Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060264937 A1
Publication typeApplication
Application numberUS 11/321,337
Publication dateNov 23, 2006
Filing dateDec 29, 2005
Priority dateMay 4, 2005
Also published asEP1876984A1, EP1876984A4, US8216280, US20090131981, WO2006119447A1
Publication number11321337, 321337, US 2006/0264937 A1, US 2006/264937 A1, US 20060264937 A1, US 20060264937A1, US 2006264937 A1, US 2006264937A1, US-A1-20060264937, US-A1-2006264937, US2006/0264937A1, US2006/264937A1, US20060264937 A1, US20060264937A1, US2006264937 A1, US2006264937A1
InventorsPatrick White
Original AssigneeWhite Patrick M
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Mobile spine stabilization device
US 20060264937 A1
Abstract
An orthopedic device is described for stabilizing the spinal column between first and second vertebral bodies. The device has first and second screws adapted for fixation to the first and second vertebral bodies, respectively. The device further includes an elongated ligament with a first end connected to the first screw and the second end operatively connected with the second screw. The ligament is made preferably of a nickel titanium alloy selected to have ductile inelastic properties at body temperature and is capable of continuous plastic deformation to allow relative constrained motion between the vertebral bodies. In a preferred embodiment the second pedicle screw includes a bearing for receiving the ligament in a slideably engageable relationship. The device further includes optional first and second dampening members surrounding the ligament for restraining the spinal column during flexion and extension. Other preferred devices and kits containing such devices are also described.
Images(7)
Previous page
Next page
Claims(14)
1. An orthopedic device for stabilizing a first and second bone of the spinal column, the device comprising:
an elongated ligament having first and second ends, the ligament selected to exhibit inelastic characteristics at body temperature and further capable of continuous plastic deformation;
a first screw adapted to securely fasten the first end of the ligament to the first bone;
a second screw presenting a bearing for receiving the second end of the ligament and securing it in a mobily constrained fashion to the second bone, wherein
plastic deformation in the ligament allows relative constrained motion between the bones.
2. The orthopedic device of claim 1 wherein the implantable ligament is in the form of at least one wire, rod, tube, cable, band or plate.
3. The orthopedic device of claim 1 further comprising a dampening member surrounding the ligament and sandwiched between the first and second screw.
4. The orthopedic device of claim 1 wherein the second end of the ligament has an abutment.
5. The orthopedic device of claim 4 further comprising a dampening member oriented around the ligament and sandwiched between the second screw and the abutment.
6. The orthopedic device of claim 1 wherein the bearing further comprises a plastic material selected from polyethylene or polyetheretherketone.
7. The orthopedic device of claim of claim 1 wherein the ligament further comprises a nickel titanium alloy.
8. The orthopedic device of claim 7 wherein the ligament exhibits shape memory characteristics with a transition temperature above body temperature.
9. An orthopedic device for stabilizing first and second vertebral bodies of the spinal column, the device comprising:
an elongated shape memory nickel titanium ligament having a transformation temperature above body temperature and exhibiting ductile characteristics during use, the ligament formed in the shape of a rod with first and second ends;
a first screw adapted to securely fasten the first end of the rod to the first vertebral body;
a second screw presenting a plastic linear bearing for receiving the second end of the rod and securing it in a slideably constrained fashion to the second vertebral body, wherein
ductile deformation in the ligament allows slideably constrained motion between the vertebral bodies.
10. The orthopedic device of claim 9 further comprising a dampening member surrounding the rod and sandwiched between the first and second screw.
11. The orthopedic device of claim 9 wherein the second end of the rod has an abutment.
12. The orthopedic device of claim 11 further comprising a dampening member oriented around the ligament and sandwiched between the second screw and the abutment.
13. The orthopedic device of claim 9 wherein the bearing further comprises a plastic material selected from polyethylene or polyetheretherketone.
14. An orthopedic device for stabilizing first and second vertebral bodies of the spinal column, the device comprising:
an elongated shape memory nickel titanium ligament having a transformation temperature above body temperature and exhibiting ductile characteristics during use, the ligament formed in the shape of a rod with first and second end, the second end including an abutment;
a first screw adapted to securely fasten the first end of the rod to the first vertebral body;
a second screw presenting a plastic linear bearing for receiving the second end of the rod and securing it in a slideably constrained fashion to the second vertebral body,
a first dampening member surrounding the rod and sandwiched between the first screw and the second screw,
a second dampening member surrounding the rod and sandwiched between the second screw and the abutment, wherein
ductile deformation in the ligament allows slideably constrained motion between the vertebral bodies.
Description
    RELATED APPLICATION
  • [0001]
    This application is a continuation in part of U.S. Ser. No. 11/244,184 filed Oct. 5, 2005.
  • [0002]
    The present inventor has previously filed U.S. application Ser. No. 11/244,184 entitled “Orthopedic Stabilization Device” on Oct. 5, 2005 and provisional application 60/677,699 entitled “Dynamic spine stabilization device” on May 4, 2005, the entire disclosures of which are expressly incorporated by reference herein and relied upon.
  • BACKGROUND OF THE INVENTION
  • [0003]
    1. Technical Field of the Invention
  • [0004]
    The present invention relates to orthopedic stabilization devices used to limit the relative motion of at least two vertebral bodies for the relief of pain. These devices can be used to aid osteo-synthesis in combination with fusion devices, supplement other motion restoring devices such as disk implants or used solely to restrict the motion of vertebral bodies without other devices.
  • [0005]
    2. Description of the Related Art
  • [0006]
    In the field of spine surgery there have been many attempts to relieve pain associated with spinal injury or illness. Traditionally surgeons have fused the vertebral bodies with a pedicle screw and rod construct or a fusion cage. In attempting to fuse the patient there is a long and painful recovery process. Most rod and screw constructs and fusion cage constructs are very rigid, not allowing transfer of stress into the fusion site that would otherwise aid in a quicker recovery. These approaches defy Wolfe's law stating: bone that is not stressed will degrade. As a corollary, where stress is allowed to transfer through the fusion site while the vertebral bodies are held in a limited range of motion, then fusion can occur much quicker aiding in patient recovery time.
  • [0007]
    Many are working to develop devices that allow relative motion, yet these have fallen short in preventing shear forces between the vertebral bodies being stabilized. Another shortcoming is that relative motion has been forcibly channeled through a rather specific location or hinge point in the mechanical construct. The following discussion more particularly summarizes these efforts.
  • [0008]
    U.S. Pat. No. 5,092,866 (U.S. Re. 36,221) discloses a pedicle screw system that is banded together with flexible ligaments. While the ligaments allow for relative motion, they do not appear to resist compression or shear loads, instead relying upon tension alone.
  • [0009]
    European Patent No. EP 06691091 A1/B1 and the “DYNESYS” product brochure disclose a polycarbonate/urethane supporting element, compressed between two adjacent pedicle screws and passing over an elastic strap that acts as a flexible internal ligament. The flexible internal ligament is in the form of a nylon cord, which is pre-tensioned and fastened to the screw heads. This design provides flexural degrees of freedom, allows relative motion between the vertebral bodies but does little to inhibit or prevent shearing between the vertebral bodies. While flexibility is desirable, the “DYNASES” ligament would appear to lack rigidity and rely on proper tensioning inter-operatively to gain its balance.
  • [0010]
    U.S. Pat. No. 6,267,764 discloses a pedicle screw and rod system wherein the rod is flexible in translation. A dampening ball is not separate from the rods and has cutouts to allow bending, with no ligament passing through the centers of the rods. While flexibility in translation can be helpful, the spine loads in several planes at the same time and the translation spoken of in this patent would appear to inadequately redistribute stresses through the fusion site. As a result motion is forcibly limited to one location, i.e., motion is constrained through a hinge point, which undesirably stresses the assembly construct.
