Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060216199 A1
Publication typeApplication
Application numberUS 11/389,312
Publication dateSep 28, 2006
Filing dateMar 27, 2006
Priority dateMar 28, 2005
Also published asUS8329102
Publication number11389312, 389312, US 2006/0216199 A1, US 2006/216199 A1, US 20060216199 A1, US 20060216199A1, US 2006216199 A1, US 2006216199A1, US-A1-20060216199, US-A1-2006216199, US2006/0216199A1, US2006/216199A1, US20060216199 A1, US20060216199A1, US2006216199 A1, US2006216199A1
InventorsHiroki Koike
Original AssigneeSysmex Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Conveying device and sample processing method
US 20060216199 A1
Abstract
A conveying device, intended for use in conveying a rack, which holds a sample container, to a sample supplying position for supplying a sample in the sample container to a sample processing device for processing the sample, comprising a conveying section for conveying the rack in a conveying direction from a predetermined position on the conveying device to the sample supplying position along a path connecting the predetermined position and the sample supplying position, wherein the conveying section is adapted to convey the rack from the sample supplying position in a direction opposite to the conveying direction, is disclosed. A sample processing method is also disclosed.
Images(50)
Previous page
Next page
Claims(20)
1. A conveying device, intended for use in conveying a rack, which holds a sample container, to a sample supplying position for supplying a sample in the sample container to a sample processing device for processing the sample, comprising:
a conveying section for conveying the rack in a conveying direction from a predetermined position on the conveying device to the sample supplying position along a path connecting the predetermined position and the sample supplying position;
wherein the conveying section is adapted to convey the rack from the sample supplying position in a direction opposite to the conveying direction.
2. The conveying device of claim 1, further comprising,
a rack carrying-in section; and
a storing section;
wherein the rack carrying-in section carries the rack in to the storing section; and
wherein the conveying section conveys the rack from the storing section.
3. The conveying device of claim 2,
wherein the storing section comprises a moving mechanism adapted to convey the rack from the rack carrying-in section to the predetermined position.
4. The conveying device of claim 3,
wherein the moving mechanism conveys more than one rack at the same time.
5. The conveying device of claim 3, further comprising:
a reserve storage position adjacent to the predetermined position; and
the moving mechanism being adapted to convey the rack from the predetermined position to the reserve storage position.
6. The conveying device of claim 5,
wherein the reserve storage position has space for at least one rack.
7. The conveying device of claim 5, further comprising:
a preventing member for preventing the rack from entering the reserve storage position.
8. The conveying device of claim 1,
wherein the conveying section conveys the rack which has been conveyed to the sample supplying position in the direction opposite to the conveying direction when a reprocessing of the sample by the sample processing device is required.
9. A conveying device, intended for use in conveying racks, which hold sample containers to a sample supplying position for supplying a sample in the sample container to a sample processing device for processing the sample, comprising:
a conveying mechanism for conveying the racks forward to the sample supplying position one by one; and
a space maker for making a space for at least one rack, on the conveying device, to receive a rearward-moving rack.
10. The conveying device of claim 9,
wherein the conveying mechanism comprises
a moving mechanism for conveying the racks to a predetermined position on the conveying device; and
a conveying section for conveying the racks in a conveying direction from the predetermined position to the sample supplying position along a path connecting the predetermined position and the sample supplying position.
11. The conveying device of claim 10,
wherein the conveying section is adapted to convey the rack from the sample supplying position in a direction opposite to the conveying direction.
12. The conveying device of claim 10, further comprising,
a storing section for storing the racks conveyed by the moving mechanism; and
the space maker making the space on the storing section.
13. The conveying device of claim 9,
wherein the space has size for one rack.
14. The conveying device of claim 9,
wherein the space maker comprises a preventing member for preventing the rack from entering the space.
15. A sample processing method for processing a sample, comprising:
(a) conveying a sample forward to a sample supplying position;
(b) processing the sample with a sample processing device;
(c) in response to a reprocessing command, conveying the sample rearward; and
(d) again conveying the sample forward to the sample supplying position for reprocessing.
16. The sample processing method of claim 15, further comprising,
(e) making a space used for conveying the sample rearward.
17. The sample processing method of claim 15, further comprising,
(f) carrying the sample in a first conveying device from a second conveying device before the step (a).
18. The sample processing method of claim 15, further comprising,
(g) conveying the sample from the sample supplying position to a carrying-out section on a conveying device after the step (d).
19. The sample processing method of claim 18, further comprising,
(h) carrying out the sample from the carrying-out section to an out of the conveying device after the step (g).
20. The sample processing method of claim 15,
wherein the sample processing device suctions the sample which has been conveyed to the sample supplying position.
Description
FIELD OF THE INVENTION

This invention relates to a conveying device for conveying a rack on which a sample container is held to a sample supplying position for supplying a sample in the sample container to a sample processing device for processing the sample, and sample processing method for processing a sample using the conveying device.

BACKGROUND

Hitherto, a conveying device is known which conveys a rack on which a sample container is held to a sample supplying position for supplying a sample to a sampler processing device for processing the sample (refer to, for example, Japanese Patent Laid-Open (JP-A) No. Hei 9-43246). The sample processed by the processing device is contained in a sample container held on the rack. JP-A No. H9-43246 discloses a conveying device having a buffer, a first feeder, and a second feeder.

In the conveying device disclosed in JP-A No. H9-43246, the buffer has the functions of storing a rack introduced from an introduction port of the conveying device and conveying the stored rack to the first feeder. The first feeder has the function of conveying the rack conveyed from the buffer to a sample supplying position and the second feeder. The second feeder has the function of carrying out the rack conveyed by the first feeder to the outside from an outlet of the conveying device. The buffer, the first feeder, and the second feeder can convey the racks only in one direction. Concretely, the racks conveyed from the buffer are moved only toward the first feeder side. The racks conveyed from the first feeder are moved only in a direction toward the sample supplying position (second feeder). The racks conveyed by the second feeder are moved only in a direction toward the outlet of the conveying device.

When an error occurs in the sample processing device during process of a predetermined sample in the conventional conveying device, in order to re-process the predetermined sample in the same sample processing device, a predetermined rack on which a sample container containing the predetermined sample is held is re-stored in the buffer, and the predetermined rack has to be conveyed again to the sample supplying position by the first feeder. In this case, since the conveying device of JP-A No. H9-43246 is constructed so that the racks are conveyed only in one direction in the buffer, there is an inconvenience such that the user has to move racks already stored in order to assure a space for re-storing the predetermined rack. The technique of JP-A No. H9-43246 has a drawback that the burden on the user is heavy at the time of re-processing a sample in the same sample processing device.

SUMMARY

The scope of the present invention is defined solely by the appended claims, and is not affected to any degree by the statements within this summary.

A first aspect of the present invention is a conveying device, intended for use in conveying a rack, which holds a sample container, to a sample supplying position for supplying a sample in the sample container to a sample processing device for processing the sample, comprising:

a conveying section for conveying the rack in a conveying direction from a predetermined position on the conveying device to the sample supplying position along a path connecting the predetermined position and the sample supplying position;

wherein the conveying section is adapted to convey the rack from the sample supplying position in a direction opposite to the conveying direction.

A second aspect of the present invention is a conveying device, intended for use in conveying racks, which hold sample containers to a sample supplying position for supplying a sample in the sample container to a sample processing device for processing the sample, comprising:

a conveying mechanism for conveying the racks forward to the sample supplying position one by one; and

a space maker for making a space for at least one rack, on the conveying device, to receive a rearward-moving rack.

A third aspect of the present invention is a sample processing method for processing a sample, comprising:

(a) conveying a sample forward to a sample supplying position;

(b) processing the sample with a sample processing device;

(c) in response to a reprocessing command, conveying the sample rearward; and

(d) again conveying the sample forward to the sample supplying position for reprocessing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view showing a state where a conveying device according to a first embodiment of the invention is connected to an analyzer.

FIGS. 2 and 3 are perspective views each showing the structure of a rack conveyed by the conveying device according to the first embodiment shown in FIG. 1.

FIG. 4 is a perspective view showing the structure of the conveying device according to the first embodiment of the invention.

FIG. 5 is a plan view showing the structure of the conveying device according to the first embodiment of the invention.

FIG. 6 is a side view showing the structure of the periphery of a storage regulating mechanism in the conveying device according to the first embodiment illustrated in FIGS. 4 and 5.

FIG. 7 is a plan view showing the structure of a first rack moving mechanism in the conveying device according to the first embodiment illustrated in FIGS. 4 and 5.

FIG. 8 is a side view of the first rack moving mechanism shown in FIG. 7.

FIG. 9 is a plan view showing a state where conveyance of a rack by the first rack moving mechanism illustrated in FIG. 7 stops.

FIGS. 10 and 11 are side views showing a state where fitting nails of the first rack moving mechanism illustrated in FIG. 8 fit in the rack.

FIG. 12 is a side view showing the structure of the periphery of a reversal preventing member in the conveying device according to the first embodiment illustrated in FIGS. 4 and 5.

FIG. 13 is a side view showing a state where the reversal preventing member illustrated in FIG. 12 swings.

FIG. 14 is a side view showing the structure of the periphery of the storage regulating mechanism in the conveying device according to the first embodiment illustrated in FIGS. 4 and 5.

FIG. 15 is a side view showing a state where a preventing member of the storage regulating mechanism illustrated in FIG. 14 projects from a mounting surface of a storage plate.

FIG. 16 is a plan view showing the structure of a conveying section in the conveying device according to the first embodiment illustrated in FIGS. 4 and 5.

FIG. 17 is a side view of the conveying section shown in FIG. 16.

FIGS. 18 and 19 are side views showing a state where a fitting member of the conveying section illustrated in FIG. 17 fits in a rack.

FIGS. 20 to 29 are schematic diagrams illustrating conveying operation of the conveying device according to the first embodiment shown in FIGS. 4 and 5.

FIGS. 30 to 36 are schematic diagrams illustrating conveying operation of the conveying section in the conveying device according to the first embodiment shown in FIGS. 4 and 5.

FIGS. 37 to 39 are schematic diagrams illustrating the conveying operation of the conveying device according to the first embodiment shown in FIGS. 4 and 5.

FIG. 40 is a plan view showing the structure of a conveying device according to a second embodiment of the invention.

FIG. 41 is a plan view showing the structure of a first rack moving mechanism in the conveying device according to the second embodiment illustrated in FIG. 40.

FIG. 42 is a side view of the first rack moving mechanism shown in FIG. 41.

FIGS. 43 to 47 are schematic diagrams illustrating conveying operation of the conveying device according to the second embodiment of the invention.

