Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060190014 A1
Publication typeApplication
Application numberUS 11/344,793
Publication dateAug 24, 2006
Filing dateJan 31, 2006
Priority dateJan 5, 2000
Also published asUS6197042, US6277140, US6632238, US20010007077, US20020002386, US20060190037
Publication number11344793, 344793, US 2006/0190014 A1, US 2006/190014 A1, US 20060190014 A1, US 20060190014A1, US 2006190014 A1, US 2006190014A1, US-A1-20060190014, US-A1-2006190014, US2006/0190014A1, US2006/190014A1, US20060190014 A1, US20060190014A1, US2006190014 A1, US2006190014A1
InventorsRichard Ginn, W. Belef
Original AssigneeGinn Richard S, Belef W M
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Integrated vascular device with puncture site closure component and sealant and methods of use
US 20060190014 A1
Abstract
Apparatus and methods are provided for use in sealing a vascular puncture site. The invention comprises an integrated vascular device having a sheath with a closure component and puncture sealant. The closure component is disposed on and advanceable over the exterior of the sheath and may comprise any of a variety of apparatus suited for closing a vascular puncture. Once the closure component has been actuated to close the puncture, sealant is introduced to seal the puncture. The sheath and closure component are then removed from the patient.
Images(6)
Previous page
Next page
Claims(20)
1. A device for closing an opening in tissue, comprising:
an elongate tubular member having first and second ends and having a lumen extending therethrough;
a first jaw associated with the second end of the elongate tubular member;
a second jaw pivotally associated with the tubular member and disposed adjacent to the second end of the elongate tubular member and the first jaw; and
a plunger having a proximal end and a distal end, wherein the plunger is disposed within the lumen of the tubular member, wherein the distal end of the plunger is associated with the second jaw.
2. The device of claim 1, further comprising a clip.
3. The device of claims wherein the clip is retained within a channel, the channel defined as a space between the first and second jaws.
4. The device of claim 3, wherein the second jaw is movable between a first and second position, the second jaw retained in said second position by a biasing member.
5. The device of claim 3, wherein the plunger is movable between a first and second position, wherein when disposed in the second position the plunger moves the second jaw from said second position to said first position.
6. The device of claim 5, wherein the clip is bioabsorbable.
7. A device for closing an opening in tissue, comprising:
an elongate tubular member having a first end, a second end, and a lumen extending from the first end toward the second end;
a first jaw formed by the second end of the elongate tubular member;
a second jaw pivotally mounted to the tubular member and movable relative to the first jaw; and
a plunger having a proximal end and a distal end, the plunger being slidably received within the lumen and selectively engages the second jaw to move the second jaw relative to the first jaw.
8. The device of claim 7, wherein the second jaw comprises a moment arm movable as the plunger moves within the lumen.
9. The device of claim 7, wherein the second jaw is moveable between an open position and a closed position.
10. The device of claim 9, further comprising a biasing member extending between the elongate tubular member and the second jaw, the biasing member applying a biasing force to the second jaw to maintain the second jaw in the closed position.
11. The device of claim 10, wherein the plunger is movable between a first position and a second position, wherein when disposed in the second position the plunger moves the second jaw from the closed position to the open position.
12. The device of claim 7, further comprising a clip.
13. The device of claim 12, wherein the clip is retained by the first jaw and the second jaw when the second jaw is in a closed position.
14. The device of claim 12, wherein the clip is bioabsorbable.
15. The device of claim 12, wherein the clip is implantable.
16. A device for closing an opening in tissue, comprising:
an elongate tubular member having first and second ends and having a lumen extending therethrough;
a first jaw associated with the second end of the elongate tubular member;
a second jaw pivotally associated with the tubular member and disposed adjacent to the first jaw; and
a plunger movable within the lumen of the elongate tubular member, the plunger having a proximal end and a distal end comprising a release arm, the release arm selectively engaging the second jaw as the plunger selectively moves within the lumen.
17. The device of claim 16, further comprising a clip retained between the first jaw and the second jaw.
18. The device of claim 17, wherein the clip is either bioabsorbable or implantable.
19. The device of claim 18, wherein the plunger is movable between a first position and a second position, wherein when disposed in the second position the plunger moves the second jaw from the second position to the first position to release the clip.
20. The device of claim 19, wherein the second jaw is biased to remain in the second position by a means for biasing.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a divisional of U.S. patent application Ser. No. 10/147,774, filed May 17, 2002, which is a continuation-in-part of U.S. patent application Ser. No. 09/478,179 filed Jan. 5, 2000, now U.S. Pat. No. 6,197,042, the disclosures of which are each incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. The Field of the Invention
  • [0003]
    The present invention relates to apparatus and methods for sealing an iatrogenic puncture in a vessel formed in conjunction with a diagnostic or therapeutic treatment. More particularly, the present invention provides an integrated vascular device comprising a sheath having a puncture closure components and puncture sealant.
  • [0004]
    2. The Relevant Technology
  • [0005]
    Catheterization and interventional procedures, such as angioplasty and stenting, generally are performed by inserting a hollow needle through a patient's skin and muscle tissue into the vascular system. A guide wire then is passed through the needle lumen into the patient's blood vessel. The needle is removed and an introducer sheath is advanced over the guide wire into the vessel. A catheter typically is passed through the lumen of the introducer sheath and advanced over the guide wire into position for a medical procedure. The introducer sheath therefore facilitates insertion of various devices into the vessel while minimizing trauma to the vessel wall and minimizing blood loss during a procedure.
  • [0006]
    Upon completion of the medical procedure, the catheter and introducer sheath are removed, leaving a puncture site in the vessel. Commonly, external pressure is applied until clotting and wound sealing occurs. However, this procedure is time consuming and expensive, requiring as much as an hour of a physician's or nurse's time, is uncomfortable for the patient, and requires that the patient be immobilized in the operating room, cathlab, or holding area. Furthermore, a risk of hematoma exists from bleeding prior to hemostasis.
  • [0007]
    Various apparatus have been developed for percutaneously sealing a vascular puncture by occluding or suturing the puncture site. For example, U.S. Pat. Nos. 5,192,302 and 5,222,974 to Kensey et al. describe the use of a biodegradable plug delivered through the introducer sheath into the puncture site. When deployed, the plug seals the vessel and provides hemostasis. Such devices have been slow to gain acceptance in the medical community, however, due to difficulties encountered in positioning the plug within the vessel.
  • [0008]
    Another previously known technique comprises percutaneously suturing the puncture site with specialized apparatus. Such apparatus is described, for example, in U.S. Pat. No. 5,304,184 to Hathaway et al. While percutaneous suturing devices may be effective, a significant degree of skill may be required on the part of the practitioner. Because such devices are mechanically complex, they tend to be relatively expensive to manufacture.
