Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060201804 A1
Publication typeApplication
Application numberUS 11/434,442
Publication dateSep 14, 2006
Filing dateMay 15, 2006
Priority dateMar 21, 1997
Also published asCA2284634A1, CA2284634C, CA2550198A1, CA2550198C, CN1117275C, CN1229639C, CN1252869A, CN1487290A, CN1769879A, CN1936560A, CN1936560B, CN100507541C, DE69841786D1, EP0968415A1, EP0968415A4, EP0968415B1, US6379513, US7045046, US20020084184, US20050034983, WO1998043073A1
Publication number11434442, 434442, US 2006/0201804 A1, US 2006/201804 A1, US 20060201804 A1, US 20060201804A1, US 2006201804 A1, US 2006201804A1, US-A1-20060201804, US-A1-2006201804, US2006/0201804A1, US2006/201804A1, US20060201804 A1, US20060201804A1, US2006201804 A1, US2006201804A1
InventorsGarry Chambers, Alastair Hodges, Thomas Beck, Ian Maxwell
Original AssigneeLifescan, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sensor connection means
US 20060201804 A1
Abstract
The invention relates to a sensor adapted for electrical connection to a power source having an electrical contact means (3). The sensor has a first insulating substrate (1) carrying a first electrode (2) and a second insulating substrate (7) carrying a second electrode (6). The electrodes are disposed to face each other in spaced apart relationship, sandwiching a spacer (4) therebetween. A first cut-out portion extends through the first insulating substrate (1) and a spacer (4) to expose a first contact area (23) on the second insulating substrate (7). This permits the electrical contact means (31) to effect electrical connection with the first contact (23) which in turn is in electrically conductive connection with the second electrode (6). A similar contact arrangement may be disposed on the opposite side of the sensor.
Images(5)
Previous page
Next page
Claims(19)
1-22. (canceled)
23. A method of making a sensor adapted for electrical connection with a power source having a contactor, the method comprising the steps of:
providing a first insulating substrate carrying a first electrode and having an aperture, a spacer having an aperture, and a second insulating substrate carrying a second electrode,
adhering the first insulating substrate to one side of the spacer, whereby the first electrode defines a first end wall of an electrochemical cell;
adhering the second insulating substrate to an opposite side of the spacer, whereby the second electrode defines a second end wall of the cell;
wherein the aperture of the first insulating substrate defines a first cut-out aperture that provides a first contact area on the second insulating substrate that is adapted to permit electrical contact with the second electrode.
24. A method according to claim 23 wherein each insulating substrate is formed from a flexible insulating material.
25. A method according to claim 24 wherein the flexible insulating material is polyester.
26. A method according to claim 23 further comprising the step of depositing metal on the first and second insulating substrates to form the first and second electrodes and the first contact area.
27. A method according to claim 26 wherein the metal is selected from the group consisting of palladium, gold, platinum, iridium and silver.
28. A method according to claim 26 wherein the metal is 10-1000 nanometers thick.
29. A method according to claim 26 further comprising the step of depositing the layer of metal is on the insulating substrate by sputter coating.
30. A method according to claim 23 wherein each electrode and the first contact area are formed from carbon.
31. A method according to claim 23 wherein the first cut-out aperture is spaced adjacent one end of the sensor.
32. A method according to claim 23 wherein the first cut-out aperture is cut from an edge of the sensor such that the first cut-out aperture is open on at least one edge of the sensor.
33. A method according to claim 23 wherein at least one of the insulating substrates or the spacer extends around the entire periphery of the first cut-out aperture.
34. A method according to claim 23 wherein the spacer comprises a cut-out aperture that corresponds to the first cut-out aperture of the first insulating substrate.
35. A method according to claim 34 wherein the cut-out aperture of the spacer is in registration with the first cut-out aperture of the first insulating substrate.
36. A method according to claim 23 wherein the first cut-out aperture is adapted for click engagement with a contactor.
37. A method according to claim 23 further providing that the second insulating substrate have an aperture, wherein the aperture defines a second cut-out aperture that provides a second contact area on the first insulating substrate that is adapted to permit electrical contact with the first electrode.