FIG. 48 is a block diagram showing a general configuration of a sample processing system according to the first embodiment of the invention.

FIG. 49 is a flowchart showing processes executed by the sample processing system according to the first embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The preferred embodiments of the present invention are described hereinafter with reference to the drawings.

First Embodiment

A sample processing system including a first blood analyzer 2 and a second blood analyzer 3 to each of which a conveying device 1 according to the first embodiment is connected will be described with reference to FIGS. 1 to 3.

Two conveying devices 1 according to the first embodiment are connected to, for example, as shown in FIG. 1, the first blood analyzer 2 for conducting a primary analysis and the second blood analyzer 3 for conducting a secondary analysis. The primary analysis by the first blood analyzer 2 is conducted on all of samples, and the secondary analysis by the second blood analyzer 3 is conducted on only samples determined to be subjected to a detailed analysis on the basis of the result of the primary analysis. Both of the first and second blood analyzers 2 and 3 are devices for processing blood. The first blood analyzer 2 is a hemacytometer, and the second blood analyzer 3 is a blood smear preparing device.

The conveying device 1 connected to the first blood analyzer 2 is disposed adjacent to a conveying device 1′, and receives a rack conveyed from the conveying device 1′.

Samples are contained in sample containers 4 which are held on a rack 5. The rack 5 can hold 10 sample containers 4 as shown in FIGS. 2 and 3. The rack 5 has a bottom 5 a which is longer in shorter direction than the part in which the sample containers 4 are housed. A space area is provided on the back side of the rack 5 and a plurality of plates 5 b are provided in the space area on the back side of the rack 5. On the side of a part in which the sample containers 4 are housed of the rack 5, a plurality of slots 5 c are provided.

As shown in FIG. 1, the conveying device 1 has the function of conveying the rack 5 on which the sample containers 4 are held to a sample supplying position 2 a for supplying the samples to the first blood analyzer 2 and a sample supplying position 3 a for supplying the samples to the second blood analyzer 3. The first blood analyzer 2 has a hand member 2 b for taking the sample container 4 from the rack 5 and stirring the sample in the sample container 4. The first blood analyzer 2 also has, in a position opposite to the sample supplying position 2 a, a hand member 2 d for taking the sample container 4 from the rack 5 and supplying the sample into the first blood analyzer 2.

On the other hand, the second blood analyzer 3 has, in a position opposite to the sample supplying position 3 a, a hand member 3 b for taking a sample container 4 from the rack 5, stirring the sample in the sample container 4, and supplying the sample into the second blood analyzer 3.

In the first and second blood analyzers 2 and 3, barcode readers 2 c and 3 c for reading a barcode adhered to a sample container 4 are disposed, respectively. The barcode readers 2 c and 3 c are connected to the conveying devices 1 via not-shown cables and operate on the basis of instructions from the conveying device 1.

In a position opposite to each of the barcode readers 2 c and 3 c, on the conveying device 1, a sample container turning device 6 for turning the sample containers 4 held on the rack 5 is disposed. A barcode adhered to the sample container 4 is read by the barcode readers 2 c and 3 c while turning the sample container 4 by the sample container turning device 6.

The two conveying devices 1 are connected to each other via an intermediate conveying device 7. The two conveying devices 1 have the same structure.

The structure of the conveying device 1 will now be described in detail with reference to FIGS. 4 to 19.

The conveying device 1 has, as shown in FIGS. 4 and 5, a rack receiver 10, a storing section 20, a conveying section 30, a carrying-out section 40, and an unloading section 50.

The rack receiver 10 in the conveying device 1 is provided to move the rack 5 introduced from an inlet 1 a of the conveying device 1 in the X1 direction and, after that, push the rack 5 to the storing section 20. The rack receiver 10 includes a rack loading mechanism 11 and a rack pushing mechanism 12.

The rack loading mechanism 11 of the rack receiver 10 is provided to move the rack 5 introduced from the inlet 1 a in the X1 direction. The rack loading mechanism 11 includes a conveyance belt 111, pulleys 112 a and 112 b, a motor 113, a detector 114, and a transmission sensor 115. The conveyance belt 111 is attached to the pulleys 112 a and 112 b, and the pulley 112 a is coupled to the motor 113. Consequently, by driving the motor 113, the conveyance belt 111 is driven via the pulley 112 a. In the case where the rack 5 is introduced from the inlet 1 a, by driving the conveyance belt 111 in the X1 direction, the rack 5 is moved in the X1 direction.

The detector 114 of the rack loading mechanism 11 is provided to detect that the rack 5 moved in the X1 direction by the conveyance belt 111 arrives at a push position P1. The push position P1 is a position in which the rack 5 can be pushed to the storing section 20 side by the rack pushing mechanism 12. The detector 114 has a detection pin 114 a, a compression spring 114 b, and a transmission sensor 114 c. The detection pin 114 a is energized by the compression spring 114 b so that one end projects toward the push position P1. The transmission sensor 114 c is disposed at the other end of the detection pin 114 a. In the case where the rack 5 is conveyed to the push position P1 by the conveyance belt 111, one end of the detection pin 114 a is pressed against the rack 5, thereby moving the detection pin 114 a in the X1 direction against the energizing force of the compression spring 114 b. Since the transmission sensor 114 c enters a light shield state due to the other end of the detection pin 114 a, arrival at the push position P1 of the rack 5 moved in the X1 direction by the conveyance belt 111 is detected.

The transmission sensor 115 of the rack loading mechanism 11 is provided to detect the presence/absence of the rack 5 in the push position P1 and to detect that the rack 5 is pushed from the push position P1 to the storing section 20 side by the rack pushing mechanism 12. The transmission sensor 115 is disposed so as to enter a light shield state when the rack 5 exists in the push position P1.

The rack pushing mechanism 12 of the rack receiver 10 is provided to push the rack 5 conveyed to the push position P1 to the storing section 20 side. The rack pushing mechanism 12 is constructed by a pushing member 121, a direct-drive guide 122, an arm 123, and a motor 124. The pushing member 121 is attached to the direct-drive guide 122, and the direct-drive guide 122 is disposed so as to extend in the Y1 direction (Y2 direction). A long hole 123 a is formed in one end of the arm 123. The one end of the arm 123 is attached to the pushing member 121 via the long hole 123 a, and the other end is coupled to the rotary shaft of the motor 124. With the configuration, when the motor 124 is driven, one end of the arm 123 swings and the pushing member 121 is moved along the extending direction (Y1 direction) of the direct-drive guide 122. Therefore, in the case where the rack 5 exists in the push position P1, the rack 5 can be pushed to the storing section 20 side by the pushing member 121.

The storing section 20 in the conveying device 1 is provided to store the rack 5 conveyed from the inlet 1 a to the sample supplying position 2 a (3 a). Further, in the first embodiment, the storing section 20 also has the function of re-storing the rack 5 moved in the direction opposite to the conveyance direction from the sample supplying position 2 a (3 a) in the case where a re-analysis is conducted. The storing section 20 includes a storage plate 21, a first rack moving mechanism 22, transmission sensors 23 and 24, a reversal preventing member 25, a storage regulating mechanism 26, and a barcode reader 27.

The storage plate 21 in the storing section 20 has a rack contact part 21 a, a storage regulating part 21 b, a pair of holes 21 c, a pair of holes 21 d, and notches 21 e. The rack contact part 21 a is provided on the side opposite to the rack receiver 10 side of the storage plate 21. The rack contact part 21 a is formed by bending the storage plate 21 in the direction perpendicular to a mounting surface 21 f. An area between the end (reversal preventing member 25) on the rack receiver 10 side of the storage plate 21 and the rack contact part 21 a is a storage area in which the rack can be stored. An area of the size of one rack 5 at the end on the rack receiver 10 side of the storage plate 21 is a rack receive position P2 for receiving the rack 5 pushed from the rack receiver 10. An area of the size of one rack 5 on the rack contact part 21 a side of the storage plate 21 is a transverse feed start position P3 in which conveyance of the rack 5 by the conveying section 30 starts.

The storage regulation part 21 b of the storage plate 21 is formed by bending a predetermined area in the rack contact part 21 a so as to be parallel to the mounting surface 21 f. The storage regulating part 21 b is formed so as to project to the transverse feed start position P3 side from the rack contact part 21 a. The storage regulating part 21 b is provided so that the user cannot put the rack 5 in the transverse feed start position P3. As shown in FIG. 6, the distance from the mounting surface 21 f of the storage regulating part 21 b is set to be smaller than the general height of the rack 5 and larger than the height of the bottom 5 a of the rack 5. The projection amount from the rack contact part 21 a of the storage regulating part 21 b is set so that, when the rack 5 (bottom 5 a) comes into contact with the rack contact part 21 a, the rack 5 does not come into contact with the storage regulating part 21 b.

As shown in FIGS. 4 and 5, the pair of holes 21 c in the storage plate 21 is formed so as to extend from the rack receive position P2 to the transverse feed start position P3 in the storage plate 21. The pair of holes 21 d in the storage plate 21 is formed in a rectangle shape so as to have a length in the longer direction substantially the same as the length in the shorter direction of the rack 5 (bottom 5 a). The pair of holes 21 d in the storage plate 21 is disposed in areas apart from the rack contact part 21 a by a distance which is substantially the same as the length in the shorter direction of the rack 5 (bottom 5 a) so as to sandwich the pair of holes 21 c. The area in which the pair of holes 21 d is formed in the storage plate 21 is the area (reserve storage position P4) in which storage of the rack 5 is regulated. The pair of notches 21 e in the storage plate 21 is formed at an end on the rack receiver 10 side of the storage plate 21.

In the first embodiment, the first rack moving mechanism 22 in the storing section 20 has the function of moving the rack 5 stored on the mounting surface 21 f of the storage plate 21 from the rack receive position P2 side to the transverse feed start position P3 side (Y1 direction) and, in addition, the function of moving the rack 5 in the direction opposite to the conveying direction from the transverse feed start position P3 side to the rack receive position P2 side (Y2 direction). The first rack moving mechanism 22 is constructed by, as shown in FIGS. 7 and 8, a driving unit 22 a and a rack conveying unit 22 b. The driving unit 22 a is provided to move the rack conveying unit 22 b in the Y1 direction (conveyance direction) and the Y2 direction (the direction opposite to the conveyance direction) and is disposed below the mounting surface 21 f of the storage plate 21. The driving unit 22 a has a motor 221, an intermediate belt 222, a motor pulley 223, a large-diameter pulley 224, a drive belt 225, pulleys 226 a and 226 b, a tension pulley 227, and a direct-drive guide 228. The intermediate belt 222 is attached to the motor pulley 223 and the large-diameter pulley 224, and the motor pulley 223 is coupled to the motor 221. The drive belt 225 is attached to the pulleys 226 a and 226 b, and a small-diameter part 224 a of the large-diameter pulley 224. Tension is given to the drive belt 225 by the tension pulley 227. Consequently, by the driving of the motor 221, the drive belt 225 is decelerated and driven via the intermediate belt 222, motor pulley 223, and large-diameter pulley 224. The direct-drive guide 228 is disposed so as to extend in the Y1 direction (Y2 direction).