  • [0009]
    Surgical staples and resilient clips for external skin wound closure are well known in the art. Examples include U.S. Pat. No. 5,026,390 to Brown and U.S. Pat. No. 5,683,405 to Yacoubian et al, which both describe resiliently deformable closure devices suitable for manual external application.
  • [0010]
    To reduce the cost and complexity of percutaneous puncture closure devices, such devices employing resilient or deformable clips have been developed. U.S. Pat. No. 5,478,354 to Tovey et al. describes the use of resilient clips in conjunction with a trocar to close abdominal puncture wounds. U.S. Pat. No. 5,810,846 to Virnich et al. describes a specialized apparatus for closing a vascular puncture site with a plastically deformable clip. The apparatus preferably is advanced over a guide wire through a cannula to the surface of the puncture site, where the staple-like clips are delivered to close the wound.
  • [0011]
    U.S. Pat. No. 5,782,861 to Cragg et al. describes specialized apparatus for closing a puncture site with a detachable clip. The apparatus comprises a hollow shaft having a distal end formed with one or more opposed pairs of resilient grasping prongs and that is advanced over a guide wire through a coaxial hollow tube to a position at the distal end of the tube just proximal of the puncture. The grasping prongs are extended beyond the distal end of the tube to grasp the vessel on opposing sides of the puncture. The shaft then is partially retracted, causing the prongs to contract within the tube, thereby sealing the puncture site.
  • [0012]
    The use of backbleed indication as a positioning technique within a vascular puncture is known. For example, U.S. Pat. No. 4,317,445 to Robinson describes a flashback chamber for providing visual indication of venous entry of a cannula. However, that device does not discuss vascular wound closure. U.S. Pat. No. 5,676,689 to Kensey et al., which claims priority from the U.S. Pat. No. 5,222,974 discussed above, uses a vessel location device to simplify positioning of the biodegradable plug. The vessel locator enables blood from the vessel to flow there through so that the position of the vessel may be determined. However, the Kensey system only proffers one closure device, and that device is complex and raises concerns about biocompatibility. It also requires the closure component to be positioned within the puncture, thereby increasing the likelihood of dangerous over-advancement of the plug into the vessel.
  • [0013]
    The percutaneous puncture closure devices described in the foregoing patents generally have the drawback that they require relatively complex mechanisms and require time consuming manipulation to achieve hemostasis. It therefore would be desirable to provide apparatus and methods suitable for vascular puncture closure that overcome these disadvantages of previously known devices.
  • [0014]
    It also would be desirable to provide apparatus and methods that quickly and effectively achieve hemostasis.
  • [0015]
    It further would be desirable to provide apparatus and methods wherein all foreign materials left in a patient's body are bioabsorbable.
  • [0016]
    It still further would be desirable to provide vascular puncture closure apparatus and methods that are safe, low cost, and easy to use.
  • BRIEF SUMMARY OF THE INVENTION
  • [0017]
    In view of the foregoing, it is an object of the present invention to provide vascular puncture closure apparatus and methods that overcome disadvantages of previously known devices.
  • [0018]
    It also is an object of this invention to provide apparatus and methods suitable for vascular puncture closure that quickly and effectively achieve hemostasis.
  • [0019]
    It further is an object of the present invention to provide apparatus and methods wherein all foreign materials left in a patient's body are bioabsorbable.
  • [0020]
    It still further is an object of the present invention to provide vascular puncture closure apparatus and methods that are safe, low cost, and easy to use.
  • [0021]
    These and other objects of the present invention are accomplished by providing an integrated vascular device comprising a sheath having a puncture closure component and puncture sealant. The closure component is disposed on and advanceable over the exterior of the sheath, which may, for example, comprise an introducer sheath, a trocar, or a catheter. The closure component may comprise any of a variety of apparatus suited to close a vascular puncture. Once the closure component has been actuated to close the puncture, sealant is introduced to the exterior surface of the closed puncture, preferably through the sheath's interior lumen, where the sealant seals the puncture closed. The sheath with closure component is then removed from the patient.
  • [0022]
    In a preferred embodiment constructed in accordance with the present invention, the closure component comprises a twist closure device. The device pierces tissue surrounding the vascular puncture and then is rotated to close the wound. In an alternative embodiment, the closure component comprises needles and an elastic segment surrounding the needles. The needles pierce the puncture with the elastic segment expanded. The segment is then allowed to resiliently contract to an unstressed configuration of smaller diameter, thereby drawing the needles together and closing the wound.
  • [0023]
    In a still further alternative embodiment, the needles, or prongs, are elastically deformed to an expanded diameter, in which they pierce the tissue adjacent to puncture. The needles then are allowed to resiliently contract to an unstressed configuration of smaller diameter, thereby closing the wound.
  • [0024]
    Sealant then may be introduced, preferably through the interior lumen of the sheath, to seal the puncture closed. The sealant may comprise any of a variety of sealants, per se known, including adhesives, sutures, and clips, all of which are preferably bioabsorbable. Alternatively, the closure component may further comprise the sealant, wherein the closure component is left in place within the vessel until hemostasis naturally occurs, or wherein the closure component comprises a monopolar electrode or opposed bipolar electrodes that cauterize the wound with RF current. In addition to cauterization, RF energy generates heat that beneficially causes shrinkage of the vascular tissue, thereby assisting closure of the wound. Thermal energy from electrical induction, infrared light, ultrasonic vibration, microwave or laser irradiation, and other means may also be used to seal the puncture.
  • [0025]
    Advantageously, the puncture closure component of the present invention is inexpensively integrated into a sheath, thereby minimizing mechanical complexity while providing quick, safe, effective, and easy-to-use apparatus for achieving vascular closure that overcomes drawbacks of previously known devices. Methods of using the apparatus of the present invention also are provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0026]
    The above and other objects and advantages of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
  • [0027]
    FIG. 1 is a side view of a preferred embodiment of an integrated vascular device constructed in accordance with the present invention;
  • [0028]
    FIG. 2 is a side-sectional view of a sealing device for use with the vascular device of FIG. 1;
  • [0029]
    FIGS. 3A-3D are side views of the closure component of FIG. 1 in use at a vascular puncture site, shown in section, with the sealing device of FIG. 2, illustrating a method of sealing the puncture site;
  • [0030]
    FIGS. 4A-4D are top views of the vascular puncture site of FIG. 3, corresponding to the side-sectional views of FIG. 3, further illustrating the method of
  • [0031]
    FIGS. 5A-5C are side-sectional views of an alternative embodiment of an integrated vascular device of the present invention in use at a vascular puncture site, illustrating a method of sealing the puncture site;
  • [0032]
    FIGS. 6A-6E are side-sectional views of a further alternative embodiment in use at a vascular puncture site, illustrating a method of sealing the puncture site; and
  • [0033]
    FIGS. 7A and 7B are isometric views of a section of vessel including and corresponding to the vascular puncture site of FIG. 6, further illustrating the method of FIG. 6.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0034]
    The integrated vascular sheath with closure component of the present invention overcomes disadvantages associated with previously known methods and apparatus for sealing a vascular puncture by providing a quick, simple, safe, low cost, effective, and easy-to-use solution to wound closure. Apparatus constructed in accordance with the present invention provide vascular access and wound closure in a single device, eliminating the time and manipulation required to insert a separate closure device at the completion of a procedure.
