Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060115516 A1
Publication typeApplication
Application numberUS 11/271,382
Publication dateJun 1, 2006
Filing dateNov 10, 2005
Priority dateNov 22, 2004
Also published asCA2588528A1, CA2588528C, EP1815274A2, EP1815274B1, US8360576, US8501890, US8785627, US20090076235, US20130018159, US20130324717, WO2006057824A2, WO2006057824A3
Publication number11271382, 271382, US 2006/0115516 A1, US 2006/115516 A1, US 20060115516 A1, US 20060115516A1, US 2006115516 A1, US 2006115516A1, US-A1-20060115516, US-A1-2006115516, US2006/0115516A1, US2006/115516A1, US20060115516 A1, US20060115516A1, US2006115516 A1, US2006115516A1
InventorsJason Pearson, Max Weaver, Jean Fleischer, Gregory King
Original AssigneePearson Jason C, Weaver Max A, Fleischer Jean C, King Gregory A
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Copolymerizable methine and anthraquinone compounds and articles containing them
US 20060115516 A1
Abstract
This invention relates to polymerizable ultraviolet light absorbers and yellow colorants and their use in ophthalmic lenses. In particular, this invention relates to polymerizable ultraviolet light absorbing methine compounds and yellow compounds of the methine and anthraquinone classes that block ultraviolet light and/or violet-blue light transmission through ophthalmic lenses.
Images(49)
Previous page
Next page
Claims(40)
1. An intraocular lens comprising a polymer, wherein the polymer comprises at least one residue of a molecule comprising a molecular structure depicted by Formula 1a, Formula 1b, Formula 1c or Formula 1d:
wherein:
X is one or two groups selected from hydrogen, C1-C6 alkyl, C1-C6 alkoxy and halogen;
the molecule has attached thereto at least one ethylenically unsaturated polymerizable group that is not shown by Formula 1a, Formula 1b, Formula 1c or Formula 1d;
the residue comprises a reaction product of the ethylenically unsaturated polymerizable group; and
the molecule optionally comprises one or more additional atoms or moieties not shown by Formula 1a, Formula 1b, Formula 1c or Formula 1d.
2. The intraocular lens of claim 1, wherein the molecular structure is depicted by Formula 1a.
3. The intraocular lens of claim 1, wherein the molecule is depicted by Formula 1b.
4. The intraocular lens of claim 1, wherein the molecular structure is depicted by Formula 1c.
5. The intraocular lens of claim 1, wherein the molecular structure is depicted by Formula 1d.
6. An intraocular lens comprising a polymer, wherein the polymer comprises at least one residue of a molecule comprising a molecular structure depicted by Formula II, Formula III, Formula IV, Formula V, or Formula VI:
wherein:
R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, aryl, heteroaryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—R4, C1-C6-alkylsulfonyl, arylsulfonyl, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and -Q; or R and R1 are combined to make phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, or thiomorpholino-S,S-dioxide;
n is an integer from 1 to about 1000;
R2 is selected from hydrogen or one or two groups selected from C1-C6 alkyl, C1-C6 alkoxy and halogen;
R3 is selected from hydrogen, C1-C12-alkyl, substituted C1-C12-alkyl, aryl, C3-C8-cycloalkyl, C3-C8-alkenyl and —(CHR′CHR″O—)n—R4, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and Q;
R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
R′ and R″ are independently selected from hydrogen and C1-C12-alkyl;
L is a divalent organic radical selected from C1-C6-alkylene-O—, C1-C6-alkylene-NR′—; arylene-C1-C6-alkylene-O—, arylene-C1-C6-alkylene-NR′—, arylene-O(CHR′CHR″O)n—, C1-C6-alkylene-Y1—(CHR′CHR″O—)n—, and —(CHR′CHR″O—)n—;
Y is selected from —O-L-Q, —NR′-L-Q, —N-(L-Q)2, and —R5;
Y1 is selected from —O—, —S—, —SO2—, —N(SO2R5)—, and —N(COR5)—;
R5 is C1-C12-alkyl, substituted C1-C12-alkyl, C3-C8-cycloalkyl or aryl;
X1 and X2 are independently selected from cyano, —CO2C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
Q is a group that comprises an ethylenically unsaturated polymerizable group;
the molecule comprises at least one Q group.
7. The intraocular lens of claim 6, wherein the molecular structure is depicted by Formula II, wherein:
R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, aryl, heteroaryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—R4, C1-C6-alkylsulfonyl, arylsulfonyl, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and -Q; or R and R1 are combined to make cyclic phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, or thiomorpholino-S,S-dioxide;
n is an integer from 1 to about 1000;
R2 is selected from hydrogen or one or two groups selected from hydroxy, C1-C6 alkyl, C1-C6 alkoxy and halogen;
R′ and R″ are independently selected from hydrogen and C1-C12-alkyl;
L is a divalent organic radical selected from C1-C6-alkylene-O—, C1-C6-alkylene-NR′—; arylene-C1-C6-alkylene-O—, arylene-C1-C6-alkylene-NR′—, arylene-O(CHR′CHR″O)n—, C1-C6-alkylene-Y1—(CHR′CHR″O—)n—, and —(CHR′CHR″O—)n—;
Y is selected from —O-L-Q, —NR′-L-Q, —N-(L-Q)2, and —R5;
Y1 is selected from —O—, —S—, —SO2—, —N(SO2R5)—, and —N(COR5)—;
R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
R5 is C1-C12-alkyl, substituted C1-C12-alkyl, C3-C8-cycloalkyl or aryl;
X1 and X2 are independently selected from cyano, —CO2C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY; and
Q is a group that comprises an ethylenically unsaturated polymerizable group that does not include any carbons actually pictured in Formula II.
8. The intraocular lens of claim 6, the molecular structure is depicted by Formula II, wherein:
R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, and aryl; or R and R1 are combined to make phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, or thiomorpholino-S,S-dioxide;
R2 is selected from hydrogen, C1-C6-alkyl, C1-C6-alkoxy and halogen;
R1 is selected from hydrogen and C1-C12-alkyl;
L is C1-C6-alkylene-O;
Y is selected from —O-L-Q, —NR′-L-Q, and —N-(L-Q)2;
X1 is selected from cyano, —CO2C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, and heteroaryl;
X2 is —COY;
Q is:
(a) —COC(R6)═CH—R7,
(b) —CONHCOC(R6)═CH—R7,
(c) —CONH—C1-C6-alkylene-OCOC(R6)═CH—R7,
(e) —COCH═CH—CO2R10,
wherein:
R6 is hydrogen or C1-C6-alkyl;
R7 is: hydrogen; C1-C6 alkyl; phenyl; phenyl substituted with one or more groups selected from C1-C6-alkyl, C1-C6-alkoxy, —N(C1-C6-alkyl)2, nitro, cyano, C1-C6-alkoxycarbonyl, C1-C6-alkanoyloxy and halogen; 1- or 2-naphthyl; 1- or 2-naphthyl substituted with C1-C6-alkyl or C1-C6-alkoxy; 2- or 3-thienyl; 2- or 3-thienyl substituted with C1-C6-alkyl or halogen; 2- or 3-furyl; or 2- or 3-furyl substituted with C1-C6-alkyl;
R8 and R9 are, independently, hydrogen, C1-C6-alkyl, or aryl; or R8 and R9 are combined to represent a —(CH2)3-5— radical;
R10 is hydrogen, C1-C6-alkyl, C1-C8-alkenyl, C3-C8-cycloalkyl or aryl;
R11 is hydrogen, C1-C6-alkyl or aryl.
9. The intraocular lens of claim 6, wherein the molecular structure is depicted by Formula II, wherein:
R and R1 are independently selected from methyl, ethyl, —CH2CH2CN, —CH2CH2OCOCH3, and —CH2CH(CH3)OCOCH3; or R and R1 are combined to make thiomorpholino-S,S-dioxide;
R2 is hydrogen;
R′ is hydrogen;
L is selected from —CH2CH2—O—, and —CH2CH(CH3)—O—;
Y is selected from —O-L-Q, —NR′-L-Q, and —N-(L-Q)2;
X1 is cyano;
X2 is —COY; and
Q is —C(O)C(R6)═CHR7.
10. The intraocular lens of claim 6, wherein the molecular structure is depicted by Formula II, wherein:
R and R1 are combined to make thiomorpholino-S,S-dioxide;
R2 is hydrogen;
R′ is hydrogen;
L is selected from —CH2CH2—O—, and —CH2CH(CH3)—O—;
Y is selected from —O-L-Q, —NR′-L-Q, and —N-(L-Q)2;
X1 is cyano;
X2 is —COY; and
Q —C(O)C(R6)═CHR7, wherein R6 is methyl and R7 is hydrogen.
11. The intraocular lens of claim 6, wherein the molecular structure is depicted by Formula II, wherein:
R and R1 are each —CH2CH2—CN;
R2 is hydrogen;
R′ is hydrogen;
L is selected from —CH2CH2—O—, and —CH2CH(CH3)—O—;
Y is selected from —O-L-Q, —NR′-L-Q, and —N-(L-Q)2;
X1 is cyano;
X2 is —COY; and
Q is —C(O)C(R6)═CHR7, wherein R6 is methyl and R7 is hydrogen.
12. An intraocular lens comprising a polymer, wherein the polymer comprises at least one residue of a molecule comprising a molecular structure depicted by Formula VII:
wherein the residue is bonded to the polymer at a location depicted as a terminal ethene group in Formula VII.
13. The intraocular lens of claim 6, wherein the molecular structure is depicted by Formula III, wherein:
X1 and X2 are independently selected from cyano, —CO2C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
R2 is hydrogen or C1-C6-alkoxy; and
R3 is hydrogen, C1-C12-alkyl, substituted C1-C12-alkyl, or LQ.
14. The intraocular lens of claim 6, wherein:
Q is —C(O)C(R6)═CHR7
wherein R6 is methyl and R7 is hydrogen.
15. The intraocular lens of claim 6, wherein the molecular structure is depicted by Formula II, wherein:
R and R1 are independently selected from —CH2CH2CN, —CH2CH2Cl, —CH2CH2—OCO—C1-C4-alkyl, —CH2CH2OCO-aryl, —CH2CH2—OC(O)NH-aryl,
—C1-C4-alkyl, and —CH2C6H4CO2-C1-C4-alkyl; or R and R1 are combined to make the cyclic structure thiomorpholino-S,S-dioxide;
Y is —NH-L-Q;
L is —CH2CH2O—, —CH2CH(CH3)O—, —(CH2)3O—, —(CH2)4O—, —(CH2)6O—, CH2C(CH3)2CH2O—, —CH2—C6H10—CH2O—, —C6H4—CH2CH2O—, —C6H4—OCH2CH2O—, or —CH2CH2(OCH2CH2)1-3O—, and
Q is
wherein R6 is methyl; R8 and R9 are methyl.
16. The intraocular lens of claim 6, wherein the molecular structure is depicted by Formula II, wherein:
R and R1 are independently selected from —CH2CH2CN, —CH2CH2Cl, —CH2CH2—OCO—C1-C4-alkyl, —CH2CH2OCO-aryl, —CH2CH2—OC(O)NH-aryl,
—C1-C4-alkyl and —CH2C6H4CO2—C1-C4-alkyl; or R and R1 are combined to make the cyclic structure thiomorpholino-S,S-dioxide;
Y is —NH-L-Q;
L is —CH2CH2O—, —CH2CH(CH3)O, —(CH2)3O—, —(CH2)4O—, —(CH2)6O—, —CH2C(CH3)2CH2O—, —CH2—C6H10—CH2O—, —C6H4—CH2CH2O—, —C6H4—OCH2CH2O—, or —CH2CH2(OCH2CH2)1-3O—; and
Q is —C(O)C(R6)═CHR7
wherein R6 is methyl; and R7 is hydrogen.
17. The intraocular lens of claim 6, wherein the molecular structure is depicted by Formula II, wherein:
R is —CH2CH2CN;
R1 is —CH2CH2CN, —CH2CH2Cl, —CH2CH2OCO—C1-C4-alkyl,
Y is —NH-L-Q;
L is —CH2CH2O— or —CH2CH(CH3)O—; and
Q is
wherein R6, R8 and R9 are methyl.
18. The intraocular lens of claim 6, wherein the molecular structure is depicted by Formula II, wherein:
R is —CH2CH2CN;
R1 is —CH2CH2CN, —CH2CH2Cl, —CH2CH2OCO—C1-C4-alkyl,
Y is —NH-L-Q;
L is —CH2CH2O— or —CH2CH(CH3)O—; and
Q is —C(O)C(R6)═CHR7;
R6 is methyl; and
R7 is hydrogen.
19. A compound comprising at least one moiety having the molecular structure of Formula 1a:
wherein:
the compound has attached thereto at least one ethylenically unsaturated polymerizable group that is not shown by Formula 1a; and
the compound optionally comprises one or more additional atoms or moieties not shown by Formula 1d.
20. A compound comprising at least one moiety having the molecular structure of Formula 1d:
wherein:
the compound has attached thereto at least one ethylenically unsaturated polymerizable group; and
the compound optionally comprises one or more additional atoms or moieties not shown by Formula 1d.
21. A compound comprising a molecular structure depicted by Formula III, Formula IV, Formula V, or Formula VI:
wherein:
R2 is selected from hydrogen or one or two groups selected from hydroxy, C1-C6 alkyl, C1-C6 alkoxy and halogen;
R3 is selected from hydrogen, C1-C12-alkyl, substituted C1-C12-alkyl, aryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—R4, C1-C12-acyl, substituted-C1-C12-acyl and -L-Q;
n is an integer selected from 1 to about 1000;
R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
R′ and R″ are independently selected from hydrogen and C1-C12-alkyl;
L is a divalent organic radical selected from C1-C6-alkylene-O—, C1-C6-alkylene-NR′—; arylene-C1-C6-alkylene-O—, arylene-C1-C6-alkylene-NR′—, arylene-O(CHR′CHR″O)n—, C1-C6-alkylene-Y1—(CHR′CHR″O—)n—, and —(CHR′CHR″O—)n—;
Y is selected from —NR′-L-Q, —N-(L-Q)2, and —R5;
Y1 is selected from —O—, —S—, —SO2—, —N(SO2R5)—, and —N(COR5)—;
R5 is C1-C12-alkyl, substituted C1-C12-alkyl, C3-C8-cycloalkyl or aryl;
X1 and X2 are independently selected from cyano, —CO2C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
Q is a group that includes an ethylenically-unsaturated polymerizable group;
the compound comprises at least one Q group.
22. A compound comprising the molecular structure of Formula III, Formula IV, Formula V, or Formula VI:
wherein:
R2 is selected from hydrogen or one or two groups selected from hydroxy, C1-C6 alkyl, C1-C6 alkoxy and halogen;
R3 is selected from hydrogen, C1-C12-alkyl, substituted C1-C12-alkyl, aryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—R4, C1-C12-acyl, substituted-C1-C12-acyl and -L-Q;
n is an integer from 1 to about 1000;
R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
R′ and R″ are independently selected from hydrogen and C1-C12-alkyl;
L is a divalent organic radical selected from C1-C6-alkylene-O—, C1-C6-alkylene-NR′—; arylene-C1-C6-alkylene-O—, arylene-C1-C6-alkylene-NR′—, arylene-O(CHR′CHR″O)n—, C1-C6-alkylene-Y1—(CHR′CHR″O—)n—, and —(CHR′CHR″O—)n—;
Y is selected from —NR′-L-Q, —N-(L-Q)2, and —R5;
Y1 is selected from —O—, —S—, —SO2—, —N(SO2R5)—, and —N(COR5)—;
R5 is C1-C12-alkyl, substituted C1-C12-alkyl, C3-C8-cycloalkyl or aryl;
X1 and X2 are independently selected from cyano, —CO2C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
Q is:
(a) —COC(R6)═CH—R7,
(b) —CONHCOC(R6)═CH—R7,
(c) —CONH—C1-C6-alkylene-OCOC(R6)═CH—R7,
(e) —COCH═CH—CO2R10,
wherein:
R6 is hydrogen or C1-C6-alkyl;
R7 is: hydrogen; C1-C6 alkyl; phenyl or phenyl substituted with one or more groups selected from C1-C6-alkyl, C1-C6-alkoxy, —N(C1-C6-alkyl)2, nitro, cyano, C1-C6-alkoxycarbonyl, C1-C6-alkanoyloxy and halogen; 1- or 2-naphthyl; 1- or 2-naphthyl substituted with C1-C6-alkyl or C1-C6-alkoxy; 2- or 3-thienyl; 2- or 3-thienyl substituted with C1-C6-alkyl or halogen; 2- or 3-furyl; or 2- or 3-furyl substituted with C1-C6-alkyl;
R8 and R9 are, independently, hydrogen, C1-C6-alkyl, or aryl; or R8 and R9 are combined to form a —(CH2)3-5— radical;
R10 is hydrogen, C1-C6-alkyl, C1-C8-alkenyl, C3-C8-cycloalkyl or aryl; and
R11 is hydrogen, C1-C6-alkyl or aryl;
wherein the compound comprises at least one Q group.