  • [0011]
    U.S. Pat. No. 6,241,730 discloses a construction that lacks a ligament element, particularly a ligament extending through the center of rod members. There is a compressible dampening element. The '730 design attempts to accomplish a multidirectional redistribution of force for aiding in quicker fusion rates, however its constructs were not designed for use in conjunction with a disk implant. The '730 approach overly limits motion of the vertebral bodies to one location, i.e., forces motion unnaturally through a hinge point.
  • [0012]
    U.S. Pat. Nos. 6,293,949 and 6,761,719 disclose embodiments seeking to elastically constrain range of motion using a continuous super-elastic nitinol rod and pedicle screw system. Due to the super-elastic state of the rod, motion is always pushed-back to a neutral, pre-set position. This constrains force through the rod in a manner causing early fatigue failure. In order to provide the correct elasticity of the rod, its diameter must be so small that it cannot withstand the continuous loads. Further, the rod cannot be bent at the time of surgery to a preformed shape holding the vertebral bodies in a desired relative position while also limiting their relative motion.
  • [0013]
    Accordingly there exists a need for assemblies and devices that effectively resist torsion as well as shear forces while providing flexible spine stabilization. More specifically, it would be desirable to provide kits with such assemblies and devices, which work with existing pedicle screw arrangements.
  • [0014]
    There is another need for flexible assemblies and devices having rigid portions deformable to fit a patient's anatomical contours while maintaining flexibility of the orthopedic construct.
  • [0015]
    There is yet another need for assemblies and devices to stabilize vertebrae while providing multi-directional flexibility, without imparting elastic stresses to the bone.
  • [0016]
    There is a further need yet to provide a spine stabilization device that can allow natural flexion and extension motion while effectively restraining torsional and shear forces.
  • [0017]
    There is a further need to provide spine stabilization assemblies and devices manufactured from a shape memory material such as an alloy or other flexible polymer, which can withstand repeated loading of the spine without fatiguing yet still maintain its flexibility.
  • SUMMARY OF THE INVENTION AND ADVANTAGES
  • [0018]
    According to one embodiment of the present invention, there is provided an orthopedic device for stabilizing the spinal column between anchorage locations on respective first and second vertebral bodies. The device includes an elongated bridge having first and second ends operatively connected at the respective anchorage locations. The bridge contains an implantable ligament selected to be inelastic at body temperature. The ligament is further capable of continuous plastic deformation to allow relative constrained motion while resisting forces exerted upon the vertebral bodies. In a preferred embodiment, the bridge contains an implantable nickel titanium alloy. In another preferred embodiment the device further includes a dampening member surrounding at least a portion of the ligament. In yet another preferred embodiment, the ligament is in the form of a wire, tube, or band. In still another preferred embodiment the device includes rigid rod members each correspondingly retained with either end of the ligament, and independently attached to the vertebral bodies with anchors. The rigid rod members are correspondingly connected to either end of the ligament. In still yet another preferred embodiment, the device includes a plate segment retained with an end of the ligament and independently attached to a vertebral body with the plurality of anchors; more preferably, a plurality of plate segments are correspondingly connected to either end of the ligament.
  • [0019]
    In another embodiment of the present invention, an orthopedic device for stabilizing the spinal column includes an elongated implantable ligament with two ends, the ligament partially formed of an implantable nickel titanium alloy capable of continuous plastic in-elastic deformation at body temperature. Either end of the ligament is attached to a vertebral body with a screw at an anchor location. A compression-dampening member surrounds the ligament and is sandwiched between the screws. Plastic deformation in the ligament allows relative constrained motion between the vertebral bodies.
  • [0020]
    In yet another embodiment of the present invention, an orthopedic device for stabilizing the spinal column is disclosed. The device includes an implantable elongated ligament with two enlarged end portions. The ligament is partially formed of a nickel titanium alloy capable of continuous plastic in-elastic deformation at body temperature. Two rigid rod members each contain a bore sized for the ligament, the rigid rod members being retained with either end of the ligament and engageable with two vertebral bodies by a plurality of anchors. A compression-dampening member surrounds the ligament and is sandwiched between the rods. Two tension-dampening members are captured within the rigid rod bores, surround the ligament and abut the enlarged end portions respectively. Plastic deformation in the ligament allows relative constrained motion between the vertebral bodies.
  • [0021]
    In still another embodiment of the present invention, a surgical kit is disclosed. The kit includes at least one bone anchor and a flexible spine stabilization device. The device includes a ligament partially formed of an implantable nickel titanium alloy capable of continuous plastic in-elastic deformation at body temperature. In a preferred embodiment, the surgical kit includes at least one rigid fusion rod. The anchor, ligament and rigid fusion rod mentioned above are provided in various sizes to accommodate a given patient's anatomy.
  • [0022]
    An orthopedic device for stabilizing first and second vertebral bodies of the spinal column, the device comprising:
  • [0023]
    In a further embodiment an orthopedic spine stabilization device is disclosed having an elongated ligament with two ends. The ligament is manufactured to exhibit inelastic characteristics at body temperature while further being capable of continuous plastic deformation and can be in the form of a wire, rod, tube, cable, band or plate. The device includes a first screw adapted to securely fasten one end of the ligament to a vertebral body and a second screw with a bearing for receiving the opposite end of the ligament securing it in a mobile fashion to another vertebral body. Plastic deformation in the ligament allows relative constrained motion between the vertebral bodies.
  • [0024]
    In still yet a further embodiment of a spine stabilization device is disclosed with an elongated shape memory nickel titanium ligament having a transformation temperature above body temperature. The nickel titanium ligament in the form of a rod exhibits a ductile characteristic during use allowing motion. One end of the rod is fixed to one vertebral body with a first screw. The other end of the rod is secured to a second vertebral body with a second screw containing a plastic linear bearing. As the body moves the ductile nature of the ligament resists bending and shear motions in the vertebral column while at the same time the rod slides in a translational relationship to the second screw further allowing flexion and extension motions.
  • [0025]
    In another preferred embodiment of the present invention an orthopedic device for stabilizing the spinal column is shown. The device includes an elongated shape memory nickel titanium ligament having a transformation temperature above body temperature and exhibiting ductile characteristics during use. The ligament is formed in the shape of a rod with first and second ends and the second end includes an abutment. The device also includes a first screw adapted to securely fasten the first end of the rod to a vertebral body and a second screw presenting a plastic linear bearing for receiving the second end of the rod and securing it in a slideably constrained fashion to the other vertebral body. Surrounding the rod and sandwiched between the first and second screw is one dampening member and a second dampening member is found surrounding the rod and sandwiched between the second screw and the abutment. As the body moves the ductile nature of the ligament resists bending and shear motion in the vertebral column while at the same time the rod can slideably translate in relationship to the second screw allowing flexion and extension motion. The dampening members act as cushions for flexion and extension motions and controllably resist the sliding motion between the ligament and the bearing.
  • [0026]
    An advantage of the present invention is a device that limits the range of relative motion between two vertebral bodies and works with existing pedicle screw assemblies.
  • [0027]
    Another advantage of the invention is to constrain the motion between vertebral bodies in a ductile manor.
  • [0028]
    In still another advantage is to allow controlled flexion and extension motions of the spine while constraining bending and shear forces.