  • [0035]
    Referring to FIG. 1, a first embodiment of apparatus of the present invention is described. Vascular device 10 comprises sheath 12 coupled to hub 14, closure component 16, and closure actuator 18.
  • [0036]
    Sheath 12, which may, for example, comprise an introducer sheath, a trocar, or a catheter, includes central lumen 13 through which other devices may be introduced into the vasculature, for example, to perform a diagnostic or interventional procedure such as angiography, angioplasty, or stenting, or to seal a puncture site.
  • [0037]
    Hub 14 is mounted on the proximal end of sheath 12 and includes side port 20, arc lumens 22, and device port 24. Device port 24 communicates with central lumen 13 of sheath 12, and has self-sealing elastomeric membrane 25 disposed across it. Self-sealing membrane 25, which may comprise, for example, latex or a biocompatible synthetic rubber, permits interventional devices to be introduced through device port 24, while preventing blood loss through central lumen 13. Side port 20 of hub 14 is also in communication with central lumen 13, and is connected to hemostatic port 26 via biocompatible tubing 28.
  • [0038]
    In accordance with the principles of the present invention, closure component 16 comprises lumen 30 that receives sheath 12. Component 16 is slidably disposed on the exterior of sheath 12 and is movable from a stowed position, adjacent hub 14, to a distal deployment position, where tines 17 of component 16 are urged into engagement with tissue surrounding a vascular puncture. Closure component 16 comprises at least two sharpened tips, or tines 17. Tines 17 preferably comprise backbleed ports 32. Closure component 16 is rotatable within arc-lumens 22 about the longitudinal axis of sheath 12, so that, with tines 17 engaging tissue surrounding the vascular puncture, component 16 closes the puncture.
  • [0039]
    Closure actuator 18 comprises plunger 34 and tubes 36, which are configured to slidably pass through arc lumens 22 of hub 14. The proximal ends of tubes 36 are coupled to backbleed bores 38 of plunger 34. The distal ends of tubes 36 are mounted, either permanently or detachably, in closure component 16, so that movement of plunger 34 causes corresponding proximal or distal movement of closure component 16. Likewise, rotation of plunger 34 causes corresponding rotation of tubes 36 within arc lumens 22, which, in turn, rotates closure component 16 about the longitudinal axis of sheath 12.
  • [0040]
    Plunger 34 further comprises device bore 40, coaxially aligned with device port 24, and through which interventional devices or puncture sealants may be passed. As described in detail hereinafter, when plunger 34 is moved to its proximal-most position, closure component 16 is disposed adjacent to hub 14 and preferably provides adequate clearance for interventional devices to be inserted through device port 24 and central lumen 13 into the patient's vasculature. When moved to its distal-most position, plunger 34 causes tubes 36 to urge closure component 16 distally. Interventional devices or sealants then may be introduced through device bore 40, device port 24, and central lumen 13 into the vasculature.
  • [0041]
    Backbleed bores 38 of plunger 32 are in communication with backbleed lumens (not shown) within tubes 36. The backbleed lumens of tubes 36 are in communication with backbleed ports 32 of tines 17, thereby establishing a complete backbleed path through ports 32, the lumens (not shown) of tubes 36, and bores 38. When tines 17 of closure component 16 pierce a vessel wall surrounding a vascular puncture, blood enters backbleed ports 32 and exits through backbleed bores 38, providing visual confirmation to a surgeon that tines 17 are positioned within the vessel wall. The backbleed path thus enables the surgeon to determine when closure component 16 has been sufficiently advanced to permit rotation of component 16 to close the puncture, while reducing the risk that component 16 is either short of the puncture site or is extended into the vessel.
  • [0042]
    In conjunction with closure of the puncture site caused by rotation of component 16, a puncture sealant may be introduced to the puncture site to seal the site closed. The sealant may, for example, comprise an adhesive, such as a bioglue, tissue sealant, or clotting agent, delivered through hemostatic port 26, biocompatible tubing 28, side port 20 and central lumen 13 of introducer sheath 12 to the vascular puncture to further help seal the vessel after puncture closure with closure component 16. Alternatively, the adhesive may be delivered through device port 24 or through the backbleed path described above. Instead of adhesives, the closure component may further comprise the sealant, wherein the closure component is left in place within the vessel until hemostasis naturally occurs. The sealant may also comprise sutures delivered through central lumen 13. Additionally, the sealant may comprise thermal energy application from, for example, electrical induction, infrared light, ultrasonic vibration, microwave or laser irradiation, and other means.
  • [0043]
    With reference to FIG. 2, an alternative puncture sealing device in accordance with the present invention is described. Sealing device 50 comprises delivery device 52 and clip 54. Delivery device 52 comprises proximal end 56 attached to tube 58. Tube 58 terminates at first jaw 60 at its distal end and further comprises lumen 62 and pin 64. Pin 64 extends into lumen 62 from an interior surface of tube 58 and is disposed perpendicular to the longitudinal axis of tube 58.
  • [0044]
    Delivery device 52 further comprises second jaw 66 having female connector 68 coupled to pin 64, so that second jaw 66 pivots about pin 64. Second jaw 66 further comprises moment arm 70. Tension spring 72 is coupled to moment arm 70 and to the interior surface of tube 58 in a manner that biases second jaw 66 against first jaw 60.
  • [0045]
    First jaw 60 and second jaw 66 preferably form channel 74 when biased against one another. Channel 74 is configured to receive clip 54. The biasing force applied by tension spring 72 holds clip 54 within channel 74, so that the clip may be advanced into tissue surrounding a vascular puncture that has had its edges approximated by closure component 16 (FIG. 1).
  • [0046]
    Delivery device 52 still further comprises plunger 76 coupled to pushrod 78 having release arm 80. Pushrod 78 is received within lumen 62 of tube 58, so that release arm 80 engages moment arm 70.
  • [0047]
    Distal advancement of pushrod 78, via application of force to plunger 76, causes release arm 80 to urge moment arm 70 distally. This motion overcomes the biasing force applied by tension spring 72 and causes second jaw 66 to pivot about pin 64. Second jaw 66 thus no longer contacts first jaw 60, and clip 54 is released from channel 74. Tube 58, first jaw 60, second jaw 66, and clip 54 of sealing device 50 preferably are sized for introduction into a patient's vasculature through device bore 40, device port 24, and lumen 13 of vascular device 10.