38. A method according to claim 37 wherein the first and second contact areas are laterally spaced apart relative to the longitudinal axis of the sensor.
39. A method according to claim 37 wherein the first and second contact areas are longitudinally spaced apart relative to the longitudinal axis of the sensor.
40. A method according to claim 37 wherein the first and second contact areas are laterally and longitudinally spaced relative to the longitudinal axis of the sensor.
Description
    RELATED APPLICATIONS
  • [0001]
    This application is a continuation application of International Patent Application No. PCT/AU98/00184, internationally filed 20 Mar. 1998, and claiming priority from Australian Provisional Patent Application No. PO 5813, filed 21 Mar. 1997.
  • TECHNICAL FIELD
  • [0002]
    This invention relates to disposable electrochemical sensors of the type used for quantitative analysis, for example, of glucose levels in blood, for pH measurement, or the like. More particularly the invention relates to means for electrical connection of such sensors to a measuring apparatus.
  • BACKGROUND ART
  • [0003]
    U.S. Pat. No. 5,437,999 discloses an electrochemical sensor of the kind which in use is electrically connected with a power source. The sensor is constructed from two spaced apart printed circuit boards each having a metal layer on one side and disposed so that the metal layers are facing each other in spaced apart relationship. The metal layers are photolithographically treated to define electrode areas which form part of a cell. At one end of the assembly the electrode substrates are cut to provide laterally spaced protruding tabs bearing the metal layer. The exposed metal surfaces of the tabs act as contact pads, each contact pad being electrically connected with a corresponding electrode. The contact pads in turn engage contact prongs connected to a power source and provide electrical connection between the sensor and a power source.
  • [0004]
    The arrangement of U.S. Pat. No. 5,437,999 suffers from the disadvantages that the substrate is required to be of considerable rigidity in order to ensure satisfactory and reliable electrical contact. Moreover the user is often left uncertain as to whether a sensor has satisfactorily been connected with the power source.
  • [0005]
    In co-pending applications PCT/AU96/00207, PCT/AU96/00365, PCT/AU96/00723 and PCT/AU96/00724 there are described various very thin electrochemical cells. Each cell is defined between facing spaced apart electrodes which are formed as thin metal coatings (for example sputter coatings) deposited on thin inert plastic film (for example 100 micron thick PET). The electrodes are separated one from the other by a spacer of thickness of for example 500 μm or less.
  • [0006]
    The connection arrangement of U.S. Pat. No. 5,437,999 is not suitable for use with the extremely thin sensor devices of the kind discussed in our co-pending applications in view of the flexibility of the insulating electrode carriers. In general, it is desirable that the disposable sensor be capable of simple, quick, reliable and effective connection with the power source in the measuring device by unskilled users. It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
  • DESCRIPTION OF THE INVENTION
  • [0007]
    According to a first aspect, the invention provides a sensor adapted for electrical connection with a power source having first contact means, the sensor comprising:
  • [0008]
    a first insulating substrate carrying a first electrode and a second insulating substrate carrying a second electrode, said electrodes being disposed to face each other in spaced apart relationship,
  • [0009]
    a first cut-out portion extending through said first insulating substrate and a spacer to expose a first contact area on the second insulating substrate to permit a first contact means to effect electrical connection with the first contact area disposed on the second insulating substrate, the first contact area being in electrically conductive connection with the second electrode.
  • [0010]
    The first contact area may be maintained at a predetermined depth from the first insulating substrate.
  • [0011]
    According to a second aspect, the invention provides a sensor according to the first aspect further comprising a second cut-out portion extending through said second insulating substrate and the, or another, spacer to expose a second contact area on the first insulating substrate to permit a second contact means to effect electrical connection with a second contact area disposed on the first insulating substrate, the second contact area being in electrically conductive connection with the first electrode.
  • [0012]
    The second contact area may be maintained at a predetermined depth from the second insulating substrate.
  • [0013]
    According to a third aspect, the invention also provides a sensing system comprising a sensor according to the first or second aspects and a sensing apparatus including a first contact means and/or second contact means adapted to effect electrical contact with the first and second contact areas respectively.