23. A compound comprising the molecular structure of Formula II:
wherein:
R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, aryl, heteroaryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—R4, C1-C6-alkylsulfonyl, arylsulfonyl, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and -Q; or R and R1 are combined to make phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, or thiomorpholino-S,S-dioxide;
R2 is selected from hydrogen or one or two groups selected from hydroxy, C1-C6 alkyl, C1-C6 alkoxy and halogen;
R′ and R″ are independently selected from hydrogen and C1-C12-alkyl;
L is a divalent organic radical selected from C1-C6-alkylene-O—, C1-C6-alkylene-NR′—; arylene-C1-C6-alkylene-O—, arylene-C1-C6-alkylene-NR′—, arylene-O(CHR′CHR″O)n—, C1-C6-alkylene-Y1—(CHR′CHR″O—)n—, and —(CHR′CHR″O—)n—;
Y is selected from —NR′-L-Q, and —N-(L-Q)2;
Y1 is selected from —O—, —S—, —SO2—, —N(SO2R5)—, and —N(COR5)—;
R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
R5 is C1-C12-alkyl, substituted C1-C12-alkyl, C3-C8-cycloalkyl or aryl;
n is an integer from 1 to 100;
X1 is selected from cyano, —CO2—C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
X2 is —COY or carbamoyl;
Q is:
(a) —COC(R6)═CH—R7,
(b) —CONHCOC(R6)═CH—R7,
(c) —CONH—C1-C6-alkylene-OCOC(R6)═CH—R7,
(e) —COCH═CH—CO2R10,
wherein:
R6 is hydrogen or C1-C6-alkyl;
R7 is: hydrogen; C1-C6 alkyl; phenyl; phenyl substituted with one or more groups selected from C1-C6-alkyl, C1-C6-alkoxy, —N(C1-C6-alkyl)2, nitro, cyano, C1-C6-alkoxycarbonyl, C1-C6-alkanoyloxy and halogen; 1- or 2-naphthyl; 1- or 2-naphthyl substituted with C1-C6-alkyl or C1-C6-alkoxy; 2- or 3-thienyl; 2- or 3-thienyl substituted with C1-C6-alkyl or halogen; 2- or 3-furyl; or 2- or 3-furyl substituted with C1-C6-alkyl;
R8 and R9 are, independently, hydrogen, C1-C6-alkyl, or aryl; or R8 and R9 are combined to represent a —(CH2)3-5— radical;
R10 is hydrogen, C1-C6-alkyl, C1-C8-alkenyl, C3-C8-cycloalkyl or aryl; and
R11 is hydrogen, C1-C6-alkyl or aryl; and
the compound comprises at least one Q group.
24. The compound of claim 23, wherein:
R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, and aryl; or R and R1 are combined to make cyclic structures such as phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, or thiomorpholino-S,S-dioxide;
R2 is selected from hydrogen, C1-C6 alkyl and halogen;
R′ is selected from hydrogen and C1-C12-alkyl;
L is C1-C6-alkylene-O;
Y is selected from —NR′-L-Q, and —N-(L-Q)2;
X1 is cyano;
X2 is —COY;
Q is:
or —C(O)C(R6)═CHR7;
wherein R6 is hydrogen or methyl, R7 is hydrogen and R8 and R9 are methyl.
25. The compound of claim 23, wherein:
R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, aryl, heteroaryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—, C1-C6-alkylsulfonyl, arylsulfonyl, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and -Q; or R and R1 are combined to make phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, or thiomorpholino-S,S-dioxide;
R2 is hydrogen;
R′ is hydrogen;
L is selected from —CH2CH2—O—, —CH2CH(CH3)—O—;
Y is selected from —NR′-L-Q, —N-(L-Q)2;
X1 is cyano;
X2 is —COY;
n is an integer selected from 1 to 3;
Q is —C(O)C(R6)═CHR7, wherein R6 is methyl and R7 is hydrogen.
26. The compound of claim 23, wherein:
R and R1 are independently selected from methyl, ethyl, —CH2CH2CN, —CH2CH2OCOCH3; —CH2CH(CH3)OCOCH3; or R and R1 are combined to make thiomorpholino-S,S-dioxide;
R2 is hydrogen;
R′ is hydrogen;
L is selected from —CH2CH2—O—, and —CH2CH(CH3)—O—;
Y is selected from —NR′-L-Q, and —N-(L-Q)2;
X1 is cyano;
X2 is —COY;
Q is —C(O)C(R6)═CHR7, wherein R6 is methyl and R7 is hydrogen.
27. The compound of claim 23, wherein:
R and R1 combined to make thiomorpholino-S,S-dioxide;
R2 is hydrogen;
R′ is hydrogen;
L is —CH2CH(CH3)—O—;
Y is —NR′-L-Q;
X1 is cyano;
X2 is —COY;
Q is —C(O)C(R6)═CHR7, wherein R6 is methyl and R7 is hydrogen.
28. A compound comprising a molecular structure depicted by Formula VII:
29. The compound of claim 21, wherein the molecular structure is depicted by Formula III, wherein:
X1 and X2 are independently selected from cyano, —CO2C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
R2 is hydrogen or C1-C6-alkoxy; and
R3 is hydrogen, C1-C12-alkyl, substituted C1-C12-alkyl, or LQ.
30. The compound of claim 24, wherein:
Q is —C(O)C(R6)═CHR7
wherein R6 is methyl and R7 is hydrogen.
31. The compound of claim 23, wherein:
R and R1 are independently selected from —CH2CH2CN, —CH2CH2Cl, —CH2CH2—OCO—C1-C4-alkyl, —CH2CH2OCO-aryl, —CH2CH2—OC(O)NH-aryl,
—C1-C4-alkyl, and —CH2C6H4CO2—C1-C4-alkyl; or R and R1 are combined to make the cyclic structure thiomorpholino-S,S-dioxide;
Y is —NH-L-Q;
L is —CH2CH2O—, —CH2CH(CH3)O—, —(CH2)3O—, —(CH2)4O—, —(CH2)6O—, —CH2C(CH3)2CH2O—, —CH2—C6H10—CH2O—, —C6H4—CH2CH2O—, —C6C4—OCH2CH2O—, or —CH2CH2(OCH2CH2)1-3O—, and
Q is
wherein R6 is methyl; R8 and R9 are methyl.
32. The compound of claim 23, wherein:
R and R1 are independently selected from —CH2CH2CN, —CH2CH2Cl, —CH2CH2—OCO—C1-C4-alkyl, —CH2CH2OCO-aryl, —CH2CH2—OC(O)NH-aryl,
—C1-C4-alkyl, and —CH2C6H4CO2—C1-C4-alkyl; or R and R1 are combined to make the cyclic structure thiomorpholino-S,S-dioxide;
Y is —NH-L-Q;
L is —CH2CH2O—, —CH2CH(CH3)O, —(CH2)3O—, —(CH2)4—, —(CH2)6O—, —CH2C(CH3)2CH2O—, —CH2—C6H10—CH2O—, —C6H4—CH2CH2O—, or —CH2CH2(OCH2CH2)1-3O—; and
Q is —C(O)C(R6)═CHR7
wherein R6 is methyl; and R7 is hydrogen.
33. The compound of claim 23, wherein:
R is —CH2CH2CN;
R1 is —CH2CH2CN, —CH2CH2Cl, —CH2CH2OCO—C1-C4-alkyl,
Y is —NH-L-Q;
L is —CH2CH2O— or —CH2CH(CH3)O—; and
Q is
wherein R6, R8 and R9 are methyl.
34. The compound of claim 23, wherein:
R is —CH2CH2CN;
R1 is —CH2CH2CN, —CH2CH2Cl, —CH2CH2OCO—C1-C4-alkyl,
Y is —NH-L-Q;
L is —CH2CH2O— or —CH2CH(CH3)O—; and
Q is —C(O)C(R6)═CHR7;
R6 is methyl; and
R7 is hydrogen.
35. A composition comprising the compound of any of claims 19-34.
36. A polymer comprising at least one residue of a molecule comprising a molecular structure depicted by Formula 1a, Formula 1b, Formula 1c or Formula 1d:
wherein:
X is one or two groups selected from hydrogen, C1-C6 alkyl, C1-C6 alkoxy and halogen;
the molecule has attached thereto at least one ethylenically unsaturated polymerizable group that is not shown by Formula 1a, Formula 1b, Formula 1c or Formula 1d;
the residue comprises a reaction product of the ethylenically unsaturated polymerizable group; and
the molecule optionally comprises one or more additional atoms or moieties not shown by Formula 1a, Formula 1b, Formula 1c or Formula 1d.
37. A polymer comprising at least one residue of a molecule comprising a molecular structure depicted by Formula II, Formula III, Formula IV, Formula V, or Formula VI:
wherein:
R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, aryl, heteroaryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—R4, C1-C6-alkylsulfonyl, arylsulfonyl, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and -Q; or R and R1 are combined to make phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, or thiomorpholino-S,S-dioxide;
n is an integer between from 1 to about 1000;
R2 is selected from hydrogen or one or two groups selected from C1-C6 alkyl, C1-C6 alkoxy and halogen;
R3 is selected from hydrogen, C1-C12-alkyl, substituted C1-C12-alkyl, aryl, C3-C8-cycloalkyl, C3-C8-alkenyl and —(CHR′CHR″O—)n—R4, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and Q; or R and
R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
R′ and R″ are independently selected from hydrogen and C1-C12-alkyl;
L is a divalent organic radical selected from C1-C6-alkylene-O—, C1-C6-alkylene-NR′—; arylene-C1-C6-alkylene-O—, arylene-C1-C6-alkylene-NR′—, arylene-O(CHR′CHR″O)n—, C1-C6-alkylene-Y1—(CHR′CHR″O—)n—, and —(CHR′CHR″O—)n—;
Y is selected from —O-L-Q, —NR′-L-Q, —N-(L-Q)2, and —R5;
Y1 is selected from —O—, —S—, —SO2—, —N(SO2R5)—, and —N(COR5)—;
R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
R5 is C1-C12-alkyl, substituted C1-C12-alkyl, C3-C8-cycloalkyl or aryl;
X1 and X2 are independently selected from cyano, —CO2C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
Q is a group that comprises an ethylenically unsaturated polymerizable group;
the molecule, before copolymerization, comprises at least one Q group;
the residue comprises a reaction product of saturation of the Q group; and
the molecule optionally comprises one or more additional atoms or moieties not shown by Formula II, Formula III, Formula IV, Formula V, or Formula VI.
38. A composition comprising the polymer of claim 36 or claim 37.
39. An article comprising the polymer of claim 36 or claim 37.
40. A method of making a polymer, comprising copolymerizing monomers wherein the monomers comprise the compound(s) of any of claims 19-34.
Description
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 60/629,556 filed Nov. 22, 2004.
  • FIELD OF THE INVENTION
  • [0002]
    This invention relates to polymerizable ultraviolet light absorbers, yellow colorants and their use in ophthalmic lenses. In particular, this invention relates to polymerizable ultraviolet light absorbing methine compounds and polymerizable yellow compounds of the methine and anthraquinone classes that block ultraviolet light and/or violet-blue light transmission through ophthalmic lenses.
  • BACKGROUND OF THE INVENTION
  • [0003]
    The sun freely emits ultraviolet (UV), visible and infrared (IR) radiation, much of which is absorbed by the atmosphere. Solar radiation that is transmitted through the atmosphere and reaches the earth's surface includes UV-A radiation (320-400 nm), UV-B radiation (290-320 nm), visible light (400-700 nm) and near IR radiation (700-1400 nm). The ocular lens of humans in its normal, healthy state freely transmits near IR and most of the visible spectrum to the retina, but the lens acts to absorb UV radiation to avoid damage to the retina. The ability to absorb near UV and the violet-blue portion of the visible spectrum changes throughout life. In infancy, the human lens will freely transmit near UV and visible light above 300 nm, but with further aging the action of UV radiation from the environment causes the production of yellow colorants, fluorogens, within the lens. Some studies indicate that by age 54 the lens will not transmit light below 400 nm and the transmission of light between 400 and 450 nm is greatly diminished. As the lens ages it continuously develops a yellow color, increasing its capacity to filter out near UV and violet-blue light. Therefore, after cataract removal the natural protection provided by the aged human lens is also removed. Cataracts are typically replaced by an intraocular lens (IOL). If the brain is stimulated by signals caused by the visible light that has not been transmitted for many years, discomfort can result. Development of IOL materials with an absorption similar to aged human lens material would be a welcome improvement to the art.
  • [0004]
    Although yellow colorants exist, many such colorants are unsuitable for use in artificial lens material due to their tendency to leach out of the IOL after it is inserted in the eye or during solvent extraction associated with lens manufacture. A yellow colorant that is covalently bonded to lens materials would be thus be a desirable improvement in the manufacture of artificial lens materials. Efforts have been made to develop such a lens material. One obstacle of such efforts has been finding a polymerizable compound that will produce IOLs having an absorption profile that carefully matches that of the aged human lens, especially in the visible spectrum. If the IOL absorbs more than the lens in portions of the visible spectrum, visible acuity can be diminished. If the IOL absorbs less in the visible spectrum, the discomfort discussed above can result. Another obstacle that such efforts have faced has been the need to use a combination of multiple compounds to achieve a careful match with the human lens. Use of multiple compounds can result in a more complicated manufacturing process, along with increased production and materials costs. A polymerizable yellow colorant that matches the absorption spectra of the human lens and reduces the need for multiple colorants in an IOL would be a welcome improvement in the art.
  • [0005]
    More broadly, the development of yellow colorants and absorbers of ultraviolet light that can be covalently bonded to various polymeric materials would have numerous other uses beyond that in artificial lenses. For example, such colorants could be used with a wide array of polymeric applications in which the appropriate absorption spectrum is desired. Thus, what is needed in the art is novel yellow colorants and ultraviolet light absorbers (UVAs) that are more economical, and have spectral properties that better suit their target applications.