  • [0048]
    Referring to FIGS. 3A-3D through 4A-4D, in conjunction with FIGS. 1 and 2, a method of using vascular device 10 with sealing device 50 is described. Sheath 12 is advanced through skin, fat, and muscle tissue into vessel V, through the vessel wall tissue surrounding vascular puncture P. With plunger 34 and tubes 36 of actuator 18 in the proximal-most, fully retracted position, an interventional procedure is performed by introducing one or more interventional devices, e.g. angioplasty balloons, stent delivery systems, atherectomy devices, etc., through device port 24 and lumen 13 of sheath 12, in accordance with well-known techniques. Side port 20 may be used to infuse fluids, e.g., contrast agents or medications, into the vessel through sheath 12 during the interventional procedure.
  • [0049]
    Upon completion of the procedure, vascular device 10 may be advantageously used to close vascular puncture P. At this point, closure actuator 18 and closure component 16 are disposed in the proximal-most position, with component 16 adjacent to hub 14. Closure actuator 18 is advanced by urging plunger 34 in the distal direction, thus causing tubes 36 to slide through arc lumens 22 of hub 14 and advance closure component 16.
  • [0050]
    As seen in FIG. 3A, continued distal advancement of plunger 34 causes tines 17 at the distal end of closure component 16 to pierce tissue surrounding puncture P, so that the backbleed ports 32 of tines 17 directly communicate with the puncture wound. Tine punctures T in FIG. 4A represent the points at which tines 17 enter vessel V. The presence of pressure in the vessel higher than atmospheric pressure causes blood to pass through backbleed ports 32, through the backbleed lumens (not shown) of tubes 36, and exit through the proximal ends of backbleed bores 38, thus confirming that tines 17 have engaged tissue around the puncture site and should not be advanced further.
  • [0051]
    In FIG. 3B, sheath 12 is removed from puncture P to facilitate closure of the puncture. Closure actuator 18 is held stationary while hub 14 is withdrawn proximally, thereby withdrawing sheath 12 proximally from puncture P. The puncture remains open, as seen in FIG. 4B. With sheath 12 no longer within puncture P, closure actuator 18 is rotated within arc lumens 22 to rotate closure component 16. Rotation of closure component 16 causes tines 17 to rotate and urge the puncture closed, as seen in FIGS. 3C and 4C.
  • [0052]
    Upon closure of puncture P, a sealant is introduced to seal the wound closed. The sealant may, for example, comprise an adhesive, such as a bioglue, tissue sealant, or clotting agent, it may comprise a suture, it may comprise thermal energy application, or it may comprise leaving the closure component in place within vessel V until hemostasis naturally occurs. Alternatively, the sealing device may comprise a clip, as described hereinafter.
  • [0053]
    FIGS. 3D and 4D show apparatus 10 used in conjunction with sealing device 50 of FIG. 2. With clip 54 disposed in channel 74 of delivery device 52, the delivery device is delivered to vessel V through device bore 40 of closure actuator 18, device port 24 of hub 14, and central lumen 13 of sheath 12. Clip 54 punctures the vessel at tissue surrounding closed puncture P, creating clip punctures C and sealing the puncture. Pushrod 78 of delivery device 52 is then actuated to separate second jaw 66 from first jaw 60 to release clip 54 from delivery device 52. Apparatus 10 and delivery device 52 are removed from the patient to complete the procedure. Clip 54 maintains closure until hemostasis occurs and is preferably bioabsorbable so that no foreign materials are permanently implanted in the patient's body. Additional clips may also be implanted, as required.
  • [0054]
    With reference now to FIGS. 5A-5C, an alternative integrated vascular device in accordance with the present invention is described. Apparatus 100 comprises sheath 102 coupled to hub 104, closure component 106, and closure actuator 108.
  • [0055]
    Like sheath 12, sheath 102 may, for example, comprise an introducer sheath, a trocar, or a catheter, and includes central lumen 103 through which other devices may be introduced into the vasculature, for example, to perform a diagnostic or interventional procedure such as angiography, angioplasty, or stenting, or to seal a puncture site. Hub 104 comprises bore 110, which slidably receives actuator 108, and device port 112, which is in communication with central lumen 103 of sheath 102 and permits introduction of interventional devices while preventing blood loss through central lumen 103. Hub 104 further comprises side port 114.
  • [0056]
    Closure component 106 comprises outer housing 116 having lumen 118 configured to slidably receive sheath 102, bore 120 for slidably receiving inner housing 122, lumen 124 adapted to receive closure actuator 108, and needles or prongs 126 with sharpened tips 128. Inner housing 122 has lumen 123 adapted to receive sheath 102 and channels 130 adapted to receive prongs 126. Component 106 comprises at least two prongs 126, and preferably comprises four.
  • [0057]
    Closure actuator 108 comprises actuation tube 132 having lumen 133, actuation rod 134 disposed within actuation tube 132, first plunger 136 coupled to the proximal end of tube 132, and second plunger 138 coupled to the proximal end of rod 134. The distal end of tube 132 is affixed, either permanently or detachably, in lumen 124 to outer housing 116 of closure component 106, while the distal end of rod 134 is coupled to inner housing 122.
  • [0058]
    To perform an interventional procedure through central lumen 103 of sheath 102, the sheath is advanced through skin, fat, and muscle tissue into vessel V, through vascular puncture P, in accordance with well-known techniques. With closure component 106 in the proximal-most, fully retracted position adjacent hub 104, the interventional procedure then is performed by introducing one or more interventional devices, e.g. angioplasty balloons, stent delivery systems, atherectomy devices, etc., through device port 112 and lumen 103 of sheath 102, again in accordance with well-known techniques. Side port 114 may be used to infuse fluids, e.g., contrast agents or medications, into the vessel through sheath 102 during the interventional procedure.
  • [0059]
    Upon completion of the procedure, apparatus 100 advantageously may be used to close the vessel. Closure component 106 is advanced distally by urging plungers 136 and 138 distally. Inner housing 122 is only partially received within bore 120 of outer housing 116 so that prongs 126 are elastically deformed and received within channels 130. As shown in FIG. 5A, closure component 106 is advanced until inner housing 122 abuts against the vessel V, as may be determined, for example, with a backbleed indicator (not shown).
  • [0060]
    In FIG. 5B, first plunger 136 is urged distally to distally advance actuation tube 132 and outer housing 116, while second plunger 138 and sheath 102 are held stationary. Advancement of outer housing 116 advances sharpened tips 128 of prongs 126 into tissue surrounding puncture P.