  • [0029]
    Another advantage of the invention is to provide a kit to the surgeon that has a variety of pedicle screws, rigid fusion rods and elongated implantable ductile ligaments. Further it is desirable that the ligaments provide a variety of stiffness and flexibility options so the surgeon can select the appropriate stiffness and range of motion to achieve the desired surgical result whether it is for aiding fusion or restoring normal range of motion to a patient.
  • [0030]
    Other objects and advantages will become apparent to a reader skilled in the art, with reference to the following Figures and accompanying Detailed Description wherein textual reference characters correspond to those denoted on the Drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0031]
    In the accompanying drawings:
  • [0032]
    FIG. 1 is an exploded perspective view of a flexible inelastic spine stabilization device, according to the present invention;
  • [0033]
    FIG. 1A is a perspective view of a representative plate segment for securing the device of FIG. 1;
  • [0034]
    FIG. 2 is a perspective view of the device of FIG. 1, shown in its assembled state;
  • [0035]
    FIG. 3 is an elevational view of the device of FIGS. 1 and 2, further including pedicle screws for attaching the device to adjacent vertebral bodies as schematically shown;
  • [0036]
    FIG. 4 is an elevational view of the device of FIG. 3, upon application of load;
  • [0037]
    FIG. 5 is a kit of spinal implant components including a pedicle screw, a rigid fusion rod, and a ligament of the present invention, selected from among various ranges of flexibility;
  • [0038]
    FIG. 6 is a top view of a device employing an elongated implantable ligament attached to vertebral bodies (schematically shown) with pedicle screws that directly secure the ligament between the screws;
  • [0039]
    FIG. 7 is an elevational view of the device of FIG. 6;
  • [0040]
    FIG. 8 is an exploded perspective view of another device of the present invention, employing a ligament surrounded by compression and tension-damping members;
  • [0041]
    FIG. 9 is an elevational view of the assembled structures shown in FIG. 8 prior to application of a load; and
  • [0042]
    FIG. 10 is a sectional view taken longitudinally along Lines 10-10 of FIG. 9.
  • [0043]
    FIG. 11 is an elevation view of the present invention employing a ligament which is slideably constrained using a pedicle screw and bearing.
  • [0044]
    FIG. 12 is a sectional view taken longitudinally along Lines 12-12 of FIG. 11.
  • [0045]
    FIG. 13 is a sectional view taken longitudinally along Lines 13-13 of FIG. 11 showing a pedicle screw with a bearing sleeve.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0046]
    With reference generally to FIGS. 1-13, the Applicant's invention provides flexible spinal stabilization allowing controlled relative vertebral motion for the relief of pain, while preventing intervertebral shear forces. Moreover, the invention evenly distributes mechanical stresses throughout its structure rather than constraining motion within a limited portion of its structure, by virtue of its distinctive design.
  • [0047]
    Referring to FIGS. 1 and 2-4, an elongated bridge member is generally shown as an assembly at 10. Assembly 10 includes a ligament 28 shown in the form of a wire. It will be understood that the ligament 28 may also take the form of a tube, solid rod or a band, having different cross sectional shapes and sizes. The ligament 28 is made of an implantable material selected to be inelastic at body temperature and allows relative constrained motion while resisting bodily shear forces. The ligament 28 has opposed first 30 and second 32 ends received within washer type connectors 34, 36 that engage counter-bores 38, 40 formed within rigid rod members 42, 44, respectively. Those in the art will appreciate that the rigid rod members 42, 44 could have differing sizes and/or lengths. Washer-shaped connectors 34, 36 are preferably made of a shape-memory alloy in its super-elastic state at body temperature. Alternatively other means for attaching the in-elastic ligament 28 to rigid rod potions 42, 44 may include welding, threading, gluing or crimping instead of using connectors 34, 36. Thus, assembly 10 operatively functions as a bridge between a first anchor 20 and a second anchor 22, respectively. Ligament 28 is preferably made of an implantable shape memory alloy, more preferably a nickel titanium alloy, which is selected to be inelastic at body temperature. That is, ligament 28 is not in a super-elastic state. Preferably, assembly 10 may include a dampening member 46 that has an inner diameter 48 surrounding ligament 28. Referring to FIGS. 3-4, first and second screw anchors 20, 22 are adapted for respectively affixing assembly 10 to first and second vertebral bodies 24, 26.
  • [0048]
    Referring to FIG. 1A, a representative plate segment 12 has openings 14 that receive anchoring screws for attachment to a vertebral body not shown. Each plate segment 12 has a passageway 16 configured to receive one end of a ligament not shown. It will be understood that the ligament used in conjunction with the plate 12 could have a variety of forms as elucidated in the above discussion of FIGS. 1 and 2-4. Passageway 16 could have a rectangular cross section as shown, or could have a variety of forms for receiving the ligament. Preferably a plurality of plates 12 can be employed with the ligament, across a corresponding plurality of vertebral bodies to form a bridge similar to assembly 10 in FIGS. 1 and 24.
  • [0049]
    Referring to FIGS. 3-4, plastic deformation in ligament 28 is in response to external stimulus indicated by arrows 54, 54, which for the sake of illustration is shown as direct uniform axial compression. However, as will be appreciated, the external stimulus often consists of combined bending and twisting motions of a patient's body.
  • [0050]
    With continuing reference to FIGS. 1-4, the present assembly 10 resists shear forces exerted between vertebral bodies 24, 26 during the bending and twisting motions of a patient without creating elastic forces that otherwise would exert unnatural stresses forcing the vertebral bodies back into some prior position. The present invention instead allows the body's own motion to return it to the natural position without undue elastic impetus. This natural return to body position is therefore distinct from prior approaches that rely upon super-elastic members such as those discussed above; moreover, the present invention is distinct from prior approaches that do not resist both shear and direct torsional movements while yet bending themselves. The present assembly 10 does not exert resultant forces that are opposite to the motion input 54, 54 and yet the assembly is repetitively plastically deformable due to the material and design employed herein.
  • [0051]
    FIG. 5 depicts still another embodiment of the present invention, that is, a surgical kit generally shown at 58. Kit 58 includes an array of bone anchors 60 and an elongated bridge assembly 10 preferably of the type shown in FIGS. 1-4 although it will be appreciated that an array of assemblies having various sizes and stiffness can be provided. The assembly 10 is capable of continuous plastic in-elastic deformation at body temperature. In a preferred embodiment, the surgical kit 58 includes an array of semi-rigid fusion rods such as the representative rod shown at 62. In another preferred embodiment, an alternative surgical kit not shown may include an array of plates similar to those described in conjunction with FIG. 1A. The arrays mentioned above are provided in various sizes to accommodate a given patient's anatomy.
  • [0052]
    Referring to FIGS. 6-7, an orthopedic device 110 for stabilizing the spinal column includes an elongated bridge member that takes the form of ligament 128 instead of the assembly 10 as previously discussed in conjunction with FIGS. 1 and 2-4. It will be understood that the ligament 128 may also take the form of a tube, solid rod or a band, having different cross sectional shapes and sizes. The ligament 128 is at least partially made of an implantable material that is preferably a nickel titanium alloy capable of continuous plastic in-elastic deformation at body temperature in similar fashion as ligament 28 (FIG. 1). Device 110 has no distinct rigid rod members as depicted, for example, at 42 and 44 in FIGS. 1 and 2-4. Nor are there any plate segments as at 12 in FIG. 1A to operatively anchor ligament 28. Instead, ligament 128 extends between and directly interconnects screws 120, 122, which affix it to vertebral bodies 124 and 126. An optional compression-dampening member 146 is shown surrounding ligament 126 and is sandwiched between the screw heads 150, 152 in FIGS. 6-7. Plastic deformation in the ligament 128 allows relative motion while preventing shear stresses between vertebral bodies 124, 126. FIGS. 6-7 show a tubular dampening member 146 preferably made of an in implantable elastomer such as silicone or polycarbonate urethane, through which elongated ligament 128 passes.