  • SUMMARY OF THE INVENTION
  • [0006]
    The invention solves the problems in the prior art by providing molecules that contain methine chromophores and/or anthraquinone chromophores and ethylenically-unsaturated polymerizable groups. These chromophores are present as structures that include at least one of the following moieties:
    wherein X is selected from hydrogen or one or two groups selected from hydroxy, C1-C6 alkyl, C1-C6 alkoxy and halogen. The molecules of the present invention contain these moieties as well as at least one ethylenically-unsaturated polymerizable group that is capable of undergoing free radical polymerization without destroying the moiety. The ethylenically-unsaturated polymerizable group exists in addition to any such group that appears in the above figures. Thus, in the case of structure la, the resulting molecule contains at least one polymerizable ethylenically unsaturated group in addition to the ethylenically unsaturated group(s) depicted. It is to be understood that these moieties are only portions of the molecules and that the molecules contain additional moieties. Thus for example, in some embodiments the molecule of the present invention is one of the compounds represented by Formulae II-VI below:
    wherein:
    • R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, aryl, heteroaryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—R4, C1-C6-alkylsulfonyl, arylsulfonyl, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and -Q; R and R1 can be combined to make cyclic structures such as phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, thiomorpholino-S,S-dioxide and the like;
    • n is an integer selected from 1 to about 1000;
    • R2 is selected from hydrogen or one or two groups selected from hydroxy, C1-C6 alkyl, C1-C6 alkoxy and halogen;
    • R3 is selected from hydrogen, C1-C12-alkyl, substituted C1-C12-alkyl, aryl, C3-C8-cycloalkyl, C3-C8-alkenyl and —(CHR′CHR″O—)n—R4, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and Q;
    • R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
    • R′ and R″ are independently selected from hydrogen and C1-C12-alkyl;
    • L is a divalent organic radical selected from C1-C6-alkylene-O—, C1-C6-alkylene-NR′—;
    • arylene-C1-C6-alkylene-O—, arylene-C1-C6-alkylene-NR′—, arylene-O(CHR′CHR″O)n—, C1-C6-alkylene-Y1—(CHR′CHR″O—)n—, —(CHR′CHR″O—)n—;
    • Y is selected from —O-L-Q, —NR′-L-Q, —N-(L-Q)2, —R5;
    • Y1 is selected from —O—, —S—, —SO2—, —N(SO2R5)—, or —N(COR5)—;
    • R5 is C1-C12-alkyl, substituted C1-C12-alkyl, C3-C8-cycloalkyl or aryl;
    • X1 and X2 are independently selected from cyano, C1-C6-alkoxycarbonyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
    • Q is a group that includes an ethylenically-unsaturated polymerizable group;
    • wherein the compound comprises or has bonded thereto at least one Q group.
  • [0021]
    As can be seen, Formula II depicts a molecule containing moiety 1c. Formula III depicts a molecule containing moiety 1b. Formula IV depicts a molecule containing moiety 1a. Formulae V and VI depict molecules containing moiety 1d.
  • [0022]
    It will be understood that the location of atoms bonded to the carbons in any ethene double bond in Formulas II, III, and IV should not be interpreted as limiting and that Formulas II, III, and IV should be interpreted as including both cis and trans stereoisomers throughout this application, including the claims.
  • [0023]
    In some embodiments, the compounds of the present invention are polymerized with other molecules capable of polymerizing to form a polymer in which the compounds are part of the backbone. In some embodiments, the compounds are polymerized with organic monomers to form a material that is transparent to visible light, or that has a degree of absorption or transparency to various light wavelengths that mimics that of a desired material, such as the lens of a mammalian eye of a given age. However, the invention includes all types of polymers irrespective of the degree of transparency, translucency, or opacity to any type of radiation.
  • [0024]
    By bonding the compound to the polymer, the potential for the compound leaching out of the material is diminished or eliminated. As a result, in some embodiments these compounds are used in transparent materials to decrease the intensity of violet-blue light transmitted through them. These transparent materials with one or more of the bondable yellow compounds and/or bondable UVAs incorporated in them may be extracted with organic solvents to remove unreacted monomers, low molecular weight oligomers and low molecular weight polymers, as well as other impurities, and then used to make ocular lenses such as intraocular lenses (IOLs), contact lenses, eyeglasses and other windows. These transparent materials containing yellow compounds may also be used to make lens coating materials. Surprisingly, the methine chromophores of the present invention do not lose their absorbance properties upon free radical polymerization. This is surprising since the chromophoric unit is an ethylenically unsaturated moiety so that the polymerization reaction involving the chromophoric unit would be expected to result in loss of the absorption properties.
  • [0025]
    Thus, the invention includes the compounds disclosed herein.
  • [0026]
    The invention further includes compositions comprising the compounds of the present invention. In some embodiments, the compositions are polymerizable compositions.
  • [0027]
    The invention further includes methods of making a polymer comprising polymerizing a group of monomers, prepolymers, chain extenders, or combinations of thereof, one or more of which contains a compound of the present invention or a residue of such a compound.
  • [0028]
    The invention further includes polymers that contain the residue of the polymerization of the compounds of the present invention.
  • [0029]
    The invention further includes articles that contain the polymers of the present invention. In some embodiments, the articles are transparent. In some embodiments, the articles are optical objects. In some embodiments, the articles are IOLs.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0030]
    Polymerizable yellow compounds and UV absorbing compounds that are based on the methine and anthraquinone chromophores and contain polymerizable, ethylenically unsaturated moieties are provided. The invention further includes compositions comprising the compounds of the present invention. In some embodiments, the compositions are polymerizable compositions. The invention further includes methods of making a polymer comprising polymerizing a group of monomers, prepolymers, chain extenders, or combinations of thereof, one or more of which contains a compound of the present invention or a residue of such a compound. The invention further includes polymers that contain the residue of the polymerization of the compounds of the present invention. The invention further includes articles that contain the polymers of the present invention. In some embodiments, the articles are transparent. In some embodiments, the articles are optical objects. In some embodiments, the articles are IOLs.
  • [0000]
    Definitions
  • [0031]
    The following definitions apply to terms as used throughout this application.
  • [0032]
    The term “chromophoric unit” means the portion of a molecule primarily responsible for causing the absorption of radiation at the wavelength of maximum absorption.
  • [0033]
    The alkyl groups described by the terms “C1-C6-alkyl” and “C1-C6 alkoxy” refer to straight or branched chain hydrocarbon radicals containing one to six carbon atoms optionally substituted with hydroxy, cyano, aryl, —OC1-C4-alkyl, —OCOC1-C4-alkyl and —CO2C1-C4-alkyl, wherein the C1-C4-alkyl portion of the groups represents a saturated straight or branched chain hydrocarbon radical that contains one to four carbon atoms.
  • [0034]
    The alkyl groups described by the term “C1-C12-alkyl⇄ refer to straight or branched chain hydrocarbon radicals containing one to twelve carbon atoms.
  • [0035]
    The terms “C1-C12-acyl” and “substituted-C1-C12-acyl” are used to represent —CO—(C1-C12-alkyl) and —CO-(substituted C1-C12-alkyl), respectively.
  • [0036]
    The term “C3-C8-cycloalkyl” refers to a cyclic hydrocarbon radical containing three to eight carbon atoms.
  • [0037]
    The term “aryl” includes phenyl and naphthyl and these radicals substituted with one to three C1-C6-alkyl, C1-C6-alkoxy, —CN, —NO2, C1-C6-alkoxycarbonyl, C1-C6-alkanoyloxy, C1-C6- alkylsulfonyl, hydroxyl, carboxy or halogen groups.
  • [0038]
    The term “heteroaryl” includes 5 or 6-membered heterocyclic aryl rings containing one oxygen atom, and/or one sulfur atom, and up to three nitrogen atoms, said heterocyclic aryl ring optionally fused to one or two phenyl rings. Examples of such systems include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, thiadiazolyl, oxadiazolyl, tetrazolyl, thiatriazolyl, oxatriazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, thiazinyl, oxazinyl, triazinyl, thiadiazinyl, oxadiazinyl, dithiazinyl, dioxazinyl, oxathiazinyl, tetrazinyl, thiatriazinyl, oxatriazinyl, dithiadiazinyl, imidazolinyl, dihydropyrimidyl, tetrahydropyrimidyl, tetrazolo-[1,5-b]pyridazinyl and purinyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, indolyl and the like; these are optionally substituted with one to three C1-C6-alkyl, aryl, C1-C6-alkoxy, —CN, —NO2, C1-C6-alkoxycarbonyl, C1-C6-alkanoyloxy, C1-C6-alkylsulfonyl or halogen groups.
  • [0039]
    The term “substituted-C1-C12-alkyl” is used herein to denote a straight or branched chain, saturated aliphatic hydrocarbon radical containing one to twelve carbon atoms and these radicals optionally substituted with one to three groups selected from hydroxy; halogen; cyano; succinimido; glutarimido; phthalimido; 2-pyrrolidono; aryl; heteroaryl; heteroarylthio; aryloxy; arylthio; C1-C6-alkoxy, C1-C6-alkylthio; C1-C6-alkylsulfonyl; arylsulfonyl; sulfamyl; benzoylsulfonicimido; C1-C6-alkylsulfonamido; arylsulfonamido; C3-C8-alkenylcarbonylamino; —NR′-L-Q; —N-(L-Q)2; —O-L-Q; groups of the formula
    wherein Y2 is —NH—, —N(C1-C12-alkyl)-, —O—, —S—, or —CH2O—; —OX3R12, —NHX3R12; —CONR13R′13; —SO2NR13R′13; wherein R12 is selected from C1-C12-alkyl and C1-C6-alkyl substituted with halogen, phenoxy, aryl, cyano, C3-C8-cycloalkyl, C1-C6-alkylsulfonyl, C1-C6-alkylthio, and C1-C6-alkoxy; R13 and R′13 are independently selected from hydrogen, aryl, C1-C12-alkyl and C1-C6-alkyl substituted with halogen, phenoxy, aryl, —CN, cyclolalkyl, C1-C6-alkylsulfonyl, C1-C6-alkylthio, or C1-C6-alkoxy; X3 is selected from —CO—, —COO—, —CONH—, or —SO2—; C3-C8-cycloalklyl; C1-C6-alkanoyloxy; C1-C6-alkoxycarbonyl and —(O—C2-C4-alkylene)nR14; wherein R14 is selected from hydrogen, C1-C6-alkoxy, halogen, hydroxy, cyano, C1-C6-alkanoyloxy, C1-C6-alkoxycarbonyl, aryl, C3-C8-cycloalkyl; and —OQ; n is as previously defined.
  • [0040]
    The term “C1-C6-alkylene” refers to a straight or branched chain, divalent hydrocarbon radical containing one to six carbon atoms and optionally substituted with hydroxy, halogen, aryl, C1-C6-alkanoyloxy, or —OQ.
  • [0041]
    The term “halogen” means any of the following atoms: fluorine, chlorine, bromine and iodine.
  • [0042]
    The terms “C1-C6-alkoxycarbonyl” and “C1-C6-alkanoyloxy” denote the radicals —CO2C1-C6-alkyl and —O—COC1-C6-alkyl, respectively.
  • [0043]
    The term “C3-C8 alkenyl” denotes a straight or branched chain hydrocarbon radical that contains at least one carbon-carbon double bond.
  • [0044]
    In the terms “arylsulfonyl” and “aroyl” the aryl groups or aryl portions of the groups are selected from phenyl and naphthyl, and these may optionally be substituted with hydroxy, halogen, carboxy, C1-C6-alkyl, C1-C6-alkoxy and C1-C6-alkoxycarbonyl.
  • [0045]
    The term “carbamoyl” is used to represent the group having the formula: —CON(R15)R16, wherein R15 and R16 are selected from hydrogen, C1-C6-alkyl, C3-C8-cycloalkyl, C3-C8-alkenyl, and aryl.
  • [0046]
    The term “C1-C6-alkylsulfonyl” is used to represent —SO2—C1-C6-alkyl wherein the term “C1-C6-alkyl” is as previously defined.
  • [0047]
    References herein to groups or moieties having a stated range of carbon atoms, such as “C1-C6-alkyl,” shall mean not only the C1 group (methyl) and C6 group (hexyl) end points, but also each of the corresponding individual C2, C3, C4 and C5 groups. In addition, it will be understood that each of the individual points within a stated range of carbon atoms may be further combined to describe subranges that are inherently within the stated overall range. For example, the term “C3-C8-cycloalkyl” includes not only the individual cyclic moieties C3 through C8, but also contemplates subranges such as “C4-C6-cycloalkyl.”
  • [0048]
    The phrase “ethylenically-unsaturated polymerizable group” and/or “free radical initiated polymerizable group” shall mean a moiety having a C═C double bond that is reactive in a free radical polymerization, including but not limited to those having a vinyl group. In some embodiments, the reactive double bond is activated by one of the double-bonded carbons being attached to an aryl group or an electron withdrawing group such as a carbonyl. Although aromatic and heteroaromatic rings are often drawn in this application and elsewhere in a way that depicts the aromatic pi cloud of electrons in such rings as alternating double bonds (for example, benzene is often drawn as a six membered ring containing three alternating double and single bonds) the skilled artisan will understand that such rings do not actually contain double bonds but instead contain an aromatic pi cloud of completely delocalized electrons and, as such, are unreactive to free radical polymerization. Accordingly, none of the terms “reactive C═C double bond,” “ethylenically-unsaturated polymerizable group,” and “free radical initiated polymerizable group” include aromatic pi clouds of electrons in aromatic or heteroaromatic ring, irrespective of whether such aromatic pi clouds of electrons are representing in any drawing as alternating double bonds.
  • [0000]
    Compounds
  • [0049]
    The compounds are molecules that include at least one of the following moieties:
    wherein X is selected from hydrogen or one or two groups selected from hydroxy, C1-C6 alkyl, C1-C6 alkoxy and halogen. The molecules of the present invention contain these moieties as well as at least one ethylenically-unsaturated polymerizable group that is capable of undergoing free radical polymerization without destroying the moiety. The ethylenically-unsaturated polymerizable group exists in addition to any such group that appears in the above figures. Thus, in the case of structure 1a, the resulting molecule contains at least one polymerizable ethylenically unsaturated group in addition to the ethylenically unsaturated group(s) depicted. It is to be understood that these moieties are only portions of the molecules and that the molecules contain additional moieties. Thus, for example, in some embodiments the molecule of the present invention is one of the compounds represented by Formulae II-VI below:
    wherein:
    • R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, aryl, heteroaryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—R4, C1-C6-alkylsulfonyl, arylsulfonyl, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and -Q; R and R1 can be combined to make cyclic structures such as phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, thiomorpholino-S,S-dioxide and the like;
    • n is an integer selected from 1 to about 1000;
    • R2 is selected from hydrogen or one or two groups selected from hydroxy, C1-C6 alkyl, C1-C6 alkoxy and halogen;
    • R3 is selected from hydrogen, C1-C12-alkyl, substituted C1-C12-alkyl, aryl, C3-C8-cycloalkyl, C3-C8-alkenyl and —(CHR′CHR″O—)n—R4, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and Q;
    • R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
    • R′ and R″ are independently selected from hydrogen and C1-C12-alkyl;
    • L is a divalent organic radical selected from C1-C6-alkylene-O—, C1-C6-alkylene-NR′—;
    • arylene-C1-C6-alkylene-O—, arylene-C1-C6-alkylene-NR′—, arylene-O(CHR′CHR″O)n—, C1-C6-alkylene-Y1—(CHR′CHR″O—)n—, —(CHR′CHR″O—)n—;
    • Y is selected from —O-L-Q, —NR′L-Q, —N-(L-Q)2, —R5;
    • Y1 is selected from —O—, —S—, —SO2—, —N(SO2R5)—, or —N(COR5)—;
    • R5 is C1-C12-alkyl, substituted C1-C12-alkyl, C3-C8-cycloalkyl or aryl;
    • X1 and X2 are independently selected from cyano, C1-C6-alkoxycarbonyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
    • Q is a group that includes an ethylenically-unsaturated polymerizable group;
      wherein the compound includes at least one Q group.
  • [0063]
    As can be seen, Formula II depicts examples of a molecule containing moiety 1c. Formula III depicts examples of a molecule containing moiety 1b. Formula IV depicts examples of a molecule containing moiety 1a. Formulae V and VI depict examples of molecules containing moiety 1d.
  • [0064]
    It will be understood that the location of atoms bonded to the carbons in any ethene double bond in Formulas II, III, and IV should not be interpreted as limiting and that Formulas II, III, and IV should be interpreted as including both cis and trans stereoisomers throughout this application, including the claims.