  • [0061]
    In FIG. 5C, sheath 102 and second plunger 138 are retracted proximally to draw sheath 102 out of vessel V and to draw inner housing 122 completely within bore 120 of outer housing 116. Proximally retracting inner housing 122 via actuation rod 134 and second plunger 138 removes prongs 126 of outer housing 116 from channels 130 of the inner housing. The prongs resiliently contract to a lower stress configuration, thereby drawing opposing sides of puncture P together and closing the wound. A sealant, for example clip 54 of FIG. 2, may then be introduced to the closed puncture to seal the site closed, as discussed hereinabove. Alternatively, the sealing device may comprise RF current, supplied by an RF generator (not shown), applied across opposed tips 128, which act as bipolar electrodes.
  • [0062]
    Referring to FIGS. 6A-6E, as well as FIGS. 7A and 7B, a still further alternative embodiment of apparatus of the present invention is described. FIG. 6 depict the closure component of an integrated vascular device in use at vascular puncture P within vessel V. Apparatus 150 comprises sheath 152 coupled to a hub (not shown), closure component 154, and a closure actuator (not shown). Various closure actuators for use with closure component 154 will be apparent to those of skill in the art from the foregoing embodiments.
  • [0063]
    Sheath 152 may, for example, comprise an introducer sheath, a trocar, or a catheter, and includes central lumen 153 through which other devices may be introduced into the vasculature, for example, to perform a diagnostic or interventional procedure such as angiography, angioplasty, or stenting, or to seal a puncture site. Closure component 154 comprises spacer 156, needles 158, and needle cover 160. Spacer 156 is coaxially and slidably disposed about the exterior of sheath 152, and preferably has an annular diameter of about 1 mm to ensure that needles 158 engage the tissue surrounding puncture P rather than enter the puncture, so that the needles are able to draw the wound closed, as described hereinbelow. Needles 158 are disposed between spacer 156 and cover 160 during advancement to puncture P. Needles 158 comprise ledges 162, which act as positive stops to prevent excessive advancement of the needles with respect to cover 160, which comprises corresponding annular ledge 164. Cover 160 further comprises elastic segment 166, configured to elastically deform needles 158. Closure component 154 comprises at least two needles 158, and preferably comprises four. Needles 158 may further comprise retaining means (not shown), such as barbs or hooks, to assist in gripping tissue.
  • [0064]
    As shown in FIG. 6A, sheath 152 may be advanced through skin, fat, and muscle tissue into vessel V, through vascular puncture P, in accordance with well-known techniques. With closure component 154 in a proximal-most, fully retracted position adjacent the hub, an interventional procedure is performed through central lumen 153 of sheath 152 by introducing one or more interventional devices through the lumen into the patient's vasculature. Closure component 154 then is advanced via the closure actuator until it abuts against vessel V, as may be determined, for example, with a backbleed indicator, such as described for the foregoing embodiments. Cover 160 protects needles 158 and prevents snagging of tissue as closure component 154 is distally advanced down sheath 152 and through skin, fat, and muscle tissue. Spacer 156 retains needles 158 in a position away from the edge of puncture P.
  • [0065]
    In FIG. 6B, needles 158 are distally advanced with respect to needle cover 160 until ledge 162 abuts ledge 164. Needles 158 deflect elastic segment 166 of cover 160 outward and pierce tissue surrounding puncture P. FIG. 7A depicts, in isometric view, the segment of vessel V surrounding puncture P. With a needle arrangement comprising four needles 158, the needles create needle punctures N surrounding vascular puncture P. Sheath 152 and spacer 156 then are retracted proximally and removed from vessel V, as shown in FIG. 6C. As depicted in FIGS. 6D and 7B, elastic segment 166 of needle cover 160 resiliently contracts, thereby drawing needles 158 together and approximating the edges of the wound.
  • [0066]
    A sealant, such as a bioglue, tissue sealant, or clotting agent, then may be introduced to the puncture site to seal the wound closed. Alternatively, closure component 154 may be maintained in position until hemostasis occurs naturally, or sutures may be introduced through central lumen 153. In addition, or in the alternative, RF energy may be applied across needles 158, as described hereinabove with respect to FIG. 5, or a clip, such as clip 54 of sealing device 50 of FIG. 2, may be applied. Thermal energy from electrical induction, infrared light, ultrasonic vibration, microwave or laser irradiation, and other means may also be used to seal the puncture.
  • [0067]
    Illustratively, FIG. 6E depicts sealing device 170, comprising adhesive 172, being delivered through central lumen 153 within delivery sheath 174. After sufficient time for adhesive 172 to set, apparatus 150 is removed from vessel V.
  • [0068]
    Although preferred illustrative embodiments of the present invention are described hereinabove, it will be evident to one skilled in the art that various changes and modifications may be made without departing from the invention. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1088393 *Sep 20, 1913Feb 24, 1914Oscar E BackusButton.