  • [0014]
    “Comprising” as herein used is used in an inclusive sense, that is to say in the sense of “including” or “containing.” The term is not intended in an exclusive sense (“consisting of” or “composed of”).
  • [0015]
    In preferred embodiments the insulating substrate is made of a flexible insulating material. The second electrode and the first contact area are formed from a unified layer of metal deposited on the first substrate, and more preferably deposited by being sputter coated thereon. Suitable metals include, but are not limited to palladium, gold, platinum, iridium, and silver. Carbon may also be used. Desirably the contactor is a metal contactor which is resiliently biased to extend through the first cut-out portion to make contact with the metal first contact area on the second substrate. In highly preferred embodiments the contactor is adapted for click engagement with the cut-out portion which extends through the first insulating substrate and the spacer.
  • [0016]
    With a connector according to the current invention the spacer layer provides extra strength. A rigid connector can therefore be formed using flexible materials. This allows a wider range of materials to be utilized. An audible confirmation of connection can also be simply provided by the current invention unlike the connector described in U.S. Pat. No. 5,437,999.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0017]
    The invention will now be described by way of example only with reference to the accompanying drawings in which:
  • [0018]
    FIG. 1 shows a first embodiment of a sensor according to the invention in plan view.
  • [0019]
    FIG. 2 shows a scrap side elevation of the sensor of FIG. 1 in cross-section on line 10-10.
  • [0020]
    FIG. 3 is a diagrammatic enlargement showing a part of the sensor of FIG. 2 in engagement with contacts.
  • [0021]
    FIG. 4 shows an end elevation of the sensor of FIG. 3 in section on line A-A.
  • [0022]
    FIG. 5 shows a second embodiment of the invention in plan view.
  • [0023]
    FIG. 6 shows a cross-section of the embodiment of FIG. 5 in end elevation when viewed on line C-C.
  • [0024]
    FIG. 7 shows a cross-section of the embodiment of FIG. 5 in side elevation on line D-D.
  • [0025]
    FIG. 8 shows a third embodiment of the invention in plan view.
  • BEST MODES FOR CARRYING OUT THE INVENTION
  • [0026]
    With reference to FIGS. 1 to 3 there is shown a first embodiment of an electrochemical sensor. The sensor comprises a polyester spacer 4 approximately 25 mm×5 mm and 100 microns thick and having a circular aperture 8 of 3.4 mm diameter. Aperture 8 defines a cylindrical cell wall 10. Adhered to one side of spacer 4 is a first insulating substrate polyester sheet 1 having a first coating of palladium 2. The palladium was sputter coated on sheet 1 at between 4 and 5 millibar pressure in an atmosphere of argon gas to give a uniform coating thickness of about 100-1000 angstroms. Sheet 1 is adhered by means of adhesive 3 to spacer 4 with palladium coating 2 adjacent spacer 4 and covering one side of aperture 8.
  • [0027]
    A second insulating substrate 7 consists of a polyester sheet having a second sputter coating 6 of palladium adhered by means of contact adhesive 5 to the other side of spacer 4 and covering the opposite side of aperture 8. There is thereby defined a cell having cylindrical side wall 10 and closed at one cylinder end by a first electrode of palladium metal 2. The other cylinder end wall is a second electrode formed from palladium 6. The assembly is notched at 9 to provide a means for admission of a solution to the cell, and to allow air to escape.
  • [0028]
    Adjacent one end 20 a cut-out aperture 21 pierces first insulating layer 1 and first metal layer 2. In the present example cut-out 21 is oval-shaped.. A corresponding cut-out portion 22 in spacer 4 is in registration with cut-out 21. FIG. 3 shows a side elevation cross-section of sensor 1 inserted into a receiving slot formed in part 30 of measuring apparatus and to which is mounted a first resilient contactor 31 and a second resilient contactor 32. Upon insertion of sensor end 20 into the slot,. contactor 31 rides over the outer surface of insulating layer 1 and clicks into the well formed by apertures 21 and 22 to engage a first contact area portion 23 of metal layer 6. First contact area 23 is a portion of the same metal layer 6 deposited on insulating layer 7 from which the second electrode is formed and is therefore in electrically conductive communication with the second electrode area of cell 8. Contact area 23 is in effect defined by the diameter of cut-out 20 of spacer 4 in the present example.