  • [0053]
    Referring to FIGS. 8-10 there is yet another embodiment of the present invention. An elongated bridge member is shown in the form of an assembly 210, for stabilizing the spinal column. Assembly 210 includes an elongated ligament 228 with an enlarged fixed end portion 229 and a free end 231. Ligament 228 is at least partially formed of an implantable inelastic material, preferably nickel titanium alloy capable of continuous plastic in-elastic deformation at body temperature, i.e., not in a super-elastic state. Bore 240 of rigid rod member 244 is sized for passage of ligament 228, the rod members 242, 244 are retained with ends 229, 231 of the ligament for attachment at respective anchorage locations to vertebral bodies (not shown). Those in the art will appreciate that the rigid rod members 242, 244 could have differing sizes and/or lengths. A compression-dampening member 246 has a bore 247 that surrounds ligament 228 and is sandwiched between proximally chamfered rigid rod members 242, 244. Tension-dampening members 248, 250 have respective bores 252, 254 sized to allow passage of ligament 228 housed within the bores of the rigid rods 242, 244. Tension-dampening members 248, 250 surround ligament 228 and are respectively captured by rigid rods 242, 244 along with enlarged ends 229, 256 as shown in FIG. 10. Plastic deformation in ligament 228 allows relative constrained motion between, while resisting shear forces exerted upon the vertebral bodies. Motion is transmitted along the entire length of ligament 228 from its enlarged fixed ends 229, 256. Dampening members 246, 248, 250 are preferably made of an implantable elastomer such as silicone or polycarbonate urethane.
  • [0054]
    Inelastic ligament 28, 128, 228 is preferably manufactured from a nickel titanium alloy preferably having a diameter in the range of 3-6 mm. Other cross sectional shapes and sizes of ligament 28, 128, 228 may be made available for different surgical applications. Nickel Titanium can be alloyed to have varying properties, some alloys exhibiting super-elastic behavior at body temperature while other alloys are continuously in-elastic at body temperature. These inelastic alloys are commonly referred to as shape memory alloys by those skilled in the art. Shape memory alloys may further have transition temperatures either above or below body temperature; however, the applicable transition temperature for the present invention is selected to be higher than body temperature. The present inventor has determined that within the operative size range, in-elastic ligaments 28, 128, 228 made from shape memory alloys having a transition temperature above body temperature, exhibit acceptable fatigue resistance. This is because there are no elastic forces exerted by the ligament 28, 128, 228 of the present invention, against the body. It is intended that a surgeon determine how much in-elastic resistance is necessary for each individual patient's needs and then pre-selects an assembly or device 10, 110, 210 at the time of surgery to ensure the best resistance. Preferably the ligament 28, 128, 228 is non-braided and is formed as a unitary contiguous member enabling the ligament to resist shear forces. In the instance where a surgeon may be supplementing fixation of two vertebral bodies 24, 26 and 124, 126 with a fusion cage (not shown), a flexible inelastic assembly or device 10, 110, 210 with pedicle screws 20, 22 and 120, 122 is preferable to limit motion and allow stress transfer through the fusion site in accordance to Wolfe's law. In this instance the surgeon would select a less flexible assembly or device 10, 110, 210 with a larger inelastic ligament 28, 128, 228 such as 5-6 mm in diameter. The diameter and length of the inelastic ligament 28, 128, 228 determine the flexibility of the surgical construct. In another instance a surgeon may selectively remove the facia from two adjacent vertebral bodies 24, 26 and 124, 126 to eliminate arthritis caused by bony contact at the facia. To replace the support for the vertebral bodies after the faciaectomy the surgeon would use a flexible inelastic assembly or device 10, 110, 210 with pedicle screws 20, 22 and 120, 122 to ensure that axial spacing between posterior segments (not shown) of vertebral bodies 24, 26 and 124, 126 is maintained. In this instance it would be preferable for the surgeon to select a more flexible assembly or device 10, 110, 210 that has an inelastic ligament 28, 128, 228 with a diameter closer to 3-4 mm. This surgical construct would allow a patient to have constrained motion but would limit contact between the facia of the two vertebral bodies 24, 26 and 124, 126. The rigid rod portions 42, 44 and 242, 244 are typically manufactured from stainless steel or titanium and are preferably in the diameter range of 4-7 mm. This size range is typical of other commercially available spinal implant hardware so that flexible inelastic assembly or device 10, 110, 210 of the present type is universally received by existing pedicle screws 20, 22 and 120, 122.
  • [0055]
    FIGS. 3-7 illustrate use of pedicle screws 20, 22 and 120, 122 to fasten the flexible assembly 10 or device 110 to vertebral bodies 24, 26 or 124, 126. However, other attachment means are possible as well as a variety of alternate locations for mounting. In a traditional spinal stabilization system the rods are placed posterior to and on either side of the spinous process. Depending on the pathology observed, a surgeon might select a unitary flexible ligament 128 or assembly 10 to mount posterior to the theoretical centerline of a patient between two spinous processes. Or alternatively a flexible inelastic ligament 128 or assembly 10 may be placed on the anterior side of the vertebral bodies 24, 26; 124, 126.
  • [0056]
    Referring to FIGS. 11-13 an embodiment is shown with a device 310 allowing the spine to bend under dynamic constraint. As seen in FIGS. 11-12 a first pedicle screw 320 is designed to be mounted in a first vertebral body (not shown). The pedicle screw 320 has a head portion 350 which is designed to receive the ligament 328 securely with a set screw 355 or any other locking mechanisms that lock the ligament 328 to the screw 320. The ligament 328 is being shown in the form of a rod, however it is important to realize that the form of the ligament is not as important as its' mechanical characteristics and could be made in the shape of wire, tube, cable, band or plate. Preferably the ligament 328 should be made from a material that can withstand repeated cyclical loading without failing and should have a ductile nature while at body temperature. Nickel and Titanium or Nickel Titanium as it is referred to can be alloyed to result in a material property that has this ductility which can also be classified as having an in-elastic behavior with continuous plastic deformation. Nickel Titanium is known to be manufactured in two general categories. The first is super-elastic; these alloys have an elastic behavior at body temperature but for this application reapply unwanted stresses into the vertebral column during motion and are undesirable. The additional stresses also lead to lower fatigue resistance during use. The second category of Nickel Titanium is classified as having a shape memory characteristic. The temperature at which the material will exhibit the memory characteristics is set during the manufacturing process and this temperature is often referred to as the transition temperature at which a phase transformation between martensite and austenite occur. For this application it is desirable to set the transition temperature above body temperature. It is known that the higher the transition temperature of the material the higher the fatigue resistance. So, below the transition temperature the ligament 328 can be bent with restraint and takes on a ductile nature allowing it to be reshaped on a continuous basis without fatiguing allowing it to support the mobile spinal column. In FIGS. 11 and 13 a second pedicle screw 322 is shown for adaptation to another vertebral body (not shown), however both pedicle screws 320, 322 could also be used to treat a fracture within one vertebral body when the bone is fractured or cut into two or more fragments. The second pedicle screw 322 is adapted with a bearing 360 which can be manufactured from any known implantable bearing material such as plastic, metal or ceramic. If a plastic were selected polyethylene or polyetheretherketone materials have shown good characteristics as a bearing material in orthopedic devices. The bearing 360 can be manufactured as an integral part of the pedicle screw 322 for instance as a simple hole (not shown) drilled through the head 352, or the bearing can be mounted with a set screw 357 as shown. The bearing 360 can be in the form of a ring, washer, ball or any other bearing that will allow the ligament 328 to be received and allow relative movement between the ligament and the pedicle screw 322 during use. As can be appreciated the bearing 360 could be fully closed or split to accommodate the relative motion and could be used to receive other rods known in the art. For instance titanium alloy rods 62 shown in the kit 58 in FIG. 5 used for fusion could be received within the bearing 360 to allow slight relative movement between the pedicle screws 320, 322. It is contemplated that other bridge members such as plastic rods currently under development could also be used in conjunction with the bearings 360 and this description should not be limiting in nature. The ligament 328 can be manufactured to have an abutment 329 and the ligament can receive optional dampening members 346, 347. While the bearing 360 allows relative movement between the pedicle screws 320, 322 in flexion and extension of the spinal column the optional dampening members 346, 347 are useful for additional constraint. The first dampening member 346 can be sandwiched between the head 350 of the first pedicle screw 320 and the second head 352 of pedicle screw 322. This first dampening member 346 is used to constrain motion while the spinal column is in extension. The second dampening member 347 surrounds the ligament 328 and is sandwiched between the second head 352 of the pedicle screw 322 and the abutment 329. The second dampening member 347 can be used to constrain motion in flexion.