In the first embodiment, the rack conveying unit 22 b of the first rack moving mechanism 22 is provided to move the rack 5 stored on the mounting surface 21 f of the storage plate 21 in the Y1 and Y2 directions. The rack conveying unit 22 b includes a first moving member 229 and a second moving member 230. The first moving member 229 is coupled to the drive belt 225, and the second moving member 230 is attached to the direct-drive guide 228. The second moving member 230 has a pair of plates 230 a disposed with a predetermined interval so as to face each other, and the first moving member 229 is disposed between the pair of plates 230 a of the second moving member 230. The second moving member 230 moves so as to follow the movement of the first moving member 229 when the first moving member 229 moves by the driving of the drive belt 225.

Concretely, a shaft 231 is attached between the pair of plates 230 a of the second moving member 230, and the first moving member 229 is fit to the shaft 231 so as to slide in the extending directions (Y1 and Y2 directions) of the shaft 231. A compression spring 232 for energizing the first moving member 229 in the Y2 direction is attached to the shaft 231. Consequently, in the case where the first moving member 229 is moved in the Y1 direction by the drive belt 225 as shown in FIGS. 7 and 9 (in the case where the first moving member 229 is moved from the position in FIG. 7 to the position in FIG. 9), the first moving member 229 presses one of the plates 230 a in the second moving member 230 in the Y1 direction via the compression spring 232, so that the second moving member 230 is moved in the Y1 direction along the direct-drive guide 228. In the case where the first moving member 229 is moved in the Y2 direction by the drive belt 225 (in the case where the first moving member 229 is moved from the position in FIG. 9 to the position in FIG. 7), the first moving member 229 moves the other plate 230 a of the second moving member 230 in the Y2 direction, so that the second moving member 230 is moved in the Y2 direction along the direct-drive guide 228.

As shown in FIGS. 7 and 8, to the second moving member 230 of the rack conveying unit 22 b, a cylinder 233 and a direct-drive guide 234 are attached. The cylinder 233 is disposed so that a cylinder rod 233 a extends in a direction (Z direction) perpendicular to the mounting surface 21 f of the storage plate 21, and the direct-drive guide 234 is disposed so as to extend in the Z direction. A shaft holder 235 is attached to the cylinder rod 233 a and the direct-drive guide 234. When the cylinder rod 233 a extends in the Z direction, the shaft holder 235 is moved in the extending direction (Z direction) of the direct-drive guide 234.

A shaft 236 is attached to the shaft holder 235 of the rack conveying unit 22 b, and a pair of fitting nails 237 a and a pair of fitting nails 237 b are swingably attached to the shaft 236 around the axis of the shaft 236 as a fulcrum. One of the pair of fitting nails 237 a is disposed at one end of the shaft 236, and the other fitting nail 237 a is disposed at the other end of the shaft 236. One of the pair of fitting nails 237 b is disposed at one end of the shaft 236, and the other fitting nail 237 b is disposed at the other end of the shaft 236. Further, as shown in FIGS. 10 and 11, the fitting nails 237 a and 237 b are disposed so as to project from the mounting surface 21 f via the pair of holes 21 c in the storage plate 21 when the shaft holder 235 moves in the Z direction. The fitting nails 237 a and 237 b have fitting faces 237 c and 237 d which fit to the inner surface of the bottom 5 a of the rack 5. Consequently, in the case of making the fitting nails 237 a and 237 b project from the mounting surface 21 f and moving the rack conveying unit 22 b in the Y1 direction (Y2 direction), the inner surface of the bottom 5 a of the rack 5 engages with the fitting face 237 c (237 d) of the fitting nail 237 a (237 b), thereby moving the rack 5 in the Y1 direction (Y2 direction). In the case of moving the rack 5 in the Y1 direction, as shown in FIG. 10, the fitting nail 237 a engages with the inner surface of the bottom 5 a of the rack 5. In the case of moving the rack 5 in the Y2 direction, as shown in FIG. 11, the fitting nail 237 b engages with the inner surface of the bottom 5 a of the rack 5.

As shown in FIGS. 10 and 11, the fitting nail 237 a of the rack conveying unit 22 b is energized by a tension spring 238 a attached to the shaft holder 235 so that the fitting face 237 c and the inner surface of the bottom 5 a of the rack 5 become parallel to each other. The fitting nail 237 b is energized by a tension spring 238 b attached to the shaft holder 235 so that the fitting face 237 d and the inner surface of the bottom 5 a of the rack 5 become parallel to each other. Consequently, when an external force is applied from above to the fitting nail 237 a (237 b), the fitting nail 237 a (237 b) is turned in a predetermined direction against the energization force of the tension spring 238 a (238 b). In the case where the external force from above to the fitting nail 237 a (237 c) is eliminated, the fitting nail 237 a (237 b) is turned in the direction opposite to the predetermined direction by the energization force of the tension spring 238 a (238 b) so that the fitting face 237 c (237 d) and the inner surface of the bottom 5 a of the rack 5 become parallel to each other.

As shown in FIGS. 7 and 8, a detection piece 239 is attached to the first moving member 229 of the rack conveying unit 22 b, and a transmission sensor 240 is attached to the second moving member 230. The detection piece 239 and the transmission sensor 240 are provided to detect that conveyance in the Y1 direction of the rack 5 by the first rack moving mechanism 22 is stopped. Concretely, the detection piece 239 and the transmission sensor 240 are disposed so that a state where light is shielded by the detection piece 239 is detected by the transmission sensor 240 in the case where the first moving member 229 moves in the Y1 direction when the second moving member 230 stops as shown in FIG. 9.

As shown in FIGS. 4 and 5, the transmission sensor 23 of the storing section 20 is provided to detect the presence/absence of the rack 5 in the storage area other than the transverse feed position P3. The transmission sensor 23 is disposed so as to detect a light shield state in the case where at least one rack 5 is stored in the storage area other than the transverse feed start position P3. The transmission sensor 24 is provided to detect that the rack 5 moved in the Y1 direction from the rack receive position P2 side reaches the transverse feed position P3. The transmission sensor 24 is disposed to detect a light shield state when the rack 5 arrives at the transverse feed start position P3.

The reversal preventing members 25 in the storing section 20 are provided to prevent the rack 5 pushed from the push position P1 to the rack receive position P2 from moving back from the rack receive position P2 to the push position P1. The reversal preventing members 25 are disposed in areas corresponding to the notches 21 e in the storage plate 21. The reversal preventing member 25 has, as shown in FIG. 12, a perpendicular surface 25 a perpendicular to the mounting surface 21 f of the storage plate 21 and a tilted surface 25 b tilted from the perpendicular surface 25 a by a predetermined angle. As shown in FIGS. 12 and 13, the reversal preventing member 25 swings below the storage plate 21 when the rack 5 passes the boundary between the push position P1 and the rack receive position P2 and, after the rack 5 passes the boundary between the push position P1 and the rack receive position P2, swings upward of the storage plate 21 to return in an initial state (state of FIG. 12). The reversal preventing member 25 is constructed so as not to swing in response to the external force in the Y2 direction.

In the first embodiment, as shown in FIGS. 4 and 5, the storage regulating mechanism 26 in the storing section 20 is provided to regulate storage of the rack 5 in the reserve storage position P4 in the storage plate 21. The storage regulating mechanism 26 has, as shown in FIGS. 5 and 14, a pair of preventing members 261 and a pair of cylinders 262. The cylinder 262 is disposed so that a cylinder rod 262 a extends in a direction (Z direction) perpendicular to the mounting surface 21 f of the storage plate 21. The cylinder rod 262 a is attached to a surface opposite to the mounting surface 21 f of the storage plate 21 via a bracket 263. Consequently, as shown in FIG. 15, when the cylinder rod 262 a is extended in the Z direction, the body of the cylinder 262 moves in the Z direction toward the storage plate 21.

In the first embodiment, the preventing member 261 is attached to the body on the side opposite to the cylinder rod 262 a of the cylinder 262. The preventing member 261 is disposed so as to project from the mounting surface 21 f via the hole 21 d in the storage plate 21 when the body of the cylinder 262 moves in the Z direction. As shown in FIG. 5, the preventing member 261 is formed in a rectangular shape in plan view like the hole 21 d in the storage plate 21 and has a length in the longer direction substantially the same as the length in the shorter direction of the rack 5 (bottom 5 a). Consequently, as shown in FIG. 15, when the preventing member 261 projects from the mounting surface 21 f, storage of the rack 5 into the reserve storage position P4 is prevented by the preventing member 261. When the preventing member 261 projects from the mounting surface 21 f, the distance between an end on the transverse feed start position P3 side of the preventing member 261 and an end on the transverse feed start position P3 side of the storage regulating part 21 b of the storage plate 21 is smaller than the length in the shorter direction of the rack 5 (bottom 5 a), so that storage of the rack into the transverse start position P3 is also prevented.

As shown in FIGS. 4 and 5, the barcode reader 27 in the storing section 20 is provided to read a barcode on the rack 5 moving from the rack receive position P2 side to the transverse feed start position P3.

The conveying section 30 of the conveying device 1 is provided to convey the rack 5 carried to the transverse feed start position P3 to the sample supplying position 2 a (3 a) and the carrying-out section 40. Further, in the first embodiment, the conveying section 30 also has the function of moving the rack 5 conveyed to the carrying-out section 40 side again to the transverse feed start position P3 in the direction opposite to the conveyance direction in the case where a re-analysis is conducted. The conveying section 30 includes, as shown in FIGS. 16 and 17, a transverse feed plate 31, a driver 32, a rack conveyer 33, and a detector 34.

In a conveyance surface 31 a of the transverse feed plate 31 in the conveying section 30, a hole 31 b extending from the transverse feed start position P3 to an ejection start position P5 which will be described later is formed as shown in FIG. 5.