  • [0029]
    In the embodiment shown in FIG. 1 a second circular cut-out portion 25 spaced further from edge 20 than aperture 21 extends through second insulating layer 7 and second metal layer 6. A cut-out portion 26 (see FIG. 2) of spacer 4 corresponds with an registers with cut-out portion 25 of insulating layer 7. Referring again to FIG. 3, in use the sensor is configured to permit a second resiliently biased contactor 32 to extend through the well defined by cut-out portions 25 and 26 whereby resilient contactor 32 engages and makes electrical contact with metal layer 2 at 27 and thereby with the first electrode 2 of cell 8.
  • [0030]
    Resilient connectors 31 and 32 are arranged in a slot 30 of the-measuring device and are electrically connected in a measuring circuit. In use, the sensor is inserted into slot 30 with edge 20 leading. The first resilient contactor 31 rides over the end margin of the sensor 1 until it encounters first aperture 21, 22 whereupon it click engages with the opening and makes electrical contact with the first contact area 23 of metal layer 6. Slight additional insertion of sensor 1 in slot 30 causes the second contactor 32 to click engage with the second aperture 25, 26 and make contact with second contact area 27 of metal layer 2.
  • [0031]
    Spacer 4 surrounds both apertures and ensures that, despite the intrinsic flexibility of the insulating layers and the thinness of the sensor, electrical contact can be made with reliable precision.
  • [0032]
    A second embodiment of the invention is shown in FIGS. 5, 6 and 7 wherein parts corresponding in function to corresponding parts of the embodiment of FIGS. 1 and 2 are identified by corresponding numerals. The major difference between the second embodiment and the first is that in the second embodiment cut-out portions 21, 22 are cut from one side edge of sensor 1 while cut-out portions 25, 26 are cut out from the opposite side edge of the sensor 1. In this case contactors 31 and 32 are spaced laterally and click substantially simultaneously into their respective cut-out opening. The cut-out openings are surrounded on three sides by spacer 4, the fourth side being exposed at respective edges of the sensor.
  • [0033]
    Although in the embodiment shown in FIGS. 5, 6 and 7 the openings are at a corresponding distance from end 20 in other embodiments they could be spaced in the longitudinal direction as is the case in the first described embodiment. This ensures that contact is only made when the sensor is inserted in a correct orientation and ensures correct polarity.
  • [0034]
    A third embodiment is shown schematically in FIG. 8. In this case the openings take the form of slots 21, 25 extending longitudinally from edge 20. For preference spacer 4 extends around all edges of openings 21 and 25 of FIG. 8 but in a less preferred embodiment spacer 4 only extends on three sides of slots 21 and 25 in which case click engagement is not obtained or is obtained only if the contacts extend from the opposite direction. However, the advantage that the contact pad area of the sensor is at a predetermined dimension from the opposite face is maintained. If desired the slots can differ in length and co-operation with contacts spaced longitudinally so that contact with both contacts requires correctly orientated insertion of the sensor.