  • [0057]
    The present invention is by no means restricted to the above described preferred embodiments, but covers all variations that might be implemented by using equivalent functional elements or devices that would be apparent to a person skilled in the art, or modifications that fall within the spirit and scope of the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US65515 *Jun 4, 1867 Impeoyed
US65516 *Jun 4, 1867 Improved furnace foe heating articles of steel ii the process of tempering
US85815 *Jan 12, 1869 Improved swivel mirror-frame
US220643 *Jan 14, 1879Oct 14, 1879 Improvement in wheel-plows
US236328 *Jan 4, 1881 Postal-car
US5092866 *Feb 2, 1990Mar 3, 1992Breard Francis HFlexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5375823 *Jun 9, 1993Dec 27, 1994Societe PsiApplication of an improved damper to an intervertebral stabilization device
US5480401 *Feb 10, 1994Jan 2, 1996PsiExtra-discal inter-vertebral prosthesis for controlling the variations of the inter-vertebral distance by means of a double damper
US5540688 *Mar 8, 1994Jul 30, 1996Societe "Psi"Intervertebral stabilization device incorporating dampers
US5938663 *Mar 5, 1996Aug 17, 1999Stryker France, S.A.Spinal instruments, particularly for a rod
US5961516 *Jul 25, 1997Oct 5, 1999Graf; HenryDevice for mechanically connecting and assisting vertebrae with respect to one another
US6099528 *May 28, 1998Aug 8, 2000Sofamor S.N.C.Vertebral rod for spinal osteosynthesis instrumentation and osteosynthesis instrumentation, including said rod
US6241730 *Nov 27, 1998Jun 5, 2001Scient'x (Societe A Responsabilite Limitee)Intervertebral link device capable of axial and angular displacement
US6248106 *Feb 25, 2000Jun 19, 2001Bret FerreeCross-coupled vertebral stabilizers
US6267764 *Nov 13, 1997Jul 31, 2001Stryker France S.A.Osteosynthesis system with elastic deformation for spinal column
US6293949 *Mar 1, 2000Sep 25, 2001Sdgi Holdings, Inc.Superelastic spinal stabilization system and method
US6423065 *Apr 24, 2001Jul 23, 2002Bret A. FerreeCross-coupled vertebral stabilizers including cam-operated cable connectors
US6761719 *Sep 21, 2001Jul 13, 2004Sdgi Holdings, Inc.Superelastic spinal stabilization system and method
US6783527 *Oct 30, 2001Aug 31, 2004Sdgi Holdings, Inc.Flexible spinal stabilization system and method
USRE36221 *May 15, 1996Jun 1, 1999Breard; Francis HenriFlexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7682376Jan 27, 2006Mar 23, 2010Warsaw Orthopedic, Inc.Interspinous devices and methods of use
US7708778May 20, 2005May 4, 2010Flexuspine, Inc.Expandable articulating intervertebral implant with cam
US7753958Jul 13, 2010Gordon Charles RExpandable intervertebral implant
US7785351Mar 8, 2006Aug 31, 2010Flexuspine, Inc.Artificial functional spinal implant unit system and method for use
US7794480Sep 14, 2010Flexuspine, Inc.Artificial functional spinal unit system and method for use
US7799082Sep 21, 2010Flexuspine, Inc.Artificial functional spinal unit system and method for use
US7806913Aug 16, 2006Oct 5, 2010Depuy Spine, Inc.Modular multi-level spine stabilization system and method
US7815663Jan 27, 2006Oct 19, 2010Warsaw Orthopedic, Inc.Vertebral rods and methods of use
US7901435Mar 8, 2011Depuy Spine, Inc.Anchoring systems and methods for correcting spinal deformities
US7901437Mar 8, 2011Jackson Roger PDynamic stabilization member with molded connection
US7909869Feb 12, 2004Mar 22, 2011Flexuspine, Inc.Artificial spinal unit assemblies
US7931675Apr 26, 2011Yale UniversityDynamic stabilization device including overhanging stabilizing member
US7942900May 17, 2011Spartek Medical, Inc.Shaped horizontal rod for dynamic stabilization and motion preservation spinal implantation system and method
US7951170May 30, 2008May 31, 2011Jackson Roger PDynamic stabilization connecting member with pre-tensioned solid core
US7959677Jun 14, 2011Flexuspine, Inc.Artificial functional spinal unit system and method for use
US7963978Jun 21, 2011Spartek Medical, Inc.Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
US7985243May 30, 2008Jul 26, 2011Spartek Medical, Inc.Deflection rod system with mount for a dynamic stabilization and motion preservation spinal implantation system and method
US7993372Aug 9, 2011Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system with a shielded deflection rod system and method
US8002800Aug 1, 2007Aug 23, 2011Spartek Medical, Inc.Horizontal rod with a mounting platform for a dynamic stabilization and motion preservation spinal implantation system and method
US8002803Aug 23, 2011Spartek Medical, Inc.Deflection rod system for a spine implant including an inner rod and an outer shell and method
US8007518Sep 24, 2009Aug 30, 2011Spartek Medical, Inc.Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US8012175Sep 6, 2011Spartek Medical, Inc.Multi-directional deflection profile for a dynamic stabilization and motion preservation spinal implantation system and method
US8012177Jun 19, 2009Sep 6, 2011Jackson Roger PDynamic stabilization assembly with frusto-conical connection
US8012181Sep 24, 2009Sep 6, 2011Spartek Medical, Inc.Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine
US8012182Sep 6, 2011Zimmer Spine S.A.S.Semi-rigid linking piece for stabilizing the spine
US8016828Sep 13, 2011Zimmer Spine, Inc.Methods and apparatuses for stabilizing the spine through an access device
US8016861Sep 13, 2011Spartek Medical, Inc.Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US8021396Sep 20, 2011Spartek Medical, Inc.Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8029548Oct 4, 2011Warsaw Orthopedic, Inc.Flexible spinal stabilization element and system
US8034083Oct 11, 2011Custom Spine, Inc.Artificial ligament assembly
US8043337Oct 25, 2011Spartek Medical, Inc.Implant system and method to treat degenerative disorders of the spine
US8043340Jun 8, 2009Oct 25, 2011Melvin LawDynamic spinal stabilization system
US8048113May 30, 2008Nov 1, 2011Spartek Medical, Inc.Deflection rod system with a non-linear deflection to load characteristic for a dynamic stabilization and motion preservation spinal implantation system and method
US8048115Nov 1, 2011Spartek Medical, Inc.Surgical tool and method for implantation of a dynamic bone anchor
US8048121May 30, 2008Nov 1, 2011Spartek Medical, Inc.Spine implant with a defelction rod system anchored to a bone anchor and method
US8048122May 30, 2008Nov 1, 2011Spartek Medical, Inc.Spine implant with a dual deflection rod system including a deflection limiting sheild associated with a bone screw and method
US8048123May 30, 2008Nov 1, 2011Spartek Medical, Inc.Spine implant with a deflection rod system and connecting linkages and method
US8048125Nov 1, 2011Spartek Medical, Inc.Versatile offset polyaxial connector and method for dynamic stabilization of the spine