US1331401 *Sep 12, 1919Feb 17, 1920Clay Summers HenryButton-fastening
US2316297 *Jan 15, 1943Apr 13, 1943Southerland Beverly ASurgical instrument
US2583625 *Oct 29, 1946Jan 29, 1952Thomas & Betts CorpMethod of and tool for crimping tubes
US2969887 *Apr 8, 1959Jan 31, 1961American Thermos Products CompThreaded pouring lip stopper combination for vacuum bottle
US3015403 *Apr 8, 1959Jan 2, 1962American Thermos Products CompThreaded stopper expanding pouring lip combination for vacuum bottle
US3120230 *Oct 24, 1960Feb 4, 1964Jack H SandersSurgical clamp
US3944114 *Mar 14, 1975Mar 16, 1976Koninklijke Emballage Industrie Van Leer B.V.Screw threaded plastic plug
US4014492 *Jun 11, 1975Mar 29, 1977Senco Products, Inc.Surgical staple
US4201215 *Sep 6, 1977May 6, 1980Crossett E SApparatus and method for closing a severed sternum
US4207870 *Jun 15, 1978Jun 17, 1980Becton, Dickinson And CompanyBlood sampling assembly having porous vent means vein entry indicator
US4318401 *Apr 24, 1980Mar 9, 1982President And Fellows Of Harvard CollegePercutaneous vascular access portal and catheter
US4327485 *May 21, 1980May 4, 1982Amp IncorporatedPistol grip tool
US4428376 *Jun 14, 1982Jan 31, 1984Ethicon Inc.Plastic surgical staple
US4440170 *Mar 6, 1979Apr 3, 1984Ethicon, Inc.Surgical clip applying instrument
US4505273 *Feb 9, 1983Mar 19, 1985Intermedicat GmbhSurgical staple
US4510251 *Nov 8, 1982Apr 9, 1985Abbott LaboratoriesFluorescent polarization assay for ligands using aminomethylfluorescein derivatives as tracers
US4510252 *Nov 18, 1983Apr 9, 1985Owens-Corning Fiberglas CorporationEasily formed chemically resistant glass fibers
US4523695 *Feb 9, 1983Jun 18, 1985Intermedicat GmbhSurgical stapler
US4525157 *Jul 28, 1983Jun 25, 1985Manresa, Inc.Closed system catheter with guide wire
US4635634 *Jul 12, 1985Jan 13, 1987Santos Manuel VSurgical clip applicator system
US4665906 *May 21, 1986May 19, 1987Raychem CorporationMedical devices incorporating sim alloy elements
US4724840 *Feb 3, 1982Feb 16, 1988Ethicon, Inc.Surgical fastener applier with rotatable front housing and laterally extending curved needle for guiding a flexible pusher
US4738658 *Sep 19, 1986Apr 19, 1988Aries Medical IncorporatedTapered hemostatic device for use in conjunction with a catheter for alleviating blood leakage and method for using same
US4744364 *Feb 17, 1987May 17, 1988Intravascular Surgical Instruments, Inc.Device for sealing percutaneous puncture in a vessel
US4832688 *Apr 7, 1987May 23, 1989Terumo Kabushiki KaishaCatheter for repair of blood vessel
US4836204 *Jul 6, 1987Jun 6, 1989Landymore Roderick WMethod for effecting closure of a perforation in the septum of the heart
US4934364 *Oct 12, 1984Jun 19, 1990United States Surgical CorporationSurgical clip applying apparatus having fixed jams
US5015247 *Jun 13, 1988May 14, 1991Michelson Gary KThreaded spinal implant
US5021059 *May 7, 1990Jun 4, 1991Kensey Nash CorporationPlug device with pulley for sealing punctures in tissue and methods of use
US5078731 *Jun 5, 1990Jan 7, 1992Hayhurst John OSuture clip
US5108421 *Oct 1, 1990Apr 28, 1992Quinton Instrument CompanyInsertion assembly and method of inserting a vessel plug into the body of a patient
US5114032 *Feb 20, 1991May 19, 1992Laidlaw Willam SPlug for sealing preservative in wood
US5116349 *May 23, 1990May 26, 1992United States Surgical CorporationSurgical fastener apparatus
US5192288 *May 26, 1992Mar 9, 1993Origin Medsystems, Inc.Surgical clip applier
US5192300 *Jan 28, 1992Mar 9, 1993Quinton Instrument CompanyInsertion assembly and method of inserting a vessel plug into the body of a patient
US5192301 *Sep 3, 1991Mar 9, 1993Nippon Zeon Co., Ltd.Closing plug of a defect for medical use and a closing plug device utilizing it
US5209756 *Nov 5, 1990May 11, 1993Bahaa Botros SeedhomLigament fixation staple
US5282808 *Feb 4, 1993Feb 1, 1994Origin Medsystems, Inc.Closure prevention apparatus for surgical clip applier
US5290243 *Jul 16, 1992Mar 1, 1994Technalytics, Inc.Trocar system
US5290310 *Jul 13, 1992Mar 1, 1994Howmedica, Inc.Hemostatic implant introducer
US5292309 *Jan 22, 1993Mar 8, 1994Schneider (Usa) Inc.Surgical depth measuring instrument and method
US5292332 *Jul 27, 1992Mar 8, 1994Lee Benjamin IMethods and device for percutanceous sealing of arterial puncture sites
US5306254 *Oct 1, 1992Apr 26, 1994Kensey Nash CorporationVessel position locating device and method of use
US5320639 *Mar 12, 1993Jun 14, 1994Meadox Medicals, Inc.Vascular plug delivery system
US5392978 *Oct 15, 1993Feb 28, 1995United States Surgical CorporationSurgical staple and endoscopic stapler
US5395030 *Jun 2, 1993Mar 7, 1995Olympus Optical Co., Ltd.Surgical device for stapling and fastening body tissues
US5411520 *Feb 3, 1993May 2, 1995Kensey Nash CorporationHemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use
US5413571 *Jul 16, 1992May 9, 1995Sherwood Medical CompanyDevice for sealing hemostatic incisions
US5413584 *May 7, 1993May 9, 1995Ethicon, Inc."Omega"-shaped staple for surgical, especially endoscopic, purposes
US5416584 *Apr 25, 1994May 16, 1995Honeywell Inc.Sinusoidal noise injection into the dither of a ring laser gyroscope
US5417699 *Dec 10, 1992May 23, 1995Perclose IncorporatedDevice and method for the percutaneous suturing of a vascular puncture site
US5423857 *Nov 2, 1993Jun 13, 1995Ethicon, Inc.Three piece surgical staple
US5522840 *Nov 12, 1993Jun 4, 1996Krajicek; MilanDevice for the non-surgical seal of the interstice in the wall of a vessel
US5591205 *Jun 6, 1995Jan 7, 1997Quinton Instrument CompanyInsertion assembly and method of inserting a vessel plug into the body of a patient
US5601602 *Nov 16, 1994Feb 11, 1997Quinton Instrument CompanyInsertion assembly and method of inserting a vessel plug into the body of a patient
US5618291 *Jun 2, 1995Apr 8, 1997Origin Medsystems, Inc.Gas-sealed instruments for use in laparoscopic surgery
US5620452 *Dec 22, 1994Apr 15, 1997Yoon; InbaeSurgical clip with ductile tissue penetrating members
US5716375 *Feb 21, 1996Feb 10, 1998Quinton Instrument CompanyInsertion assembly and method of inserting a vessel plug into the body of a patient
US5725554 *Oct 8, 1993Mar 10, 1998Richard-Allan Medical Industries, Inc.Surgical staple and stapler