  • [0035]
    It will be understood that both construction materials and dimensions are given merely by way of example and that sensors of a differing design or construction may utilize the invention. One, two or more than two contacts may be provided by the means shown. The invention extends to include a power source or measuring device when connected to a sensor by the means described. Any suitable form of contactor may be used with sensors according to the invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4301412 *Oct 29, 1979Nov 17, 1981United States Surgical CorporationLiquid conductivity measuring system and sample cards therefor
US4301414 *Oct 29, 1979Nov 17, 1981United States Surgical CorporationDisposable sample card and method of making same
US4303887 *Oct 29, 1979Dec 1, 1981United States Surgical CorporationElectrical liquid conductivity measuring system
US4900424 *Nov 30, 1987Feb 13, 1990Unilever Patent Holdings B.V.Electrochemical measurement cell
US5108564 *Aug 15, 1991Apr 28, 1992Tall Oak VenturesMethod and apparatus for amperometric diagnostic analysis
US5120420 *Mar 31, 1989Jun 9, 1992Matsushita Electric Industrial Co., Ltd.Biosensor and a process for preparation thereof
US5126034 *Jul 21, 1989Jun 30, 1992Medisense, Inc.Bioelectrochemical electrodes
US5128015 *Mar 13, 1989Jul 7, 1992Tall Oak VenturesMethod and apparatus for amperometric diagnostic analysis
US5141868 *Nov 27, 1989Aug 25, 1992Internationale Octrooi Maatschappij "Octropa" BvDevice for use in chemical test procedures
US5192415 *Mar 2, 1992Mar 9, 1993Matsushita Electric Industrial Co., Ltd.Biosensor utilizing enzyme and a method for producing the same
US5229282 *Nov 26, 1990Jul 20, 1993Matsushita Electric Industrial Co., Ltd.Preparation of biosensor having a layer containing an enzyme, electron acceptor and hydrophilic polymer on an electrode system
US5264103 *Oct 15, 1992Nov 23, 1993Matsushita Electric Industrial Co., Ltd.Biosensor and a method for measuring a concentration of a substrate in a sample
US5320732 *Jun 11, 1993Jun 14, 1994Matsushita Electric Industrial Co., Ltd.Biosensor and measuring apparatus using the same
US5382346 *Oct 20, 1993Jan 17, 1995Kyoto Daiichi Kagaku Co., Ltd.Biosensor and method of quantitative analysis using the same
US5384028 *Aug 27, 1993Jan 24, 1995Nec CorporationBiosensor with a data memory
US5385846 *Jun 3, 1993Jan 31, 1995Boehringer Mannheim CorporationBiosensor and method for hematocrit determination
US5395504 *Feb 1, 1994Mar 7, 1995Asulab S.A.Electrochemical measuring system with multizone sensors
US5400782 *Oct 7, 1992Mar 28, 1995Graphic Controls CorporationIntegral medical electrode including a fusible conductive substrate
US5413690 *Jul 23, 1993May 9, 1995Boehringer Mannheim CorporationPotentiometric biosensor and the method of its use
US5437999 *Feb 22, 1994Aug 1, 1995Boehringer Mannheim CorporationElectrochemical sensor
US5502396 *Sep 21, 1994Mar 26, 1996Asulab S.A.Measuring device with connection for a removable sensor
US5508171 *Feb 21, 1994Apr 16, 1996Boehringer Mannheim CorporationAssay method with enzyme electrode system
US5509410 *Jul 27, 1994Apr 23, 1996Medisense, Inc.Strip electrode including screen printing of a single layer
US5628890 *Sep 27, 1995May 13, 1997Medisense, Inc.Electrochemical sensor
US5645709 *Dec 7, 1994Jul 8, 1997Van Den Bergh Foods Co., Division Of Conopco, Inc.Methods and apparatus for electrochemical measurements
US5997817 *Dec 5, 1997Dec 7, 1999Roche Diagnostics CorporationElectrochemical biosensor test strip
US6214205 *Jan 10, 1997Apr 10, 2001Yissum Research Development Company Of The Hebrew University Of JerusalemDetermination of an analyte in a liquid medium
US6218134 *Apr 26, 1996Apr 17, 2001Mochida Pharmaceutical Co., Ltd.Process for specific binding assay for measuring the amount of analyte in a liquid test sample
US6325973 *Feb 19, 1999Dec 4, 2001Igen International, Inc.Methods and apparatus for improved luminescence assays
US6379513 *Sep 20, 1999Apr 30, 2002Usf Filtration And Separations Group Inc.Sensor connection means
US7045046 *Nov 13, 2001May 16, 2006Lifescan, Inc.Sensor connection means
US20020012943 *Feb 6, 1998Jan 31, 2002Dana M. FowlkesElectrochemical probes for detection of molecular interactions and drug discovery
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7875047Jan 25, 2007Jan 25, 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7892183Jul 3, 2003Feb 22, 2011Pelikan Technologies, Inc.Method and apparatus for body fluid sampling and analyte sensing