As shown in FIGS. 16 and 17, the driver 32 in the conveying section 30 is provided to move the rack conveyer 33 in an X1 direction (conveyance direction) and an X2 direction (direction opposite to the conveyance direction), and is disposed below the conveyance surface 31 a of the transverse feed plate 31. The driver 32 is constructed by a motor 321, a drive belt 322, pulleys 323 a and 323 b, and a direct-drive guide 324. The motor 321 is coupled to the pulley 323 a, and the drive belt 322 is attached to the pulleys 323 a and 323 b. Consequently, when the motor 321 is driven, the drive belt 322 is driven via the pulley 323 a. The direct-drive guide 324 is disposed so as to extend in the X1 direction (X2 direction).

In the first embodiment, as shown in FIGS. 4 and 5, the rack conveyer 33 in the conveying section 30 has, in addition to the function of moving the rack 5 on the conveyance surface 31 a of the transverse feed plate 31 from the transverse feed start position P3 to the ejection start position P5 side (X1 direction), the function of moving the rack 5 from the ejection start position P5 side to the transverse feed start position P3 (X2 direction). In the conveying section 30, an initial position 30 a in FIG. 5 is a position from which transverse feed of the rack 5 by the rack conveyer 33 starts. A transverse feed end position 30 b in FIG. 5 is a position in which the transverse feed of the rack 5 by the rack conveyer 33 is finished. The rack conveyer 33 includes, as shown in FIGS. 16 and 17, a moving member 331, a solenoid 332, a direct-drive guide 333, a fitting member 334, and a transmission sensor 335. The moving member 331 is coupled to the drive belt 322 and is also attached to the direct-drive guide 324. Consequently, when the drive belt 322 is driven, the moving member 331 moves in the extending directions (X1 and X2 directions) of the direct-drive guide 324. The solenoid 332 is attached to the moving member 331, and a rod 322 a of the solenoid 332 extends in a direction (Z direction) perpendicular to the conveyance surface 31 a of the transverse feed plate 31. The direct-drive guide 333 is attached to the moving member 331 and is disposed so as to extend in the Z direction. The fitting member 334 is attached to the rod 322 a of the solenoid 332 and the direct-drive guide 333. With the configuration, when the rod 332 a of the solenoid 332 extends in the Z direction, the fitting member 334 is moved in the direction (Z direction) in which the direct-drive guide 333 extends.

A first fitting part 334 a and a second fitting part 334 b are integrally provided for the fitting member 334 of the rack conveyer 33. The first and second fitting parts 334 a and 334 b are provided so as to project from the conveyance surface 31 a via the holes 31 b in the transverse feed plate 31 when the fitting member 334 moves in the Z direction as shown in FIGS. 18 and 19. As shown in FIG. 18, when the first and second fitting parts 334 a and 334 b are projected from the conveyance surface 31 a and the rack conveyer 33 is moved in the X1 direction, the inner surface on the first sample container 4 side of the rack 5 fits to the first fitting part 334 a, thereby moving the rack 5 in the X1 direction. Further, as shown in FIG. 19, the plate 5 b on the 10th sample container 4 side of the rack 5 is fit to the second fitting part 334 b and the inner surface of the first sample container 4 side of the rack 5 is fit to the first fitting part 334 a, thereby moving two racks 5 serially, simultaneously in the X1 direction. FIGS. 18 and 19 show a state where the racks 5 are moved in the X1 direction. Specifically, in FIG. 18, in the case of moving the rack 5 in the X2 direction, the first fitting part 334 a fits to the plate 5 b on the first sample container 4 side of the rack 5. In FIG. 19, in the case of moving the rack 5 in the X2 direction, the first fitting part 334 a fits to the plate 5 b on the first sample container 4 side of the rack 5, and the second fitting part 334 b fits to the inner surface on the 10th sample container 4 side of the rack 5.

As shown in FIGS. 16 and 17, the transmission sensor 335 in the rack conveyer 33 is provided to detect projection of the first and second fitting parts 334 a and 334 b from the conveyance surface 31 a of the transverse feed plate 31. The transmission sensor 335 is disposed so that light is shielded by a detection piece 334 c attached to the fitting member 334 in the case where the first and second fitting parts 334 a and 334 b project from the conveyance surface 31 a of the transverse feed plate 31.

The detector 34 in the conveying section 30 is provided to detect the position of the rack conveyer 33 that moves in the X1 and X2 directions. The detector 34 is constructed by transmission sensors 341 a and 341 b, transmission sensors 342 a and 342 b, and a detection plate 343. The transmission sensor 341 a is provided to detect that the rack conveyer 33 has moved to the initial position 30 a (refer to FIG. 5). The transmission sensor 341 a is disposed so as to detect that light is shielded by the detection piece 331 a of the moving member 331 as a component of the rack conveyer 33 when the rack conveyer 33 is moved to the initial position 30 a. The transmission sensor 341 b is provided to detect that the rack conveyer 33 has moved to the transverse feed end position 30 b (refer to FIG. 5). The transmission sensor 341 b is disposed so as to detect that light is shielded by a detection piece (not shown) of the moving member 331 as a component of the rack conveyer 33 when the rack conveyer 33 is moved to the transverse feed end position 30 b.

The transmission sensors 342 a and 342 b of the detector 34 are attached to the moving member 331 as a component of the rack conveyer 33. The transmission sensors 342 a and 342 b are disposed with a predetermined interval in the movement directions (X1 and X2 directions) of the rack conveyer 33. The detection plate 343 of the detector 34 has a plurality of rectangular detection holes 343 a to 343 h arranged along the movement directions (X1 and X2 directions) of the rack conveyer 33. The detection holes 343 a to 343 h are provided so change the transmission sensors 342 a and 342 b to a transmission (on) state or a light shield (off) state. In the case of moving the rack conveyer 33 in the X1 direction at a pitch of about 20 mm, the detection holes 343 a to 343 h are disposed so that the state (on/off state) of at least one of the transmission sensors 342 a and 342 b changes each time the rack conveyer 33 moves one pitch in the X1 direction. Therefore, each time the rack conveyer 33 is moved one pitch in the X1 direction, the combination of the on/off states in the transmission sensors 342 a and 342 b changes. That is, according to the combination of the on/off states in the transmission sensors 342 a and 342 b, the position of the rack conveyer 33 is detected.

In the case where the transmission sensor 342 a is positioned in an area corresponding to the detection hole 343 a in the detector 34, the rack conveyer 33 is in the initial position 30 a (refer to FIG. 5). When the transmission sensor 342 a is positioned in an area corresponding to the detection hole 343 g, the rack conveyer 33 is in the transverse feed end position 30 b (refer to FIG. 5). The detection holes 343 a to 343 g are disposed in order in the X1 direction (from the initial position 30 a to the transverse feed end position 30 b). The detection hole 343 h is disposed with a predetermined interval in the X2 direction of the detection hole 343 a.

As shown in FIGS. 4 and 5, the carrying-out section 40 in the conveying device 1 is provided to carry the rack 5 conveyed from the conveying section 30 to the carrying-out section 40 to a position in which the rack 5 can be ejected from an outlet 1 b by the unloading section 50. The carrying-out section 40 includes an ejection plate 41, a second rack moving mechanism 42, and transmission sensors 43 and 44.

The ejection plate 41 in the carrying-out section 40 has a rack contact part 41 a and a pair of holes 41 b. The area of the size of one rack 5 on the conveying section 30 side in the ejection plate 41 is the ejection start position P5 from which conveyance of the rack 5 starts in the carrying-out section 40. The area of the size of one rack 5 on the side (unloading section 50 side) opposite to the ejection start position P5 in the ejection plate 41 is an unloading start position P6 from which unloading from the outlet 1 b of the rack 5 by the unloading section 50 starts. The rack contact part 41 a is provided on the ejection start position P6 side of the ejection plate 41. The rack contact part 41 a is formed by folding the ejection plate 41 in the direction perpendicular to an ejection surface 41 c. The pair of holes 41 b in the ejection plate 41 is formed so as to extend from the ejection start position P5 to the unloading start position P6 in the ejection plate 41.

The second rack moving mechanism 42 in the carrying-out section 40 is provided to move the rack 5 on the ejection surface 41 c of the ejection plate 41 in the Y2 direction and is disposed below the ejection surface 41 c of the ejection plate 41. The second rack moving mechanism 42 has a pair of fitting members 421 which fit to the inner surface of the bottom 5 a of the rack 5 when the rack 5 is moved in the Y2 direction. The fitting members 421 are disposed in areas corresponding to the holes 41 b in the ejection plate 41 and are movable in the Y2 direction (Y1 direction) along the holes 41 b by the driver in the not-shown second rack moving mechanism 42. Further, the fitting members 421 project from the ejection surface 41 c via the holes 41 b in the ejection plate 41 when the rack 5 is moved in the Y2 direction.

The transmission sensor 43 in the carrying-out section 40 is provided to detect arrival at the ejection start position P5 of the rack 5 moved in the X1 direction from the conveying section 30. The transmission sensor 43 is disposed so that light is shielded when the rack 5 arrives at the ejection start position P5. The transmission sensor 44 in the carrying-out section 40 is provided to detect arrival at the unloading start position P6 of the rack 5 moved in the Y2 direction from the ejection start position P5. The transmission sensor 44 is disposed so that light is shielded when the rack 5 arrives at the unloading start position P6.

The unloading section 50 of the conveying device 1 is provided to unload the rack 5 conveyed to the unloading start position P6 in the carrying-out section 40 from the outlet 1 b. The unloading section 50 includes a rack conveying member 51, a motor 52, a drive belt 53, pulleys 54 a and 54 b, and a direct-drive guide 55.

The rack conveying member 51 in the unloading section 50 is provided to move the rack 5 conveyed to the unloading start position P6 in the X1 direction (outlet 1 b side). The motor 52 is coupled to the pulley 54 a and the drive belt 53 is attached to the pulleys 54 a and 54 b. When the motor 52 drives, the drive belt 53 is driven via the pulley 54 a. The direct-drive guide 55 is disposed so as to extend in the X1 direction (X2 direction). The rack conveying member 51 is coupled to the drive belt 53 and is also attached to the direct-drive guide 55. By driving the drive belt 53, the rack conveying member 51 is moved in the extending directions (X1 and X2 directions) of the direct-drive guide 55.