US8048128Aug 1, 2007Nov 1, 2011Spartek Medical, Inc.Revision system and method for a dynamic stabilization and motion preservation spinal implantation system and method
US8052721Aug 1, 2007Nov 8, 2011Spartek Medical, Inc.Multi-dimensional horizontal rod for a dynamic stabilization and motion preservation spinal implantation system and method
US8052722Nov 8, 2011Spartek Medical, Inc.Dual deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US8052723Nov 8, 2011Flexuspine Inc.Dynamic posterior stabilization systems and methods of use
US8057514May 30, 2008Nov 15, 2011Spartek Medical, Inc.Deflection rod system dimensioned for deflection to a load characteristic for dynamic stabilization and motion preservation spinal implantation system and method
US8057515Nov 15, 2011Spartek Medical, Inc.Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8057517Nov 15, 2011Spartek Medical, Inc.Load-sharing component having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8066739Nov 29, 2011Jackson Roger PTool system for dynamic spinal implants
US8066747Nov 29, 2011Spartek Medical, Inc.Implantation method for a dynamic stabilization and motion preservation spinal implantation system and method
US8070774Aug 1, 2007Dec 6, 2011Spartek Medical, Inc.Reinforced bone anchor for a dynamic stabilization and motion preservation spinal implantation system and method
US8070775May 30, 2008Dec 6, 2011Spartek Medical, Inc.Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US8070776May 30, 2008Dec 6, 2011Spartek Medical, Inc.Deflection rod system for use with a vertebral fusion implant for dynamic stabilization and motion preservation spinal implantation system and method
US8070780Dec 6, 2011Spartek Medical, Inc.Bone anchor with a yoke-shaped anchor head for a dynamic stabilization and motion preservation spinal implantation system and method
US8080039Dec 20, 2011Spartek Medical, Inc.Anchor system for a spine implantation system that can move about three axes
US8083772Sep 24, 2009Dec 27, 2011Spartek Medical, Inc.Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8083775Dec 27, 2011Spartek Medical, Inc.Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8083781 *Nov 17, 2006Dec 27, 2011Reimels William JBone plate system providing dynamic compression
US8092500Jan 10, 2012Jackson Roger PDynamic stabilization connecting member with floating core, compression spacer and over-mold
US8092501Jan 10, 2012Spartek Medical, Inc.Dynamic spinal rod and method for dynamic stabilization of the spine
US8097024Sep 24, 2009Jan 17, 2012Spartek Medical, Inc.Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8100915Jan 24, 2012Jackson Roger POrthopedic implant rod reduction tool set and method
US8105356Aug 1, 2007Jan 31, 2012Spartek Medical, Inc.Bone anchor with a curved mounting element for a dynamic stabilization and motion preservation spinal implantation system and method
US8105359Jan 31, 2012Spartek Medical, Inc.Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US8105368Aug 1, 2007Jan 31, 2012Jackson Roger PDynamic stabilization connecting member with slitted core and outer sleeve
US8109970May 30, 2008Feb 7, 2012Spartek Medical, Inc.Deflection rod system with a deflection contouring shield for a spine implant and method
US8114130May 30, 2008Feb 14, 2012Spartek Medical, Inc.Deflection rod system for spine implant with end connectors and method
US8114134Sep 24, 2009Feb 14, 2012Spartek Medical, Inc.Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8118840Feb 27, 2009Feb 21, 2012Warsaw Orthopedic, Inc.Vertebral rod and related method of manufacture
US8118842Aug 1, 2007Feb 21, 2012Spartek Medical, Inc.Multi-level dynamic stabilization and motion preservation spinal implantation system and method
US8118869Mar 8, 2006Feb 21, 2012Flexuspine, Inc.Dynamic interbody device
US8118870May 20, 2005Feb 21, 2012Flexuspine, Inc.Expandable articulating intervertebral implant with spacer
US8118871May 20, 2005Feb 21, 2012Flexuspine, Inc.Expandable articulating intervertebral implant
US8123810May 20, 2005Feb 28, 2012Gordon Charles RExpandable intervertebral implant with wedged expansion member
US8142480Mar 27, 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system with horizontal deflection rod and articulating vertical rods
US8147520Aug 1, 2007Apr 3, 2012Spartek Medical, Inc.Horizontally loaded dynamic stabilization and motion preservation spinal implantation system and method
US8147550May 20, 2005Apr 3, 2012Flexuspine, Inc.Expandable articulating intervertebral implant with limited articulation
US8152810Nov 23, 2004Apr 10, 2012Jackson Roger PSpinal fixation tool set and method
US8157844Apr 17, 2012Flexuspine, Inc.Dampener system for a posterior stabilization system with a variable length elongated member
US8162948Apr 24, 2012Jackson Roger POrthopedic implant rod reduction tool set and method
US8162987Apr 24, 2012Spartek Medical, Inc.Modular spine treatment kit for dynamic stabilization and motion preservation of the spine
US8162994Apr 24, 2012Flexuspine, Inc.Posterior stabilization system with isolated, dual dampener systems
US8172879Aug 22, 2008May 8, 2012Life Spine, Inc.Resilient spinal rod system with controllable angulation
US8172881Aug 1, 2007May 8, 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod mounted in close proximity to a mounting rod
US8172882May 8, 2012Spartek Medical, Inc.Implant system and method to treat degenerative disorders of the spine
US8172903May 20, 2005May 8, 2012Gordon Charles RExpandable intervertebral implant with spacer
US8177815Aug 1, 2007May 15, 2012Spartek Medical, Inc.Super-elastic deflection rod for a dynamic stabilization and motion preservation spinal implantation system and method
US8182514May 22, 2012Flexuspine, Inc.Dampener system for a posterior stabilization system with a fixed length elongated member
US8182515May 22, 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system and method
US8182516May 22, 2012Spartek Medical, Inc.Rod capture mechanism for dynamic stabilization and motion preservation spinal implantation system and method
US8187330May 29, 2012Flexuspine, Inc.Dampener system for a posterior stabilization system with a variable length elongated member
US8192469Aug 1, 2007Jun 5, 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod
US8211150Aug 1, 2007Jul 3, 2012Spartek Medical, Inc.Dynamic stabilization and motion preservation spinal implantation system and method
US8211155Sep 24, 2009Jul 3, 2012Spartek Medical, Inc.Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8216281Jul 10, 2012Spartek Medical, Inc.Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8221467 *Jul 17, 2012Life Spine, Inc.Dynamic spinal stabilization device and systems