US5728122 *Jun 7, 1995Mar 17, 1998Datascope Investment Corp.Guide wire with releaseable barb anchor
US5728132 *Apr 8, 1996Mar 17, 1998Tricardia, L.L.C.Self-sealing vascular access device
US5732872 *Feb 6, 1996Mar 31, 1998Heartport, Inc.Surgical stapling instrument
US5855312 *Jul 25, 1996Jan 5, 1999Toledano; HavivFlexible annular stapler for closed surgery of hollow organs
US5861005 *Feb 11, 1997Jan 19, 1999X-Site, L.L.C.Arterial stapling device
US5871474 *Apr 2, 1997Feb 16, 1999General Surgical Innovations, Inc.Screw-type skin seal with inflatable membrane
US5871501 *Jan 12, 1998Feb 16, 1999Datascope Investment Corp.Guide wire with releasable barb anchor
US5871525 *Oct 23, 1995Feb 16, 1999Ep Technologies, Inc.Steerable ablation catheter system
US5902310 *Feb 21, 1997May 11, 1999Ethicon Endo-Surgery, Inc.Apparatus and method for marking tissue
US5904697 *Oct 5, 1998May 18, 1999Heartport, Inc.Devices and methods for performing a vascular anastomosis
US6022372 *Oct 14, 1998Feb 8, 2000X-Site, L.L.C.Arterial stapling device
US6030364 *Oct 3, 1997Feb 29, 2000Boston Scientific CorporationApparatus and method for percutaneous placement of gastro-intestinal tubes
US6048358 *Jul 13, 1998Apr 11, 2000Barak; ShlomoMethod and apparatus for hemostasis following arterial catheterization
US6056768 *Jan 7, 1992May 2, 2000Cates; Christopher U.Blood vessel sealing system
US6056770 *Feb 1, 1999May 2, 2000Biointerventional CorporationExpansile device for use in blood vessels and tracts in the body and method
US6398752 *Jun 5, 1998Jun 4, 2002William P. Sweezer, Jr.Method of occluding a patient's ascending aorta and delivery cardioplegic fluid
US6506210 *Sep 11, 2000Jan 14, 2003Angiolink CorporationWound site management and wound closure device
US6533762 *Jul 25, 2001Mar 18, 2003Angiolink CorporationAdvanced wound site management systems and methods
US6679904 *Oct 15, 1997Jan 20, 2004Malachy GleesonDevice for closure of puncture wound
US6719777 *Dec 7, 2000Apr 13, 2004Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US6726704 *Mar 20, 2000Apr 27, 2004By-Pass, Inc.Advanced closure device
US7001398 *Jul 9, 2003Feb 21, 2006Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US7163551 *Aug 8, 2002Jan 16, 2007Thomas AnthonySurgical stapling device
US7211101 *Dec 31, 2002May 1, 2007Abbott Vascular DevicesMethods for manufacturing a clip and clip
US20020026208 *Dec 7, 2000Feb 28, 2002Medical Technology Group, Inc.Apparatus and methods for delivering a closure device
US20020049472 *Sep 7, 2001Apr 25, 2002James ColemanSurgical staple
US20020082641 *Dec 7, 2000Jun 27, 2002Ginn Richard S.Closure device and methods for making and using them
US20030004543 *Oct 15, 1997Jan 2, 2003Malachy GleesonDevice for closure of puncture wound
US20030097140 *Jan 8, 2003May 22, 2003Glenn KannerWound site management and wound closure device
US20040009289 *Jul 9, 2003Jan 15, 2004Carley Michael T.Closure device and methods for making and using them
US20040010285 *Jul 9, 2003Jan 15, 2004Carley Michael T.Closure device and methods for making and using them
US20040039414 *Dec 31, 2002Feb 26, 2004Integrated Vascular Systems, Inc.Methods for manufacturing a clip and clip
US20040073236 *Sep 19, 2003Apr 15, 2004Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US20040073255 *Oct 8, 2003Apr 15, 2004Ginn Richard SPlunger apparatus and methods for delivering a closure device
US20050087985 *Oct 22, 2003Apr 28, 2005Mosing Donald E.Tubular connection with slotted threads
US20050090859 *Oct 23, 2003Apr 28, 2005Sundaram RavlkumarVascular sealing device and method of use
US20060020270 *Feb 1, 2005Jan 26, 2006Ronald JabbaClip applier and methods of use
US20070010854 *Sep 18, 2006Jan 11, 2007Christy CumminsSurgical Staple
USRE34866 *Dec 31, 1991Feb 21, 1995Kensey Nash CorporationDevice for sealing percutaneous puncture in a vessel
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7806904Feb 24, 2004Oct 5, 2010Integrated Vascular Systems, Inc.Closure device
US7806910Jul 31, 2006Oct 5, 2010Abbott LaboratoriesMulti-element biased suture clip
US7819895Apr 18, 2006Oct 26, 2010Integrated Vascular Systems, Inc.Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US7828817Aug 4, 2005Nov 9, 2010Integrated Vascular Systems, Inc.Apparatus and methods for delivering a closure device
US7841502Dec 18, 2007Nov 30, 2010Abbott LaboratoriesModular clip applier
US7842068Nov 30, 2010Integrated Vascular Systems, Inc.Apparatus and methods for providing tactile feedback while delivering a closure device
US7850709Jun 4, 2003Dec 14, 2010Abbott Vascular Inc.Blood vessel closure clip and delivery device
US7850797Dec 14, 2010Integrated Vascular Systems, Inc.Methods for manufacturing a clip and clip
US7854810Dec 17, 2003Dec 21, 2010Integrated Vascular Systems, Inc.Methods for manufacturing a clip and clip
US7857828Feb 1, 2005Dec 28, 2010Integrated Vascular Systems, Inc.Clip applier and methods of use
US7867249Aug 8, 2003Jan 11, 2011Integrated Vascular Systems, Inc.Clip applier and methods of use
US7879071May 9, 2003Feb 1, 2011Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US7887555Jul 9, 2003Feb 15, 2011Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US7887563Jun 14, 2005Feb 15, 2011Abbott Vascular Inc.Surgical staple
US7901428Mar 8, 2011Integrated Vascular Systems, Inc.Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US7905900Mar 15, 2011Integrated Vascular Systems, Inc.Clip applier and methods of use
US7918873Sep 18, 2006Apr 5, 2011Abbott Vascular Inc.Surgical staple
US7931669Apr 26, 2011Integrated Vascular Systems, Inc.Integrated vascular device with puncture site closure component and sealant and methods of use
US8007512Aug 30, 2011Integrated Vascular Systems, Inc.Plunger apparatus and methods for delivering a closure device
US8128644Sep 19, 2003Mar 6, 2012Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8182497May 22, 2012Integrated Vascular Systems, Inc.Closure device
US8192459Jun 5, 2012Abbott Vascular Inc.Blood vessel closure clip and delivery device
US8202283Jun 19, 2012Integrated Vascular Systems, Inc.Methods for manufacturing a clip and clip
US8202293Jun 20, 2008Jun 19, 2012Integrated Vascular Systems, Inc.Clip applier and methods of use