In the first embodiment, as described above, by constructing the first rack moving mechanism 22 for conveying the rack 5 received in the rack receive position P2 to the transverse feed start position P3 in the storing section 20 so as to be able to move the rack 5 in the direction opposite to the conveyance direction from the transverse feed start position P3 side to the rack receive position P2 side, the rack 5 can be moved in the direction opposite to the conveyance direction from the transverse feed start position P3 side to the rack receive position P2 side by the first rack moving mechanism 22 without requiring an operator. Consequently, at the time of re-analyzing the sample in the sample container 4 held on the first rack 5 by the same analyzer (the first blood analyzer 2 or the second blood analyzer 3), the first rack 5 conveyed from the transverse feed start position P3 to the sample supplying position 2 a (3 a) can be conveyed in the reserve direction back to the transverse feed start position P3 and re-stored in the storing section 20. In the case of re-conveying the re-stored first rack 5 from the transverse feed start position P3 to the sample supplying position 2 a (3 a), the second rack 5 already conveyed to the transverse feed start position P3 by the first rack 5 moving mechanism 22 can be moved to an area other than the transverse feed start position P3 in the storing section 20 by the first rack moving mechanism 22 without requiring an operator. Thus, an area (transverse feed start position P3) for re-storing the first rack 5 can be assured in the storing section 20. As a result, at the time of re-analyzing the sample in the same analyzer (first blood analyzer 2 or the second blood analyzer 3), the rack 5 (sample) can be re-conveyed to the first blood analyzer 2 or the second blood analyzer 3 without requiring an operator.

In the first embodiment, the first rack moving mechanism 22 is constructed so as to include the fitting nails 237 a and 237 b which fit to the rack 5, so that the racks 5 can be moved one by one with the fitting nails 237 a and 237 b of the first rack moving mechanism 22. In this case, by setting the area of the size of one rack 5 adjacent to the rack receive position P2 side of the transverse feed start position P3 as the area (reserve storage position P4) in which storage of the rack 5 is prevented, at the time of re-analyzing the sample in the sample container 4 held on the first rack 5 by the same analyzer (the first blood analyzer 2 or the second blood analyzer 3), by conveying only the second rack 5 already carried to the transverse feed start position P3 to the area (reserve storage position P4) adjacent to the rack receive position P2 side of the transverse feed start position P3, an area (transverse feed start position P3) for re-storing the first rack 5 can be easily assured in the storing section 20.

In the first embodiment, by providing the preventing members 261 for regulating storage of the rack 5 in the area (reserve storage position P4) in which storage of the rack 5 is regulated, storage of the rack 5 into the area (reserve storage position P4) in which storage of the rack 5 is regulated can be easily prevented by the preventing members 261.

In the first embodiment, by disposing the preventing members 261 below the mounting surface 21 f of the storing section 20 and allowing the preventing members 261 project from the mounting surface 21 f, in the case where the rack 5 is moved from the transverse feed start position P3 side to the rack receive position P2 side (in the case of re-analyzing the sample) and in the case where the rack 5 does not exist in the transverse feed start position P3 and is moved from the rack receive position P2 side to the transverse feed start position P3 side (in the case of conveying the rack 5 to the transverse feed start position P3 at the time of normal conveyance), by housing the preventing members 261 below the mounting surface 21 f of the storing section 20, movement from the transverse feed start position P3 side to the rack receive position P2 side or from the rack receive position P2 side to the transverse feed start position P3 side is not disturbed by the preventing members 261. By allowing the preventing members 261 project from the mounting surface 21 f of the storing section 20 in the case where the rack 5 exists in the transverse feed start position P3 and the rack 5 is moved from the rack receive position P2 side to the transverse feed start position P3 side, storage of the rack 5 into the area (reserve storage position P4) in which storage of the rack 5 is regulated can be prevented by the preventing members 261.

In the first embodiment, the conveying section 30 for conveying the rack 5 conveyed to the transverse feed start position P3 to the sample supplying position 2 a (3 a) and the ejection start position P5 is constructed so as to be able to move the rack 5 in the direction opposite to the conveyance direction from the ejection start position P5 side to the transverse feed start position P3. With the configuration, at the time of re-analyzing the sample in the sample container 4 held on a predetermined rack 5 by the same analyzer (the first blood analyzer 2 or the second blood analyzer 3), the predetermined rack 5 conveyed from the transverse feed start position P3 to the sample supplying position 2 a (3 a) by the conveying section 30 can be easily conveyed again to the transverse feed start position P3.

FIGS. 20 to 39 are schematic diagrams illustrating the conveying operation of the conveying device according to the first embodiment of the invention. With reference to FIGS. 1, 5, and 9 and FIGS. 20 to 39, the conveying operation of the conveying device 1 according to the first embodiment will be described.

First, as shown in FIG. 20, the first rack 5 is introduced into the rack receiver 10 in the conveying device 1 via the inlet 1 a. At this time, the conveyance belt 111 in the rack loading mechanism 11 is driven in the rack receiver 10. Consequently, the first rack 5 is conveyed from the inlet 1 a to the push position P1 (refer to FIG. 5) by the conveyance belt 111. The detector 114 detects that the first rack 5 arrives at the push position P1. The transmission sensor 115 detects the existence of the first rack 5 in the push position P1.

As shown in FIG. 21, in the rack receiver 10, after the first rack 5 is conveyed to the push position P1, the pushing member 121 of the rack pushing mechanism 12 is moved in the Y1 direction. By the operation, the first rack 5 is pushed from the push position P1 to the rack receive position P2 (refer to FIG. 5). At this time, the transmission sensor 115 detects that the first rack 5 is pushed from the push position P1 to the rack receive position P2. The transmission sensor 23 in the storing section 20 detects the existence of the first rack 5 in the rack receive position P2 (storage area other than the transverse feed start position P3 in the storing section 20).

After that, as shown in FIG. 22, the first rack 5 pushed to the rack receive position P2 is moved in the Y1 direction by the fitting nails 237 a (refer to FIG. 5) of the first rack moving mechanism 22 in the storing section 20. At this time, the preventing members 261 in the storage regulating mechanism 26 are housed below the mounting surface 21 f of the storage plate 21.

Consequently, as shown in FIG. 23, the first rack 5 moved in the Y1 direction by the fitting nails 237 a (refer to FIG. 5) of the first rack moving mechanism 22 is conveyed to the transverse feed start position P3 (refer to FIG. 5) without disturbance of movement in the Y1 direction by the preventing members 261. Arrival of the first rack 5 at the transverse feed start position P3 is detected by the transmission sensor 24.

When the first rack 5 arrives at the transverse feed start position P3 (refer to FIG. 5) in the storing section 20, the first rack 5 comes into contact with the rack contact part 21 a of the storage plate 21, thereby stopping the movement in the Y1 direction of the first rack 5. At this time, as shown in FIG. 9, the rack conveying unit 22 b as a component of the first rack moving mechanism 22 operates as follows. To the first moving member 229 of the rack conveying unit 22 b, the drive belt 225 driven by the motor 221 is coupled but the fitting nail 237 a which fits to the first rack 5 is not attached. In a state where the motor 221 drives, movement in the Y1 direction of the first moving member 229 continues. On the other hand, to the second moving member 230 of the rack conveying unit 22 b, the drive belt 225 is not coupled and the fitting nails 237 a which fits the first rack 5 are attached via various parts, so that movement in the Y1 direction of the second moving member 230 is stopped. Therefore, only the first moving member 229 moves in the Y1 direction against the energizing force of the compression spring 232, so that the transmission sensor 240 attached to the second moving member 230 enters a light shield state by the detection piece 239 attached to the first moving member 229. As a result, completion of conveyance of the first rack 5 to the transverse feed start position P3 by the first rack moving mechanism 22 is detected.

After that, as shown in FIG. 24, by moving the first rack 5 conveyed to the transverse feed start position P3 at a pitch of about 20 mm (pitch between neighboring sample containers 4) by the conveying section 30, the sample containers 4 held on the first rack 5 are sequentially conveyed to the sample supplying position 2 a (3 a). The second to fourth racks 5 are conveyed to the storage area in the storing section 20 in a manner similar to the first rack 5. At this time, in the storing section 20, the preventing members 261 of the storage regulating mechanism 26 are allowed to project from the mounting surface 21 f of the storage plate 21. Consequently, conveyance of the second and subsequent racks 5 to the reserve storage position P4 is regulated by the preventing members 261.

As shown in FIG. 25, when the first rack 5 is completely moved from the transverse feed start position P3 in the storing section 20, the preventing members 261 (refer to FIG. 5) of the storage regulating mechanism 26 are housed below the mounting surface 21 f of the storage plate 21. In a state where the preventing members 261 are housed below the mounting surface 21 f of the storage plate 21, the second to fourth racks 5 are moved in the Y1 direction by the fitting nails 237 a (refer to FIG. 5) of the first rack moving mechanism 22. Until the second rack 5 is conveyed to the transverse feed start position P3 (refer to FIG. 5), the second to fourth racks 5 are moved in the Y1 direction.

After that, as shown in FIG. 26, in the storing section 20, the third and fourth racks 5 are moved in the Y2 direction as a direction opposite to the conveyance direction by the fitting nails 237 b (refer to FIG. 5) of the first rack moving mechanism 22. Until the third rack 5 is conveyed to the storage area adjacent to the reserve storage position P4, the third and fourth racks 5 are moved in the Y2 direction. After that, the preventing members 261 of the storage regulating mechanism 26 are allowed to project from the mounting surface 21 f of the storage plate 21.

The operation performed in the case where it is determined that a re-analysis is necessary on the sample in the sample container 4 held on the first rack 5 in the state shown in FIG. 26 will be described.

In the case where a re-analysis is determined on the sample in the sample container 4 held on the first rack 5, as shown in FIG. 27, first, in the storing section 20, the preventing members 261 (refer to FIG. 5) of the storage regulating mechanism 26 are housed below the mounting surface 21 f of the storage plate 21. After that, in a state where the preventing members 261 are housed below the mounting surface 21 f of the storage plate 21, the second rack 5 is conveyed to the reserve storage position P4 (refer to FIG. 5) by the fitting nails 237 b (refer to FIG. 5) in the first rack moving mechanism 22.

Nest, as shown in FIG. 28, by moving the first rack 5 in the X2 direction (the direction opposite to the conveyance direction) by the conveying section 30, the first rack 5 is conveyed to the transverse feed start position P3 (refer to FIG. 5). After that, as shown in FIG. 29, by moving the first rack 5 conveyed to the transverse feed start position P3 again in the X1 direction at a pitch of about 20 mm by the conveying section 30, the first rack 5 is re-conveyed to the sample supplying position 2 a (3 a).

Subsequently, after the first rack 5 has been completely moved from the transverse feed start position P3, the second rack 5 is conveyed to the transverse feed start position P3 by the fitting nails 237 a (refer to FIG. 5) of the first rack moving mechanism 22, the state before the re-analysis (refer to FIG. 26) is obtained.

The conveying operation by the conveying section 30 will now be described in detail.

First, as shown in FIG. 30, in the initial state, the rack conveyer 33 as a component of the conveying section 30 is in the initial position 30 a. When the rack conveyer 33 moves at a pitch of about 20 mm in the X1 direction, the transmission sensors 342 a and 342 b of the rack conveyer 33 operate as follows.