US8257397 *Sep 4, 2012Spartek Medical, Inc.Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8257440Sep 4, 2012Gordon Charles RMethod of insertion of an expandable intervertebral implant
US8267965Sep 18, 2012Flexuspine, Inc.Spinal stabilization systems with dynamic interbody devices
US8267979Sep 24, 2009Sep 18, 2012Spartek Medical, Inc.Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8273089Sep 25, 2012Jackson Roger PSpinal fixation tool set and method
US8292892May 13, 2009Oct 23, 2012Jackson Roger POrthopedic implant rod reduction tool set and method
US8292926Aug 17, 2007Oct 23, 2012Jackson Roger PDynamic stabilization connecting member with elastic core and outer sleeve
US8298267Oct 30, 2012Spartek Medical, Inc.Spine implant with a deflection rod system including a deflection limiting shield associated with a bone screw and method
US8317836Nov 27, 2012Spartek Medical, Inc.Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method
US8333792Sep 24, 2009Dec 18, 2012Spartek Medical, Inc.Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8337536Sep 24, 2009Dec 25, 2012Spartek Medical, Inc.Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8348952Jan 8, 2013Depuy International Ltd.System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US8353932Jan 15, 2013Jackson Roger PPolyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US8361123Jan 29, 2013Depuy Spine, Inc.Bone anchor assemblies and methods of manufacturing and use thereof
US8361129Apr 27, 2007Jan 29, 2013Depuy Spine, Inc.Large diameter bone anchor assembly
US8366745 *Jul 1, 2009Feb 5, 2013Jackson Roger PDynamic stabilization assembly having pre-compressed spacers with differential displacements
US8372122Feb 12, 2013Spartek Medical, Inc.Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8377067Feb 19, 2013Roger P. JacksonOrthopedic implant rod reduction tool set and method
US8377098Jan 19, 2007Feb 19, 2013Flexuspine, Inc.Artificial functional spinal unit system and method for use
US8394127Jun 27, 2012Mar 12, 2013Spartek Medical, Inc.Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8394133Jul 23, 2010Mar 12, 2013Roger P. JacksonDynamic fixation assemblies with inner core and outer coil-like member
US8414614Oct 20, 2006Apr 9, 2013Depuy International LtdImplant kit for supporting a spinal column
US8414619Apr 9, 2013Warsaw Orthopedic, Inc.Vertebral rods and methods of use
US8425563Jan 11, 2007Apr 23, 2013Depuy International Ltd.Spinal rod support kit
US8430914Oct 24, 2008Apr 30, 2013Depuy Spine, Inc.Assembly for orthopaedic surgery
US8430916Apr 30, 2013Spartek Medical, Inc.Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US8444681May 21, 2013Roger P. JacksonPolyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US8460595Jun 11, 2013Biedermann Technologies Gmbh & Co. KgRod-shaped implant, in particular for spinal stabilization, method and tool for producing the same
US8475498Jan 3, 2008Jul 2, 2013Roger P. JacksonDynamic stabilization connecting member with cord connection
US8486112Sep 30, 2010Jul 16, 2013DePuy Synthes Products, LLCModular multi-level spine stabilization system and method
US8491637 *Aug 23, 2006Jul 23, 2013Biedermann Technologies GmbH & Co., KGRod-shaped implant element for the application in spine surgery or trauma surgery and stabilization device with such a rod-shaped implant element
US8500781Apr 19, 2011Aug 6, 2013Yale UniversityMethod for stabilizing a spine
US8506599Aug 5, 2011Aug 13, 2013Roger P. JacksonDynamic stabilization assembly with frusto-conical connection
US8518085Jan 27, 2011Aug 27, 2013Spartek Medical, Inc.Adaptive spinal rod and methods for stabilization of the spine
US8523912Oct 22, 2007Sep 3, 2013Flexuspine, Inc.Posterior stabilization systems with shared, dual dampener systems
US8535351Sep 15, 2011Sep 17, 2013Melvin LawDynamic spinal stabilization system
US8540754Dec 8, 2010Sep 24, 2013DePuy Synthes Products, LLCAnchoring systems and methods for correcting spinal deformities
US8545538Apr 26, 2010Oct 1, 2013M. Samy AbdouDevices and methods for inter-vertebral orthopedic device placement
US8556938Oct 5, 2010Oct 15, 2013Roger P. JacksonPolyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US8568451Nov 10, 2009Oct 29, 2013Spartek Medical, Inc.Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method
US8591515Aug 26, 2009Nov 26, 2013Roger P. JacksonSpinal fixation tool set and method
US8591560Aug 2, 2012Nov 26, 2013Roger P. JacksonDynamic stabilization connecting member with elastic core and outer sleeve
US8597358Jan 19, 2007Dec 3, 2013Flexuspine, Inc.Dynamic interbody devices
US8603168Mar 8, 2006Dec 10, 2013Flexuspine, Inc.Artificial functional spinal unit system and method for use
US8613760Dec 14, 2011Dec 24, 2013Roger P. JacksonDynamic stabilization connecting member with slitted core and outer sleeve
US8617215May 14, 2008Dec 31, 2013Warsaw Orthopedic, Inc.Connecting element and system for flexible spinal stabilization
US8641734Apr 29, 2009Feb 4, 2014DePuy Synthes Products, LLCDual spring posterior dynamic stabilization device with elongation limiting elastomers
US8647386Jul 22, 2010Feb 11, 2014Charles R. GordonExpandable intervertebral implant system and method
US8696711Jul 30, 2012Apr 15, 2014Roger P. JacksonPolyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US8753398May 20, 2005Jun 17, 2014Charles R. GordonMethod of inserting an expandable intervertebral implant without overdistraction
US8784453Dec 18, 2012Jul 22, 2014Melvin LawDynamic spinal stabilization system
US8814909Jun 21, 2013Aug 26, 2014DePuy Synthes Products, LLCModular multi-level spine stabilization system and method
US8814913Sep 3, 2013Aug 26, 2014Roger P JacksonHelical guide and advancement flange with break-off extensions
US8845649May 13, 2009Sep 30, 2014Roger P. JacksonSpinal fixation tool set and method for rod reduction and fastener insertion
US8894657Nov 28, 2011Nov 25, 2014Roger P. JacksonTool system for dynamic spinal implants
US8911477 *Oct 21, 2008Dec 16, 2014Roger P. JacksonDynamic stabilization member with end plate support and cable core extension
US8940022Jan 19, 2007Jan 27, 2015Flexuspine, Inc.Artificial functional spinal unit system and method for use
US8940051Mar 4, 2013Jan 27, 2015Flexuspine, Inc.Interbody device insertion systems and methods
US8974497 *Dec 17, 2007Mar 10, 2015Ldr MedicalVertebral support device
US8979904Sep 7, 2012Mar 17, 2015Roger P JacksonConnecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control
US8992578Jul 9, 2013Mar 31, 2015Depuy Synthes Products LlcAnchoring systems and methods for correcting spinal deformities
US9005252Mar 1, 2012Apr 14, 2015Yale UniversityMethod for stabilizing a spine
US9011494Sep 24, 2009Apr 21, 2015Warsaw Orthopedic, Inc.Composite vertebral rod system and methods of use
US9017385May 13, 2013Apr 28, 2015Melvin LawDynamic spinal stabilization system