  • [0065]
    In some embodiments, the alkoxylated moiety of R, R1, R3 and L include either ethylene oxide or propylene oxide, or mixtures of both, thereon having a chain length denoted by the formula wherein n is from 1 to about 100. In some embodiments, the chain length is denoted by the formula wherein n is less than 50. In some embodiments, the chain length is denoted by the formula wherein n is less than about 8.
  • [0066]
    Examples of Q groups include but are not limited to the following organic radicals 1-9:
    • (a) —COC(R6)═CH—R7,
    • (b) —CONHCOC(R6)═CH—R7,
    • (c) —CONH—C1-C6-alkylene-OCOC(R6)═CH—R7,
    • (e) —COCH═CH—CO2R10,
      or a combination of the two structures on a plurality of compounds;
      wherein:
      • R6 is hydrogen or C1-C6-alkyl;
      • R7 is: hydrogen; C1-C6 alkyl; phenyl; phenyl substituted with one or more groups selected from C1-C6-alkyl, C1-C6-alkoxy, —N(C1-C6-alkyl)2, nitro, cyano, C1-C6-alkoxycarbonyl, C1-C6-alkanoyloxy and halogen; 1- or 2-naphthyl; 1- or 2-naphthyl substituted with C1-C6-alkyl or C1-C6-alkoxy; 2- or 3-thienyl; 2- or 3-thienyl substituted with C1-C6-alkyl or halogen; 2- or 3-furyl; or 2- or 3-furyl substituted with C1-C6-alkyl;
      • R8 and R9 are, independently, hydrogen, C1-C6-alkyl, or aryl; or R8 and R9 are combined to form a —(CH2)3,5— radical;
      • R10 is hydrogen, C1-C6-alkyl, C1-C8-alkenyl, C3-C8-cycloalkyl or aryl; and
      • R11 is hydrogen, C1-C6-alkyl or aryl.
  • [0076]
    In some embodiments, a compound of Formulae II, III, IV, V or VI is used in which Q is
    wherein R6 is hydrogen or methyl and R8 and R9 are methyl.
  • [0077]
    In some embodiments, a compound of Formulae II, III, IV, V or VI is used in which Q is:
    —C(O)C(R6)═CHR7
    wherein R6 is hydrogen or methyl; and R7 is hydrogen.
  • [0078]
    In some embodiments compound has a structural formula consistent with Formula II in which:R and R1 are independently selected from C1-C12-alkyl, substituted C1-C12-alkyl, aryl, heteroaryl, C3-C8-cycloalkyl, C3-C8-alkenyl, —(CHR′CHR″O—)n—R4, C1-C6-alkylsulfonyl, arylsulfonyl, C1-C12-acyl, substituted-C1-C12-acyl, -L-Q and -Q; R and R1 can be combined to make cyclic structures such as phthalimido, succinimido, morpholino, thiomorpholino, pyrrolidino, piperidino, piperazino, thiomorpholino-S,S-dioxide and the like;
    • n is an integer selected from 1 to about 1000;
    • R2 is selected from hydrogen or one or two groups selected from hydroxy, C1-C6 alkyl, C1-C6 alkoxy and halogen;
    • R′ and R″ are independently selected from hydrogen and C1-C12-alkyl;
    • L is a divalent organic radical selected from C1-C6-alkylene-O—, C1-C6-alkylene-NR′—; arylene-C1-C6-alkylene-O—, arylene-C1-C6-alkylene-NR′—, arylene-O(CHR′CHR″O)n—, C1-C6-alkylene-Y, —(CHR′CHR″O—)n—, —(CHR′CHR″O—)n—;
    • Y is selected from —O-L-Q, —NR′-L-Q, —N-(L-Q)2, —R5;
    • Y1 is selected from —O—, —S—, —SO2—, —N(SO2R5)—, or —N(COR5)—;
    • R4 is selected from hydrogen, C1-C12-alkyl, C1-C6-alkanoyl and aryl;
    • R5 is C1-C12-alkyl, substituted C1-C12-alkyl, C3-C8-cycloalkyl or aryl;
    • X1 and X2 are independently selected from cyano, —CO2C1-C6-alkyl, C1-C6-alkylsulfonyl, arylsulfonyl, carbamoyl, C1-C6-alkanoyl, aroyl, aryl, heteroaryl and —COY;
    • Q is a group that includes an ethylenically-unsaturated polymerizable group;
    • the compound comprises or has bonded thereto at least one Q group.
  • [0090]
    In some embodiments the compound is a compound of Formula II wherein R and R1 are independently selected from —CH2CH2CN, —CH2CH2Cl, —CH2CH2—OCO—C1-C4-alkyl, —CH2CH2OCO-aryl, —CH2CH2—OC(O)NH-aryl, —C1-C4-alkyl, —CH2C6H4CO2—C1C4-alkyl,
    or combined to make the cyclic structure thiomorpholino-S,S-dioxide;
      • Y is —NH-L-Q; L is —CH2CH2O—, —CH2CH(CH3)O—, —(CH2)3O—, —(CH2)4O—, —(CH2)6—O—, —CH2C(CH3)2CH2O, —CH2-C6H10—CH2O—, —C6H4—CH2CH2O—, —C6H4—OCH2CH2O—, CH2CH2(OCH2CH2)1-3O—, and
      • Q is
        wherein R6 is methyl; R8 and R9 are methyl.
  • [0093]
    In some embodiments the compound is a compound of Formula II wherein R and R1 are independently selected from —CH2CH2CN, —CH2CH2Cl, —CH2CH2—OCO—C1-C4-alkyl, —CH2CH2OCO-aryl, —CH2CH2—OC(O)NH-aryl, —C1-C4-alkyl, —CH2C6H4CO2—C1-C4-alkyl,
    or combined to make the cyclic structure thiomorpholino-S,S-dioxide; Y is —NH-L-Q; L is —CH2CH2O—, —CH2CH(CH3)O, —(CH2)3O—, —(CH2)4O—, —(CH2)6O—, —CH2C(CH3)2CH2O—, —CH2-C6H10—CH2O—, —C6H4—CH2CH2O—, —C6H4—OCH2CH2O—, —CH2 CH 2(OCH2CH2)1-3O—, and Q is:
    —C(O)C(R6)═CHR7
    wherein R6 is methyl; and R7 is hydrogen.
  • [0094]
    In some embodiments the compound is a compound of Formula II wherein R is selected from —CH2CH2CN;
    wherein R1 is selected from —CH2CH2CN, —CH2CH2Cl, —CH2CH2OCO—C1-C4-alkyl,
    Y is —NH-L-Q; L is —CH2CH2O—, —CH2CH(CH3)O—, and Q is
    wherein R6 is methyl; R8 and R9 are methyl.
  • [0095]
    In some embodiments the compound is a compound of Formula II wherein R is selected from —CH2CH2CN; wherein R1 is selected from —CH2CH2CN, —CH2CH2Cl, —CH2CH2OCO—C1-C4-alkyl,
    Y is —NH-L-Q; L is —CH2CH2O—, —CH2CH(CH3)O—, and Q is:
    —C(O)C(R6)═CHR7
    wherein R6 is methyl; and R7 is hydrogen.
  • [0096]
    In some embodiments, the compounds of the present invention have an maximum absorption less than 420 nm and have little if any absorption at wavelengths greater than about 450 nm at concentrations that are suitable in the present invention. In some embodiments, the wavelength at which maximum absorption occurs is between about 300 nm and about 420 nm. In some embodiments, there is minimal absorption at 450 nm. In some embodiments, the wavelength of maximum absorption is between about 350 nm and about 390 nm. In some embodiments, the wavelength of maximum absorption is between about 370 nm and about 380 nm. In some embodiments, the wavelength of maximum absorption of the ultraviolet light absorber is between about 310 nm and about 375 nm. In some embodiments, the wavelength of maximum absorption the absorption of the chromophoric unit at wavelength greater than 400 nm is no more than 20 percent of total absorption between about 330 nm and 450 nm.
  • [0000]
    Compositions Comprising the Compounds
  • [0097]
    Compositions comprising the compounds of the present invention are also provided. The compound may be incorporated in a number of materials in a variety of applications where it is desirable to achieve certain desired colors or desired wavelength absorbances.
  • [0098]
    In some embodiments, the composition is a polymerizable composition containing the compounds of the present invention. In some embodiments, the polymerizable composition contains an ultraviolet light absorbing methine polymerizable compound in combination with a yellow methine polymerizable compound and/or an anthraquinone polymerizable compound to obtain the correct shade of yellow while absorbing ultraviolet light in the wavelength range of 300 nm to 400 nm. The amount of yellow compound will be determined by the application and the spectral properties of the compound. The amount of yellow polymerizable compound may be determined by the thickness of the films (or lens) and by the practitioner. In some embodiments, the amount of yellow polymerizable compound is less than about 4 weight percent based upon the total weight of the resulting polymer. In some embodiments, the amount of yellow polymerizable compound is less than about 4 weight percent based upon the total weight of the resulting polymer. In some embodiments, the amount of yellow polymerizable compound is less than about 2 weight percent based upon the total weight of the resulting polymer. In some embodiments, the amount of yellow polymerizable compound is less than about 1.5 weight percent resulting polymer resulting polymer based upon the total weight of the resulting polymer. In some embodiments, the amount of yellow polymerizable compound is less than about 1 weight percent based upon the total weight of the resulting polymer. The ultraviolet light absorbing methine polymerizable compound will be added in sufficient amount to block the desired amount of ultraviolet light that penetrates the polymer, which is determined by the thickness of the film and the practitioner. In some embodiments, the amount of ultraviolet light absorbing polymerizable methine compound is less than about 4 weight percent based upon the total weight of the resulting polymer. In some embodiments, the amount of ultraviolet light absorbing polyermizable methine compound is less than about 2 weight percent based upon the total weight of the resulting polymer. In some embodiments, the amount of ultraviolet light absorbing polyermizable methine compound is less than about 1.5 weight percent based upon the total weight of the resulting polymer. In some embodiments, the amount of ultraviolet light absorbing polyermizable methine compound is less than about 1 weight percent based upon the total weight of the resulting polymer. The weight percentages in this paragraph are determined by dividing the weight of compound used in the polymerization by the total weight of the resulting polymer (multiplied by 100 percent).
  • [0099]
    In some embodiments, the polymerizable composition contains other ultraviolet absorbing compounds in addition to the compounds of the present invention. The ultraviolet absorbing material can be any compound which absorbs light having a wavelength shorter than about 400 nm but does not absorb any substantial amount of visible light. In some embodiments, the ultraviolet absorbing compound is incorporated into the monomer mixture and is entrapped in the polymer matrix when the monomer mixture is polymerized. Suitable ultraviolet absorbing compounds include substituted benzophenones, such as 2-hydroxybenzophenone, and 2-(2-hydroxyphenyl)benzotriazoles. In some embodiments, an ultraviolet absorbing compound which is copolymerizable with the monomers and is thereby covalently bound to the polymer matrix is used. In this way, the risk of leaching of the ultraviolet absorbing compound out of the lens and into the interior of the eye is reduced. Suitable copolymerizable ultraviolet absorbing compounds are the substituted 2-hydroxybenzophenones disclosed in U.S. Pat. No. 4,304,895 and the 2-hydroxy-5-acryloxyphenyl-2H-benzotriazoles disclosed in U.S. Pat. No. 4,528,311. In some embodiments, the ultraviolet absorbing compound 2-(3′-methallyl-2′-hydroxy-5′methyl phenyl) benzotriazole, also known as ortho-methallyl Tinuvin P (“oMTP”) is included in the polymerizable composition. Any and all combinations of the other components in the polymerizable composition may be used.
  • [0100]
    Since some ultraviolet absorbing compounds have phenolic substituents or residues within their structure that are known to inhibit polymerization, it is sometimes advantageous to minimize the amount of ultraviolet absorbing compound in the polymerizable composition. Reducing the concentration of such ultraviolet absorbing compounds can be beneficial to the lens forming process. In some embodiments involving oMTP, that compound is present in a concentration of approximately 1.8 wt. %. However, depending on the specific yellow compound chosen and the desired transmission at a given wavelength, considerably less than 1.8 wt. % of oMTP may be used. In some embodiments, the ultraviolet light absorbing polymerizable compounds are represented by Formula III wherein R3 is selected from substituted C1-C12-alkyl and -LQ; R2 is selected from hydrogen, C1-C6-alkyl, and C1-C6-alkyoxy; X1 is cyano; X2 is selected from —CO2—C1-C6-alkyl, —CONH—C1-C6-alkyl,—CN, —CONH-L-Q; L is —CH2CH2O—, —CH2CH(CH3)O—, —(CH2)3—, —(CH2)4—, —(CH2)6—, —CH2C(CH3)2CH2—, —CH2—C6H10—CH2—, —C6H4—CH2CH2—, —C6H4—OCH2CH2—, —CH2CH2(OCH2CH2)1-3— and Q is
    —C(O)C(R6)═CHR7
    wherein R′ is selected from hydrogen or methyl; R6 is methyl; R7 is hydrogen and R8 and R9 are methyl. In some embodiments, the ultraviolet light absorbing polymerizable compounds do not contain phenolic moieties within their structure and are therefore have less of a detrimental effect on polymerization rates as compared to oMTP or other phenolic ultraviolet light absorbing compounds.
  • [0101]
    In some embodiments, the polymerizable composition includes a single component polymerizable methine or polymerizable anthraquinone compound that absorbs UV light having a wavelength from 350 nm to 400 nm and also absorbs the blue-violet light with wavelengths less than about 425 nm or by mixing a co-polymerizable methine UV absorber having a wavelength of maximum absorption of less than about 380 nm and a co-polymerizable yellow compound having a wavelength of maximum absorption of between 380 nm and 425 nm to achieve the desired absorption.
  • [0102]
    In some embodiments, the polymerizable composition contains other monomers that contain ethylenically-unsaturated polymerizable group. Any monomers that will polymerize with the compounds of the present invention can be used, including but not limited to hydrogel-forming polymers as well as vinyl-containing monomers such as acrylic, acrylate and/or methacrylate-based monomers. Examples of monomers used in some embodiments include but are not limited to: acrylic acid, methacrylic acid and their anhydrides; crotonic acid; crotonate esters; itaconic acid as well as its anhydride; cyanoacrylic acid as well as its esters; esters of acrylic and methacrylic acids such as allyl, methyl, ethyl, n-propyl, isopropyl, butyl, tetrahydrofurfuryl, cyclohexyl, isobornyl, n-hexyl, n-octyl, isooctyl, 2-ethylhexyl, lauryl, stearyl, and benzyl acrylate and methacrylate; hydroxyethyl acrylate and methacrylate; diacrylate and dimethacrylate esters of ethylene and propylene glycols, 1,3-butylene glycol, 1,4-butanediol, diethylene and dipropylene glycols, triethylene and tripropylene glycols, 1,6-hexanediol, neopentyl glycol, polyethylene glycol, and polypropylene glycol, ethoxylated bisphenol A, ethoxylated and propoxylated neopentyl glycol; triacrylate and trimethacrylate esters of tris-(2-hydroxyethyl)isocyanurate, trimethylol propane, ethoxylated and propoxylated trimethylolpropane, pentaerythritol, glycerol, ethoxylated and propoxylated glycerol; tetraacrylate and tetramethacrylate esters of pentaerythritol and ethoxylated and propoxylated pentaerythritol; acrylonitrile; vinyl acetate; vinyl toluene; styrene; N-vinyl pyrrolidinone; alpha-methylstyrene; maleate/fumarate esters; maleic/fumaric acid; 1,6 hexanediol di(meth)acrylate; neopentyl glycol diacrylate; methacrylate; vinyl ethers; divinyl ethers such as diethyleneglycol divinyl ether, 1,6-hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, 1,4-butanediol divinyl ether, triethyleneglycol divinyl ether, trimethylolpropane divinyl ether, and neopentyl glycol divinyl ether, vinyl esters; divinyl esters such as divinyl adipate, divinyl succinate, divinyl glutarate, divinyl 1,4-cyclohexanedicarboxylate, divinyl 1,3-cyclohexanedicarboxylate, divinyl isophthalate, and divinyl terephthalate; N-vinyl pyrrolidone; tetraethylene glycol dimethacrylate; allyl acrylate; allyl methacrylate; trifunctional acrylates; trifunctional methacrylates; tetrafunctional acrylates; tetrafunctional methacrylates; benzyl acrylate; benzyl methacrylate; phenyl acrylate; phenyl methacrylate, phenoxyalkyl acrylates, phenoxyalkyl methacrylates, phenylalkyl acrylates; phenylalkyl methacrylates; carbazole acrylates; carbazole methacrylates; biphenyl acrylates; biphenyl methacrylates; naphthyl acrylates; naphthyl methacrylates; hydroxyalkyl acrylates and hydroxyalkyl methacrylates, such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2,3-dihydroxypropyl acrylate, 2,3-dihydroxypropyl methacrylate and the like; acrylamide; N-alkyl acrylamides such as N-methyl acrylamide, N-ethyl acrylamide, N-propyl acrylamide, N-butyl acrylamide and the like; acrylic acid; methacrylic acid; hydroxyethylmethacrylate; 2-phenylpropyl acrylate, 2-phenylpropyl methacrylate, N-hexyl acrylate, ethylene glycol dimethacrylate; ethyl methacrylate; N,N-dimethylacrylamide and combinations of one or more of any of the foregoing. One or more additional dye compound monomers are also included in the reaction in some embodiments. By “combinations” it is meant that combinations of two, three, four, or any other number of monomers are within the scope of the present invention. In some embodiments, the compounds are combined with a prepolymer formed from one or more monomers and combined in a chain extension reaction. In some embodiments, the dye compound is formed into a prepolymer, either alone or with one or more other monomers, then chain extended. In some embodiments, all monomers are combined together for a single reaction. All combinations of reactants and polymerization and chain extension steps are within the present invention.