In the case where the rack conveyer 33 is in the initial state 30 a as shown in FIG. 30, the transmission sensor 342 a detects a light transmission (on) state, and the transmission sensor 342 b detects a light shield (off) state. In the case where the rack conveyer 33 is moved from the initial position 30 a only by about 20 mm (one pitch) as shown in FIG. 31, the transmission sensor 342 a detects the off state, and the transmission sensor 342 b detects the on state. In the case where the rack conveyer 33 is moved from the initial position 30 a by about 40 mm (two pitches) as shown in FIG. 32, the transmission sensor 342 a detects the on state, and the transmission sensor 342 b detects the off state. In the case where the rack conveyer 33 is moved from the initial position 30 a by about 60 mm (three pitches) as shown in FIG. 33, both of the transmission sensors 342 a and 342 b detect the on state.

As described above, each time the rack conveyer 33 is moved one pitch in the X1 direction, the combination of the transmission sensors 342 a and 342 b becomes one of the above-described patterns and always becomes a different pattern. Consequently, in the case where the position of the rack 5 is deviated by one pitch, the deviation can be easily detected. The three patterns are a first pattern in which the transmission sensor 342 a detects the on state and the transmission sensor 342 b detects the off state, a second pattern in which the transmission sensor 342 a detects the off state and the transmission sensor 342 b detects the on state, a third pattern in which both of the transmission sensors 342 a and 342 b detect the on state.

In the conveying section 30, when the first rack 5 is moved from the initial position 30 a only by about 40 mm by the rack conveyer 33 (refer to FIG. 32), a barcode adhered to the first sample container 4 on the first rack 5 is read. As shown in FIG. 34, when the first rack 5 is moved from the initial position 30 a only by about 80 mm (four pitches) by the rack conveyer 33, the sample in the first sample container 4 on the first rack 5 is stirred by the hand member 2 b (3 b) (refer to FIG. 1) of the first blood analyzer 2 (the second blood analyzer 3). As shown in FIG. 35, when the first rack 5 is moved from the initial position 30 a only by about 100 mm (five pitches) by the rack conveyer 33, the sample in the first sample container 4 on the first rack 5 is supplied to the first blood analyzer 2 (the second blood analyzer 3) (refer to FIG. 1) by the hand member 2 d (3 b).

In the case where it is determined that a re-analysis is necessary on the sample in the sample container 4 held on the first rack 5, as shown in FIG. 36, the rack conveyer 33 is moved in the X2 direction. At this time, the rack conveyer 33 is moved in the X2 direction until the transmission sensor 342 a of the rack conveyer 33 reaches the area corresponding to the detection hole 343 h. The transmission sensors 342 a and 342 b detect the on state and the off state, respectively.

As shown in FIG. 37, by moving the first rack 5 in the X1 direction at a pitch of about 20 mm by the conveying section 30, the first rack 5 is conveyed to the ejection start position P5 (refer to FIG. 5). At this time, arrival at the ejection start position P5 of the first rack 5 is detected by the transmission sensor 43 in the carrying-out section 40.

Next, as shown in FIG. 38, in the carrying-out section 40, by moving the first rack 5 conveyed to the ejection start position P5 (refer to FIG. 5) in the Y2 direction by the fitting members 421 (refer to FIG. 5) of the second rack moving mechanism 42, the first rack 5 is conveyed to the unloading start position P6 (refer to FIG. 5). At this time, arrival at the unloading start position P6 of the first rack 5 is detected by the transmission sensor 44 in the carrying-out section 40.

Finally, as shown in FIG. 39, in the unloading section 50, the first rack 5 is conveyed to the unloading start position P6 and, after that, the rack conveying member 51 is moved in the X1 direction. By the operation, the first rack 5 conveyed to the unloading start position P6 is moved in the X1 direction, so that the first rack 5 is unloaded from the outlet 1 b.

With reference to FIGS. 48 and 49, the sample processing system including the first and second blood analyzers 2 and 3 to each of which the conveying device 1 according to the first embodiment is connected will be further described. As shown in FIG. 48, the conveying device 1 has a controller 1001. The first blood analyzer 2 has a controller 1002, and the second blood analyzer 3 has a controller 1003. The first and second blood analyzers 2 and 3 are connected to a host computer 1004. The host computer 1004 is a computer including a CPU, a memory, a hard disk, and the like. On the hard disk of the host computer 1004, the rack number, sample number, and orders (information such as whether measurement is necessary or not and measurement items) on the sample are stored so as to be associated with each other. Each of the controllers 1001 to 1003 has a CPU, a memory, and the like, the controller 1001 is constructed so as to be able to perform communications with the controllers 1002 and 1003, and the controllers 1002 and 1003 can perform communications with the host computer 1004.

With reference to FIG. 49, part of processes executed by the controllers 1001 and 1002 and the host computer 1004 in order to convey a rack and process a sample will be described. FIG. 49 shows processes started when the rack 5 arrives at the transverse feed start position P3.

First, in step S1, the controller 1001 transverse-feeds the rack 5 only by one pitch (corresponding to the distance between two sample containers). At this time, one sample container reaches the position facing the barcode reader 2 c, another sample container reaches the position (stir position) facing the hand member 2 b, and further another sample container reaches a position (suction position) facing the hand member 2 d. In step S2, the controller 1001 makes the barcode reader 2 c read the barcode adhered to the sample container facing the barcode reader 2 c. In step S3, the controller 1001 transmits a stir instruction to the controller 1002. In step S4, the controller 1001 transmits the number of the rack 5 (rack number) and the number of a barcode (sample number) adhered to a sample container in the suction position which are preliminarily read by the barcode reader 27 to the controller 1002. The sample number transmitted in step S4 was read by the barcode reader 2 c when the sample container position in the suction position was in the position facing the barcode reader 2 c. The processes in steps S2 to S4 are executed substantially at the same time. During the processes, the rack 5 is stopped and continuously stopped until stirring of the sample container in the stir position is finished and suction of the sample from the sample container in the suction position is completed.

On the other hand, the controller 1002 waits until the stir instruction is received from the controller 1001 (step S21) and, on receipt of the stir instruction, executes a process of stirring the sample with the hand member 2 b in step S22. The controller 1002 waits until the rack number and the sample number are received from the controller 1001 in step S23 and, on receipt of the numbers, executes a process of transmitting the numbers to the host computer 1004 in step S24.

The host computer 1004 waits until the rack number and the sample number are received from the controller 1002 in step S41. On receipt of the numbers, in step S42, the host computer 1004 extracts the orders (information such as whether measurement is necessary or not and measurement items) of the sample on the basis of the numbers, and executes a process of transmitting the extracted orders to the controller 1002.

On the other hand, the controller 1002 waits until the orders are received from the host computer 1004 in step S25 and, on receipt of the orders, executes a process of taking the sample container 4 from the rack 5 with the hand member 2 d, sucking the sample, and analyzing the sample in step S26.

After completion of analysis of the sample, the controller 1002 transmits the result of the sample process to the controller 1001 in step S27. In the case where the analysis of the sample is finished normally, the sample process result includes information indicating that the analysis of the sample has completed normally. When a re-analysis of the sample is necessary, the sample process result includes information indicative of a measurement error. In step S28, the controller 1002 transmits the sample measurement result (measurement data) to the host computer 1004.

On the other hand, the controller 1001 waits for reception of the sample process result in step S5. In step S6, the controller 1001 executes a process of determining whether the sample process results have been received on all of sample containers 4 held on the rack 5 or not. When it is determined that the sample process results on all of sample containers have not been received, the controller 1001 returns to step S1. The rack is transverse-fed by one pitch, the sample number of a new sample is read, a stir instruction is transmitted, and the rack number and the sample number are transmitted. In reality, irrespective of reception of the sample process result, when stirring of the sample is finished and suction of the sample is finished, transverse feed of one pitch of the rack is executed. However, to simplify the description, it is assumed that the reception of the sample process results relate to the beginning of transverse feed. When it is determined that the sample process results on all of the sample containers 4 have been received, the controller 1001 determines whether information indicative of a measurement error is included in the received sample process results or not ins step S7. In the case where information indicative of even one measurement error is included on all of the sample containers 4 held on the rack 5, the controller 1001 executes a process of moving the rack 5 back to the transverse feed start position P3 in step S8.

Next, in step S9, the controller 1001 transverse-feeds the rack 5 until the sample container 4 containing the sample indicating the measurement error arrives at the stir position. In step S10, the controller 1001 transmits the stir instruction to the controller 1002.

In step S11, the controller 1001 transverse-feeds the rack 5 until the sample container 4 containing the sample indicative of the measurement error reaches the suction position. In step S12, the controller 1001 transmits the rack number and the sample number to the controller 1002.

The controller 1001 executes the processes in steps S9 to S12 on all of samples indicative of a measurement error.

Further, the controller 1001 waits for receipt of the sample processing results in step S13. In the case where all of sample process results are received, in step S14, the controller 1001 executes a process of transverse-feeding the rack 5 to the ejection start position P5. In reality, irrespective of reception of the sample process results, when stir of the sample is finished and suction of the sample is finished, the rack is transversely fed. However, to simplify the description, the process as described above is assumed.

In step S15, the controller 1001 executes a process of conveying the rack 5 from the ejection start position P5 to the unloading start position P6.

In the case where no measurement error is included in the information on all of the sample containers 4 held on the rack 5 in step S7, the processes in steps S8 to S13 are not executed but the processes in step S14 and subsequent steps are executed.

Second Embodiment

FIG. 40 is a plan view showing the structure of a conveying device according to a second embodiment of the present invention. FIGS. 41 and 42 are detailed diagrams showing the structure of the conveying device according to the second embodiment illustrated in FIG. 40. With reference to FIG. 3 and FIGS. 40 to 42, the second embodiment will be described. Different from the foregoing first embodiment, conveyance of the rack 5 in a storing section 80 will be performed with a conveyance belt 825. The rack 5 conveyed by a conveying device 100 according to the second embodiment is the same as the rack 5 shown in FIGS. 2 and 3.

The conveying device 100 according to the second embodiment includes, as shown in FIG. 40, a rack receiver 70, the storing section 80, the conveying section 30, the carrying-out section 40, and the unloading section 50. The configurations of the conveying section 30, carrying-out section 40, and unloading section 50 in the conveying device 100 according to the second embodiment are similar to those of the conveying section 30, carrying-out section 40, and unloading section 50 in the conveying device 1 according to the first embodiment.