US9034016Jul 26, 2011May 19, 2015Yale UniversityDynamic spine stabilizer
US9050139Mar 15, 2013Jun 9, 2015Roger P. JacksonOrthopedic implant rod reduction tool set and method
US9055978Oct 2, 2012Jun 16, 2015Roger P. JacksonOrthopedic implant rod reduction tool set and method
US9066811Jan 19, 2007Jun 30, 2015Flexuspine, Inc.Artificial functional spinal unit system and method for use
US9089369Oct 10, 2008Jul 28, 2015Biedermann Technologies Gmbh & Co. KgRod assembly and modular rod system for spinal stabilization
US9101404Jan 26, 2011Aug 11, 2015Roger P. JacksonDynamic stabilization connecting member with molded connection
US9144506 *Aug 2, 2012Sep 29, 2015Jeff PhelpsInterbody axis cage
US9161782Jan 14, 2013Oct 20, 2015DePuy Synthes Products, Inc.Bone anchor assemblies and methods of manufacturing and use thereof
US9211150Sep 23, 2010Dec 15, 2015Roger P. JacksonSpinal fixation tool set and method
US9216039Nov 19, 2010Dec 22, 2015Roger P. JacksonDynamic spinal stabilization assemblies, tool set and method
US9216041Feb 8, 2012Dec 22, 2015Roger P. JacksonSpinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US9232968Sep 19, 2008Jan 12, 2016DePuy Synthes Products, Inc.Polymeric pedicle rods and methods of manufacturing
US9320543 *Oct 27, 2009Apr 26, 2016DePuy Synthes Products, Inc.Posterior dynamic stabilization device having a mobile anchor
US20050288670 *Jun 23, 2005Dec 29, 2005Panjabi Manohar MDynamic stabilization device including overhanging stabilizing member
US20070049937 *Aug 23, 2006Mar 1, 2007Wilfried MatthisRod-shaped implant element for the application in spine surgery or trauma surgery and stabilization device with such a rod-shaped implant element
US20070093813 *Oct 11, 2005Apr 26, 2007Callahan Ronald IiDynamic spinal stabilizer
US20070093815 *Oct 11, 2005Apr 26, 2007Callahan Ronald IiDynamic spinal stabilizer
US20070118122 *Nov 17, 2006May 24, 2007Life Spine, LlcDynamic spinal stabilization device and systems
US20070293864 *Nov 17, 2006Dec 20, 2007Reimels William JBone plate system providing dynamic compression
US20080045951 *Aug 16, 2006Feb 21, 2008Depuy Spine, Inc.Modular multi-level spine stabilization system and method
US20080255617 *Dec 17, 2007Oct 16, 2008Paul ChoVertebral Support Device
US20080319482 *Apr 18, 2008Dec 25, 2008Jackson Roger PDynamic fixation assemblies with pre-tensioned cord segments
US20090012563 *Oct 11, 2007Jan 8, 2009Nas Medical Technologies, Inc.Spinal fixation devices and methods
US20090054932 *Aug 22, 2008Feb 26, 2009Butler Michael SResilient Spinal Rod System With Controllable Angulation
US20090105764 *Oct 21, 2008Apr 23, 2009Jackson Roger PDynamic stabilization member with fin support and solid core extension
US20090163953 *Oct 10, 2008Jun 25, 2009Lutz BiedermannRod assembly and modular rod system for spinal stabilization
US20090270922 *Apr 16, 2009Oct 29, 2009Lutz BiedermannRod-shaped implant, in particular for spinal stabilization, method and tool for producing the same
US20090275981 *May 1, 2008Nov 5, 2009Custom Spine, Inc.Artificial Ligament Assembly
US20090275985 *Nov 5, 2009Jackson Roger PDynamic stabilization assembly having pre-compressed spacers with differential displacements
US20090287252 *May 14, 2008Nov 19, 2009Warsaw Orthopedic, Inc.Connecting Element and System for Flexible Spinal Stabilization
US20100042157 *Feb 18, 2010Warsaw Orthopedic, Inc.Vertebral rod system and methods of use
US20100063547 *May 4, 2009Mar 11, 2010Joshua MorinDynamic motion spinal stabilization system and device
US20100063548 *Jul 6, 2009Mar 11, 2010Depuy International LtdSpinal Correction Method Using Shape Memory Spinal Rod
US20100063551 *Dec 24, 2008Mar 11, 2010Richelsoph Marc EPolyaxial screw assembly
US20100331886 *Oct 27, 2009Dec 30, 2010Jonathan FangerPosterior Dynamic Stabilization Device Having A Mobile Anchor
US20110022095 *Sep 30, 2010Jan 27, 2011Depuy Spine, Inc.Modular Multi-Level Spine Stabilization System and Method
US20110077688 *Dec 8, 2010Mar 31, 2011Depuy Spine, Inc.Anchoring systems and methods for correcting spinal deformities
US20110196428 *Aug 11, 2011Rachiotek LlcMethod for stabilizing a spine
US20110230914 *Aug 7, 2008Sep 22, 2011Synthes (U.S.A.)Dynamic cable system
US20110245873 *Dec 2, 2010Oct 6, 2011Spartek Medical, Inc.Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US20120035660 *Feb 9, 2012Jackson Roger PDynamic stabilization connecting member with pre-tensioned solid core
US20120143254 *Nov 29, 2011Jun 7, 2012Flexuspine, Inc.Posterior stabilization systems with shared, dual dampener systems
US20120271353 *Dec 29, 2010Oct 25, 2012Mark BarrySystem and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions in patients requiring the accomodation of spinal column growth or elongation
US20130041469 *Feb 14, 2013Jeff PhelpsInterbody axis cage
US20130090690 *Apr 11, 2013David A. WalshDynamic Rod Assembly
US20140222078 *Apr 14, 2014Aug 7, 2014Stryker SpineRod inserter and rod with reduced diameter end
US20150182259 *Mar 10, 2015Jul 2, 2015Ldr MedicalVertebral Support Device
CN101816586A *Mar 8, 2010Sep 1, 2010北京纳通投资有限公司Pedicle screw pressurizing and propping fixation clamp
WO2009135097A2 *May 1, 2009Nov 5, 2009Custom Spine, Inc.Artificial ligament assembly
WO2009135097A3 *May 1, 2009Apr 29, 2010Custom Spine, Inc.Artificial ligament assembly
Classifications
U.S. Classification606/257, 606/910, 606/907, 606/281, 606/280, 606/259, 606/263
International ClassificationA61F2/30
Cooperative ClassificationA61B2017/00867, A61B17/7032, A61B17/7031, A61B17/7004, A61B17/7029, A61B17/702, A61B17/7011, A61B17/7046
European ClassificationA61B17/70B1R2, A61B17/70B1R12, A61B17/70B1R10D
Legal Events
DateCodeEventDescription
Jul 31, 2006ASAssignment
Owner name: K2M, INC., VIRGINIA
Free format text: CHANGE OF NAME;ASSIGNOR:K2M, LLC;REEL/FRAME:018138/0423
Effective date: 20060615
May 19, 2009ASAssignment
Owner name: K2M, LLC, VIRGINIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WHITE, PATRICK M;REEL/FRAME:022700/0029
Effective date: 20060524
Jul 30, 2009ASAssignment
Owner name: SILICON VALLEY BANK, CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:K2M, INC.;REEL/FRAME:023032/0109
Effective date: 20090729
Owner name: SILICON VALLEY BANK,CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:K2M, INC.;REEL/FRAME:023032/0109
Effective date: 20090729
Jul 26, 2012ASAssignment
Owner name: K2M, INC., VIRGINIA
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:028650/0256
Effective date: 20120726
Jul 27, 2012ASAssignment
Owner name: K2M INC, VIRGINIA
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:028653/0027
Effective date: 20120726
Oct 26, 2012ASAssignment
Owner name: WHITE, PATRICK, PENNSYLVANIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:K2M INC;REEL/FRAME:029196/0173
Effective date: 20121026