US8202294Dec 20, 2010Jun 19, 2012Integrated Vascular Systems, Inc.Clip applier and methods of use
US8226681Jul 24, 2012Abbott LaboratoriesMethods, devices, and apparatus for managing access through tissue
US8236026Aug 7, 2012Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8257390Sep 4, 2012Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8303624Mar 15, 2010Nov 6, 2012Abbott Cardiovascular Systems, Inc.Bioabsorbable plug
US8313497Nov 20, 2012Abbott LaboratoriesClip applier and methods of use
US8323312Jun 9, 2009Dec 4, 2012Abbott LaboratoriesClosure device
US8398656Mar 2, 2011Mar 19, 2013Integrated Vascular Systems, Inc.Clip applier and methods of use
US8398676Mar 19, 2013Abbott Vascular Inc.Closure device
US8469995Jun 4, 2012Jun 25, 2013Abbott Vascular Inc.Blood vessel closure clip and delivery device
US8486092Mar 11, 2009Jul 16, 2013Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8486108Feb 1, 2006Jul 16, 2013Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8518057Sep 13, 2012Aug 27, 2013Abbott LaboratoriesClip applier and methods of use
US8518063Jul 2, 2008Aug 27, 2013Russell A. HouserArteriotomy closure devices and techniques
US8529587Jun 6, 2012Sep 10, 2013Integrated Vascular Systems, Inc.Methods of use of a clip applier
US8556930Jun 28, 2006Oct 15, 2013Abbott LaboratoriesVessel closure device
US8556932May 19, 2011Oct 15, 2013Abbott Cardiovascular Systems, Inc.Collapsible plug for tissue closure
US8579932Feb 24, 2004Nov 12, 2013Integrated Vascular Systems, Inc.Sheath apparatus and methods for delivering a closure device
US8585836Jun 18, 2012Nov 19, 2013Integrated Vascular Systems, Inc.Methods for manufacturing a clip and clip
US8590760May 24, 2005Nov 26, 2013Abbott Vascular Inc.Surgical stapler
US8597325Nov 29, 2010Dec 3, 2013Integrated Vascular Systems, Inc.Apparatus and methods for providing tactile feedback while delivering a closure device
US8603116Aug 4, 2010Dec 10, 2013Abbott Cardiovascular Systems, Inc.Closure device with long tines
US8603136May 3, 2007Dec 10, 2013Integrated Vascular Systems, Inc.Apparatus and methods for providing tactile feedback while delivering a closure device
US8617184Feb 15, 2011Dec 31, 2013Abbott Cardiovascular Systems, Inc.Vessel closure system
US8657852Mar 8, 2013Feb 25, 2014Abbott Vascular Inc.Closure device
US8672953Jun 6, 2011Mar 18, 2014Abbott LaboratoriesTissue closure system and methods of use
US8690910Mar 31, 2006Apr 8, 2014Integrated Vascular Systems, Inc.Closure device and methods for making and using them
US8728119Feb 18, 2011May 20, 2014Abbott Vascular Inc.Surgical staple
US8758396Apr 27, 2006Jun 24, 2014Integrated Vascular Systems, Inc.Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US8758398Sep 7, 2007Jun 24, 2014Integrated Vascular Systems, Inc.Apparatus and method for delivering a closure element
US8758399Aug 2, 2010Jun 24, 2014Abbott Cardiovascular Systems, Inc.Expandable bioabsorbable plug apparatus and method
US8758400Nov 8, 2010Jun 24, 2014Integrated Vascular Systems, Inc.Closure system and methods of use
US8784447Apr 25, 2005Jul 22, 2014Abbott Vascular Inc.Surgical stapler
US8808310Feb 14, 2007Aug 19, 2014Integrated Vascular Systems, Inc.Resettable clip applier and reset tools
US8820602Nov 19, 2010Sep 2, 2014Abbott LaboratoriesModular clip applier
US8821534Dec 6, 2010Sep 2, 2014Integrated Vascular Systems, Inc.Clip applier having improved hemostasis and methods of use
US8858594Dec 18, 2009Oct 14, 2014Abbott LaboratoriesCurved closure device
US8893947Dec 17, 2007Nov 25, 2014Abbott LaboratoriesClip applier and methods of use
US8905937Feb 26, 2009Dec 9, 2014Integrated Vascular Systems, Inc.Methods and apparatus for locating a surface of a body lumen
US8920442Aug 23, 2006Dec 30, 2014Abbott Vascular Inc.Vascular opening edge eversion methods and apparatuses
US8926633Jun 19, 2006Jan 6, 2015Abbott LaboratoriesApparatus and method for delivering a closure element
US8926656Jan 10, 2011Jan 6, 2015Integated Vascular Systems, Inc.Clip applier and methods of use
US8956388Apr 21, 2008Feb 17, 2015Integrated Vascular Systems, Inc.Integrated vascular device with puncture site closure component and sealant
US8961541Oct 31, 2008Feb 24, 2015Cardio Vascular Technologies Inc.Vascular closure devices, systems, and methods of use
US8992567Sep 21, 2009Mar 31, 2015Cardiovascular Technologies Inc.Compressible, deformable, or deflectable tissue closure devices and method of manufacture
US9050068May 20, 2013Jun 9, 2015Abbott LaboratoriesClip applier and methods of use
US9050087May 14, 2008Jun 9, 2015Integrated Vascular Systems, Inc.Integrated vascular device with puncture site closure component and sealant and methods of use
US9060769May 1, 2008Jun 23, 2015Abbott Vascular Inc.Surgical stapler
US9089311Jan 8, 2010Jul 28, 2015Abbott Vascular Inc.Vessel closure devices and methods
US9089674Sep 15, 2006Jul 28, 2015Integrated Vascular Systems, Inc.Apparatus and methods for positioning a vascular sheath
US9149276Mar 21, 2011Oct 6, 2015Abbott Cardiovascular Systems, Inc.Clip and deployment apparatus for tissue closure
US9173644Jan 8, 2010Nov 3, 2015Abbott Vascular Inc.Closure devices, systems, and methods
US9241696Oct 29, 2009Jan 26, 2016Abbott Vascular Inc.Closure device
US9271707Mar 8, 2013Mar 1, 2016Integrated Vascular Systems, Inc.Clip applier and methods of use
US9282965May 16, 2008Mar 15, 2016Abbott LaboratoriesApparatus and methods for engaging tissue
US9295469Jun 3, 2013Mar 29, 2016Abbott Vascular Inc.Blood vessel closure clip and delivery device
US9314230Aug 22, 2014Apr 19, 2016Abbott Vascular Inc.Closure device with rapidly eroding anchor
US9320522Aug 31, 2011Apr 26, 2016Integrated Vascular Systems, Inc.Closure device and methods for making and using them
USD611144Mar 2, 2010Abbott LaboratoriesApparatus for delivering a closure element
Classifications
U.S. Classification606/142
International ClassificationA61M25/06, A61B17/00, A61B17/08, A61B17/064, A61B17/10
Cooperative ClassificationA61B2017/00637, A61B2017/00668, A61B17/10, A61B17/0057, A61B2017/0641, A61B17/00491, A61B2017/00862, A61B17/083, A61B2017/00663, A61B17/064, A61B17/128, A61M25/0662
European ClassificationA61B17/08C, A61B17/10, A61B17/00P, A61B17/128