The rack receiver 70 in the conveying device 100 is provided to load the rack 5 introduced from an inlet 100 a in the conveying device 100 to the storing section 80 side by moving the rack 5 in the X1 direction. The rack receiver 70 includes a driver 71, a rack conveyer 72, and transmission sensors 73 a and 73 b.

The driver 71 in the rack receiver 70 is provided to move the rack conveyer 72 in the X1 and X2 directions. The driver 71 is constructed by a motor 711, a drive belt 712, pulleys 713 a and 713 b, and a direct-drive guide 714. The motor 711 is coupled to the pulley 713 a, and the drive belt 712 is attached to the pulleys 713 a and 713 b. Consequently, when the motor 711 is driven, the drive belt 712 is driven via the pulley 713 a. The direct-drive guide 714 is disposed so as to extend in the X1 direction (X2 direction).

In the second embodiment, the rack conveyer 72 in the rack receiver 70 is provided to move the rack 5 introduced from the inlet 100 a in the X1 direction and also has the function of a preventing member. A loading start position 70 a in FIG. 40 is a position in which loading of the rack 5 by the rack conveyer 72 starts, and a loading end position 70 b in FIG. 40 is a position in which loading of the rack 5 by the rack conveyer 72 is finished. The rack conveyer 72 includes a moving member 721, a solenoid 722, and a micro switch 723. The moving member 721 is coupled to the drive belt 712 and is also attached to the direct-drive guide 714. Consequently, when the drive belt 712 is driven in the X1 direction, the moving member 721 moves in the X1 directions along the direct-drive guide 714. The moving member 721 has a contact part 721 a with which the rack 5 introduced from the inlet 100 a comes into contact. The rack 5 is moved in the X1 direction by the rack conveyer 72 in a state where it is in contact with the contact part 721 a of the moving member 721.

The micro switch 723 of the rack conveyer 72 is attached to the contact part 721 a of the moving member 721. The micro switch 723 is disposed so that a switch part of the micro switch 723 is pressed by the rack 5 when the rack 5 comes into contact with the contact part 721 a of the moving member 721. When the rack 5 comes into contact with the contact part 721 a of the moving member 721, the micro switch 723 is switched from the on (off) state to the off (on) state, so that contact of the rack 5 with the contact part 721 a can be detected.

The solenoid 722 in the rack conveyer 72 is attached to the moving member 721. The solenoid 722 is disposed so that a rod 722 a of the solenoid 722 extends in the Y1 direction (Z direction) and is inserted in the slot 5 c (refer to FIG. 3) in the rack 5 which is in contact with the contact part 721 a of the moving member 721. Consequently, in the case where the rod 722 a of the solenoid 722 is inserted in the slot 5 c in the rack 5 and the rack conveyer 72 is moved in the X1 direction, the rod 722 a of the solenoid 722 is fit in the slot 5 c in the rack 5 so that the rack 5 is moved in the X1 direction.

The transmission sensors 73 a and 73 b in the rack receiver 70 are provided to detect the position of the rack conveyer 72 that moves in the X1 and X2 directions. Specifically, the transmission sensor 73 a is provided to detect that the rack conveyer 72 has moved to the loading start position 70 a. The transmission sensor 73 a is disposed so as to detect that light is shielded by a detection piece (not shown) of the moving member 721 as a component of the rack conveyer 72 when the rack conveyer 72 is moved to the loading start position 70 a. The transmission sensor 73 b is provided to detect that the rack conveyer 72 has moved to the loading end position 70 b. The transmission sensor 73 b is disposed so as to detect that light is shielded by a detection piece (not shown) of the moving member 721 as a component of the rack conveyer 72 when the rack conveyer 72 is moved to the loading end position 70 b. In the case where the rack conveyer 72 is moved to the loading start position 70 a, the moving member 721 as a component of the rack conveyer 72 is positioned in a predetermined area above a storage plate 81 which will be described later. On the other hand, in the case where the rack conveyer 72 is moved to the loading end position 70 b, the moving member 721 as a component of the rack conveyer 72 is positioned in an area deviated from the storage plate 81 which will be described later.

The storing section 80 of the conveying device 1 is provided to store the rack 5 conveyed from the inlet 100 a to the sample supplying position 2 a (3 a). Further, in the second embodiment, the storing section 80 also has the function of re-storing the rack 5 moved in the direction opposite to the conveyance direction from the sample supplying position 2 a (3 a) in the case where a re-analysis is conducted. The storing section 80 includes the storage plate 81, a first rack moving mechanism 82, and a barcode reader 83.

The storage plate 81 in the storing section 80 is divided into three parts. The three divided storage plates 81 are disposed with predetermined intervals from each other. The storage plates 81 are disposed so as to provide an area through which the rack conveyer 72 (the contact part 721 a of the moving member 721) of the rack receiver 70 which moves in the X1 (X2) direction passes. The storage plate 81 has a rack contact part 81 a. The rack contact part 81 a is provided on the side opposite to the rack receiver 70 side of the storage plate 81. The rack contact part 81 a is formed by folding the storage plate 81 in the direction perpendicular to a mounting surface 81 b. The area between the end on the rack receiver 70 side of the storage plate 21 and the rack contact part 81 a is a storage area in which the rack 5 can be stored. In the storage plate 81, the area through which the rack conveyer 72 of the rack receiver 70 passes is a rack receive position P22 for receiving the rack 5 conveyed by the rack receiver 70. An area of the size of one rack 5 on the rack contact part 81 a side of the storage plate 81 is a transverse feed start position P23 in which conveyance of the rack 5 by the conveying section 30 starts.

In the second embodiment, when the rack conveyer 72 (moving member 721) of the rack receiver 70 is moved to the loading start position 70 a, storage in the rack receive position P22 of the rack 5 is regulated by the moving member 721. Specifically, when the rack conveyer 72 (moving member 721) of the rack receiver 70 is moved to the loading start position 70 a, the rack conveyer 72 (moving member 721) functions as a preventing member for preventing the rack 5 from being stored in the rack receive position P22. When the rack conveyer 72 is moved to the loading end position 70 b, since the rack conveyer 72 (moving member 721) is positioned in an area deviated from the storage plate 81, the rack conveyer 72 (moving member 721) does not function as a preventing member. The rack conveyer 72 starts loading of the rack 5 to the rack receive position P22 when there is an area in which at least one rack 5 can be stored other than the rack receive position P22 in the storing section 80.

In the second embodiment, the first rack moving mechanism 82 in the storing section 80 has, in addition to the function of moving the rack 5 stored on the mounting surface 81 b of the storage plate 81 from the rack receive position P22 side to a transverse feed start position P23 side (Y1 direction), a function of moving the rack 5 in the direction opposite to the conveyance direction from the transverse feed start position P23 side to the rack receive side P22 (Y2 direction). The first rack moving mechanism 82 is disposed below the mounting surface 81 b of the storage plate 81. The first rack moving mechanism 82 has, as shown in FIGS. 41 and 42, a cylinder 821, a direct-drive guide 822, a holder 823, a motor 824, two conveyance belts 825, a pair of pulleys 826 a, a pair of pulleys 826 b, a plurality of tension pulleys 827, a pulley shaft 828, a drive belt 829, and a transmission sensor 830. The cylinder 821 is disposed cylinder rod 821 a to extend in a direction (Z direction) perpendicular to the mounting surface 81 b of the storage plate 81, and the direct-drive guide 822 is disposed so as to extend in the Z direction. The holder 823 is attached to a cylinder rod 821 a and the direct-drive guide 822. When the cylinder rod 821 a extends in the Z direction, the holder 823 is moved in the extending direction (Z direction) of the direct-drive guide 822.

In the first rack moving mechanism 82, the motor 824, the pair of pulleys 826 a, the pair of pulleys 826 b, and the plurality of tension pulleys 827 are attached to the holder 823. The pulleys 826 a as a pair are disposed so as to face each other with a predetermined interval, and the pulleys 826 b as a pair are disposed so as to face each other with the same interval as that between the pulleys 826 a. One of the two conveyance belts 825 is attached to the pulleys 826 a and 862 b on one side, and the other conveyance belt 825 is attached to the pulleys 826 a and 826 b on the other side. The conveyance belts 825 are disposed so as to project from the mounting surface 81 b via areas corresponding to the internals among the three divided storage plates 81 when the holder 823 moves in the Z direction. Tension is applied to the conveyance belts 825 attached to the pulleys 826 a and 826 b by the plurality of tension pulleys 827.

In the first rack moving mechanism 82, the pulley shaft 828 is coupled to the pair of pulleys 826 a, and the drive belt 829 is attached to the rotary shaft of the motor 824 and the pulley shaft 828. With the configuration, by driving of the motor 824, the conveyance belt 825 is driven via the drive belt 829, pulley shaft 828, and pulley 826 a. In the case of driving the conveyance belt 825 in the Y1 direction (Y2 direction) in a state where it projects from the mounting surface 81 b, the rack 5 comes into contact with the driving conveyance belt 825, thereby moving the rack 5 in the Y1 direction (Y2 direction).

The transmission sensor 830 of the first rack moving mechanism 82 is provided to detect that the conveyance belt 825 projects from the mounting surface 81 b of the storage plate 81. The transmission sensor 830 is disposed so as to detect that light is shielded by a detection piece 823 a attached to the holder 823 in the case where the conveyance belt 825 projects from the mounting surface 81 b of the storage plate 81.

In the second embodiment, as described above, in the storing section 80, the first rack moving mechanism 82 for conveying the rack 5 received in the rack receive position P22 to the transverse feed start position P23 is constructed so as to be able to move the rack 5 in a direction opposite to the conveyance direction from the transverse feed start position P23 side to the rack receive position P22 side. Consequently, in a manner similar to the first embodiment, at the time of re-analyzing the sample in the sample container 4 held on the first rack 5 by the same analyzer, the second rack 5 already conveyed to the transverse feed start position P23 by the first rack moving mechanism 82 can be moved to an area other than the transverse feed start position P23 in the storing section 80. Thus, an area (transverse feed start position P23) for re-storing the first rack 5 can be assured in the storing section 80. As a result, in a manner similar to the first embodiment, at the time of re-analyzing the sample in the same analyzer, the rack 5 (sample) can be re-conveyed to the analyzer without requiring an operator.