US7901365Mar 21, 2007Mar 8, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7909774Feb 13, 2007Mar 22, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7909775Jun 26, 2007Mar 22, 2011Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7909777Sep 29, 2006Mar 22, 2011Pelikan Technologies, IncMethod and apparatus for penetrating tissue
US7909778Apr 20, 2007Mar 22, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7914465Feb 8, 2007Mar 29, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7938787Sep 29, 2006May 10, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7959582Mar 21, 2007Jun 14, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US7976476Mar 16, 2007Jul 12, 2011Pelikan Technologies, Inc.Device and method for variable speed lancet
US7981055Dec 22, 2005Jul 19, 2011Pelikan Technologies, Inc.Tissue penetration device
US7981056Jun 18, 2007Jul 19, 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US7988644Mar 21, 2007Aug 2, 2011Pelikan Technologies, Inc.Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7988645May 3, 2007Aug 2, 2011Pelikan Technologies, Inc.Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446Oct 19, 2006Aug 30, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8016774Dec 22, 2005Sep 13, 2011Pelikan Technologies, Inc.Tissue penetration device
US8062231Oct 11, 2006Nov 22, 2011Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8079960Oct 10, 2006Dec 20, 2011Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US8115635Nov 24, 2009Feb 14, 2012Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8123700Jun 26, 2007Feb 28, 2012Pelikan Technologies, Inc.Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8157748Jan 10, 2008Apr 17, 2012Pelikan Technologies, Inc.Methods and apparatus for lancet actuation
US8162853Dec 22, 2005Apr 24, 2012Pelikan Technologies, Inc.Tissue penetration device
US8197421Jul 16, 2007Jun 12, 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8197423Dec 14, 2010Jun 12, 2012Pelikan Technologies, Inc.Method and apparatus for penetrating tissue
US8202231Apr 23, 2007Jun 19, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8206317Dec 22, 2005Jun 26, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8206319Aug 26, 2010Jun 26, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8211037Dec 22, 2005Jul 3, 2012Pelikan Technologies, Inc.Tissue penetration device
US8216154Dec 23, 2005Jul 10, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8221334Dec 22, 2010Jul 17, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8223021Nov 24, 2009Jul 17, 2012Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8235915Dec 18, 2008Aug 7, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8251921Jun 10, 2010Aug 28, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US8262614Jun 1, 2004Sep 11, 2012Pelikan Technologies, Inc.Method and apparatus for fluid injection
US8267870May 30, 2003Sep 18, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling with hybrid actuation
US8282576Sep 29, 2004Oct 9, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
US8282577Jun 15, 2007Oct 9, 2012Sanofi-Aventis Deutschland GmbhMethod and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8296918Aug 23, 2010Oct 30, 2012Sanofi-Aventis Deutschland GmbhMethod of manufacturing a fluid sampling device with improved analyte detecting member configuration
US8333710Oct 5, 2005Dec 18, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8337419Oct 4, 2005Dec 25, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8337420Mar 24, 2006Dec 25, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8337421Dec 16, 2008Dec 25, 2012Sanofi-Aventis Deutschland GmbhTissue penetration device
US8343075Dec 23, 2005Jan 1, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8358210Nov 24, 2009Jan 22, 2013Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8360991Dec 23, 2005Jan 29, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8360992Nov 25, 2008Jan 29, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8366637Dec 3, 2008Feb 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8372016Sep 30, 2008Feb 12, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for body fluid sampling and analyte sensing
US8382682Feb 6, 2007Feb 26, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8382683Mar 7, 2012Feb 26, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8388551May 27, 2008Mar 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for multi-use body fluid sampling device with sterility barrier release