  • [0103]
    In some embodiments, other monomers include: methyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, n-vinyl pyrrolidone, styrene, eugenol (4-hydroxyvinyl benzene), .alpha.-methyl styrene. In addition, for high-refractive index foldable lens applications, suitable monomers include, but am not limited to: 2-ethylphenoxy methacrylate, 2-ethylphenoxy acrylate, 2-ethylthiophenyl methacrylate, 2-ethylthiophenyl acrylate, 2-ethylaminophenyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-phenylethyl methacrylate, 3-phenylpropyl methacrylate, 4-phenylbutyl methacrylate, 4-methylphenyl methacrylate, 4-methylbenzyl methacrylate, 2-2-methylphenylethyl methacrylate, 2-3-methylphenylethyl methacrylate, 2-4-methylphenylethyl methacrylate, 2-(4-propylphenyl)ethyl methacrylate; 2-(4-(1-methylethyl)phenyl ethyl methacrylate, 2-(4-methoxyphenyl)ethyl methacrylate, 2-(4-cyclohexylphenyl)ethyl methacrylate, 2-(2-chlorophenyl)ethyl methacrylate, 2-(3-chlorophenyl)ethyl methacrylate, 2-(4-chlorophenyl)ethyl methacrylate, 2-(4-bromophenyl)ethyl methacrylate, 2-(3-phenylphenyl)ethyl methacrylate, 2-(4-phenylphenyl)ethyl methacrylate), 2-(4-benzylphenyl)ethyl methacrylate, and the like, including the corresponding methacrylates, acrylates or combinations thereof. In some embodiments, N-vinyl pyrrolidone, styrene, eugenol and G-methyl styrene are also used for high-refractive index foldable lens applications. In some embodiments, the monomers are a combination of 2-phenylethyl methacrylate (PEMA) and 2-phenylethyl acrylate (PEA).
  • [0104]
    In some embodiments, the polymerizable composition includes copolymerizable cross-linking agent, such as a terminally ethylenically unsaturated compound having more than one ethylenically-unsaturated polymerizable group. Suitable cross-linking agents include but are not limited to: ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, allyl methacrylate, 1,3-propanediol dimethacrylate, allyl methacrylate, 1,6-hexanediol dimethacrylate, 1,4-butanediol dimethacrylate, and 1,4-butanediol diacrylate (BDDA). Suitable crosslinkers also include polymeric crosslinkers, such as, for example, Polyethylene glycol 1000 Diacrylate, Polyethylene glycol 1000 Dimethacrylate, Polyethylene glycol 600 Dimthacrylate, Polybutanediol 2000 Dimethacrylate, Polypropylene glycol 1000 Diacrylate, Polypropylene glycol 1000 Dimethacrylate, Polytetramethylene glycol 2000 Dimethacrylate, and Polytetramethylene glycol 2000 Diacrylate.
  • [0105]
    In some embodiments, the polymerizable composition includes one or more thermal free radical initiators. Examples of such initiators include, but are not limited to peroxides, such as benzoyl peroxide, peroxycarbonates, such as bis-(4-tert-butylcyclohexyl) peroxydicarbonate (PERK), azonitriles, such as azo-bis-(isobutyronitrile) (AIBN), and the like.
  • [0106]
    In some embodiments, the methine chromophores and/or anthraquinone chromophores having ethylenically-unsaturated polymerizable groups may undergo addition reaction to silicone having hydrosilyl groups, the addition reaction using a catalyst such as platinum can provide a silicone compounds having a very little fear of elution of the dye directly bound to the silicone. Examples of the above silicone compounds having hydrosilyl groups are dimethylsiloxane-methylhydrosiloxane copolymer, diphenylsiloxane-phenylhydrosiloxane copolymer, polyethylhydrosiloxane, methylhydrosiloxane-phenylmethylsiloxane copolymer, methylhydrosiloxane-octylmethylsiloxane copolymer, methyl silicone resin containing hydrosilyl groups, polyphenyl (dimethylhydrosiloxy) siloxane and the like, but these are not limited. Catalysts using in the addition reaction of the methine chromophores and/or anthraquinone chromophores having ethylenically-unsaturated polymerizable groups to silicone compounds are desirably platinum compounds such as hydrogen chloroplatinate, platinum-divinyltetramethyldisiloxane, and platinum-tetramethyltetravinylcyclosiloxane. Further, a silicone bound to the methine chromophores and/or anthraquinone chromophores having ethylenically-unsaturated polymerizable groups obtained by the above method provides a silicone elastomer chemically bound to the methine chromophores and/or anthraquinone chromophores by crosslinking with a silicone having vinyl groups. Further, a silicone bound to the above methine chromophores and/or anthraquinone chromophores provides a silicone elastomer chemically bound to the methine chromophores and/or anthraquinone chromophores by crosslinking with a mixture of silicone having vinyl groups and silica. To form the above elastomer, catalysts such as platinum compounds such as hydrogen chloroplatinate, a platinum-divinyltetramethyldisiloxane complex, a platinum-tetramethyltetravinylcyclotetrasiloxane complex and a platinum-alumina supporting catalyst can be used, and such catalysts provide a smooth crosslinking reaction. The methine chromophores and/or anthraquinone chromophores having ethylenically-unsaturated polymerizable groups of the present invention can be chemically bound to silicone having hydrosylil groups and then crosslinked with silicone having vinyl groups. The other method is that the methine chromophores and/or anthraquinone chromophores having ethylenically-unsaturated polymerizable groups of the present invention is mixed with silicone having hydrosilyl groups or silicone having vinyl groups, and the mixture is mixed with silicone having hydrosilyl groups and silicone having vinyl groups, and then the mixture is cross-linked at the same time the methine chromophores and/or anthraquinone chromophores having ethylenically-unsaturated polymerizable groups is reacted to the hydrosilyl groups. At the mixing with silicone described above, it is preferable to homogeneously disperse the methine chromophores and/or anthraquinone chromophores having ethylenically-unsaturated polymerizable groups by using an appropriate solvent. As such solvents, acetone, ethanol, methanol, tetrahydrofuran, dichloromethane can be exemplified. To the solvent, the methine chromophores and/or anthraquinone chromophores having ethylenically-unsaturated polymerizable groups is dissolved and mixed with silicone. Then, the solvent is distilled away with an evaporator, and the methine chromophores and/or anthraquinone chromophores having ethylenically-unsaturated polymerizable groups can be uniformly dispersed in silicone.
  • [0107]
    The foregoing are simply examples of components that may be in polymerizable compositions and other compositions of the present invention. Every effective combination of two or more of the foregoing components is within the present invention. Furthermore, the foregoing examples are not intended to be limited, and any desirable or acceptable component can be included in the compositions of the present invention.
  • [0000]
    Polymers and Polymerization Processes
  • [0108]
    The invention further provides compositions comprising the polymers of the present invention. Such compositions may contain any other suitable component. In some embodiments, the composition includes both one or more polymer(s) of the present invention and one or more light absorbing compound(s) of the present invention. In some embodiments, the compounds are polymerized essentially alone to form polymers formed form monomeric compounds. In some embodiments, the compounds are polymerized along with other monomers.
  • [0109]
    The polymers contain the residues of free radical polymerization reaction of compounds and other monomers. Any method of free radical polymerization reaction is within the present invention. In addition, the product resulting from polymerization of any of the polymerizable compositions of the present invention, including each combination disclosed above, are also included. Any polymer containing a residue of the free radical polymerization of a compound of the present invention is within the present invention.
  • [0110]
    The polymerization methods of this invention include all effective polymerization methods including but not limited to free radical, anionic, cationic and living polymerization.
  • [0111]
    Mixtures are prepared of lens-forming monomers, ultraviolet light absorbing methine compounds and/or violet-blue light blocking (yellow) methine and/or violet-blue light blocking (yellow) anthraquinone monomers in the desired proportions together with a conventional thermal free-radical initiator. The mixture can then be introduced into a mold of suitable shape to form the lens, and the polymerization carded out by gentle heating to activate the initiator. Examples of thermal free radical initiators include, but are not limited to peroxides, such as benzoyl peroxide, peroxycarbonates, such as bis-(4-tert-butylcyclohexyl) peroxydicarbonate (PERK), azonitriles, such as azo-bis-(isobutyronitrile) (AIBN), and the like.
  • [0112]
    In some embodiments, the monomers are photopolymerized by using a mold which is transparent to actinic radiation of a wavelength capable of initiating polymerization of these acrylic monomers by itself. Conventional photoinitiator compounds, e.g., a benzophenone-type photoinitiator, are optionally introduced to facilitate the polymerization. Photosensitizers can be introduced as well to permit the use of longer wavelengths. In some embodiments of polymers intended for long residence within the eye, the number of ingredients in the polymer is minimized to decrease the risk of having materials leach from the lens into the interior of the eye.
  • [0113]
    In some embodiments, these monomers are cured directly in a polypropylene mold so that a finished optic is produced. The time and temperature for curing vary with the particular lens-forming material chosen. The optic may be combined in a number of known ways with a variety of known optics to produce an IOL.
  • [0000]
    Articles
  • [0114]
    The invention also provides articles that contain the compounds of the present invention, the polymers of the present invention, the compositions of the present invention, or a combination thereof of the present invention. In some embodiments, an entire article is made of one or more compounds, polymers, or compositions of the present invention. In some embodiments, an entire article is made of a mixture, solution, or other combination that includes one or more compound, polymer, or compositions of the present invention. In some embodiments, a component of the article is made is made of one or more compounds, polymers, or compositions of the present invention. In some embodiments, a component of the article is made is made of a mixture, solution, or other combination that includes one or more compound, polymer, or compositions of the present invention. Articles that include more than one compound, polymer, composition, or combination thereof of are also within the present invention.
  • [0115]
    In some embodiments, the article is or includes a component that is transparent or otherwise permeable to certain wavelengths of visible light. In some embodiments, the article is an optic lens such as lenses useful in windows, contact lenses, telescopes, eyeglasses or sunglasses. In some embodiments, the article is an ocular lens used as an IOL.
  • [0116]
    In some embodiments, the articles include coatings that contain compounds of the present invention. Such coatings are produced by any means, including but not limited to casting, spin casting, dipping, immersion, or spraying.
  • [0117]
    In some embodiments, the compounds or polymers are applied in a liquid carrier such as a solvent. After coating, the carrier is removed (for example, by evaporation of the solvent) leaving the compound or polymer on the coated substrate. In some embodiments, the coating is present as a yellow film and/or a UV absorbing film onto a substrate.
  • [0118]
    Methods of making the articles of the present invention are also within the present invention. In some embodiments, one or more of the polymerizable compounds of this invention are dissolved into a suitable monomer formula, cast onto a substrate (e.g. a transparent material) and cured by a suitable free-radical initiation procedure, such as exposure to heat or UV radiation.
  • [0119]
    In some embodiments, the compounds of this invention are dissolved into a suitable solvent or monomer formula, followed by immersion of an article or material into the solution containing the compound. The solution enters the polymer (for example, by absorption) then the polymer is dried. The result is incorporation into the matrix of the polymer. The polymerizable compounds are then cured, for example by heat, radiation or other means suitable to bond the compound into the polymer.
  • [0120]
    This invention can be further illustrated by the following examples, although it will be understood that these examples are included merely for purposes of illustration and are not intended to limit the scope of the invention.
  • EXAMPLES
  • [0121]
    Examples 1 through 103 are prophetic examples of some of the compounds that are within the present invention. These examples use Formulas II through VI to describe compound by identifying the various groups in Formulas II through VI. Examples 1 through 94 each identify one compound, Examples 1 through 52 identify compounds using Formula II. Examples 53 through 78 identify compounds using Formula III. For Examples 1 through 78, in cases where numbers are provided along with the identity of the R2 groups in the tables, those numbers indicate the position on the ring in the diagram of Formula II or Formula IV, as applicable. Examples 79 through 94 identify compounds using Formula III. Examples 95 through 103 each identify two compounds because each identify groups (L and Q) that appear (in different locations) on the molecule described in both Formula V and Formula VI. These examples follow, with the formulas provided for reference, each at the beginning of group of Examples to which they apply.
    II
    Example
    Number R R1 R2 X1 X2
    1 —CH2CH3 —CH2CH3 —H —CN —CONH—CH2CH(CH3)
    —OCOC(CH3)═CH2
    2 —CH3 —CH3 —H —CN —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    3 —CH3 —CH2CH2—CN —H —CN —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    4 —CH2CH2CN —CH2C6H5 2-CH3 —CN —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    5 —CH2CH2—CN —CH2CH2—C6H5 —H —CN —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    6 —H —CN —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    7 —CH2C6H5 —CH2C6H5 —H —CN —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    8 —CH2CH3 —CH2CH3 —H
    9 —CH3 —CH3 —H
    10 —CH3 —CH2CH2—CN —H —CN
    11 —CH3 —CH2C6H5 —H —CN
    12 —CH2CH2—CN —CH2CH2—OC(O)CH3 —H —CN
    13 —(CH2CH2O)3−10C(O)C(CH3)═CH2 —(CH2CH2O)3−10C(O)C(CH3)═CH2 —H —CO2CH3
    14 —CH3 —(CH2CH2O)3−10C(O)C(CH3)═CH2 —H —CO2CH3 —CONH2
    15 —(CH2CH2O)— —(CH2CH2O)— —H —CO2CH3 —CONH2
    C(O)C(CH3)═CH2 C(O)C(CH3)═CH2
    16 —(CH2CH(CH3)O)— —(CH2CH(CH3)O)— —H —CONH2 —CONH2
    C(O)C(CH3)═CH2 C(O)C(CH3)═CH2
    17 —CH3 —COC(CH3)═CH2 H —CO2CH3 —CO2CH3
    18 —CH3 H —CO2CH3 —CO2CH3
    19 —CH3 —COC(CH3)═CH2 —H —CN —CN
    20 R & R1 are combined —H —CN
    21 R & R1 are combined —H —CN
    22 R & R1 are combined —H —CN —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    23 R & R1 are combined —H —CONH—CH2CH(CH3)—OCOC(CH3)═CH2 —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    24 R & R1 are combined —H
    25 R & R1 are combined —H —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    26 R & R1 are combined —H —C6H5 —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    27 R & R1 are combined —H —CONH—CH2CH(CH3)—OCOC(CH3)═CH2 —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    28 R & R1 are combined —H
    29 —(CH2CH2O)—C(O)C(CH3)═CH2 —(CH2CH2O)—C(O)C(CH3)═CH2 —H
    30 —(CH2CH(CH3)O)—C(O)C(CH3)═CH2 —(CH2CH(CH3)O)—C(O)C(CH3)═CH2 —H
    31 —CH3 —COC(CH3)═CH2 —H
    32 —CH3 —H
    33 —CH3 —(CH2CH2O)— —H —C6H5 —CN
    C(O)C(CH3)═CH2
    34 —CH3 —(CH2CH(CH3)O)— —H —C6H5 —CN
    C(O)C(CH3)═CH2
    35 —CH3 —H —C6H5 —CN
    36 —CH3 —H —CN —CN
    37 —CH3 —H —CO2CH3 —CO2CH3
    38 —CH2CH3 —C6H11 2-Cl
    39 —CH2CH3 —C6H11 2-Cl —CONH—CH2CH(CH3)— —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2 OCOC(CH3)═CH2
    40 —CH2CH2Cl —C2H5 2-CH3
    41 —CH2CH2CN —C2H5 2-CH3 —CONH—CH2CH(CH3)— —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2 OCOC(CH3)═CH2
    42 R & R1 are combined —H —CN —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    43 R & R1 are combined —H —CN —CONH—CH2CH2—OCOCH═CH2
    44 —CH3 —COCH═CH2 —H
    45 R & R1 are combined —H —CN —CONH—CH2C(CH3)2CH2OCOC(CH3)═CH2
    46 —CH2CH2CN —CH2CH2Cl —H —CN —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    47 —CH2CH2CN —H —CN —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    48 —CH2CH2CN —H —CN —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    49 —CH2CH2CN —H —CN —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    50 —CH2CH2CN —H —CN —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    51 —CH2CH2CN —H —CN —CONH—CH2CH(CH3)—OCOC(CH3)═CH2
    52 —CH2CH2CN —H —CN
  • [0122]
    III
    Example
    Number R2 R3 X1 X2
    53 —H —H —CN —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    54 —H —CH3 —CN —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    55 -3-OCH3 —COC(CH3)═CH2 —CN —NH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    56 -3-OCH3 —COC(CH3)═CH2 —CN —CO2C2H5
    57 -3-OCH3 —(CH2CH2O)— —CN —CN
    C(O)C(CH3)═CH2
    58 -3-OCH3 —(CH2CH(CH3)O)— —CN —C6H5
    C(O)C(CH3)═CH2
    59 -3-OCH3 —(CH2CH(CH3)O)—C(O)C(CH3)═CH2 —CN
    60 -3-OCH3 —(CH2CH(CH3)O)—C(O)C(CH3)═CH2 —CN
    61 -3-OCH3 —(CH2CH(CH3)O)—C(O)C(CH3)═CH2 —CN
    62 —H —COC(CH3)═CH2 —CN —CO2C4H9-n
    63 —H —(CH2CH(CH3)O)— —CN —CN
    C(O)C(CH3)═CH2
    64 —H —(CH2CH(CH3)O)— —CN —C6H5
    C(O)C(CH3)═CH2
    65 —H —(CH2CH(CH3)O)—C(O)C(CH3)═CH2 —CN
    66 —H —(CH2CH(CH3)O)— —CO2C2H5 —CO2C2H5
    C(O)C(CH3)═CH2
    67 —H —CH3 —CN —CONH(CH2CH2O)6−10
    (CH2CH(CH3)O)6−10
    COC(CH3)═CH2
    68 —H —(CH2CH2O)3−20 —CN —CO2CH3
    C(O)C(CH3)═CH2
    69 -3-OCH3 —CH3 —CN —NH—CH2CH(CH3)—
    OCOC(CH3)═CH2
    70 -3-OCH3 —CH3 —CN —NH—CH2CH2—OCOC(CH3)═CH2
    71 -3-OCH3 —CH3 —CN
    72 -3-OCH3 —CH3 —CN
    73 -3-OCH3 —CH3
    74 -3-Br —(CH2CH(CH3)O)—C(O)C(CH3)═CH2 —CN
    75 -3-OCH3 —COC(CH3)═CH2 —CONH—CH2CH(CH3)— —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2 OCOC(CH3)═CH2
    76 -3-OCH3 —CH2C6H5 —CONH—CH2CH(CH3)— —CONH—CH2CH(CH3)—
    OCOC(CH3)═CH2 OCOC(CH3)═CH2
    77 —H —CH2C6H5 —CN —CONH—CH2CH2O—CH2CH2
    OCOC(CH3)═CH2
    78 -3-OCH3 H —CN —CONH—CH2C(CH3)2CH2OCOC(CH3)═CH2
  • [0123]
    IV
    Example
    Number X1 Y
    79 —CN —NH—CH2CH(CH3)—OCOC(CH3)═CH2
    80 —CN —NH—CH2CH(CH3)—OCOCH═CH2
    81 —CN —NH—CH2CH2—OCOC(CH3)═CH2
    82 —CN
    83 —CN
    83 —C(O)CH3 —NH—CH2CH(CH3)—OCOC(CH3)═CH2
    85 —NH—CH2CH(CH3)—OCOC(CH3)═CH2
    86 —NH—CH2CH2—OCOC(CH3)═CH2
    87 —C(O)CH3
    88
    89 —C(O)C(CH3)3 —NH—CH2C(CH3)2CH2OCOC(CH3)═CH2
    90 —NH—CH2CH(CH3)—OCOC(CH3)═CH2
    91 —CN
    92 —CN
    93 —C(O)C(CH3)3
    94 —O—(CH2CH2O)6−10—(CH2CH(CH3)O)6−10COC(CH3)═CH2
  • [0124]
    Example L—Q
    95 —CH2CH(CH3)—OCOC(CH3)═CH2
    96 —CH2CH2—OCOC(CH3)═CH2
    97 —CH2CH2—OCOCH═CH2
    98
    99 —(CH2CH2O)6−10—(CH2CH(CH3)O)6−10COC(CH3)═CH2
    100 —(CH2)10O—COC(CH3)═CH2
    101 —(CH2CH2O)10−100—COC(CH3)═CH2
    102 —(CH2CH2O)2−5—COC(CH3)═CH2
    103 —(CH2C(CH3)2CH2O)—COCH═CH2
  • [0125]
    Examples 104 through 132 describe actual procedures that were performed in preparing some of the compounds of the present invention and their precursors. Each of Examples 104 through 132 includes a drawing to show the reaction and its product. Stereochemistry of the products of these reactions was not determined, so the diagrams in Examples 104 through 132 should not be interpreted as distinguishing the cis or trans stereoisomer.
  • [0126]
    Examples 133 through 136 describe examples of some of the procedures for preparing a polymer and polymerizing compounds.
  • Example 104
  • [0127]
  • [0128]
    To a clean, dry 1 L 4-neck flask equipped with a mechanical stirrer, heating mantle, thermocouple, addition funnel and a Dean-Stark trap were added 99 g of methyl cyanoacetate (1.0 mol). The reaction vessel was stirred under an atmosphere of dry nitrogen and heated to 95° C. To the reaction vessel were added 61.1 g (1.0 mol) of ethanolamine at a dropwise rate while removing low boilers via the Dean-Stark trap. An exotherm occurred early during the addition and the temperature increased to 105° C. The addition was complete in about 45 minutes and the reaction vessel temperature was increased to 150° C. After about 1 h low boilers were no longer being collected in the Dean-Stark trap. The reaction solution was allowed to cool to about 85° C. and 125 mL of cyclohexane was added at a rapid, dropwise rate. The cyclohexane was decanted. A fresh 75 mL of cyclohexane were added and the warm mixture was transferred to a 600 mL beaker. The product began to solidify to give a waxy solid. The solid was broken upon as much as possible using a spatula and the cyclohexane was decanted. The solid was transferred to a Coors dish and place in the chemical hood to dry overnight. Upon drying the solid had a mass of 120.8 g.
  • Example 105
  • [0129]
  • [0130]
    To a clean, dry 500 mL flask equipped with a heating mantle and addition funnel were added 200 mL of DMF and 50.7 g of N-phenylthiomorpholine-S,S-dioxide (0.2 mol, available from Eastman Chemical Company). The reaction vessel was purged with nitrogen and 20.5 mL of phosphorus oxychloride (0.2 mol) were added at such a rate to keep the temperature from exceeding 35° C. The reaction vessel was heated to 80-90° C. and stirred for about 4 h. The reaction mixture was allowed to cool to room temperature and poured into a mechanically stirred ice water mixture (1 L) containing 100 mL of concentrated ammonium hydroxide. A white precipitate formed that was collected by suction filtration and washed with water. The cake was allowed to dry on the filter overnight to give 54.4 g of product.
  • Example 106
  • [0131]
  • [0132]
    To a 500 mL round-bottomed flask equipped with a mechanical stirrer, reflux condenser and heating mantle were added methanol (175 mL), 18.0 g of product from Example 105 (75.0 mmols) and 10.4 g of product from Example 104 (80.0 mmols). The mixture was heated to reflux and stirred for 3 h then allowed to cool to room temperature, at which time a precipitate formed. The precipitate was collected by suction filtration, washed with cold methanol and allowed to dry on the filter overnight to give 19.75 g of light yellow compound.
  • Example 107
  • [0133]
  • [0134]
    To a clean, dry 50 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 20 mL of acetone, 4.0 g of product from Example 106 (11.4 mmols), 4.3 mL of methacrylic anhydride (28.6 mmols), 4.0 mL of triethylamine (28.6 mmols), 70 mg of 4-dimethylaminopyridine (DMAP, 0.6 mmol) and 40 mg of hydroquinone. The reaction mixture was heated to 50° C. with stirring for about 30 minutes, at which time the starting material was consumed according to TLC analysis (TLC; 1:1 tetrahydrofuran/cyclohexane; Rf (product from Example 106)=0.06; Rf (product from Example 107)=0.32). Upon reaction completion, a precipitate formed. The reaction mixture was allowed to cool to about 30° C. and 20 mL of methanol were added at a dropwise rate. The solid precipitate was collected by suction filtration and washed twice with 20 mL of methanol. The cake was allowed to dry on the filter overnight to give 2.58 g of free flowing yellow powder. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 98%. The compound exhibited a wavelength of maximum absorption (λmax) at 374.19 nm and a molar absorptivity (ε) of 25,900, as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in N,N-dimethylformamide (DMF) solvent.
  • Example 108
  • [0135]
  • [0136]
    To a clean, dry 500 mL 4-neck flask equipped with a mechanical stirrer, heating mantle, thermocouple and a Dean-Stark trap were added 75 g of methyl cyanoacetate (0.75 mol). The reaction vessel was stirred under an atmosphere of dry nitrogen and heated to 95° C. To the reaction vessel were added 58 mL of 1-amino-2-propanol at a dropwise rate while removing low boilers via the Dean-Stark trap. Once the addition was complete, the reaction vessel temperature was increased to 150° C. After about 1 h, low boilers were no longer being collected in the Dean-Stark trap. The reaction solution was allowed to cool to about 50° C. and transferred to a storage vessel to give 103.1 g of an oil that solidified upon standing.
  • Example 109
  • [0137]
  • [0138]
    To a 500 mL round-bottomed flask equipped with a mechanical stirrer, reflux condenser and heating mantle were added methanol (100 mL), 9.0 g of product from Example 105 (37.5 mmols) and 5.7 g of product from Example 108 (40.0 mols). The mixture was heated to reflux and stirred for 3 h then allowed to cool to about 10° C. using an ice-water bath to crystallize the compound. The crystals were collected by suction filtration, washed with cold water and allowed to dry on the filter overnight to give 8.72 g of light yellow compound. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 88%. The compound exhibited a wavelength of maximum absorption (λmax) at 370.88 nm and a molar absorptivity (ε) of 24,600 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 110
  • [0139]
  • [0140]
    To a 100 mL round bottomed flask equipped with a magnetic stirrer and heating mantle were added 20 mL of DMF, 1.28 g of 3-isopropenyl-α, α′-dimethylbenzylisocyanate (6 mmols), 2.18 g of product from Example 109 (6 mmols) and 3 drops of dibutyltin dilaurate. The reaction mixture was heated to 90° C. After about 2 h another 10 drops of 3-isopropenyl-α, α′-dimethylbenzylisocyanate were added since TLC analysis revealed that the reaction had not gone to completion. The reaction mixture was allowed to stir for another 2 h at 90° C. then allowed to cool to room temperature. The product compound was precipitated by drowning the reaction mixture, with stirring, into 60 mL of a 50 volume percent solution of methanol and aqueous sodium chloride (10 weight percent). The solid was collected by suction filtration and washed with a 50 volume percent solution of methanol and aqueous sodium chloride (10 weight percent). After drying on the filter overnight, the precipitate had a mass of 0.66 g. The product was determined to be a component of the solid material by HPLC-MS and the purity was estimated to be about 40%. The compound exhibited a wavelength of maximum absorption (λmax) at 388 nm as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 111
  • [0141]
  • [0142]
    To a clean, dry 100 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 25 mL of anhydrous ethanol, 4.0 g of product from Example 104 (31.2 mmols), 4.43 g of 4-N,N-dimethylaminobenzaldehyde (29.7 mmols) and 4 drops of a 25 weight percent solution of sodium methoxide in methanol. The reaction mixture was heated to reflux with stirring until the 4-N,N-dimethylaminobenzaldehyde had be consumed according to TLC analysis (TLC; 1:1 tetrahydrofuran/cyclohexane; Rf (product from Example 111)=0.20). Upon reaction completion the reaction solution was allowed to cool to room temperature and stir overnight. A precipitate formed. The precipitate was collected by suction filtration and washed with about 25 mL of methanol. The cake was allowed to dry on the filter overnight to give 2.87 g of free flowing yellow powder. The identity of the product was determine to be the target compound by HPLC-MS and the purity was estimated to be about 96%. The compound exhibited a wavelength of maximum absorption (λmax) at 422 nm as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 112
  • [0143]
  • [0144]
    To a clean, dry 50 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 10 mL of acetone, 1.0 g of product from Example 111 (3.86 mmols), 0.72 mL of methacrylic anhydride (4.82 mmols), 0.67 mL of triethylamine (4.82 mmols), 23.6 mg of 4-dimethylaminopyridine (DMAP, 0.19 mmols) and 10 mg of hydroquinone. The reaction mixture was heated to 50° C. with stirring for about 35 minutes, at which time the starting material was consumed according to TLC analysis (TLC; 1:1 tetrahydrofuran/cyclohexane; Rf (product from Example 111)=0.19; Rf (product from Example 112)=0.50). The reaction mixture was allowed to cool to room temperature and product from Example 112 was precipitated by adding 12 mL of a 5:1 solution of water in methanol at a dropwise rate while stirring. The solid precipitate was collected by suction filtration and washed with 6.0 mL of a 5:1 solution of water in methanol. The cake was allowed to dry on the filter overnight to give 1.26 g of free flowing yellow powder. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 93%. The compound exhibited a wavelength of maximum absorption (λmax) at 392.08 nm and a molar absorptivity (ε) of 28,800 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 113
  • [0145]
  • [0146]
    Part I. To a clean, dry 500 mL flask equipped with a heating mantle and addition funnel were added 50 mL of DMF and 16.0 g of N-methyl-N-2-cyanoethylaniline (0.1 mol). The reaction vessel was purged with nitrogen and 10.0 mL of phosphorus oxychloride (0.2 mols) were added at such a rate to keep the temperature from exceeding 35° C. The temperature was regulated using an ice water bath. The reaction vessel was heated to 80-90° C. and stirring for about 2 h. The reaction mixture was allowed to cool to about 40° C.