In the second embodiment, by constructing the first rack moving mechanism 82 so as to include the conveyance belt 825 for moving the rack 5, by the conveyance belt 825 of the first rack moving mechanism 82, all of the racks 5 stored in the area other than the rack receive position P22 in the storing section 80 can be simultaneously moved from the transverse feed start position P23 side to the rack receive position P22 side in the direction opposite to the conveyance direction. In this case, by using the rack receive position P22 as an area in which storage of the rack 5 is regulated, at the time of re-analyzing the sample in the sample container 4 held on the first rack 5 by the same analyzer, the second rack 5 already conveyed to the transverse feed start position P23 can be moved together with the third or subsequent rack 5 to the area other than the transverse feed start position P23 in the storing section 80. Thus, the area for re-storing the first rack 5 (transverse feed start position P23) can be easily assured in the storing section 80.

In the second embodiment, in the case where the rack conveyer 72 of the rack receiver 70 is moved to the loading start position 70 a of the rack 5, the rack conveyer 72 functions as the preventing member for regulating storage of the rack 5 in the rack receive position P22. Consequently, by moving the rack conveyer 72 to the loading start position 70 a, storage of the rack 5 to the rack receiving position P22 can be easily regulated. By making the rack conveyer 72 function as the preventing member for regulating storage of the rack 5 into the rack receive position P22, it becomes unnecessary to separately provide a preventing member for regulating storage of the rack 5 to the rack receive position P22. Therefore, the number of parts can be reduced.

In the second embodiment, in the case where the rack conveyer 72 of the rack receiver 70 is moved in the direction opposite to the conveyance direction of the loading end position 70 b of the rack 5, the rack conveyer 72 does not function as a preventing member. With the configuration, in the case where the rack 5 is moved in the direction opposite to the conveyance direction from the transverse feed start position P23 side to the rack receive position P22 side (in the case of re-processing the sample), by moving the rack conveyer 72 to the loading end position 70 b, movement of the rack 5 from the transverse feed start position P23 side to the rack receive position P22 side is not disturbed by the rack conveyer 72.

In the second embodiment, in the case where an area in which at least one rack 5 can be stored exists other than the rack receive position P22 in the storing section 80, loading of the rack 5 to the rack receive position P22 by the rack conveyer 72 in the rack receiver 70 starts. With the configuration, even if the rack is conveyed to the rack receive position P22 (the area in which storage of the rack 5 is regulated), the rack 5 can be conveyed to an area other than the rack receive position P22 in the storing section 80. Thus, the rack 5 is not stored in the rack receive position P22.

FIGS. 43 to 47 are schematic diagram showing the conveying operation of the conveying device according to the second embodiment of the invention. With reference to FIG. 40 and FIGS. 43 to 47, the rack conveying operation of the conveying device 100 according to the second embodiment will now be described.

First, as shown in FIG. 43, in the storing section 80, the first to sixth racks 5 sequentially conveyed from the rack receiver 70 are moved in the Y1 direction (conveyance direction) by the conveyance belts 825 of the first rack moving mechanism 82. By moving the first rack conveyed to the transverse feed start position P23 (refer to FIG. 40) in the X1 direction (conveyance direction) at a pitch of about 20 mm by the conveying section 30, the first rack 5 is conveyed to the sample supplying position 2 a (3 a). When the first rack 5 has been completely moved from the transverse feed start position P23, the second to sixth racks 5 are moved in the Y1 direction by the conveyance belt 825 of the first rack moving mechanism 82. Until the second rack 5 is conveyed to the transverse feed start position P23, the second to sixth racks 5 are moved in the Y1 direction. After that, the rack conveyer 72 in the rack receiver 70 is moved in the loading start position 70 a (X2 direction).

As stated in FIG. 43, the operation performed in the case where it is determined that a re-analysis is necessary on the sample in the sample container 4 held on the first rack 5 will be described.

In the case where it is determined that a re-analysis is necessary on the sample in the sample container 4 held on the first rack 5, as shown in FIG. 44, first, the rack conveyer 72 is moved to the loading end position 70 b (X1 direction) in the rack receiver 70.

As shown in FIG. 45, the second to sixth racks 5 are moved in the Y2 direction as the direction opposite to the conveyance direction by the conveyance belt 825 of the first rack moving mechanism 82. Until the sixth rack 5 is conveyed to the rack receive position P22 (refer to FIG. 40), the second to sixth racks 5 are moved in the Y2 direction.

Next, as shown in FIG. 46, by moving the first rack 5 in the X2 direction as the direction opposite to the conveyance direction by the conveying section 30, the first rack 5 is moved to the transverse feed start position P23. After that, as shown in FIG. 47, the first rack 5 conveyed to the transverse feed start position P23 is moved again at a pitch of about 20 mm in the X1 direction by the conveying section 30, thereby re-conveying the first rack 5 to the sample supplying position 2 a (3 a). After the first rack has been completely conveyed from the transverse feed start position P23, the second rack 5 is conveyed to the transverse feed start position P23 by the conveyance belt 825 of the first rack moving mechanism 82, thereby resetting the state before the re-analysis (refer to FIG. 43).

The operations of conveying the rack 5 in the conveying section 30, carrying-out section 40, and unloading section 50 in the second embodiment are similar to those of the conveying section 30, carrying-out section 40, and unloading section 50 in the first embodiment, respectively.

It should be noted that the embodiments disclosed here are illustrative and not restrictive in all respects. The scope of the invention is indicated by the claims rather than by the foregoing description of the embodiments and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.

For example, in the first and second embodiments, the conveying device of the present invention is connected to the blood analyzer. The invention, however, is not limited to the embodiments. The conveying device of the invention may be connected to a sample processing device other than the blood analyzer.

Although a rack is conveyed by the first moving mechanism having the fitting nails or the conveyance belt in the storing section in the foregoing first and second embodiments, the invention is not limited to the above. A rack may be conveyed by a first moving mechanism other than the first moving mechanism having the fitting nails or the conveyance belt.

In the foregoing first and second embodiments, the controller 1001 provided for the conveying device 1 controls the operation of the conveying device 1 and performs communications with the first blood analyzer 1 or the second blood analyzer 2. Alternately, the sample processing system may have a computer having functions similar to those of the controller 1001, and the computer may be connected to the conveying device 1.

Although the sample processing system in which a plurality of conveying devices 1 are connected has been described in the first and second embodiments, the invention may be applied to a sample processing system in which a single or a plurality of analyzer(s) is/are connected to a single conveying device 1.

In the first and second embodiments, a space (reserve storage position P4) of one rack is assured in the storing section 20 or 80 and, in the case where a re-analysis is necessary on a sample, a rack is moved backward by using the space. The size of the space may be a size in which two or more racks can be mounted.

Although the conveying device 1 conveys the rack 5 in the Y2 direction and, after that, in the X1 direction in the first and second embodiments, the conveyance directions are not limited. By conveying the rack 5 only in the X1 direction, the rack 5 may be conveyed to the sample supplying position 2 a or 3 a.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5529166 *Mar 15, 1994Jun 25, 1996Board Of Regents - Univ Of NebraskaCentral control apparatus for an automated laboratory conveyor system
US6571934 *Nov 14, 2001Jun 3, 2003Dade Behring Inc.Bi-directional magnetic sample rack conveying system
US6808304 *Aug 27, 2002Oct 26, 2004Dade Behring Inc.Method for mixing liquid samples using a linear oscillation stroke
US7448487 *Mar 27, 2006Nov 11, 2008Sysmex CorporationTransporting apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7854892 *May 7, 2007Dec 21, 2010Beckman Coulter, Inc.For individual racks of containers relative to aspiration probe of associated instrument; includes magnetic transport system that operates beneath rack-supporting surface
US7998409 *Sep 21, 2007Aug 16, 2011Beckman Coulter, Inc.For individual racks of containers relative to aspiration probe of associated instrument; includes magnetic transport system that operates beneath rack-supporting surface
US8083995Feb 21, 2008Dec 27, 2011Sysmex CorporationSample processing apparatus and sample processing system
US8356525 *Mar 6, 2009Jan 22, 2013Sysmex CorporationAnalyzer and transportation device
US8455256 *Sep 16, 2010Jun 4, 2013Sysmex CorporationSample processing apparatus and sample rack transporting method
US8580195 *Jul 23, 2009Nov 12, 2013Roche Diagnostics Operations, Inc.Laboratory system for handling sample tube racks, an alignment element for sample tube racks and a rack tray receiver assembly
US8609024May 14, 2010Dec 17, 2013Biomerieux, Inc.System and method for automatically venting and sampling a culture specimen container
US8641969Mar 19, 2010Feb 4, 2014Sysmex CorporationSample testing apparatus with controled sample transport mechanism capable of transport in two opposing directions
US8641988 *Sep 27, 2012Feb 4, 2014Sysmex CorporationSample analyzer and sample analysis system
US8701508Dec 17, 2012Apr 22, 2014Sysmex CorporationAnalyzer and transportation device
US8721965Nov 16, 2009May 13, 2014Sysmex CorporationTransporting apparatus and specimen analyzing apparatus
US20100028203 *Jul 23, 2009Feb 4, 2010Rolf FreyLaboratory system for handling sample tube racks, an alignment element for sample tube racks and a rack tray receiver assembly
US20100166605 *Dec 23, 2009Jul 1, 2010Yuichi HamadaSample testing system and transporting apparatus
US20110054800 *Aug 30, 2010Mar 3, 2011Toru MizumotoSample processing system, method for saving electricity consumed by sample processing system, and non-transitory storage medium
US20110076193 *Sep 16, 2010Mar 31, 2011Nobuhiro KitagawaRack transporting apparatus and sample processing apparatus
US20110123397 *Sep 16, 2010May 26, 2011Sysmex CorporationSample processing apparatus and sample rack transporting method
US20130022499 *Sep 27, 2012Jan 24, 2013Arkray, Inc.Sample analyzer and sample analysis system
DE112010000822B4 *Jan 25, 2010Sep 19, 2013Hitachi High-Technologies CorporationAutomatische Analysevorrichtung und automatisches Analyseverfahren
EP2237043A2Mar 12, 2010Oct 6, 2010Sysmex CorporationSample testing apparatus and sample testing method
WO2010132741A2 *May 14, 2010Nov 18, 2010Biomerieux, Inc.Automated microbial detection apparatus
WO2010132746A2 *May 14, 2010Nov 18, 2010Biomerieux, Inc.Automated loading mechanism for microbial detection apparatus
WO2010132749A2 *May 14, 2010Nov 18, 2010Biomerieux, Inc.Automated transfer mechanism for microbial. detection apparatus
Classifications
U.S. Classification422/65
International ClassificationG01N35/00
Cooperative ClassificationG01N35/026, G01N35/04
European ClassificationG01N35/02E, G01N35/04
Legal Events
DateCodeEventDescription
Mar 27, 2006ASAssignment
Owner name: SYSMEX CORPORATION, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOIKE, HIROKI;REEL/FRAME:017735/0213
Effective date: 20060324