US8390455Nov 24, 2009Mar 5, 2013Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8403864May 1, 2006Mar 26, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8414503Mar 16, 2007Apr 9, 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US8430828Jan 26, 2007Apr 30, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190Jan 19, 2007May 7, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8439872Apr 26, 2010May 14, 2013Sanofi-Aventis Deutschland GmbhApparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8491500Apr 16, 2007Jul 23, 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US8496601Apr 16, 2007Jul 30, 2013Sanofi-Aventis Deutschland GmbhMethods and apparatus for lancet actuation
US8542122Jan 17, 2013Sep 24, 2013Abbott Diabetes Care Inc.Glucose measurement device and methods using RFID
US8556829Jan 27, 2009Oct 15, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8562545Dec 16, 2008Oct 22, 2013Sanofi-Aventis Deutschland GmbhTissue penetration device
US8574168Mar 26, 2007Nov 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for a multi-use body fluid sampling device with analyte sensing
US8574895Dec 30, 2003Nov 5, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US8579831Oct 6, 2006Nov 12, 2013Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8622930Jul 18, 2011Jan 7, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8636673Dec 1, 2008Jan 28, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8641643Apr 27, 2006Feb 4, 2014Sanofi-Aventis Deutschland GmbhSampling module device and method
US8641644Apr 23, 2008Feb 4, 2014Sanofi-Aventis Deutschland GmbhBlood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8652831Mar 26, 2008Feb 18, 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte measurement test time
US8668656Dec 31, 2004Mar 11, 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for improving fluidic flow and sample capture
US8679033Jun 16, 2011Mar 25, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8690796Sep 29, 2006Apr 8, 2014Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US8702624Jan 29, 2010Apr 22, 2014Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US8721671Jul 6, 2005May 13, 2014Sanofi-Aventis Deutschland GmbhElectric lancet actuator
US8784335Jul 25, 2008Jul 22, 2014Sanofi-Aventis Deutschland GmbhBody fluid sampling device with a capacitive sensor
US8808201Jan 15, 2008Aug 19, 2014Sanofi-Aventis Deutschland GmbhMethods and apparatus for penetrating tissue
US8828203May 20, 2005Sep 9, 2014Sanofi-Aventis Deutschland GmbhPrintable hydrogels for biosensors
US8845549Dec 2, 2008Sep 30, 2014Sanofi-Aventis Deutschland GmbhMethod for penetrating tissue
US8845550Dec 3, 2012Sep 30, 2014Sanofi-Aventis Deutschland GmbhTissue penetration device
US8905945Mar 29, 2012Dec 9, 2014Dominique M. FreemanMethod and apparatus for penetrating tissue
US8945910Jun 19, 2012Feb 3, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for an improved sample capture device
US8956518Apr 20, 2011Feb 17, 2015Lifescan, Inc.Electrochemical sensors with carrier field
US8965476Apr 18, 2011Feb 24, 2015Sanofi-Aventis Deutschland GmbhTissue penetration device
US9034639Jun 26, 2012May 19, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus using optical techniques to measure analyte levels
US9072842Jul 31, 2013Jul 7, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US9089294Jan 16, 2014Jul 28, 2015Sanofi-Aventis Deutschland GmbhAnalyte measurement device with a single shot actuator
US9089678May 21, 2012Jul 28, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US9144401Dec 12, 2005Sep 29, 2015Sanofi-Aventis Deutschland GmbhLow pain penetrating member
US9186468Jan 14, 2014Nov 17, 2015Sanofi-Aventis Deutschland GmbhMethod and apparatus for penetrating tissue
US9226699Nov 9, 2010Jan 5, 2016Sanofi-Aventis Deutschland GmbhBody fluid sampling module with a continuous compression tissue interface surface
US9248267Jul 18, 2013Feb 2, 2016Sanofi-Aventis Deustchland GmbhTissue penetration device
US9261476Apr 1, 2014Feb 16, 2016Sanofi SaPrintable hydrogel for biosensors
US9314194Jan 11, 2007Apr 19, 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US9339612Dec 16, 2008May 17, 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US9351680Oct 14, 2004May 31, 2016Sanofi-Aventis Deutschland GmbhMethod and apparatus for a variable user interface
US9375169Jan 29, 2010Jun 28, 2016Sanofi-Aventis Deutschland GmbhCam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944Apr 10, 2009Jul 12, 2016Sanofi-Aventis Deutschland GmbhMethod and apparatus for analyte detecting device
US9427532Sep 29, 2014Aug 30, 2016Sanofi-Aventis Deutschland GmbhTissue penetration device
US9498160Sep 29, 2014Nov 22, 2016Sanofi-Aventis Deutschland GmbhMethod for penetrating tissue
Classifications
U.S. Classification204/400
International ClassificationG01N27/403, G01N27/327, G01N, G01N27/28, G01N33/487, G01N27/26
Cooperative ClassificationG01N27/3272
European ClassificationG01N27/327B, G01N27/26