-04 Anest Iwata Corporation Power generation system and power generation method
CN111058912A (en) * 2015-07-01 2020-04-24 阿耐思特岩田株式会社 Power generation system and power generation method
US10935323B2 (en) 2016-12-26 2021-03-02 T.Rad Co., Ltd. Structure joined by nickel brazing
US11199112B2 (en) * 2017-08-18 2021-12-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and system for heat recovery
EP3569829A1 (en) * 2018-04-18 2019-11-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device and method for installation of thermal energy recovery device
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
CN110411232A (en) * 2019-06-13 2019-11-05 南京康立瑞生物科技有限公司 A kind of modified condensing unit
WO2021019147A1 (en) * 2019-07-26 2021-02-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for generating electrical energy using multiple combined rankine cycles
FR3099206A1 (en) * 2019-07-26 2021-01-29 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of producing electrical energy using several combined Rankine cycles
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
US11187185B1 (en) * 2021-04-05 2021-11-30 Cummins Inc. Waste heat recovery lube oil management
NO346447B1 (en) * 2021-07-16 2022-08-22 Skomsvold Aage Joergen Device for producing higher pressure and temperature of a gas
CN114439561A (en) * 2021-12-20 2022-05-06 华电电力科学研究院有限公司 Boiler flue gas waste heat recovery power generation system and method thereof

Also Published As

Publication number Publication date
CA2589781C (en) 2014-08-05
KR100844634B1 (en) 2008-07-07
CA2589781A1 (en) 2006-06-08
KR20070086244A (en) 2007-08-27
WO2006060253A1 (en) 2006-06-08
NO20073280L (en) 2007-08-30
EP1828550B1 (en) 2013-08-21
CN101107425A (en) 2008-01-16
EP1828550A4 (en) 2010-12-08
CN101107425B (en) 2010-05-26
EP1828550A1 (en) 2007-09-05
JP2008522081A (en) 2008-06-26
HK1116848A1 (en) 2009-01-02

Similar Documents

Publication Publication Date Title
EP1828550B1 (en) Method and apparatus for power generation using waste heat
US7665304B2 (en) Rankine cycle device having multiple turbo-generators
US7121906B2 (en) Method and apparatus for decreasing marine vessel power plant exhaust temperature
US8544274B2 (en) Energy recovery system using an organic rankine cycle
RU2643281C2 (en) Installation with turboexpander and drive turbomachine
RU2516068C2 (en) Gas turbine plant, heat recovery steam generator and method to operate heat recovery steam generator
JP6195299B2 (en) Waste heat recovery system, ship and waste heat recovery method
US11708773B2 (en) Plant and operation method therefor
EP3835208A1 (en) Bootstrap air cycle with vapor power turbine
KR20150007949A (en) Boiler system
KR100584649B1 (en) Gas and steam turbine system, and refrigeration of the coolant intended for the gas turbine in such a system
KR101940436B1 (en) Heat exchangers, energy recovery devices and vessels
US9540961B2 (en) Heat sources for thermal cycles
JP6781673B2 (en) Thermal energy recovery device
EP4067738B1 (en) Steam generator
WO2010082228A2 (en) A process and a system for energy generation utilising liquid and/or gas heat sources on board naval units

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARRIER CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUNDEL, TIMOTHY N.;REEL/FRAME:015804/0400

Effective date: 20050218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION