Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070032718 A1
Publication typeApplication
Application numberUS 11/546,157
Publication dateFeb 8, 2007
Filing dateOct 10, 2006
Priority dateMar 4, 1997
Also published asUS6862465, US7136689, US8155723, US20040011671, US20050124873, US20100160760
Publication number11546157, 546157, US 2007/0032718 A1, US 2007/032718 A1, US 20070032718 A1, US 20070032718A1, US 2007032718 A1, US 2007032718A1, US-A1-20070032718, US-A1-2007032718, US2007/0032718A1, US2007/032718A1, US20070032718 A1, US20070032718A1, US2007032718 A1, US2007032718A1
InventorsMark Shults, Stuart Updike, Rathbun Rhodes, Barbara Gilligan, Mark Tapsak
Original AssigneeShults Mark C, Updike Stuart J, Rhodes Rathbun K, Gilligan Barbara J, Tapsak Mark A
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Device and method for determining analyte levels
US 20070032718 A1
Abstract
Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
Images(8)
Previous page
Next page
Claims(22)
1. An implantable device for measuring an analyte, the device comprising:
a sensor body comprising a sensor interface configured to measure an analyte;
an angiogenic layer disposed on at least a portion of the sensor interface; and
an anchoring material attached to the sensor body and configured for anchoring the sensor body to a host tissue,
wherein the angiogenic layer comprises a micro-geometry configured to create a new capillary bed in close proximity to the sensor interface.
2. The device of claim 1, wherein the new capillary bed provides the sensor with an oxygen concentration comparable to that normally available to tissue comprised of living cells, and a glucose concentration comparable to that normally available to tissue comprised of living cells.
3. The device of claim 1, wherein the anchoring material comprises at least one material selected from the group consisting of porous silicone, poly(ethylene terephthalate), surgical grade fabric, polyester, velour, expanded polytetrafluoroethylene, polytetrafluoroethylene felt, and polypropylene cloth.
4. The device of claim 1, wherein the angiogenic layer comprises at least one material selected from the group consisting of polytetrafluoroethylene, hydrophilic polyvinylidene fluoride, mixed cellulose esters, polyvinylchloride, polypropylene, polysulfone, and polymethylmethacrylate.
5. The device of claim 4, wherein the angiogenic layer comprises expanded polytetrafluoroethylene.
6. The device of claim 1, further comprising an additional outermost layer, wherein the additional outermost layer comprises a woven material or a non-woven material.
7. The device of claim 6, wherein the additional outermost layer comprises a low-density non-woven polyester.
8. The device of claim 1, wherein the angiogenic layer comprises pores having pore sizes of from about 0.5 microns to about 20 microns.
9. The device of claim 8, wherein the angiogenic layer comprises pores having pore sizes of from about 1.0 μm to about 10 μm.
10. The device of claim 8, wherein the angiogenic layer comprises expanded polytetrafluoroethylene.
11. The device of claim 1, wherein the angiogenic layer has a thickness of from about 10 microns to about 20 microns.
12. The device of claim 1, wherein the sensor body is cylindrical.
13. The device of claim 1, sensing interface comprises a dome.
14. The device of claim 1, wherein the angiogenic layer and the anchoring material are the same.
15. An implantable device for measuring an analyte, the device comprising:
a sensor body comprising a sensor configured to measure an analyte; and
a composite bilayer membrane comprising an angiogenic layer and a bioprotective membrane disposed on at least a portion of the sensor.
16. The device of claim 15, wherein the bioprotective comprises pores having pore sizes of from about 0.1 microns to about 1.0 micron.
17. The device of claim 15, wherein the bioprotective membrane comprises at least one material selected from the group consisting of polytetrafluoroethylene, polypropylene, polysulfone, and polyethylene terephthalate.
18. The device of claim 15, wherein the angiogenic layer comprises expanded polytetrafluoroethylene.
19. The device of claim 15, wherein the bioprotective layer comprises polyvinylpyrrolidone.
20. The device of claim 15, wherein the bioprotective layer comprises a urethane hydrogel.
21. An implantable device for measuring an analyte in a biological fluid, the device comprising:
a sensor body comprising a sensor interface;
an angiogenic layer disposed on at least a portion of the sensor interface; and
a material for anchoring the sensor body to a host tissue, wherein the implantable device comprises porous silicone.
22. The device of claim 21, wherein the angiogenic layer and the material for anchoring the sensor body to a host tissue are the same.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This is a continuation-in-part of Ser. No. 09/447,227, filed Nov. 22, 1999, which is a divisional of Ser. No. 08/811,473, filed Mar. 4, 1997, now U.S. Pat. No. 6,001,067.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates generally to devices and methods for determining analyte levels, and, more particularly, to implantable devices and methods for monitoring glucose levels in a biological fluid.
  • BACKGROUND OF THE INVENTION
  • [0003]
    The continuous measurement of substances in biological fluids is of interest in the control and study of metabolic disorders. Electrode systems have been developed for this purpose whereby an enzyme-catalyzed reaction is monitored (e.g., by the changing concentrations of reactants or products) by an electrochemical sensor. In such electrode systems, the electrochemical sensor comprises an electrode with potentiometric or amperometric function in close contact with a thin layer containing an enzyme in dissolved or insoluble form. Generally, a semipermeable membrane separates the thin layer of the electrode containing the enzyme from the sample of biological fluid that includes the substance to be measured.
  • [0004]
    Electrode systems that include enzymes have been used to convert amperometrically inactive substances into reaction products that are amperometrically active. For example, in the analysis of blood for glucose content, glucose (which is relatively inactive amperometrically) may be catalytically converted by the enzyme glucose oxidase in the presence of oxygen and water to gluconic acid and hydrogen peroxide. Tracking the concentration of glucose is thereby possible since for every glucose molecule reacted a proportional change in either oxygen or hydrogen peroxide sensor current will occur [U.S. Pat. Nos. 4,757,022 and 4,994,167 to Shults et al., both of which are hereby incorporated by reference]. Hydrogen peroxide is anodically active and produces a current that is proportional to the concentration of hydrogen peroxide. [Updike et al., Diabetes Care, 11:801-807 (1988)].
  • [0005]
    Despite recent advances in the field of implantable glucose monitoring devices, presently used devices are unable to provide data safely and reliably for long periods of time (e.g., months or years) [See, e.g., Moatti-Sirat et al., Diabetologia 35:224-30 (1992)]. For example, Armour et al., Diabetes 39:1519-26 (1990), describes a miniaturized sensor that is placed intravascularly, thereby allowing the tip of the sensor to be in continuous contact with the blood. Unfortunately, probes that are placed directly into the vasculature put the recipient at risk for thrombophlebosis, thromboembolism, and thrombophlebitis.
  • [0006]
    Currently available glucose monitoring devices that may be implanted in tissue (e.g., subcutaneously) are also associated with several shortcomings. For example, there is no dependable flow of blood to deliver sample to the tip of the probe of the implanted device. Similarly, in order to be effective, the probe must consume some oxygen and glucose, but not enough to perturb the available glucose which it is intended to measure; subcutaneously implanted probes often reside in a relatively low oxygen environment in which oxygen or glucose depletion zones around the probe tip may result in erroneously low measured glucose levels. In addition, implantable devices that utilize electrode sensors require membranes of the appropriate composition to protect the sensor from harsh in vivo environmental conditions. Current membrane technology has allowed the development of a single structural membrane that performs the same functions that previously required multiple membranes. However, these single membranes have been observed to delaminate and thus prevent accurate long-term glucose monitoring. Finally, the probe may be subject to “motion artifact” because the device is not adequately secured to the tissue, thus contributing to unreliable results. Partly because of these limitations, it has previously been difficult to obtain accurate information regarding the changes in the amounts of analytes (e.g., whether blood glucose levels are increasing or decreasing); this information is often extremely important, for example, in ascertaining whether immediate corrective action is needed in the treatment of diabetic patients.
  • [0007]
    There is a need for a device that accurately and continuously determines the presence and the amounts of a particular analyte, such as glucose, in biological fluids. The device should be easy to use, be capable of accurate measurement of the analyte over long periods of time, and should not readily be susceptible to motion artifact.
  • SUMMARY OF TEE INVENTION
  • [0008]
    The present invention relates generally to devices and methods for determining analyte levels, and, more particularly, to implantable devices and methods for monitoring glucose levels in a biological fluid.
  • [0009]
    In one aspect of the present invention, an implantable device for measuring an analyte in a biological fluid is provided, which includes the following: a housing including an electronic circuit; and a sensor operably connected to the electronic circuit of the housing, the sensor including i) a member for determining the amount of glucose in a biological sample ii) a bioprotective membrane, the bioprotective membrane positioned more distal to the housing than the glucose determining member and substantially impermeable to macrophages, and iii) an angiogenic layer, the angiogenic layer positioned more distal to the housing than the bioprotective membrane.
  • [0010]
    The present invention further encompasses a method of monitoring glucose levels, the method including the steps of providing a host, and an implantable device as described above and implanting the device in the host under conditions such that the device measures glucose for a period exceeding 360 days.
  • [0011]
    In one embodiment of this aspect, the invention encompasses a method of measuring glucose in a biological fluid that includes the steps of providing a host, and an implantable device as provided above, wherein the glucose determining member of the implantable device is capable of continuous glucose sensing, and implanting the device in the host.
  • [0000]
    Definitions
  • [0012]
    In order to facilitate an understanding of the present invention, a number of terms are defined below.
  • [0013]
    The term “accurately” means, for example, 95% of measured values within 25% of the actual value as determined by analysis of blood plasma, preferably within 15% of the actual value, and most preferably within 5% of the actual value. Alternatively, “accurately” means that 85% of the measured values fall into the A and B regions of a Clarke error grid, or preferably 90%, or most preferably 95% of the measured values fall into these regions. It is understood that like any analytical device, calibration, calibration validation and recalibration are required for the most accurate operation of the device.
  • [0014]
    The term “analyte” refers to a substance or chemical constituent in a biological fluid (e.g., blood or urine) that can be analyzed. A preferred analyte for measurement by the devices and methods of the present invention is glucose.
  • [0015]
    The terms “sensor interface,” “sensor means,” “sensor” and the like refer to the region of a monitoring device responsible for the detection of a particular analyte. For example, in some embodiments of a glucose monitoring device, the sensor interface refers to that region wherein a biological sample (e.g., blood or interstitial fluid) or a portion thereof contacts (directly or after passage through one or more membranes or layers) an enzyme (e.g., glucose oxidase); the reaction of the biological sample (or portion thereof) results in the formation of reaction products that allow a determination of the glucose level in the biological sample. In preferred embodiments of the present invention, the sensor means comprises an angiogenic layer, a bioprotective layer, an enzyme layer, and an electrolyte phase (i.e., a free-flowing liquid phase comprising an electrolyte-containing fluid [described further below]). In some preferred embodiments, the sensor interface protrudes beyond the plane of the housing.
  • [0016]
    The term “tissue interface” refers to that region of a monitoring device that is in contact with tissue.
  • [0017]
    The terms “operably connected,” “operably linked,” and the like refer to one or more components being linked to another component(s) in a manner that allows transmission of, e.g., signals between the components. For example, one or more electrodes may be used to detect the amount of analyte in a sample and convert that information into a signal; the signal may then be transmitted to electronic circuit means (i.e., the electrode is “operably linked” to the electronic circuit means), which may convert the signal into a numerical value in the form of known standard values.
  • [0018]
    The term “electronic circuit means” or “electronic circuit” refers to the electronic circuitry components of a biological fluid measuring device required to process information obtained by a sensor means regarding a particular analyte in a biological fluid, thereby providing data regarding the amount of that analyte in the fluid. U.S. Pat. No. 4,757,022 to Shults et al., previously incorporated by reference, describes suitable electronic circuit means (see, e.g., FIG. 7); of course, the present invention is not limited to use with the electronic circuit means described therein. A variety of circuits are contemplated, including but not limited to those circuits described in U.S. Pat. Nos. 5,497,772 and 4,787,398, hereby incorporated by reference.
  • [0019]
    The terms “angiogenic layer,” “angiogenic membrane,” and the like refer to a region, membrane, etc. of a biological fluid measuring device that promotes and maintains the development of blood vessels microcirculation around the sensor region of the device. As described in detail below, the angiogenic layer of the devices of the present invention may be constructed of membrane materials alone or in combination such as polytetrafluoroethylene, hydrophilic polyvinylidene fluoride, mixed cellulose esters, polyvinylchloride, and other polymers including, but not limited to, polypropylene, polysulfone, and polymethylmethacrylate.
  • [0020]
    The phrase “positioned more distal” refers to the spatial relationship between various elements in comparison to a particular point of reference. For example, some embodiments of a biological fluid measuring device comprise both a bioprotective membrane and an angiogenic layer/membrane. If the housing of the biological fluid measuring device is deemed to be the point of reference and the angiogenic layer is positioned more distal to the housing than the bioprotective layer, then the bioprotective layer is closer to the housing than the angiogenic layer.
  • [0021]
    The terms “bioprotective membrane,” “bioprotective layer,” and the like refer to a semipermeable membrane comprised of protective biomaterials of a few microns thickness or more that are permeable to oxygen and glucose and are placed over the tip of the sensor to keep the white blood cells (e.g., tissue macrophages) from gaining proximity to and then damaging the enzyme membrane. In some embodiments, the bioprotective membrane has pores (typically from approximately 0.1 to approximately 1.0 micron). In preferred embodiments, a bioprotective membrane comprises polytetrafluoroethylene and contains pores of approximately 0.4 microns in diameter. Pore size is defined as the pore size provided by the manufacturer or supplier.
  • [0022]
    The phrase “substantially impermeable to macrophages” means that few, if any, macrophages are able to cross a barrier (e.g., the bioprotective membrane). In preferred embodiments, fewer than 1% of the macrophages that come in contact with the bioprotective membrane are able to cross.
  • [0023]
    The phrase “material for securing said device to biological tissue” refers to materials suitable for attaching the devices of the present invention to, the fibrous tissue of a foreign body capsule. Suitable materials include, but are not limited to, poly(ethylene terephthalate). In preferred embodiments, the top of the housing is covered with the materials in the form of surgical grade fabrics; more preferred embodiments also contain material in the sensor interface region (see FIG. 1B).
  • [0024]
    The phrase “member for determining the amount of glucose in a biological sample” refers broadly to any mechanism (e.g., enzymatic or non-enzymatic) by which glucose can be quantitated. For example, some embodiments of the present invention utilize a membrane that contains glucose oxidase that catalyzes the conversion of glucose to gluconate: Glucose+O2=Gluconate+H2O2. Because for each glucose molecule converted to gluconate, there is a proportional change in the co-reactant O2 and the product H2O2, one can monitor the current change in either the co-reactant or the product to determine glucose concentration.
  • [0025]
    The phrase “apparatus for transmitting data to a location external to said device” refers broadly to any mechanism by which data collected by a biological fluid measuring device implanted within a subject may be transferred to a location external to the subject. In preferred embodiments of the present invention, radiotelemetry is used to provide data regarding blood glucose levels, trends, and the like.
  • [0026]
    The terms “radiotelemetry,” “radiotelemetric device,” and the like refer to the transmission by radio waves of the data recorded by the implanted device to an ex vivo recording station (e.g., a computer), where the data is recorded and, if desired, further processed (see, e.g., U.S. Pat. Nos. 5,321,414 and 4,823,808, hereby incorporated by reference; PCT Pat. Publication WO 94/22367).
  • [0027]
    The term “host” refers to both humans and animals.
  • [0028]
    The phrase “continuous glucose sensing” refers to the period in which monitoring of plasma glucose concentration is continuously carried out. More specifically, at the beginning of the period in which continuous glucose sensing is effected, the background sensor output noise diminishes and the sensor output stabilizes (e.g., over several days) to a long-term level reflecting adequate microcirculatory delivery of glucose and oxygen to the tip of the sensor (see FIG. 2).
  • [0029]
    The term “filtrate layer” refers to any permeable membrane that is able to limit molecules from passing through the membrane based on their properties including molecular weight. More particularly, the resistance layer, interference layer and bioprotective membrane are examples of layers that can function as filtrate layers, depending on the materials from which they are prepared. These layers can control delivery of analyte to a sensing means. Furthermore, these layers can reduce a number of undesirable molecular species that may otherwise be exposed to the sensor for detection and provide a controlled sample volume to the analyte sensing means.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0030]
    FIG. 1A depicts a cross-sectional drawing of one embodiment of an implantable analyte measuring device of the present invention.
  • [0031]
    FIG. 1B depicts a cross-sectional exploded view of the sensor interface dome of FIG. 1A.
  • [0032]
    FIG. 1C depicts a cross-sectional exploded view of the electrode-membrane region of FIG. 1B detailing the sensor tip and the functional membrane layers.
  • [0033]
    FIG. 2 graphically depicts glucose levels as a function of the number of days post-implant.
  • [0034]
    FIG. 3 is a graphical representation of the number of functional sensors versus time (i.e. weeks) comparing control devices including only a cell-impermeable domain (“Control”), with devices including a cell-impermeable domain and a barrier-cell domain (“Test”).
  • [0035]
    FIG. 4A is a photograph of an intact composite bioprotective/angiogenic membrane after implantation in a dog for 137 days.
  • [0036]
    FIG. 4B is a photograph of a delaminated ePTFE bilayer membrane after implantation in a dog for 125 days.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0037]
    The present invention relates generally to devices and methods for determining analyte levels, and, more particularly, to implantable devices and methods for monitoring glucose levels in a biological fluid. In a preferred embodiment, the device and methods of the present invention are used to determine the level of glucose in a host, a particularly important measurement for individuals having diabetes.
  • [0038]
    Although the description that follows is primarily directed at glucose monitoring devices and methods for their use, the devices and methods of the present invention are not limited to glucose measurement. Rather, the devices and methods may be applied to detect and quantitate other analytes present in biological fluids (including, but not limited to, amino acids and lactate), especially those analytes that are substrates for oxidase enzymes [see, e.g., U.S. Pat. No. 4,703,756 to Gough et al., hereby incorporated by reference]. Moreover, the devices and methods of the present invention may be utilized to present components of biological fluids to measurement methods which are not enzyme-based, including, but not limited to, those based on surface plasmon resonance, surface acoustic waves, optical absorbance in the long wave infrared region, and optical rotation of polarized light.
  • [0039]
    For example, surface plasmon resonance sensors that analyze a region within less than one wavelength of analysis light near the flat surface of the sensor have been described (See U.S. Pat. No. 5,492,840). These sensors have been used, for example, in the study of immunochemistry and other surface bound chemical reactions (Jonsson et al., Annales de Biologies Clinique 51(10:19, 1993). This type of sensor may be incorporated into the implantable device of the present invention for the detection of a number of different analytes including glucose. One skilled in the art would recognize that the surface plasmon resonance sensor is an optical sensor and that the implantable device of the present invention may further include a source of coherent radiation (e.g. a laser operating in the visible or near infrared).
  • [0040]
    In one application, referred to here as a consumptive approach, an enzyme that consumes the analyte producing a detectable product is immobilized on the sensor in the filtrate layer. When the enzyme consumes the analyte, the reaction products diffuse away from the enzyme at a rate dependent on the permeability of the layers distal to the enzyme layer. As a result, reaction products will accumulate at a higher concentration near the sensor, within one wavelength of analysis light, where they may be detected and measured. One example of such a system that detects the presence of glucose would immobilize a glucose oxidase enzyme layer on the sensor surface.
  • [0041]
    The layers of the present invention play an important role in the effective operation and function of this type of sensor. In particular, the angiogenic layer assures a constant supply of analyte from the tissues of the subject, the bioprotective membrane protects the underlying layers from cellular attack, the resistance layer controls the rate of delivery of analyte and the filtrate layer performs many functions including; providing a low molecular weight filtrate, reducing the number of undesirable molecular species available to the sensor for detection and providing a controlled volume of sample for detection by the sensor. As mentioned above, the bioprotective membrane, resistance layer and interference layer can function as filtrate layers. For example, it is well within the contemplation of the present invention that the bioprotective membrane can be made of a material that is able to exclude certain molecules from passing through the membrane based on their size.
  • [0042]
    One skilled in the art would recognize that the reaction kinetics associated with each type of enzyme that may be selected for use with this sensor is unique. However, in general, if an excess of enzyme is provided, the enzyme turnover rate is proportional to the flux of analyte to the enzyme and independent of the enzyme concentration. Therefore, the actual analyte concentration may be calculated utilizing the diffusion rate of the detectable analyte across the bioprotective resistance layers.
  • [0043]
    In another application, referred to here as a non-consumptive approach, an analyte-binding compound is provided on the surface plasmon resonance sensor surface within one wavelength of analysis light. This compound reversibly binds, but does not consume, the analyte. In this application, the analyte moves reversibly onto and off of attachment sites on the binding compound. This reaction provides a steady state condition for bound and unbound analyte that may be quantitated and analyte concentration mathematically calculated. One skilled in the art would recognize that the reaction kinetics associated with binding and release of the analyte is unique for each type of binding compound selected. Examples of such a system that detects the presence of glucose provide a binding compound comprised of conconavalin A or a wide range of borate containing compounds (See U.S. Pat. No. 6,011,985).
  • [0044]
    Since this is a chemical equilibrium-based approach, a filtrate layer is not necessarily required to maintain an analyte concentration near the sensor. However, such a membrane would still be desired to reduce the number of undesirable molecular species available to the analyte-binding layer. Preferably, the bioprotective layer is thin to allow rapid sensor equilibration to changes in analyte levels. As described above, one skilled in the art would recognize that the function of the filtrate layer could be incorporated into the bioprotective membrane by selection of the appropriate molecular exclusion, such as exclusion by molecular weight, if desired.
  • [0045]
    A variety of materials may be utilized to construct a combination angiogenic/bioprotective membrane, many of which are described below under the angiogenic layer and bioprotective membrane headings. Preferably, this combination membrane is ePTFE embedded in a layer of PVP containing urethane hydrogel. However, any material that performs a similar function as the PVP containing polyurethane hydrogel could be substituted.
  • [0046]
    In either application, consumptive or non-consumptive, one skilled in the art would recognize that the response time of the sensor is subject to Fick's law of diffusion. More specifically, sensors with thick membrane layers or that have low analyte diffusivity will respond slower to change in analyte concentration than sensors with thin membranes or that have high analyte diffusivity. Consequently, reasonable optimization experimentation with the membrane and layers would be required to meet various use requirements.
  • [0047]
    One skilled in the art would further recognize that the consumptive or non-consumptive approaches of the previous example could be applied to additional sensor modalities as follows:
  • [0048]
    1. Another sensor that may be incorporated into the device of the present invention that has been previously described is a surface acoustic wave sensor (See U.S. Pat. No. 5,932,953). This sensor, also referred to as a bulk-acoustic wave piezoelectric resonator, typically includes a planar surface of piezoelectric material with two respective metal layers bonded on opposite sides that form the electrodes of the resonator. The two surfaces of the resonator are free to undergo vibrational movement when the resonator is driven by a signal within the resonance band of the resonator. One of these surfaces is adapted to provide reversible binding sites for the analyte being detected. The binding of the analyte on the surface of the resonator alters the resonant characteristics of the resonator and changes in the resonant characteristics may be detected and interpreted to provide quantitative information regarding the analyte concentration.
  • [0049]
    2. Another sensor that may be incorporated into the device of the present invention is an optical absorbance sensor (See U.S. Pat. No. 6,049,727). This sensor utilizes short to medium wavelength infrared light that is passed through a sample with the unabsorbed infrared light being monitored by an optical detector.
  • [0050]
    Previously developed methods for analysis of analytes such as glucose in tissues and blood have been relatively unsuccessful for two reasons, interference from other chemicals present in the complex biological sample and signal variation due to poor control of sample volume. These problems may be solved by providing a low molecular weight filtrate of biological fluid in a controlled volume of sample to the sensor. In one system of the present invention, biological analyte is provided to the sensor through the angiogenic layer. This analyte is then filtered through the bioprotective membrane to produce a desirable filtrate. Alternatively, a third filtrate layer, such as an interference layer, may be utilized having specific filtration properties to produce the desired filtrate. The three-dimensional structure of the bioprotective membrane and/or other filtrate layers is utilized to define and stabilize the sample volume. One skilled in the art would recognize that any material that provides a low molecular weight filtrate to the sensor in a controlled volume might be utilized. Preferably, this material is polyurethane.
  • [0051]
    The sensor may be enhanced by partial metallization of the distal side of the filtrate producing material that would serve to isolate by reflection the optical signal to the space within the filtrate region directly adjacent to the sensor. This metal film may be a durable metal including, but not restricted to, gold or platinum and may be vacuum deposited onto the filtrate producing material.
  • [0052]
    One skilled in the art would recognize that the optical absorbance sensor requires a source of short to medium wavelength infrared light. Consequently, the implantable device of the present invention would further include a source of infrared radiation and an optical detector.
  • [0053]
    3. Another sensor that may be incorporated into the device of the present invention that has been previously described is a polarized light optical rotation sensor (See U.S. Pat. No. 5,209,231). This sensor may be used to detect an analyte that rotates polarized light such as glucose. In particular, glucose concentrations in biological fluids in the range of 0.05 to 1.00% w/v may be detected and quantitated. Normal non-diabetic subjects generally have biological glucose concentrations ranging from 0.07 to 0.12% w/v.
  • [0054]
    In this type of sensor, the optical detector receives polarized light passed through a biological sample and then further through a polarizing filter. The optical activity of an analyte in the sample rotates the polarized light in proportion to its concentration. Unfortunately, accurate measurements of glucose in complex biological samples has proven difficult because of the optical activity of interfering substances and poor control of sample volume. These problems may be solved by providing a low molecular weight filtrate of biological fluid in a controlled volume to the sensor. The present invention meets this criterion by providing a continuous supply of biological glucose to the sensor through the angiogenic layer that is filtered through a bioprotective membrane and/or a filtrate layer as described previously for the optical absorbance sensor. One skilled in the art would recognize that any material that provides a low molecular weight filtrate to the sensor in a controlled geometry might be utilized. Preferably, this material is polyurethane. In addition, one skilled in the art would recognize that the polarized light optical rotation sensor requires a source of polarized light. Consequently, the implantable device of the present invention would further include a source of polarized radiation.
  • [0055]
    4. Another sensor that may be incorporated into the device of the present invention that has been previously described is a fluorescence sensor (See U.S. Pat. No. 5,341,805). The invention of Colvin provides a method for incorporating an ultraviolet light source and fluorescent sensing molecules in an implantable device. However, Colvin does not describe how the sensor would survive harsh in vivo environmental conditions, how the device would be functionally integrated into body tissues or how a continuous supply of glucose would be maintained for detection by the sensor. These problems may be solved by providing a low molecular weight filtrate of biological fluid in a controlled volume to the sensor.
  • [0056]
    In this example, a continuous supply of biological glucose passes to the sensor through the angiogenic layer that prevents isolation of the sensor by the body tissue. The glucose is then filtered through the bioprotective membrane to produce a desirable filtrate having fewer interfering molecules and to protect the sensor from in vivo environmental conditions. Alternatively, a filtrate layer may be utilized having specific filtration properties to produce the desired filtrate. The three-dimensional structure of the bioprotective membrane and/or filtrate layer also provides stabilized sample volume for detection by the sensor.
  • [0057]
    One skilled in the art would recognize that a fluorescence sensor requires a source of light. Consequently, the implantable device of the present invention would further comprise a source of radiation, as well as fluorescent sensing molecules to detect the presence of analyte.
  • [0000]
    I. Nature of the Foreign Body Capsule.
  • [0058]
    Devices and probes that are implanted into subcutaneous tissue will almost always elicit a foreign body capsule (FBC) as part of the body's response to the introduction of a foreign material. Therefore, implantation of a glucose sensor results in an acute inflammatory reaction followed by building of fibrotic tissue. Ultimately, a mature FBC including primarily a vascular fibrous tissue forms around the device (Shanker and Greisler, Inflammation and Biomaterials in Greco R S, ed. Implantation Biology: The Host Response and Biomedical Devices, pp 68-80, CRC Press (1994)).
  • [0059]
    Although fluid is frequently found within the capsular space between the sensor and the capsule, levels of analytes (e.g., glucose and oxygen) within the fluid often do not mimic levels in the body's vasculature, making accurate measurement difficult.
  • [0060]
    In general the formation of a FBC has precluded the collection of reliable, continuous information, reportedly because of poor vascularization, the composition of a FBC has prevented stabilization of the implanted device, contributing to motion artifact that renders unreliable results. Thus, conventionally, it has been the practice of those skilled in the art to attempt to minimize FBC formation by, for example, using a short-lived needle geometry or sensor coatings to minimize the foreign body reaction (“Biosensors in the Body” David M. Fraser, ed.; 1997 pp 117-170. Wiley & Sons Ltd., West Sussex, England),
  • [0061]
    In contrast to the prior art, the teachings of the present invention recognize that FBC formation is the dominant event surrounding long term implantation of any sensor and must be orchestrated to support rather than hinder or block sensor performance. For example, sensors often do not perform well until the FBC has matured sufficiently to provide ingrowth of well-attached tissue bearing a rich supply of capillaries directly to the surface of the sensor. With reference to FIG. 2, stabilization of device function generally occurs between about 2 and 8 weeks depending on the rate of healing and formation of new capillaries. In some cases, devices are functional from the time of implant, and sometimes it may take as long as 12 weeks. However, the majority of devices begin functioning between weeks 2 and 8 after implantation. This maturation process, when initiated according to the present invention, is a function of biomaterial and host factors that initiate and modulate angiogenesis, and promote and control fibrocyte ingrowth. The present invention contemplates the use of particular materials to promote angiogenesis adjacent to the sensor interface (also referred to as the electrode-membrane region, described below) and to anchor the device within the FBC.
  • [0000]
    II. The Implantable Glucose Monitoring Device of the Present Invention
  • [0062]
    The present invention contemplates the use of a unique micro-geometry at the sensor interface of an implantable device. Moreover, the present invention contemplates the use of materials covering all or a portion of the device to assist in the stabilization of the device following implantation. However, it should be pointed out that the present invention does not require a device comprising particular electronic components (e.g., electrodes, circuitry, etc). Indeed, the teachings of the present invention can be used with virtually any monitoring device suitable for implantation (or subject to modification allowing implantation); suitable devices include, but are not limited, to those described in U.S. Pat. No. 6,001,067 to Shults et al.; U.S. Pat. No. 4,703,756 to Gough et al., and U.S. Pat. No. 4,431,004 to Bessman et al.; the contents of each being hereby incorporated by reference, and Bindra et al., Anal. Chem. 63:1692-96 (1991).
  • [0063]
    In the discussion that follows, an example of an implantable device that includes the features of the present invention is first described. Thereafter, the specific characteristics of, for example, the sensor interface contemplated by the present invention will be described in detail.
  • [0064]
    Generally speaking, the implantable devices contemplated for use with the present invention are cylindrical or oval shaped; of course, devices with other shapes may also be used with the present invention. The sample device includes a housing composed of radiotransparent ceramic. FIG. 1A depicts a cross-sectional drawing of one embodiment of an implantable measuring device. Referring to FIG. 1A, the cylindrical device includes a ceramic body 1 and ceramic head 10 houses the sensor electronics that include a circuit board 2, a microprocessor 3, a battery 4, and an antenna 5. Furthermore, the ceramic body 1 and head 10 possess a matching taper joint 6 that is sealed with epoxy. The electrodes are subsequently connected to the circuit board via a socket 8.
  • [0065]
    As indicated in detail in FIG. 1B, three electrodes protrude through the ceramic head 10, a platinum working electrode 21, a platinum counter electrode 22 and a silver/silver chloride reference electrode 20. Each of these is hermetically brazed 26 to the ceramic head 10 and further affixed with epoxy 28. The sensing region 24 is covered with the sensing membrane described below and the ceramic head 10 contains a groove 29 so that the membrane may be affixed into place with an o-ring.
  • [0066]
    In a preferred embodiment, the device is cylindrical, as shown in FIG. 1A, and is approximately 1 cm in diameter, and 5.5 cm long. The sensing region is situated at one extreme end of the cylinder. The sensor region includes a dome onto which the sensing membranes are attached.
  • [0067]
    Maintaining the blood supply near an implanted foreign body like an implanted analyte-monitoring sensor requires stable fixation of FBC tissue on the surface of the foreign body. This can be achieved, for example, by using capsular attachment (anchoring) materials (e.g., those materials that includes the sensor interface and tissue anchoring layers) developed to repair or reinforce tissues, including, but not limited to, polyester (DACRON®; DuPont; poly(ethylene terephthalate)) velour, expanded polytetrafluoroethylene (TEFLON®; Gore), polytetrafluoroethylene felts, polypropylene cloth, and related porous implant materials. In a preferred embodiment, porous silicone materials are used for anchoring the device. In another embodiment, non-woven polyester fibers are used for anchoring the device. Tissue tends to aggressively grow into the materials disclosed above and form a strong mechanical bond (i.e., tissue anchoring); this fixation of the implant in its capsule is essential to prevent motion artifact or disturbance of the newly developed capillary blood supply.
  • [0068]
    In a preferred embodiment, the anchoring material is attached directly to the body of the device. In the case of non-woven polyester fibers, they may be sutured into place by rolling the material onto the circumferential periphery of the device and further encircling the membrane with PTFE sutures and tying the sutures to hold the membrane in place. In another preferred embodiment, porous silicone is attached to the surface of the cylindrical device using medical grade silicone adhesive. In either case, the material may be further held in place by an o-ring (FIG. 1B).
  • [0069]
    As shown in FIG. 1A, the interior of the housing contains one or more batteries 4 operably connected to an electronic circuit means (e.g., a circuit board 2), which, in turn, is operably connected to at least one electrode (described below); in another embodiment, at least two electrodes are carried by the housing. In a preferred embodiment, three electrodes are used. Any electronic circuitry and batteries that render reliable, continuous, long-term (e.g., months to years) results may be used in conjunction with the devices of the present invention.
  • [0070]
    The housing of the devices of the present invention preferably contain a biocompatible ceramic material. A preferred embodiment of the device contains a radiofrequency transmitter and antenna within the body of the ceramic device. Ceramic materials are radiotransparent and, therefore, are preferred over metals that are radioopaque. Ceramic materials are preferred over plastic materials (which may also be radiotransparent) because they are more effective than plastics at preventing water penetration. In one embodiment of the invention, the ceramic head and body are connected at an approximately 0.9 cm long taper joint sealed with epoxy. In other embodiments, the head and body may be attached by sealing with metals to produce a completely hermetic package.
  • [0071]
    FIG. 1C depicts a cross-sectional exploded view of the electrode-membrane region 24 set forth in FIG. 1B detailing the sensor tip and the functional membrane layers. As depicted in FIG. 1C, the electrode-membrane region includes several different membrane layers, the compositions and functions of which are described in detail below. The top ends of the electrodes are in contact with the electrolyte phase 30, a free-flowing fluid phase. The electrolyte phase is covered by the sensing membrane 32 that contains an enzyme, e.g., glucose oxidase, and several functional polymer layers (as described below). In turn, a composite bioprotective/angiogenic membrane 33 covers the sensing membrane 32 and serves, in part, to protect the sensor from external forces that may result in environmental stress cracking of the sensing membrane 32.
  • [0072]
    In one preferred embodiment of the inventive device, each of the membrane layers is affixed to the ceramic head 10 in FIGS. 1A and 1B by an o-ring. The o-ring may be formed of fluoroelastomer.
  • [0073]
    The present invention contemplates the construction of the membrane layers of the sensor interface region using standard film coating techniques. This type of membrane fabrication facilitates control of membrane properties and membrane testing.
  • [0000]
    III. The Sensor Interface Region
  • [0074]
    As mentioned above and disclosed in FIG. 1C, in a preferred embodiment, the sensor interface region includes several different layers and membranes that cover the electrodes of an implantable analyte-measuring device. The characteristics of these layers and membranes are now discussed in more detail. The layers and membranes prevent direct contact of the biological fluid sample with the electrodes, while permitting selected substances (e.g., analytes) of the fluid to pass therethrough for electrochemical reaction with the electrodes.
  • [0075]
    Measurement of analyte in a filtrate of biological fluid samples has been shown to be preferred over direct measurement of analyte in biological fluid in order to minimize effects of interfering substances and improve control of sample volume. It is well known in the-art that electrode surfaces exposed to a wide range of biological molecules will suffer poisoning of catalytic activity and failure. However, utilizing the layers and membranes of the present invention, the active electrochemical surfaces of the sensor electrodes are preserved, allowing activity to be retained for extended periods of time in vivo. By limiting exposure of the platinum sensor surface to certain molecular species (e.g., molecules having a molecular weight below 34 Daltons, the molecular weight of hydrogen peroxide), in vivo sensor operating life in excess of one year in canine subjects has been observed.
  • [0000]
    A. Angiogenic Layer
  • [0076]
    For implantable glucose monitoring devices, a sensor/tissue interface must be created which provides the sensor with oxygen and glucose concentrations comparable to that normally available to tissue comprised of living cells. Absent such an interface, the sensor is associated with unstable and chaotic performance indicating that inadequate oxygen and/or glucose are reaching the sensor. The development of interfaces in other contexts has been reported. For example, investigators have developed techniques that stimulate and maintain blood vessels inside a FBC to provide for the demanding oxygen needs of pancreatic islets within an implanted membrane. [See, e.g., Brauker et al., J. Biomed. Mater. Res. (1995) 29:1517-1524]. These techniques depend, in part, on the use of a vascularizing layer on the exterior of the implanted membrane. However, previously described implantable analyte-monitoring devices have not been able to successfully maintain sufficient blood flow to the sensor interface.
  • [0077]
    As described above, the outermost layer of the electrode-membrane region includes an angiogenic material. The angiogenic layer of the devices of the present invention may be constructed of membrane materials such as hydrophilic polyvinylidene fluoride (e.g., Durapore®; Millipore Bedford, Mass.), mixed cellulose esters (e.g., MF; Millipore Bedford, Mass.), polyvinyl chloride (e.g., PVC; Millipore Bedford, Mass.), and other polymers including, but not limited to, polypropylene, polysulphone, and polymethylmethacrylate. Preferably, the thickness of the angiogenic layer is about 10 μm to about 20 μm. The angiogenic layer comprises pores sizes of about 0.5 μm to about 20 μm, and more preferably about 1.0 μm to about 10 μm, sizes that allow most substances to pass through, including, e.g., macrophages. The preferred material is expanded PTFE of a thickness of about 15 μm and pore sizes of about 5 μm to about 10 μm.
  • [0078]
    To further promote stable foreign body capsule structure without interfering with angiogenesis, an additional outermost layer of material comprised of a thin low-density non-woven polyester (e.g., manufactured by Reemay) can be laminated over the preferred PTFE described above. In preferred embodiments, the thickness of this layer is about 120 μm. This additional thin layer of material does not interfere with angiogenesis and enhances the manufacturability of the angiogenic layer. [See U.S. Pat. No. 5,741,330 to Brauker et al., hereby incorporated by reference; also U.S. Pat. Nos. 5,782,912, 5,800,529, 5,882,354 5,964,804 assigned to Baxter].
  • [0000]
    B. Bioprotective Membrane
  • [0079]
    The inflammatory response that initiates and sustains a FBC is associated with both advantages and disadvantages. Some inflammatory response is needed to create a new capillary bed in close proximity to the surface of the sensor in order to i) continuously deliver adequate oxygen and glucose and ii) create sufficient tissue ingrowth to anchor the implant and prevent motion artifact. On the other hand, inflammation is associated with invasion of tissue macrophages that have the ability to biodegrade many artificial biomaterials (some of which were, until recently, considered nonbiodegradable). When activated by a foreign body, tissue macrophages degranulate, releasing from their cytoplasmic myeloperoxidase system hypochlorite (bleach), H2O2 and other oxidant species. Both hypochlorite and H2O2 are known to break down a variety of polymers, including polyurethane, by a phenomenon referred to as environmental stress cracking. [Phillips et al., J. Biomat. Appl., 3:202-227 (1988); Stokes, J. Biomat. Appl. 3:228-259 (1988)]. Indeed, environmental stress cracking has been shown to limit the lifetime and performance of an enzyme-active polyurethane membrane stretched over the tip of a glucose sensor. [Updike et al., Am. Soc. Artificial Internal Organs, 40:157-163 (1994)].
  • [0080]
    Because both hypochlorite and H2O2 are short-lived chemical species in vivo, biodegradation will not occur if macrophages are kept a sufficient distance from the enzyme active membrane. The present invention contemplates the use of a bioprotective membrane that allows transport of glucose and oxygen but prevents the entry of inflammatory cells such as macrophages and foreign body giant cells. The bioprotective membrane is placed proximal to the angiogenic membrane. It may be simply placed adjacent to the angiogenic layer without adhering, or it may be attached with an adhesive material to the angiogenic layer, or it may be cast in place upon the angiogenic layer as described in Example 1. The devices of the present invention are not limited by the nature of the bioprotective layer. However, the bioprotective layer should be biostable for long periods of time (e.g., several years); the present invention contemplates the use of polymers including, but not limited to, polyurethane, polypropylene, polysulphone, polytetrafluoroethylene (PTFE), and poly(ethylene terephthalate) (PET).
  • [0081]
    The bioprotective membrane and the angiogenic layer may be combined into a single bilayer membrane as more fully described in Example 1. The active angiogenic function of the combined membrane is based on the presentation of the ePTFE side of the membrane to the reactive cells of the foreign body capsule and further to the response of the tissue to the microstructure of the ePTFE. This bioprotective/angiogenic membrane is unique in that the membrane does not delaminate as has been observed with other commercially available membranes (see FIG. 4A as compared with FIG. 4B). This is desirable for an implantable device to assure accurate measurement of analyte over long periods of time. Although the physical structure of the ePTFE represents a preferred embodiment, many other combinations of materials that provide the same function as the membrane of Example 1 could be utilized. For example, the ePTFE could be replaced by other fine fibrous materials. In particular, polymers such as spun polyolefin or non-organic materials such as mineral or glass fibers may be useful. Likewise, the polyurethane bioprotective layer of Example 1, which includes a biostable urethane and polyvinylpyrrolidone (PVP), could be replaced by polymers able to pass analyte while blocking macrophages and mechanically retaining the fine fibrous material presented to the reactive cells of the foreign body capsule.
  • [0000]
    C. Sensing Membrane
  • [0082]
    The present invention contemplates membranes impregnated with enzyme. It is not intended that the present invention be limited by the nature of the enzyme membrane. The sensing membrane of a preferred embodiment is depicted in FIG. 1C as being a single, homogeneous structure. However, in preferred embodiments, the sensing membrane includes a plurality of distinct layers. In a particularly preferred embodiment, the sensing membrane includes the following four layers (in succession from the bioprotective membrane to the layer most proximal to the electrodes): i) a resistance layer; ii) an enzyme layer; iii) an interference layer; and iv) an electrolyte layer.
  • [0000]
    Resistance Layer
  • [0083]
    There is a molar excess of glucose relative to the amount of oxygen in samples of blood. Indeed, for every free oxygen molecule in extracellular fluid, there are typically more than 100 glucose molecules present [Updike et al., Diabetes Care 5:207-21(1982)]. However, an immobilized enzyme-based sensor using oxygen (O2) as cofactor must be supplied with oxygen in non-rate-limiting excess in order to respond linearly to changes in glucose concentration while not responding to changes in oxygen tension. More specifically, when a glucose-monitoring reaction is oxygen-limited, linearity is not achieved above minimal concentrations of glucose. Without a semipermeable membrane over the enzyme layer, linear response to glucose levels can be obtained only up to about 40 mg/dL; however, in a clinical setting, linear response to glucose levels are desirable up to at least about 500 mg/dL.
  • [0084]
    The resistance layer includes a semipermeable membrane that controls the flux of oxygen and glucose to the underlying enzyme layer (i.e., limits the flux of glucose), rendering the necessary supply of oxygen in non-rate-limiting excess. As a result, the upper limit of linearity of glucose measurement is extended to a much higher value than that which could be achieved without the resistance layer. The devices of the present invention contemplate resistance layers comprising polymer membranes with oxygen-to-glucose permeability ratios of approximately 200:1; as a result, one-dimensional reactant diffusion is adequate to provide excess oxygen at all reasonable glucose and oxygen concentrations found in the subcutaneous matrix [Rhodes et al., Anal. Chem., 66:1520-1529 (1994)].
  • [0085]
    In preferred embodiments, the resistance layer has a thickness of less than about 45 μm, more preferably in the range of about 15 to about 40 μm, and most preferably in the range of about 20 to about 35 μm.
  • [0086]
    The resistance layer is desirably constructed of a mixture of hydrophobic and hydrophilic polyurethanes.
  • [0000]
    Enzyme Layer
  • [0087]
    In addition to glucose oxidase, the present invention contemplates the use of a membrane layer impregnated with other oxidases, e.g., galactose oxidase, uricase. For an enzyme-based electrochemical glucose sensor to perform well, the sensor's response must neither be limited by enzyme activity nor cofactor concentration. Because enzymes, including the very robust glucose oxidase, are subject to deactivation as a function of ambient conditions, this behavior needs to be accounted for in constructing sensors for long-term use.
  • [0088]
    Excess glucose oxidase loading is required for long sensor life. When excess glucose oxidase is used, up to 1.5 years of performance may be possible from the glucose-monitoring devices contemplated by the present invention.
  • [0089]
    In one preferred embodiment, the enzyme layer includes a polyurethane latex.
  • [0000]
    Interference Layer
  • [0090]
    The interference layer includes a thin, hydrophobic membrane that is non-swellable and restricts diffusion of low molecular weight species. The interference layer is permeable to relatively low molecular weight substances, such as hydrogen peroxide, but restricts the passage of higher molecular weight substances, including glucose and ascorbic acid. The interference layer serves to allow analytes and other substances that are to be measured by the electrodes to pass through, while preventing passage of other substances.
  • [0091]
    Preferred materials from which the interference layer can be made include polyurethanes. In one desired embodiment, the interference layer includes an aliphatic polyetherurethane.
  • [0092]
    The interference layer has a preferred thickness of less than about 5 μm, more preferably in the range of about 0.1 to about 5 μm and most preferably in the range of about 0.5 to about 3 μm. Thicker membranes also may be useful, but thinner membranes are preferred because they have a lower impact on the rate of diffusion of hydrogen peroxide from the enzyme membrane to the electrodes.
  • [0000]
    Electrolyte Layer
  • [0093]
    To ensure electrochemical reaction, the electrolyte layer comprises a semipermeable coating that maintains hydrophilicity at the electrode region of the sensor interface. The electrolyte layer enhances the stability of the interference layer of the present invention by protecting and supporting the membrane that makes up the interference layer. Furthermore, the electrolyte layer assists in stabilizing operation of the device by overcoming electrode start-up problems and drifting problems caused by inadequate electrolyte. The buffered electrolyte solution contained in the electrolyte layer also protects against pH-mediated damage that may result from the formation of a large pH gradient between the hydrophobic interference layer and the electrode (or electrodes) due to the electrochemical activity of the electrode.
  • [0094]
    Preferably, the coating includes a flexible, water-swellable, substantially solid gel-like film having a “dry film” thickness of about 2.5 μm to about 12.5 μm, preferably about 6.0 μm. “Dry film” thickness refers to the thickness of a cured film cast from a coating formulation onto the surface of the membrane by standard coating techniques. The coating formulation includes a premix of film-forming polymers and a crosslinking agent and is curable upon the application of moderate heat.
  • [0095]
    Suitable coatings are formed of a curable copolymer of a urethane polymer and a hydrophilic film-forming polymer. Particularly preferred coatings are formed of a polyurethane polymer having anionic carboxylate functional groups and non-ionic hydrophilic polyether segments, which is crosslinked in the present of polyvinylpyrrolidone and cured at a moderate temperature of about 50° C.
  • [0096]
    Particularly suitable for this purpose are aqueous dispersions of fully reacted colloidal polyurethane polymers having cross-linkable carboxyl functionality (e.g., BAYBOND®; Mobay Corporation, Pittsburgh, Pa.). These polymers are supplied in dispersion grades having a polycarbonate-polyurethane backbone containing carboxylate groups identified as XW-121 and XW-123; and a polyester-polyurethane backbone containing carboxylate groups, identified as XW-110-2. Particularly preferred is BAYBOND® 123, an aqueous anionic dispersion of an aliphate polycarbonate urethane polymer, sold as a 35 weight percent solution in water and co-solvent N-methyl-2-pyrrolidone.
  • [0097]
    Polyvinylpyrrolidone is also particularly preferred as a hydrophilic water-soluble polymer and is available commercially in a range of viscosity grades and average molecular weights ranging from about 18,000 to about 500,000, under the PVP K® homopolymer series by BASF Wyandotte (Parsippany, N.J.) and by GAF Corporation (New York, N.Y.). Particularly preferred is the homopolymer having an average molecular weight of about 360,000, identified as PVP-K90 (BASF Wyandotte). Also suitable are hydrophilic, film-forming copolymers of N-vinylpyrrolidone, such as a copolymer of N-vinylpyrrolidone and vinyl acetate, a copolymer of N-vinylpyrrolidone, ethylmethacrylate and methacrylic acid monomers, and the like.
  • [0098]
    The polyurethane polymer is crosslinked in the presence of the polyvinylpyrrolidone by preparing a premix of the polymers and adding a cross-linking agent just prior to the production of the membrane. Suitable cross-linking agents can be carbodiimides, epoxides and melamine/formaldehyde resins. Carbodiimide is preferred, and a preferred carbodiimide crosslinker is UCARLNK® XL-25 (Union Carbide, Chicago, Ill.).
  • [0099]
    The flexibility and hardness of the coating can be varied as desired by varying the dry weight solids of the components in the coating formulation. The term “dry weight solids” refers to the dry weight percent based on the total coating composition after the time the crosslinker is included. A preferred useful coating formulation can contain about 6 to about 20 dry weight percent, preferably about 8 dry weight percent, of polyvinylpyrrolidone; about 3 to about 10 dry weight percent, preferably about 5 dry weight percent of cross-linking agent; and about 70 to about 91 weight percent, preferably about 87 weight percent of a polyurethane polymer, preferably a polycarbonate-polyurethane polymer. The reaction product of such a coating formulation is referred to herein as a water-swellable cross-linked matrix of polyurethane and PVP.
  • [0000]
    D. The Electrolyte Phase
  • [0100]
    The electrolyte phase is a free-fluid phase including a solution containing at least one compound, usually a soluble chloride salt that conducts electric current. The electrolyte phase flows over the electrodes (see FIG. 1C) and is in contact with the electrolyte layer of the enzyme membrane. The devices of the present invention contemplate the use of any suitable electrolyte solution, including standard, commercially available solutions.
  • [0101]
    Generally speaking, the electrolyte phase should have the same or less osmotic pressure than the sample being analyzed. In preferred embodiments of the present invention, the electrolyte phase includes saline.
  • [0000]
    E. The Electrode
  • [0102]
    The electrode assembly of this invention may also be used in the manner commonly employed in the making of amperometric measurements. The interstitial fluids containing the analyte to be measured is in contact with a reference electrode, e.g., silver/silver-chloride, and the anode and cathode of this invention, which are preferably formed of platinum. In the preferred embodiment, the electrodes are connected to a circuit board in the body of the sensor, the current is read and the information is radiotransmitted to a receiver. The invention is not limited to this preferred embodiment. Indeed the membranes of the present invention could be used with any form of implantable sensor and adapted to the particular features of the sensor by one skilled in the art.
  • [0103]
    The ability of the present device electrode assembly to accurately measure the concentration of substances such as glucose over a broad range of concentrations enables the rapid and accurate determination of the concentration of those substances. That information can be employed in the study and control of metabolic disorders including diabetes.
  • [0000]
    IV. Sensor Implantation and Radiotelemetric Output
  • [0104]
    Long-term sensor performance is best achieved, and transcutaneous bacterial infection is eliminated, with implanted devices capable of radiotelemetric output. The present invention contemplates the use of radiotelemetry to provide data regarding blood glucose levels, trends, and the like. The term “radiotelemetry” refers to the transmission by radio waves of the data recorded by the implanted device to an ex vivo recording station (e.g., a computer), where the data is recorded and, if desired, further processed.
  • [0105]
    Although totally implanted glucose sensors of three month lifetime, with radiotelemetric output, have been tested in animal models at intravenous sites [see, e.g. Armour et al., Diabetes, 39:1519-1526 (1990)], subcutaneous implantation is the preferred mode of implantation [see, e.g., Gilligan et al., Diabetes Care 17:882-887 (1994)]. The subcutaneous site has the advantage of lowering the risk for thrombophlebitis with hematogenous spread of infection and also lowers the risk of venous thrombosis with pulmonary embolism. In addition, subcutaneous placement is technically easier and more cost-effective than intravenous placement, as it may be performed under local anesthesia by a non-surgeon health care provider in an outpatient setting.
  • [0106]
    Preferably, the radiotelemetry devices contemplated for use in conjunction with the present invention possess features including small package size, adequate battery life, acceptable noise-free transmission range, freedom from electrical interference, and easy data collection and processing. Radiotelemetry provides several advantages, one of the most important of which is the ability of an implanted device to measure analyte levels in a sealed-off, sterile environment.
  • [0107]
    The present invention is not limited by the nature of the radiotelemetry equipment or methods for its use. Indeed, commercially available equipment can be modified for use with the devices of the present invention (e.g., devices manufactured by Data Sciences). Similarly, custom-designed radiotelemetry devices like those reported in the literature can be used in conjunction with the implantable analyte-measuring devices of the present invention [see, e.g., McKean and Gough, IEEE Trans. Biomed. Eng. 35:526-532 (1988); Shichiri et al., Diabetes Care 9:298-301 (1986); and Shults et al., IEEE Trans. Biomed. Eng. 41:937-942 (1994)]. In a preferred embodiment, transmitters are programmed with an external magnet to transmit at 0.5 or 5-minute intervals, depending on the need of the subject; presently, battery lifetimes at transmission intervals of 5 minutes are approximately up to 1.5 years.
  • [0000]
    V. Experimental
  • [0108]
    The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.
  • [0109]
    In the preceding description and the experimental disclosure which follows, the following abbreviations apply: Eq and Eqs (equivalents); mEq (milliequivalents); M (molar); mM (millimolar) μM (micromolar); N (Normal); mol (moles); mmol (millimoles); μmol (micromoles); nmol (nanomoles); g (grams); mg (milligrams); μg (micrograms); Kg (kilograms); L (liters); mL (milliliters); dL (deciliters); μL (microliters); cm (centimeters); mm (millimeters); μm (micrometers); nm (nanometers); h and hr (hours); min. (minutes); s and sec. (seconds); ° C. (degrees Centigrade); Astor Wax (Titusville, Pa.); BASF Wyandotte Corporation (Parsippany, N.J.); Data Sciences, Inc. (St. Paul, Minn.); DuPont (DuPont Co., Wilmington, Del.); Exxon Chemical (Houston, Tex.); GAF Corporation (New York, N.Y.); Markwell Medical (Racine, Wis.); Meadox Medical, Inc. (Oakland, N.J.); Mobay (Mobay Corporation, Pittsburgh, Pa.); Sandoz (East Hanover, N.J.); and Union Carbide (Union Carbide Corporation; Chicago, Ill.).
  • EXAMPLE 1
  • [0000]
    Preparation of Composite Membrane of the Present Invention
  • [0110]
    The angiogenic layer may be an ePTFE filtration membrane (Zefluor™, 3.0 μm P5PI001, Pall Gelman, Ann Arbor, Mich.) and the bioprotective membrane (C30P) may then be coated on the angiogenic layer. For example, the C30P coating solution was prepared by placing approximately 706 gm of dimethylacetamide (DMAC) into a 3L stainless steel bowl to which a polycarbonateurethane solution (1325 g, Chronoflex AR 25% solids in DMAC and 5100 cp) and polyvinylpyrrolidone (125 g, Plasdone K-90D) were added. The bowl was then fitted to a planetary mixer with a paddle type blade and the contents were stirred for 1 hour at room temperature. This solution was then coated on the ePTFE filtration membrane by knife-edge drawn at a gap of 0.006″ and dried at 60° C. for 24 hours.
  • [0111]
    Alternatively, the C30P solution prepared above can be coated onto a PET release liner using a knife over roll coating machine. This material is then dried at 305° F. for approximately 2 minutes. Next, the Zefluor™ is immersed in 50:50 (w/v) mixture of tetrahydrofuran/DMAC and then placed upon the coated polyurethane polyvinylpyrrolidone material. Light pressure atop the assembly intimately embeds the ePTFE into the C30P layer. The membrane is then dried at 60° C. for 24 hours.
  • EXAMPLE 2
  • [0000]
    Preparation of the Sensing Membrane
  • [0112]
    The sensing membrane includes a resistance layer, an enzyme layer, an interference layer and an electrolyte layer. The resistance layer was prepared by placing approximately 281 gm of DMAC into a 3 L stainless steel bowl to which a solution of polyetherurethaneurea (344 gm of Chronothane H, 29,750 cp at 25% solids in DMAC) was added. To this mixture was added another polyetherurethaneurea (312 gm, Chronothane 1020, 6275 cp at 25% solids in DMAC). The bowl was fitted to a planetary mixer with a paddle type blade and the contents were stirred for 30 minutes at room temperature. The resistance layer coating solution produced is coated onto a PET release liner (Douglas Hansen Co., Inc. Minneapolis, Minn.) using a knife over roll set at a 0.012″ gap. This film is then dried at 305° F.
  • [0113]
    The enzyme layer was prepared by placing 304 gm polyurethane latex (Bayhydrol 140AQ, Bayer, Pittsburgh, Pa.) into a 3 L stainless steel bowl to which 51 gm of pyrogen free water and 5.85 gm of glucose oxidase (Sigma type VII from Aspergillus niger) is added. The bowl was then fitted to a planetary mixer with a whisk type blade and the mixture was stirred for 15 minutes. Approximately 24 hr prior to coating, a solution of glutaraldehyde (15.4 ml of a 2.5% solution in pyrogen free water) and 14 ml of pyrogen free water was added to the mixture. The solution was mixed by inverting a capped glass bottle by hand for about 3 minutes at room temperature. This mixture was then coated over the resistance layer with a #10 Mayer rod and dried above room temperature preferably at about 50° C.
  • [0114]
    The interference layer was prepared by placing 187 gm of tetrahydrofuran into a 500 ml glass bottle to which an 18.7 gm aliphatic polyetherurethane (Tecoflex SG-85A, Thermedics Inc., Woburn, Mass.) was added. The bottle was placed onto a roller at approximately 3 rpm within an oven set at 37° C. The mixture was allowed to roll for 24 hr. This mixture was coated over the dried enzyme layer using a flexible knife and dried above room temperature, preferably at about 50° C.
  • [0115]
    The electrolyte layer was prepared by placing 388 gm of polyurethane latex (Bayhydrol 123, Bayer, Pittsburgh, Pa. in a 3 L stainless steel bowl to which 125 gm of pyrogen free water and 12.5 gm polyvinylpyrrolidone (Plasdone K-90D) was added. The bowl was then fitted to a planetary mixer with a paddle type blade and stirred for 1 hr at room temperature. Within 30 minutes of coating, approximately 13.1 ml of carbodiimide (UCARLNK) was added and the solution was mixed by inverting a capped polyethylene jar by hand for about 3 min at room temperature. This mixture was coated over the dried interference layer with a #10 Mayer rod and dried above room temperature preferably at about 50° C.
  • [0116]
    In order to affix this multi-region membrane to a sensor head, it is first placed into phosphate buffer (pH 7.4) for about 2 minutes. It is then stretched over the nonconductive body of sensor head and affixed into place with an o-ring.
  • EXAMPLE 3
  • [0000]
    In vivo Evaluation of Glucose Measuring Devices including the Biointerface Membranes of the Present Invention
  • [0117]
    In vivo sensor function was determined by correlating the sensor output to blood glucose values derived from an external blood glucose meter. We have found that non-diabetic dogs do not experience rapid blood glucose changes, even after ingestion of a high sugar meal. Thus, a 10% dextrose solution was infused into the sensor-implanted dog. A second catheter is placed in the opposite leg for the purpose of blood collection. The implanted sensor was programmed to transmit at 30-second intervals using a pulsed electromagnet. A dextrose solution was infused at a rate of 9.3 ml/minute for the first 25 minutes, 3.5 ml/minute for the next 20 minutes, 1.5 ml/minute for the next 20 minutes, and then the infusion pump was powered off. Blood glucose values were measured in duplicate every five minutes on a blood glucose meter (LXN Inc., San Diego, Calif.) for the duration of the study. A computer collected the sensor output. The data was then compiled and graphed in a spreadsheet, time aligned, and time shifted until an optimal R-squared value was achieved. The R-squared value reflects how well the sensor tracks with the blood glucose values.
  • [0118]
    To test the importance of the composite membrane of the invention described in Example 1, implantable glucose sensors including the composite and sensing membranes of the present invention were implanted into dogs in the subcutaneous tissues and monitored for glucose response on a weekly basis. Control devices including only a bioprotective C30P layer (“Control”) were compared with devices including both a bioprotective and an angiogenic layer (“Test”), which corresponded to the composite bioprotective/angiogenic membrane of the device of the present invention described in Example 1.
  • [0119]
    Four devices from each condition were implanted subcutaneously in the ventral abdomen of normal dogs. On a weekly basis, the dogs were infused with glucose as described above in order to increase their blood glucose levels from about 120 mg/dl to about 300 mg/dl. Blood glucose values were determined with a LXN blood glucose meter at 5-minute intervals. Sensor values were transmitted at 0.5-minute intervals. Regression analysis was done between blood glucose values and the nearest sensor value within one minute. Devices with an R-squared value greater than 0.5 were considered functional. FIG. 3 shows, for each condition, the cumulative number of functional devices over the 12-week period of the study. The Test devices performed better than the Control devices over the entire 12 weeks of the study. All of the test devices were functional by week 8. In contrast, none of the control devices were functional until week 10, after which 2 were functional for the remaining 2 weeks. The data shows that the use of the inventive biointerface membrane enables the function of implantable glucose sensors.
  • [0120]
    The description and experimental materials presented above are intended to be illustrative of the present invention while not limiting the scope thereof It will be apparent to those skilled in the art that variations and modifications can be made without departing from the spirit and scope of the present invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4197840 *Sep 29, 1976Apr 15, 1980Bbc Brown Boveri & Company, LimitedPermanent magnet device for implantation
US4225410 *Dec 4, 1978Sep 30, 1980Technicon Instruments CorporationIntegrated array of electrochemical sensors
US4255500 *Mar 29, 1979Mar 10, 1981General Electric CompanyVibration resistant electrochemical cell having deformed casing and method of making same
US4324257 *Feb 25, 1980Apr 13, 1982U.S. Philips CorporationDevice for the transcutaneous measurement of the partial oxygen pressure in blood
US4353888 *Dec 23, 1980Oct 12, 1982Sefton Michael VEncapsulation of live animal cells
US4374013 *Mar 3, 1981Feb 15, 1983Enfors Sven OlofOxygen stabilized enzyme electrode
US4431004 *Oct 27, 1981Feb 14, 1984Bessman Samuel PImplantable glucose sensor
US4431507 *Jan 12, 1982Feb 14, 1984Matsushita Electric Industrial Co., Ltd.Enzyme electrode
US4436094 *Jan 27, 1982Mar 13, 1984Evreka, Inc.Monitor for continuous in vivo measurement of glucose concentration
US4453537 *Aug 4, 1981Jun 12, 1984Spitzer Daniel EApparatus for powering a body implant device
US4686044 *Dec 9, 1985Aug 11, 1987Akzo NvPolycarbonate-polyether-copolymer membrane
US4721677 *May 7, 1987Jan 26, 1988Children's Hospital Medical CenterImplantable gas-containing biosensor and method for measuring an analyte such as glucose
US4750496 *Jan 28, 1987Jun 14, 1988Xienta, Inc.Method and apparatus for measuring blood glucose concentration
US4757022 *Nov 19, 1987Jul 12, 1988Markwell Medical Institute, Inc.Biological fluid measuring device
US4759828 *Apr 9, 1987Jul 26, 1988Nova Biomedical CorporationGlucose electrode and method of determining glucose
US4803243 *Mar 25, 1987Feb 7, 1989Shin-Etsu Chemical Co., Ltd.Block-graft copolymer
US4823808 *Jul 6, 1987Apr 25, 1989Clegg Charles TMethod for control of obesity, overweight and eating disorders
US4871440 *Jul 6, 1988Oct 3, 1989Daiken Industries, Ltd.Biosensor
US4890620 *Feb 17, 1988Jan 2, 1990The Regents Of The University Of CaliforniaTwo-dimensional diffusion glucose substrate sensing electrode
US4902294 *Nov 30, 1987Feb 20, 1990Olivier GosserezImplantable mammary prosthesis adapted to combat the formation of a retractile shell
US4927407 *Jun 19, 1989May 22, 1990Regents Of The University Of MinnesotaCardiac assist pump with steady rate supply of fluid lubricant
US4953552 *Apr 21, 1989Sep 4, 1990Demarzo Arthur PBlood glucose monitoring system
US4994167 *Jul 7, 1988Feb 19, 1991Markwell Medical Institute, Inc.Biological fluid measuring device
US5034112 *May 16, 1989Jul 23, 1991Nissan Motor Company, Ltd.Device for measuring concentration of nitrogen oxide in combustion gas
US5130231 *Jun 12, 1989Jul 14, 1992Chem-Elec, Inc.Blood plasma test device including a semipermeable membrane made of an expanded hydrophobic material that has been treated with a surfactant
US5190041 *Dec 27, 1991Mar 2, 1993Palti Yoram ProfSystem for monitoring and controlling blood glucose
US5222980 *Sep 27, 1991Jun 29, 1993Medtronic, Inc.Implantable heart-assist device
US5249576 *Oct 24, 1991Oct 5, 1993Boc Health Care, Inc.Universal pulse oximeter probe
US5282848 *Apr 19, 1993Feb 1, 1994Meadox Medicals, Inc.Self-supporting woven vascular graft
US5314471 *Apr 1, 1992May 24, 1994Baxter International Inc.Tissue inplant systems and methods for sustaining viable high cell densities within a host
US5321414 *Aug 20, 1993Jun 14, 1994Her Majesty In Right Of Canada As Represented By The Minister Of CommunicationsDual polarization dipole array antenna
US5322063 *Oct 4, 1991Jun 21, 1994Eli Lilly And CompanyHydrophilic polyurethane membranes for electrochemical glucose sensors
US5337747 *Jan 7, 1993Aug 16, 1994Frederic NeftelImplantable device for estimating glucose levels
US5344454 *Apr 1, 1992Sep 6, 1994Baxter International Inc.Closed porous chambers for implanting tissue in a host
US5352351 *Jun 8, 1993Oct 4, 1994Boehringer Mannheim CorporationBiosensing meter with fail/safe procedures to prevent erroneous indications
US5380536 *Aug 5, 1991Jan 10, 1995The Board Of Regents, The University Of Texas SystemBiocompatible microcapsules
US5384028 *Aug 27, 1993Jan 24, 1995Nec CorporationBiosensor with a data memory
US5390671 *Mar 15, 1994Feb 21, 1995Minimed Inc.Transcutaneous sensor insertion set
US5391250 *Mar 15, 1994Feb 21, 1995Minimed Inc.Method of fabricating thin film sensors
US5411647 *Jan 25, 1994May 2, 1995Eli Lilly And CompanyTechniques to improve the performance of electrochemical sensors
US5417395 *Jun 30, 1993May 23, 1995Medex, Inc.Modular interconnecting component support plate
US5421923 *Dec 3, 1993Jun 6, 1995Baxter International, Inc.Ultrasonic welding horn with sonics dampening insert
US5431160 *Nov 9, 1993Jul 11, 1995University Of New MexicoMiniature implantable refillable glucose sensor and material therefor
US5431921 *Jul 22, 1991Jul 11, 1995Pfizer IncDispensing device containing a hydrophobic medium
US5453278 *Jan 28, 1994Sep 26, 1995Baxter International Inc.Laminated barriers for tissue implants
US5458631 *Mar 22, 1994Oct 17, 1995Xavier; RaviImplantable catheter with electrical pulse nerve stimulators and drug delivery system
US5462064 *Mar 14, 1994Oct 31, 1995International Medical Associates, Inc.Integrated system for biological fluid constituent analysis
US5462645 *Sep 21, 1992Oct 31, 1995Imperial College Of Science, Technology & MedicineDialysis electrode device
US5497772 *Nov 19, 1993Mar 12, 1996Alfred E. Mann Foundation For Scientific ResearchGlucose monitoring system
US5529066 *Jun 27, 1994Jun 25, 1996Cb-Carmel Biotechnology Ltd.Implantable capsule for enhancing cell electric signals
US5538511 *Apr 25, 1995Jul 23, 1996Minimed Inc.Indwelling catheter with stable enzyme coating
US5545223 *Mar 30, 1995Aug 13, 1996Baxter International, Inc.Ported tissue implant systems and methods of using same
US5549675 *Jan 11, 1994Aug 27, 1996Baxter International, Inc.Method for implanting tissue in a host
US5564439 *Dec 27, 1994Oct 15, 1996George J. PichaInfusion device for soft tissue
US5569186 *Apr 25, 1994Oct 29, 1996Minimed Inc.Closed loop infusion pump system with removable glucose sensor
US5569462 *Mar 31, 1995Oct 29, 1996Baxter International Inc.Methods for enhancing vascularization of implant devices
US5593440 *May 23, 1994Jan 14, 1997Baxter International Inc.Tissue implant systems and methods for sustaining viable high cell densities within a host
US5607565 *Mar 27, 1995Mar 4, 1997Coulter CorporationApparatus for measuring analytes in a fluid sample
US5628890 *Sep 27, 1995May 13, 1997Medisense, Inc.Electrochemical sensor
US5640954 *May 5, 1995Jun 24, 1997Pfeiffer; ErnstMethod and apparatus for continuously monitoring the concentration of a metabolyte
US5653756 *Sep 2, 1994Aug 5, 1997Baxter International Inc.Closed porous chambers for implanting tissue in a host
US5653863 *May 9, 1996Aug 5, 1997Bayer CorporationMethod for reducing bias in amperometric sensors
US5660163 *May 18, 1995Aug 26, 1997Alfred E. Mann Foundation For Scientific ResearchGlucose sensor assembly
US5704354 *Jun 23, 1995Jan 6, 1998Siemens AktiengesellschaftElectrocatalytic glucose sensor
US5706807 *Oct 11, 1996Jan 13, 1998Applied Medical ResearchSensor device covered with foam membrane
US5711861 *Nov 22, 1995Jan 27, 1998Ward; W. KennethDevice for monitoring changes in analyte concentration
US5713888 *Jun 5, 1995Feb 3, 1998Baxter International, Inc.Tissue implant systems
US5733336 *Mar 30, 1995Mar 31, 1998Baxter International, Inc.Ported tissue implant systems and methods of using same
US5741330 *Jun 7, 1995Apr 21, 1998Baxter International, Inc.Close vascularization implant material
US5777060 *Sep 26, 1996Jul 7, 1998Minimed, Inc.Silicon-containing biocompatible membranes
US5782912 *Mar 17, 1994Jul 21, 1998Baxter International, Inc.Close vascularization implant material
US5791344 *Jan 4, 1996Aug 11, 1998Alfred E. Mann Foundation For Scientific ResearchPatient monitoring system
US5800529 *Jun 7, 1995Sep 1, 1998Baxter International, Inc.Close vascularization implant material
US5807406 *Oct 7, 1994Sep 15, 1998Baxter International Inc.Porous microfabricated polymer membrane structures
US5882354 *Jun 7, 1995Mar 16, 1999Baxter International Inc.Close vascularization implant material
US5882494 *Aug 28, 1995Mar 16, 1999Minimed, Inc.Polyurethane/polyurea compositions containing silicone for biosensor membranes
US6011984 *Nov 21, 1996Jan 4, 2000Minimed Inc.Detection of biological molecules using chemical amplification and optical sensors
US6119028 *Oct 20, 1997Sep 12, 2000Alfred E. Mann FoundationImplantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6122536 *Jul 8, 1996Sep 19, 2000Animas CorporationImplantable sensor and system for measurement and control of blood constituent levels
US6175752 *Apr 30, 1998Jan 16, 2001Therasense, Inc.Analyte monitoring device and methods of use
US6180416 *Sep 30, 1998Jan 30, 2001Cygnus, Inc.Method and device for predicting physiological values
US6200772 *Aug 17, 1998Mar 13, 2001Sensalyse Holdings LimitedModified polyurethane membrane sensors and analytical methods
US6201908 *Jul 2, 1999Mar 13, 2001Blaze Network Products, Inc.Optical wavelength division multiplexer/demultiplexer having preformed passively aligned optics
US6201980 *Oct 5, 1998Mar 13, 2001The Regents Of The University Of CaliforniaImplantable medical sensor system
US6208894 *Mar 25, 1998Mar 27, 2001Alfred E. Mann Foundation For Scientific Research And Advanced BionicsSystem of implantable devices for monitoring and/or affecting body parameters
US6212416 *May 22, 1998Apr 3, 2001Good Samaritan Hospital And Medical CenterDevice for monitoring changes in analyte concentration
US6223080 *Oct 28, 1998Apr 24, 2001Medtronic, Inc.Power consumption reduction in medical devices employing multiple digital signal processors and different supply voltages
US6223083 *Apr 16, 1999Apr 24, 2001Medtronic, Inc.Receiver employing digital filtering for use with an implantable medical device
US6230059 *Mar 17, 1999May 8, 2001Medtronic, Inc.Implantable monitor
US6233471 *May 11, 1999May 15, 2001Cygnus, Inc.Signal processing for measurement of physiological analysis
US6254586 *Sep 14, 1999Jul 3, 2001Minimed Inc.Method and kit for supplying a fluid to a subcutaneous placement site
US6256522 *Aug 17, 1995Jul 3, 2001University Of Pittsburgh Of The Commonwealth System Of Higher EducationSensors for continuous monitoring of biochemicals and related method
US6259937 *Jun 19, 1998Jul 10, 2001Alfred E. Mann FoundationImplantable substrate sensor
US6272364 *May 11, 1999Aug 7, 2001Cygnus, Inc.Method and device for predicting physiological values
US6272382 *Sep 28, 1999Aug 7, 2001Advanced Bionics CorporationFully implantable cochlear implant system
US6368274 *May 8, 2000Apr 9, 2002Medtronic Minimed, Inc.Reusable analyte sensor site and method of using the same
US6454710 *Apr 11, 2001Sep 24, 2002Motorola, Inc.Devices and methods for monitoring an analyte
US6741877 *Jan 21, 2000May 25, 2004Dexcom, Inc.Device and method for determining analyte levels
US20020042090 *Nov 29, 2001Apr 11, 2002Therasense, Inc.Subcutaneous glucose electrode
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7657297May 3, 2004Feb 2, 2010Dexcom, Inc.Implantable analyte sensor
US7715893Dec 3, 2004May 11, 2010Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US7761130Mar 27, 2007Jul 20, 2010Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US7792562Dec 22, 2009Sep 7, 2010Dexcom, Inc.Device and method for determining analyte levels
US7811231Dec 26, 2003Oct 12, 2010Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US7828728Feb 14, 2007Nov 9, 2010Dexcom, Inc.Analyte sensor
US7835777Dec 22, 2009Nov 16, 2010Dexcom, Inc.Device and method for determining analyte levels
US7860544Mar 7, 2007Dec 28, 2010Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7869853Aug 6, 2010Jan 11, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7875293May 10, 2004Jan 25, 2011Dexcom, Inc.Biointerface membranes incorporating bioactive agents
US7881763May 2, 2006Feb 1, 2011Dexcom, Inc.Optimized sensor geometry for an implantable glucose sensor
US7885699Aug 6, 2010Feb 8, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7896809Nov 3, 2008Mar 1, 2011Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US7917186Nov 16, 2009Mar 29, 2011Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US7920907Jun 7, 2007Apr 5, 2011Abbott Diabetes Care Inc.Analyte monitoring system and method
US7970448Apr 19, 2010Jun 28, 2011Dexcom, Inc.Device and method for determining analyte levels
US7974672Apr 19, 2010Jul 5, 2011Dexcom, Inc.Device and method for determining analyte levels
US7976778Jun 22, 2005Jul 12, 2011Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US8000901Aug 9, 2010Aug 16, 2011Dexcom, Inc.Transcutaneous analyte sensor
US8050731Nov 16, 2005Nov 1, 2011Dexcom, Inc.Techniques to improve polyurethane membranes for implantable glucose sensors
US8052601Aug 20, 2008Nov 8, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US8053018Jan 15, 2010Nov 8, 2011Dexcom, Inc.Techniques to improve polyurethane membranes for implantable glucose sensors
US8060174Apr 14, 2006Nov 15, 2011Dexcom, Inc.Analyte sensing biointerface
US8064977Jul 29, 2009Nov 22, 2011Dexcom, Inc.Silicone based membranes for use in implantable glucose sensors
US8118877Jan 17, 2007Feb 21, 2012Dexcom, Inc.Porous membranes for use with implantable devices
US8155723Jan 28, 2010Apr 10, 2012Dexcom, Inc.Device and method for determining analyte levels
US8160669Apr 11, 2007Apr 17, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8160671Sep 1, 2010Apr 17, 2012Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8162829Mar 30, 2009Apr 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8175673Nov 9, 2009May 8, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8177716Dec 21, 2009May 15, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8187183Oct 11, 2010May 29, 2012Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8224413Oct 10, 2008Jul 17, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226555Mar 18, 2009Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226557Dec 28, 2009Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226558Sep 27, 2010Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8229535Feb 20, 2009Jul 24, 2012Dexcom, Inc.Systems and methods for blood glucose monitoring and alert delivery
US8231532Apr 30, 2007Jul 31, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8235896Dec 21, 2009Aug 7, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8236242Feb 12, 2010Aug 7, 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US8249684Sep 1, 2010Aug 21, 2012Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8255030Apr 25, 2006Aug 28, 2012Dexcom, Inc.Oxygen enhancing membrane systems for implantable devices
US8255031Mar 17, 2009Aug 28, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8255032Jan 15, 2010Aug 28, 2012Dexcom, Inc.Oxygen enhancing membrane systems for implantable devices
US8255033Apr 25, 2006Aug 28, 2012Dexcom, Inc.Oxygen enhancing membrane systems for implantable devices
US8260392Jun 9, 2008Sep 4, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8265726Nov 9, 2009Sep 11, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8268243Dec 28, 2009Sep 18, 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US8273022Feb 13, 2009Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8275437Mar 23, 2007Sep 25, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8275439Nov 9, 2009Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8277713May 3, 2004Oct 2, 2012Dexcom, Inc.Implantable analyte sensor
US8287454Sep 27, 2010Oct 16, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8306598Nov 9, 2009Nov 6, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8346336Mar 18, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8346337Jun 30, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8353829Dec 21, 2009Jan 15, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8357091Dec 21, 2009Jan 22, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8364229May 18, 2007Jan 29, 2013Dexcom, Inc.Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8366614Mar 30, 2009Feb 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8372005Dec 21, 2009Feb 12, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8380273Apr 11, 2009Feb 19, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8391945Mar 17, 2009Mar 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8394021Oct 1, 2007Mar 12, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8409131Mar 7, 2007Apr 2, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8428678May 16, 2012Apr 23, 2013Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8442610Aug 21, 2008May 14, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8465425Jun 30, 2009Jun 18, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8473021Jul 31, 2009Jun 25, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8480580Apr 19, 2007Jul 9, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8483793Oct 29, 2010Jul 9, 2013Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8509871Oct 28, 2008Aug 13, 2013Dexcom, Inc.Sensor head for use with implantable devices
US8527025Nov 22, 1999Sep 3, 2013Dexcom, Inc.Device and method for determining analyte levels
US8527026Mar 2, 2012Sep 3, 2013Dexcom, Inc.Device and method for determining analyte levels
US8543184Oct 20, 2011Sep 24, 2013Dexcom, Inc.Silicone based membranes for use in implantable glucose sensors
US8560039Sep 17, 2009Oct 15, 2013Dexcom, Inc.Particle-containing membrane and particulate electrode for analyte sensors
US8583204Mar 5, 2010Nov 12, 2013Dexcom, Inc.Polymer membranes for continuous analyte sensors
US8591455Feb 20, 2009Nov 26, 2013Dexcom, Inc.Systems and methods for customizing delivery of sensor data
US8597189Mar 3, 2009Dec 3, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8612159Feb 16, 2004Dec 17, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8617071Jun 21, 2007Dec 31, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8622903May 25, 2012Jan 7, 2014Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8622905Dec 11, 2009Jan 7, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8622906Dec 21, 2009Jan 7, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8641619Dec 21, 2009Feb 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8649841Apr 3, 2007Feb 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8652043Jul 20, 2012Feb 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8660627Mar 17, 2009Feb 25, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8666469Nov 16, 2007Mar 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8668645Jan 3, 2003Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8670815Apr 30, 2007Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8672844Feb 27, 2004Mar 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8676287Dec 11, 2009Mar 18, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8676288Jun 22, 2011Mar 18, 2014Dexcom, Inc.Device and method for determining analyte levels
US8682408Mar 5, 2010Mar 25, 2014Dexcom, Inc.Polymer membranes for continuous analyte sensors
US8688188Jun 30, 2009Apr 1, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8700117Dec 8, 2009Apr 15, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8734346Apr 30, 2007May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8734348Mar 17, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8738109Mar 3, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8744545Mar 3, 2009Jun 3, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8744546Apr 28, 2006Jun 3, 2014Dexcom, Inc.Cellulosic-based resistance domain for an analyte sensor
US8765059Oct 27, 2010Jul 1, 2014Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US8774887Mar 24, 2007Jul 8, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8788006Dec 11, 2009Jul 22, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8788007Mar 8, 2012Jul 22, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8792955Jun 9, 2011Jul 29, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8840552Dec 8, 2009Sep 23, 2014Dexcom, Inc.Membrane for use with implantable devices
US8840553Feb 26, 2009Sep 23, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8865249Sep 28, 2012Oct 21, 2014Dexcom, Inc.Techniques to improve polyurethane membranes for implantable glucose sensors
US8880137Apr 18, 2003Nov 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8909314Jul 20, 2011Dec 9, 2014Dexcom, Inc.Oxygen enhancing membrane systems for implantable devices
US8915849Feb 3, 2009Dec 23, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8915850Mar 28, 2014Dec 23, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8920319Dec 28, 2012Dec 30, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8923947Jul 23, 2013Dec 30, 2014Dexcom, Inc.Device and method for determining analyte levels
US8929968Jul 19, 2010Jan 6, 2015Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8954128Oct 18, 2013Feb 10, 2015Dexcom, Inc.Polymer membranes for continuous analyte sensors
US8974386Nov 1, 2005Mar 10, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8986209Jul 13, 2012Mar 24, 2015Dexcom, Inc.Transcutaneous analyte sensor
US9011331Dec 29, 2004Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9011332Oct 30, 2007Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9014773Mar 7, 2007Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9020572Sep 10, 2010Apr 28, 2015Dexcom, Inc.Systems and methods for processing, transmitting and displaying sensor data
US9042953Mar 2, 2007May 26, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066694Apr 3, 2007Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066695Apr 12, 2007Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066697Oct 27, 2011Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9072477Jun 21, 2007Jul 7, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9078607Jun 17, 2013Jul 14, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9143569Feb 20, 2009Sep 22, 2015Dexcom, Inc.Systems and methods for processing, transmitting and displaying sensor data
US9173606Jan 30, 2014Nov 3, 2015Dexcom, Inc.Polymer membranes for continuous analyte sensors
US9173607Jan 30, 2014Nov 3, 2015Dexcom, Inc.Polymer membranes for continuous analyte sensors
US9179869Sep 10, 2014Nov 10, 2015Dexcom, Inc.Techniques to improve polyurethane membranes for implantable glucose sensors
US9179875Dec 21, 2010Nov 10, 2015Sherwin HuaInsertion of medical devices through non-orthogonal and orthogonal trajectories within the cranium and methods of using
US9326714Jun 29, 2010May 3, 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9326716Dec 5, 2014May 3, 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9328371Jul 16, 2013May 3, 2016Dexcom, Inc.Sensor head for use with implantable devices
US9339222May 31, 2013May 17, 2016Dexcom, Inc.Particle-containing membrane and particulate electrode for analyte sensors
US9339223Dec 30, 2013May 17, 2016Dexcom, Inc.Device and method for determining analyte levels
US9439589Nov 25, 2014Sep 13, 2016Dexcom, Inc.Device and method for determining analyte levels
US9477811Jun 23, 2005Oct 25, 2016Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US9498159Oct 30, 2007Nov 22, 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US20040186362 *Jan 29, 2004Sep 23, 2004Dexcom, Inc.Membrane for use with implantable devices
US20050031689 *May 10, 2004Feb 10, 2005Dexcom, Inc.Biointerface membranes incorporating bioactive agents
US20050143635 *Dec 3, 2004Jun 30, 2005Kamath Apurv U.Calibration techniques for a continuous analyte sensor
US20050181012 *Jan 11, 2005Aug 18, 2005Sean SaintComposite material for implantable device
US20050182451 *Jan 11, 2005Aug 18, 2005Adam GriffinImplantable device with improved radio frequency capabilities
US20050245799 *May 3, 2004Nov 3, 2005Dexcom, Inc.Implantable analyte sensor
US20060015020 *Jul 6, 2004Jan 19, 2006Dexcom, Inc.Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060016700 *Jun 21, 2005Jan 26, 2006Dexcom, Inc.Transcutaneous analyte sensor
US20060086624 *Nov 16, 2005Apr 27, 2006Tapsak Mark ATechniques to improve polyurethane membranes for implantable glucose sensors
US20060200019 *Apr 25, 2006Sep 7, 2006James PetisceOxygen enhancing membrane systems for implantable devices
US20060200022 *May 2, 2006Sep 7, 2006Brauker James HOptimized sensor geometry for an implantable glucose sensor
US20060211921 *May 2, 2006Sep 21, 2006Brauker James HOptimized sensor geometry for an implantable glucose sensor
US20060222566 *Jan 18, 2006Oct 5, 2006Brauker James HTranscutaneous analyte sensor
US20060224108 *May 2, 2006Oct 5, 2006Brauker James HOptimized sensor geometry for an implantable glucose sensor
US20060253012 *Apr 28, 2006Nov 9, 2006Petisce James RCellulosic-based resistance domain for an analyte sensor
US20060257996 *Apr 14, 2006Nov 16, 2006Simpson Peter CAnalyte sensing biointerface
US20060270923 *May 23, 2006Nov 30, 2006Brauker James HAnalyte sensor
US20070197890 *Feb 14, 2007Aug 23, 2007Robert BoockAnalyte sensor
US20080030738 *Aug 15, 2007Feb 7, 2008Biacore AbAnalytical method and apparatus
US20080045824 *Jun 14, 2007Feb 21, 2008Dexcom, Inc.Silicone composition for biocompatible membrane
US20080195232 *Apr 15, 2008Aug 14, 2008Dexcom, Inc.Biointerface with macro- and micro-architecture
US20080292026 *Aug 14, 2007Nov 27, 2008Alcatel LucentDigital signal receiver with q-monitor
US20090030294 *Oct 7, 2008Jan 29, 2009Dexcom, Inc.Implantable analyte sensor
US20090076356 *Nov 3, 2008Mar 19, 2009Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US20090247855 *Mar 27, 2009Oct 1, 2009Dexcom, Inc.Polymer membranes for continuous analyte sensors
US20100049024 *Oct 30, 2009Feb 25, 2010Dexcom, Inc.Composite material for implantable device
US20100063373 *Nov 16, 2009Mar 11, 2010Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US20100076283 *Sep 17, 2009Mar 25, 2010Dexcom, Inc.Particle-containing membrane and particulate electrode for analyte sensors
US20100087724 *Dec 8, 2009Apr 8, 2010Dexcom, Inc.Membrane for use with implantable devices
US20100119693 *Jan 15, 2010May 13, 2010Dexcom, Inc.Techniques to improve polyurethane membranes for implantable glucose sensors
US20100145172 *Jan 15, 2010Jun 10, 2010Dexcom, Inc.Oxygen enhancing membrane systems for implantable devices
US20100204555 *Apr 19, 2010Aug 12, 2010Dexcom, Inc.Device and method for determining analyte levels
US20100204559 *Apr 19, 2010Aug 12, 2010Dexcom, Inc.Device and method for determining analyte levels
US20100274107 *Mar 5, 2010Oct 28, 2010Dexcom, Inc.Polymer membranes for continuous analyte sensors
USRE43399Jun 13, 2008May 22, 2012Dexcom, Inc.Electrode systems for electrochemical sensors
USRE44695May 1, 2012Jan 7, 2014Dexcom, Inc.Dual electrode system for a continuous analyte sensor
EP2796090A1Sep 21, 2007Oct 29, 2014DexCom, Inc.Analyte sensor
EP2796093A1Mar 25, 2008Oct 29, 2014DexCom, Inc.Analyte sensor
EP3092949A1Sep 21, 2012Nov 16, 2016Dexcom, Inc.Systems and methods for processing and transmitting sensor data
WO2013152090A2Apr 3, 2013Oct 10, 2013Dexcom, Inc.Transcutaneous analyte sensors, applicators therefor, and associated methods
WO2014011488A2Jul 3, 2013Jan 16, 2014Dexcom, Inc.Systems and methods for leveraging smartphone features in continuous glucose monitoring
WO2014158327A2Jan 27, 2014Oct 2, 2014Dexcom, Inc.Advanced calibration for analyte sensors
WO2014158405A2Feb 12, 2014Oct 2, 2014Dexcom, Inc.Systems and methods for processing and transmitting sensor data
WO2015156966A1Mar 16, 2015Oct 15, 2015Dexcom, Inc.Sensors for continuous analyte monitoring, and related methods
Classifications
U.S. Classification600/347
International ClassificationA61B5/05, A61B5/00, C12Q1/00
Cooperative ClassificationA61B5/14558, A61B5/14865, C12Q1/006, A61B5/14532, A61B5/0031
European ClassificationA61B5/1455P, A61B5/145G, A61B5/1486B, A61B5/00B9, C12Q1/00B6B
Legal Events
DateCodeEventDescription
Oct 10, 2006ASAssignment
Owner name: DEXCOM, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHULTS, MARK C.;UPDIKE, STUART J.;RHODES, RATHBUN K.;ANDOTHERS;REEL/FRAME:018410/0709;SIGNING DATES FROM 20011023 TO 20011106