  • [0147]
    Part II. A portion of the product from Example 104 (12.8 g, 0.1 mol) was dissolved into 200 mL of isopropyl alcohol in a 1 L beaker. Anhydrous sodium acetate (40.0 g) was added to the beaker, the mixture was stirred and the beaker was heated to 75° C. To this mixture was added the reaction mixture from Part I (Vilsmeier complex) at a fairly rapid rate. When the addition was complete, the reaction mixture was stirred for an additional 1 h and allowed to cool to room temperature. The reaction mixture was added at a rapid dropwise rate to 400 mL of an ice water solution. The dark mixture was transferred to a 4 L beaker equipped with a mechanical stirrer and stirred. Water (350 mL) was added at a dropwise rate and the solution became cloudy. Another 400 mL of water were added with stirring and the compound began to precipitate. The precipitate was collected by suction filtration and washed with cold water followed by warm water. The cake was allowed to dry on the filter overnight to give 17.5 g of compound. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 95%. The compound exhibited a wavelength of maximum absorption (λmax) at 381.8 nm and a molar absorptivity (ε) of 27,000 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 114
  • [0148]
  • [0149]
    To a clean, dry 50 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 50 mL of acetone, 3.5 g of product from Example 113 (11.7 mmols), 2.5 mL of methacrylic anhydride (16.8 mmols), 2.0 mL of triethylamine (16.8 mmols), 70 mg of 4-dimethylaminopyridine (DMAP, 0.6 mmlos) and 30 mg of hydroquinone. The reaction mixture was heated to 50-55° C. with stirring for about 45 minutes, at which time the starting material had not been consumed according to TLC analysis (TLC; 1:1 tetrahydrofuran/cyclohexane). Another 10 drops of methacrylic anhydride were added to the reaction mixture. The reaction mixture was stirred for an additional 30 minutes then allowed to cool to room temperature and the product was precipitated by adding about 50 mL of a 5:1 solution of water in methanol at a dropwise rate while stirring. The solid precipitate was collected by suction filtration and washed with water. The cake was allowed to dry on the filter overnight to give 3.43 g of yellow powder. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 92%. The compound exhibited a wavelength of maximum absorption (λmax) at 381.8 nm and a molar absorptivity (ε) of 28,300 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 115
  • [0150]
  • [0151]
    To a 500 mL round bottomed flask equipped with a magnetic stirrer, thermocouple and heating mantle were added 24 g of 1,8-dihydroxyanthraquinone (0.1 mole), 88 g of ethylene carbonate (1.0 mole), 0.5 g of tetramethylammonium chloride and 75 mL of ethylene glycol. The reaction mixture was heated to 150° C. for 20 h. TLC analysis revealed that the starting material had been consumed. The reaction mixture was allowed to cool to about 80° C. and the product was precipitated by adding 500 mL of warm water with stirring. The solid was collected by suction filtration, washed with hot water and allowed to dry on the filter overnight to give 21.0 g of a tacky solid. The solid material was broken up and added to a 2 L beaker containing toluene. The mixture was heated to boiling while constantly stirring. The mixture was allowed to cool to about 80° C. and filtered. The solid was collected and washed with toluene and allowed to dry on the filter overnight to give 16.8 g of product. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 85 %. An ethylenically-unsaturated polymerizable group can be readily attached to the hydroxyethyl groups on the product by any effective means, for example by reaction with an appropriate anhydride such as methacrylic anhydride as in Example 114.
  • Example 116
  • [0152]
  • [0153]
    To a clean, dry 100 mL round bottomed flask equipped with a magnetic stirrer were added 20 mL of DMF, 10.0 g of ethyl 2-cyano-3-(hydroxyphenyl)propenoate (46.1 mmols, for preparation see U.S. Pat. No. 4,617,374, Example A), 13.7 mL of methacrylic anhydride (92.2 mmols), 12.9 mL of triethylamine (92.2 mmols), 563 mg of 4-dimethylaminopyridine (DMAP, 4.6 mmlos) and 100 mg of hydroquinone. The reaction mixture was stirred at room temperature for about 18 h. The product was precipitated by drowning the reaction mixture into 50 mL of water. The solid precipitate was collected by suction filtration and washed with water. The cake was allowed to dry on the filter overnight to give 10.60 g of off white powder. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 96%. The compound exhibited a wavelength of maximum absorption (λmax) at 312 nm as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 117
  • [0154]
  • [0155]
    To a 1 L flask equipped with a mechanical stirrer and heating mantle were added 53 g of 50 weight percent aqueous sodium hydroxide (0.66 mol) and 375 mL of warm water with stirring. Vanillin (68.4 g, 0.45 mol) was added followed by the dropwise addition of 53 mL of 2-chloroethanol (0.54 mol) over about 1 h. During the addition of 2-chloroethanol, the reaction mixture was gradually heated to 100° C. The reaction mixture was stirred at 100° C. for an additional 16 h and allowed to cool to room temperature. The reaction mixture was composed of two phases that tested acidic according to pH test strips. The mixture was stirred and made basic by adding about 5 mL of concentrated ammonium hydroxide to give a solution. The solution was poured onto about 400 g of ice that caused the desired product to precipitate. The precipitate was collected by suction filtration, washed with cold water and allowed to dry on the filter overnight to give 70.6 g of product. The solid product had a melting point range of 94-96° C. HPLC-MS analysis was used to confirm the identity of the product and the purity was estimated to be 94%.
  • Example 118
  • [0156]
  • [0157]
    To a clean, dry 500 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 150 mL of methanol, 39.2 g of product from Example 117 (0.2 mols), 19.8 g of methyl cyanoacetate (0.2 mols) and 5 drops of piperidine. The reaction mixture was heated to reflux with stirring for 1.5 h. Upon reaction completion the reaction solution was allowed to cool to room temperature at which time the material began to precipitate. Another 50 mL of chilled methanol were added and the precipitate was collected by suction filtration. The cake was washed with a small amount of chilled methanol and allowed to dry on the filter overnight to give 49.6 g of free flowing yellow powder. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 97%. The compound exhibited a wavelength of maximum absorption (λmax) at 366.8 nm and a molar absorptivity (ε) of 22,400 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 119
  • [0158]
  • [0159]
    To a 100 mL round bottomed flask equipped with a magnetic stirrer and heating mantle were added 25 mL of toluene, 0.8 g of 3-isopropenyl-α, α′-dimethylbenzylisocyanate (4.0 mmols), 1.04 g of methyl 2-cyano-3-(4-hydroxyethoxy-3-methoxyphenyl)propenoate (3.75 mmols, Example 118) and 3 drops of dibutyltin dilaurate. The reaction mixture was heated to 90° C. After about 45 minutes, the reaction was complete according to TLC analysis (1:1 THF/Cyclohexane). The reaction mixture was allowed to cool to room temperature. The product was precipitated by drowning the reaction mixture, with stirring, into 200 mL of heptane. The yellow solid was collected by suction filtration and washed with heptane and allowed to dry on the filter overnight to give 1.5 g of product. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 94%. The compound exhibited a wavelength of maximum absorption (λmax) at 362.0 nm as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 120
  • [0160]
  • [0161]
    To a clean, dry 1 L round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 200 mL of acetone, 33.2 g of product from Example 118 (0.12 mol), 23.0 mL of methacrylic anhydride (0.15 mmol), 20.0 mL of triethylamine (0.14 mol), 0.7 g of 4-dimethylaminopyridine (DMAP, 5.7 mmlos) and 400 mg of hydroquinone. The reaction mixture was heated to 50-55° C. with stirring for about 45 minutes, at which time the starting material had not been consumed according to TLC analysis (TLC; 1:1 tetrahydrofuran/cyclohexane). Another 2-3 mL of methacrylic anhydride were added to the reaction mixture. The reaction mixture was stirred for an additional 30 minutes then allowed to cool to room temperature and the product was precipitated by adding about 350 mL of cold water at a rapid rate while stirring. The solid precipitate was collected by suction filtration, washed with water and washed with a small amount of cold methanol. The cake was allowed to dry on the filter overnight to give 37.1 g of yellow powder. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 95%. The compound exhibited a wavelength of maximum absorption (λmax) at 362.8 nm and a molar absorptivity (ε) of 21,800 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 121
  • [0162]
  • [0163]
    Part I. To a clean, dry 300 mL flask equipped with a heating mantle and addition funnel were added 40 mL of DMF and 12.5 g of 3,3′-(phenylimino)dipropionitrile (0.06 mol). The reaction vessel was purged with nitrogen and 6.5 mL of phosphorus oxychloride (0.042 mol) were added at such a rate to keep the temperature from exceeding 35° C. The temperature was regulated using an ice water bath. The reaction vessel was heated to 80-90° C. and stirred for about 1 h. The reaction mixture was allowed to cool to about 40° C.
  • [0164]
    Part II. A portion of the product from Example 104 (7.7 g, 0.6 mol) was dissolved into 90 mL of absolute ethanol in a 1 L beaker. Anhydrous sodium carbonate (24 g) was added to the beaker, the mixture was stirred and the beaker was heated to 75° C. To this mixture was added the mixture from Part I (Vilsmeier complex) at a fairly rapid rate. When the addition was complete, the reaction mixture was stirred for an additional 1 h at 75° C. and allowed to cool to room temperature. The reaction mixture was added at a rapid dropwise rate to 400 mL of ice water to precipitate the product. The precipitate was collected by suction filtration and washed with warm water. The cake was allowed to dry on the filter overnight to give 13.9 g of product. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 97%. The compound exhibited a wavelength of maximum absorption (λmax) at 369.91 nm and a molar absorptivity (ε) of 28,400 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 122
  • [0165]
  • [0166]
    To a clean, dry 100 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 50 mL of acetone, 3.95 g of product from Example 121 (11.7 mmols), 2.5 mL of methacrylic anhydride (16.8 mmols), 2.0 mL of triethylamine (14.3 mmols), 0.07 g of 4-dimethylaminopyridine (DMAP, 0.6 mmlos) and 40 mg of hydroquinone. The reaction mixture was heated to 50° C. with stirring for about 45 minutes, at which time the starting material had been consumed according to TLC analysis (TLC; 75:25 tetrahydrofuran/cyclohexane). The reaction mixture was stirred for an additional 20 minutes then allowed to cool to room temperature and the product was precipitated by adding about 50 mL of cold water at a moderate rate while stirring. The solid precipitate was collected by suction filtration, washed with water and washed with a small amount of a 4:1 solution of water and methanol, respectively. The cake was allowed to dry on the filter overnight to give 3.77 g of light yellow powder. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 94%. The compound exhibited a wavelength of maximum absorption (λmax) at 370.9 nm and a molar absorptivity (ε) of 30,100 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 123
  • [0167]
  • [0168]
    To a 100 mL round bottomed flask equipped with a magnetic stirrer and heating mantle were added 35 mL of toluene, 2.5 g of 3-isopropenyl-α, α′-dimethylbenzylisocyanate (12.4 mmols), 3.4 g of the product from example 121 (10 mmols) and 4 drops of dibutyltin dilaurate. The reaction mixture was heated to 90-95° C. After about 2 h, the reaction was complete according to TLC analysis (72:25 THF/Cyclohexane). The reaction mixture was allowed to cool to about 65° C. and added slowly to a moderately stirred beaker containing 50 mL of heptane to precipitate the product. The resulting slurry was further cooled to 15-20° C. using an ice-water bath. The light yellow solid was collected by suction filtration, washed with heptane and allowed to dry on the filter overnight to give 4.27 g of product. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 79%. The compound exhibited a wavelength of maximum absorption (λmax) at 371.26 nm and a molar absorptivity (ε) of 24,600 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 124
  • [0169]
  • [0170]
    Part I. To a clean, dry 300 mL flask equipped with a heating mantle and addition funnel were added 40 mL of DMF and 12.5 g of 3,3′-(phenylimino)dipropionitrile (0.06 mol). The reaction vessel was purged with nitrogen and 6.5 mL of phosphorus oxychloride were added at such a rate to keep the temperature from exceeding 35° C. The temperature was regulated using an ice water bath. The reaction vessel was heated to 80-90° C. and stirred for about 2 h. The reaction mixture was allowed to cool to about 40° C.
  • [0171]
    Part II. A portion of the product from Example 108 (8.5 g, 0.6 mol) was dissolved into 75 mL of absolute ethanol in a 1 L beaker. Anhydrous sodium acetate (24 g) was added to the beaker, the mixture was stirred and the beaker was heated to 75° C. To this mixture was added the mixture from Part I (Vilsmeier complex) at a fairly rapid dropwise rate. When the addition was complete, the reaction mixture was stirred for an additional 1 h at 75° C. and allowed to cool to room temperature. The reaction mixture was added at a rapid dropwise rate to 400 mL of ice water to precipitate the product. The precipitate was collected by suction filtration and washed with cold water followed by warm water. The cake was allowed to dry on the filter overnight to give 17.5 g of product. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 84%. The compound exhibited a wavelength of maximum absorption (λmax) at 371.25 nm and a molar absorptivity (ε) of 30,700 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 125
  • [0172]
  • [0173]
    To a clean, dry 100 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 40 mL of acetone, 3.15 g of product from Example 124 (9.0 mmols), 1.8 mL of methacrylic anhydride (12.6 mmols), 1.5 mL of triethylamine (10.8 mmols), 0.05 g of 4-dimethylaminopyridine (DMAP, 0.4 mmol) and 30 mg of hydroquinone. The reaction mixture was heated to 50° C. with stirring for about 1 h. A small amount of Example 124 remained according to TLC analysis (TLC; 75:25 tetrahydrofuran/cyclohexane). An additional 25 drops of methacrylic anhydride were added. The reaction mixture was stirred for an additional 2 h. TLC analysis revealed that a slight amount of Example 124 remained thus another 10 drops of methacrylic anhydride were added. The reaction mixture was stirred for an additional 1 h then allowed to cool to room temperature and stir overnight. The product was precipitated by adding about 50 mL of cold water at a dropwise rate while stirring. The solid precipitate was collected by suction filtration, washed with water and allowed to dry on the filter overnight to give 3.15 g of light yellow powder. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 89%. The compound exhibited a wavelength of maximum absorption (λmax) at 371.71 nm and a molar absorptivity (ε) of 30,500 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 126
  • [0174]
  • [0175]
    To a 100 mL round bottomed flask equipped with a magnetic stirrer and heating mantle were added 50 mL of toluene, 2.5 g of 3-isopropenyl-α, α′-dimethylbenzylisocyanate (12.4 mmols), 3.15 g of the product from example 124 (9 mmols) and 3 drops of dibutyltin dilaurate. The reaction mixture was heated to 90-95° C. After about 5 h, TLC analysis revealed that some of Example 124 remained (72:25 THF/Cyclohexane). Another 15 drops of 3-isopropenyl-α, α′-dimethylbenzylisocyanate, 10 mL of toluene and 3 drops of dibutyltin dilaurate were added. The reaction mixture was stirred at 90-95° C. for an additional 4 h. The reaction mixture was allowed to about 40° C. and added slowly to a moderately stirred beaker containing 125 mL of heptane to precipitate the product. The light yellow solid was collected by suction filtration, washed with heptane and allowed to dry on the filter overnight to give 5.49 g of product. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 73%. The compound exhibited a wavelength of maximum absorption (λmax) at 372.72 nm and a molar absorptivity (ε) of 23,900 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 127
  • [0176]
  • [0177]
    To a clean, dry 100 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 40 mL of methanol, 5.88 g of product from Example 117 (30.0 mmols), 2.0 g of malononitrile (30.0 mmols) and 5 drops of piperidine. The reaction mixture was heated to reflux with stirring for 1.5 h. Solid product began to form by the time the reaction had reached reflux. Upon reaction completion, the reaction solution was allowed to cool to room temperature at which time the product began to precipitate. The precipitate was collected by suction filtration. The cake was washed with a small amount of chilled methanol and allowed to dry on the filter overnight to give 6.25 g of a free flowing yellow powder. The compound exhibited a wavelength of maximum absorption (λmax) at 375.5 nm and a molar absorptivity (ε) of 22,300 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 128
  • [0178]
  • [0179]
    To a clean, dry 100 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 40 mL of acetone, 2.93 g of product from Example 128 (12.0 mmols), 2.5 mL of methacrylic anhydride (16.8 mmols), 2.0 mL of triethylamine (14.4 mmols), 0.07 g of 4-dimethylaminopyridine (DMAP, 0.6 mmol) and 40 mg of hydroquinone. The reaction mixture was heated to 50° C. with stirring for about 30 min at which time TLC analysis revealed that all of the starting material (Example 127) had been consumed (TLC; 1:1 tetrahydrofuran/cyclohexane). The reaction mixture was allowed to cool to room temperature then transferred to a 300 mL flask equipped with a mechanical stirrer. A 3:1 (by volume) solution of methanol and water (90 mL), respectively, was added with stirring at a dropwise rate followed by the dropwise addition of 60 mL of ice cold water. The product precipitated to give a sticky, but filterable, material. The precipitate was collected by suction filtration and washed with a small amount of cold methanol. The cake was allowed to dry on the filter overnight to give 2.56 g of a yellow solid. The compound exhibited a wavelength of maximum absorption (λmax) at 372.7 nm and a molar absorptivity (ε) of 14,400 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 129
  • [0180]
  • [0181]
    To a clean, dry 2 L flask equipped with a mechanical stirrer were added 100 g of aniline (1.07 mols), 248 mL of benzylchloride (2.16 mols), 176.2 g of sodium acetate and 1.0 g of pulverized potassium iodide. The reaction mixture was heated on a steam bath with stirring overnight. The reaction mixture was allowed to cool to room temperature then poured into a 4 L beaker containing 1 L of ice water and 200 mL of concentrated ammonium hydroxide. An oily product came out of solution that solidified upon sitting. The solid was collected by suction filtration and washed with water. The solid was crushed and slurried in methanol. A small amount of ammonium hydroxide was added then filtered. The resulting cake was washed with methanol, water and again with methanol. The cake was allowed to dry on the filter overnight to give 266.3 g of Example 129. The product was recrystallized from 800 mL of isopropyl alcohol to give 243.8 g of Example 129 as an off white solid. Field desorption mass spectrometry was used to confirm the identity of the product.
  • Example 130
  • [0182]
  • [0183]
    To a clean, dry 500 mL flask equipped with a heating mantle and addition funnel were added 150 mL of DMF and 41.0 g of the product from Example 129 (0.15 mol). The reaction vessel was purged with nitrogen and 15.4 mL of phosphorus oxychloride (0.15 mol) were added at such a rate to keep the temperature from exceeding 35° C. The reaction vessel was heated to 80-90° C. and stirring for about 2.5 h. The reaction mixture was allowed to cool to room temperature and poured into a mechanically stirred 4 L beaker containing ice water mixture (1.2 L) containing 75 mL of concentrated ammonium hydroxide. A light tan precipitate formed that was collected by suction filtration and washed with water. The cake was allowed to dry on the filter overnight to give 44.8 g of product.
  • Example 131
  • [0184]
  • [0185]
    To a clean, dry 500 mL round bottomed flask equipped with a magnetic stirrer and reflux condenser were added 85 mL of methanol, 4.26 g of product from Example 104 (30.0 mmols), 7.53 g of the product from Example 130 (25.0 mmols) and a few crystals of piperidine acetate. The reaction mixture was heated to reflux for 3 h and allowed to cool to room temperature. The product did not precipitate upon cooling. The reaction solution was transferred to a Coors dish and the solvent was allowed to evaporate. The remaining residue solidified upon standing to give 10.7 g of Example 131. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 91%. The compound exhibited a wavelength of maximum absorption (λmax) at 380.7 nm and a molar absorptivity (ε) of 24,600 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • Example 132
  • [0186]
  • [0187]
    To a 100 mL round bottomed flask equipped with a magnetic stirrer and heating mantle were added 30 mL of toluene, 1.2 g of 3-isopropenyl-α, α′-dimethylbenzylisocyanate (6.0 mmols), 2.06 g of the product from example 131 (5 mmols) and 3 drops of dibutyltin dilaurate. The reaction mixture was heated to 90-95° C. After about 1 h, TLC analysis revealed that some of Example 131 remained (1:1 THF/Cyclohexane) and some insoluble material remained that was believed to be starting material. Another 10 mL of toluene were added and stirring was continued at 90-95° C. for an additional 1 h. The reaction mixture was allowed to cool to room temperature and added dropwise to a 500 mL beaker containing 40 mL of heptane with stirring to precipitate the product. An oily material separated. The mother liquor was drowned into a 500 mL beaker containing 100 mL of ice cold heptane. A soft solid precipitate formed that was added to fresh, ice cold heptane, which led to the formation of a hard, filterable solid. The light yellow solid was collected by suction filtration, washed with cold heptane and allowed to dry on the filter overnight to give 0.57 g of product. The identity of the product was determined to be the target compound by HPLC-MS and the purity was estimated to be about 87%. The compound exhibited a wavelength of maximum absorption (λmax) at 382.07 nm and a molar absorptivity (ε) of 29,300 as determined by Ultraviolet-Visible light spectroscopy (UV-Vis) in DMF solvent.
  • [0000]
    Preparation of Lens Material
  • Example 133 (Preparation of Stock Monomer Mixture)
  • [0188]
    A stock mixture (50 g) of monomers suitable for preparing intraocular lens material was prepared by thoroughly mixing 2-phenylethyl acrylate (66 weight percent, PEA, CAS# 3530-36-7), 2-phenylethyl methacrylate (30.5 weight percent, PEMA, CAS# 3683-12-3) and 1,4-butanediol diacrylate (3.5 weight percent, BDDA, CAS# 1070-70-8).
  • Example 134 (Control)
  • [0189]
    To a 20 mL vial were added 10 g of the stock mixture and 2,2′-azobisisobutyronitrile (52.3 mg, CAS#78-67-1, thermal initiator) then mixed until a solution was obtained. About 2 g of the resulting solution were added to an 18 mm×150 mm test tube using a syringe. Polymerization was initiated by heating the test tube to 65° C. in a vacuum oven under nitrogen for 17 h then heating to 100° C. for an additional 3 h. The tubes were removed from the oven and allowed to cool to room temperature. The resulting polymer was removed using a spatula. The polymer was placed in a vial containing about 25 mL of acetone and crushed into small pieces using a spatula. The polymer pieces were placed into a Soxhlet extractor and extracted with refluxing acetone for 4 to 5 h. The polymer was removed, allowed to dry on a watch glass overnight then dried at 50° C. in a vacuum over at a pressure of about 15 mm of Hg for 1 h.
  • Example 135
  • [0190]
    To a 20 mL vial were added 10.7 mg of the yellow polymerizable product of Example 107 and 10 g of the stock mixture to give a final concentration of about 0.1 weight percent. The mixture was stirred with gentle heating (about 50° C.) until a solution was obtain and allowed to cool to room temperature. A thermal polymerization initiator, 2,2′-azobisisobutyronitrile (52.3 mg, CAS#78-67-1), was added and mixed until a solution was obtained. About 2 g of the resulting solution was added to an 18 mm×150 mm test tube using a syringe. Polymerization was initiated by heating the test tube to 65° C. in a vacuum oven under nitrogen for 17 h then heating to 100° C. for an additional 3 h. The tubes were removed from the oven and allowed to cool to room temperature. The resulting polymer was removed using a spatula. The polymer was placed in a vial containing about 25 mL of acetone and crushed into small pieces using a spatula. The polymer pieces were placed into a Soxhlet extractor and extracted with refluxing acetone for 4 to 5 h. No color was observed in the Soxhlet vessel indicating that the yellow compound had polymerized with the monomers during polymerization. The polymer was removed, allowed to dry on a watch glass overnight then dried at 50° C. in a vacuum over at a pressure of about 15 mm of Hg for 1 h.
  • Example 136
  • [0191]
    To a 20 mL vial were added 10.7 mg of the UV light absorbing polymerizable product of Example 120 and 10 g of the stock mixture to give a final concentration of about 0.1 weight percent. The mixture was stirred with gentle heating (about 50° C.) until a solution was obtain and allowed to cool to room temperature. A thermal polymerization initiator, 2,2′-azobisisobutyronitrile (53.1 mg, CAS#78-67-1), was added and mixed until a solution was obtained. About 2 g of the resulting solution were added to an 18 mm×150 mm test tube using a syringe. Polymerization was initiated by heating the test tube to 65° C. in a vacuum oven under nitrogen for 17 h then heating to 100° C. for an additional 3 h. The tubes were removed from the oven and allowed to cool to room temperature. The resulting polymer was removed using a spatula. The polymer was placed in a vial containing about 25 mL of acetone and crushed into small pieces using a spatula. The polymer pieces were placed into a Soxhlet extractor and extracted with refluxing acetone for 4 to 5 h. No color was observed in the Soxhlet vessel, indicating that the compound had polymerized with the monomers during polymerization. The polymer was removed, allowed to dry on a watch glass overnight then dried at 50° C. in a vacuum over at a pressure of about 15 mm of Hg for 1 h.
  • [0192]
    All patents, publications and abstracts cited above are incorporated herein by reference in their entirety provided that to the extent any definitions in such patents, publications, and abstracts conflict with those in the present application, the definitions herein shall control with respect to the text herein and each conflicting definition in a patent, publication, or abstract shall control with respect to the content of the document containing such conflicting definitions. It should be understood that the foregoing relates only to preferred embodiments of the present invention and that numerous modifications or alterations can be made therein without departing from the spirit and the scope of the present invention as defined in the following claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US20020082312 *Nov 27, 2001Jun 27, 2002Yu-Chin LaiMethod for polymerizing contact lenses
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7326423 *Nov 10, 2005Feb 5, 2008Advanced Medical Optics, Inc.Copolymerizable azo compounds and articles containing them
US7884228May 5, 2009Feb 8, 2011Alcon, Inc.UV-absorbers for ophthalmic lens materials
US7947849Oct 29, 2010May 24, 2011Alcon, Inc.UV-absorbers for ophthalmic lens materials
US7989572 *Jan 17, 2008Aug 2, 2011Eastman Chemical CompanyPolyvinyl ultraviolet light absorbers for personal care
US8043371Dec 28, 2004Oct 25, 2011Abbott Medical Optics Inc.Intraocular lenses having a visible light-selective-transmissive-region
US8047650Dec 10, 2009Nov 1, 2011Abbott Medical Optics Inc.Ophthalmic devices having a highly selective violet light transmissive filter and related methods
US8153703Nov 3, 2009Apr 10, 2012Novartis AgUV/visible light absorbers for ophthalmic lens materials
US8188203Feb 5, 2008May 29, 2012Abbott Medical Optics Inc.Copolymerizable azo compounds and articles containing them
US8232326Feb 8, 2012Jul 31, 2012Novartis AgUV/visible light absorbers for ophthalmic lens materials
US8236053Oct 8, 2009Aug 7, 2012Novartis Ag2-amino benzophenone UV-absorbers for ophthalmic lens materials
US8292428Sep 23, 2011Oct 23, 2012Abbott Medical Optics Inc.Ophthalmic devices having a highly selective violet light transmissive filter and related methods
US8360576Oct 23, 2008Jan 29, 2013Abbott Medical Optics Inc.Copolymerizable methine and anthraquinone compounds and articles containing them
US8388681Sep 23, 2011Mar 5, 2013Abbott Medical Optics Inc.Intraocular lenses having a visible light-selective-transmissive-region
US8501890Sep 18, 2012Aug 6, 2013Abbott Medical Optics Inc.Copolymerizable methine and anthraquinone compounds and articles containing them
US8785627Aug 5, 2013Jul 22, 2014Abbott Medical Optics Inc.Copolymerizable methine and anthraquinone compounds and articles containing them
US8927743Oct 18, 2011Jan 6, 2015Laboratorios Lesvi, S.L.Process for obtaining dronedarone
US9232993 *Apr 3, 2009Jan 12, 2016Battelle Memorial InstituteAdjustable intraocular lens
US9421090 *Jun 29, 2012Aug 23, 2016Battelle Medical InstituteAdjustable intraocular lens
US20050143812 *Dec 28, 2004Jun 30, 2005Paul Marlene L.Intraocular lenses having a visible light-selective-transmissive-region
US20060110430 *Nov 10, 2005May 25, 2006Pearson Jason CCopolymerizable azo compounds and articles containing them
US20080182957 *Feb 5, 2008Jul 31, 2008Jason Clay PearsonCopolymerizable azo compounds and articles containing them
US20090076235 *Oct 23, 2008Mar 19, 2009Jason Clay PearsonCopolymerizable methine and anthraquinone compounds and articles containing them
US20090185988 *Jan 17, 2008Jul 23, 2009Eastman Chemical CompanyPolyvinyl ultraviolet light absorbers for personal care
US20100085534 *Dec 10, 2009Apr 8, 2010Abbott Medical Optics Inc.Ophthalmic devices having a highly selective violet light transmissive filter and related methods
US20100113641 *Nov 3, 2009May 6, 2010Alcon, Inc.Uv/visible light absorbers for ophthalmic lens materials
US20110046259 *Oct 29, 2010Feb 24, 2011Alcon, Inc.Uv-absorbers for ophthalmic lens materials
US20110144747 *Apr 3, 2009Jun 16, 2011Battelle Memorial InstituteAdjustable intraocular lens
US20120268710 *Jun 29, 2012Oct 25, 2012The Ohio State University Research FoundationAdjustable intraocular lens
US20160326126 *Mar 19, 2015Nov 10, 2016Amydis DiagnosticsAmyloid targeting agents and methods of using the same
EP2447256A1 *Oct 21, 2010May 2, 2012Laboratorios Lesvi, S.L.Process for obtaining dronedarone
WO2012052448A1 *Oct 18, 2011Apr 26, 2012Laboratorios Lesvi, S.L.Process for obtaining dronedarone
Classifications
U.S. Classification424/428, 549/499, 544/58.2, 552/243
International ClassificationC09B1/16, C07D307/02, C07D279/12, A61F2/00
Cooperative ClassificationC07D307/16, C07C255/44, C07D207/408, C07C235/34, A61L2430/16, C07C237/06, C07C237/20, C07C271/12, C07C255/41, C07D295/155, C07C233/55, G02B1/041, C07D263/56, C07C255/42, A61L27/14, C07D209/48
European ClassificationA61L27/14, C07D307/16, G02B1/04B, C07C237/06, C07C235/34, C07C255/42, C07C255/41, C07D207/408, C07D209/48, C07D263/56, C07D295/155
Legal Events
DateCodeEventDescription
Mar 19, 2007ASAssignment
Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN CHEMICAL COMPANY;REEL/FRAME:019031/0695
Effective date: 20051018
Owner name: EASTMAN CHEMICAL COMPANY, TENNESSEE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PETERSON, JASON CLAY;WEAVER, MAX ALLEN;FLEISCHER, JEAN CARROLL;AND OTHERS;REEL/FRAME:019031/0680
Effective date: 20050117
Jun 29, 2007ASAssignment
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO
Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:019501/0069
Effective date: 20070402
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,NOR
Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:019501/0069
Effective date: 20070402
Feb 27, 2009ASAssignment
Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT;REEL/FRAME:022320/0427
Effective date: 20090225
Owner name: ADVANCED MEDICAL OPTICS, INC.,CALIFORNIA
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT;REEL/FRAME:022320/0427
Effective date: 20090225