Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070069663 A1
Publication typeApplication
Application numberUS 11/443,535
Publication dateMar 29, 2007
Filing dateMay 30, 2006
Priority dateMay 27, 2005
Also published asUS8314565, US8384299, US20090289267, US20130033170, US20130137201, WO2006128186A2, WO2006128186A3
Publication number11443535, 443535, US 2007/0069663 A1, US 2007/069663 A1, US 20070069663 A1, US 20070069663A1, US 2007069663 A1, US 2007069663A1, US-A1-20070069663, US-A1-2007069663, US2007/0069663A1, US2007/069663A1, US20070069663 A1, US20070069663A1, US2007069663 A1, US2007069663A1
InventorsRobert Burdalski, Joseph Mazzochette
Original AssigneeBurdalski Robert J, Mazzochette Joseph B
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Solid state LED bridge rectifier light engine
US 20070069663 A1
Abstract
A solid-state light engine comprised of light emitting diodes (LEDs) configured into a bridge rectifier with a current limiting module coupled to the LED bridge rectifier. The light engine may be packaged for high temperature operation. Optionally, the LEDs comprise wavelength-converting phosphors with a persistence that is a multiple of the peak to peak current period, to smooth and mask ripple frequency pulsation of emitted light.
Images(21)
Previous page
Next page
Claims(36)
1. A solid state light engine comprising:
an LED bridge rectifier; and
a current limiting module electrically connected to the rectified output of the LED bridge rectifier;
wherein the LED bridge rectifier comprises a plurality of LEDs configured to rectify an AC power signal and emit light, and the current limiting module limits the current passing through the LEDs in the LED bridge rectifier.
2. The light engine of claim 1, wherein the current limiting module comprises a resistive element.
3. The light engine of claim 1, wherein the current limiting module comprises a capacitor.
4. The light engine of claim 1, wherein the current limiting module comprises an inductor.
5. The light engine of claim 1, wherein the current limiting module comprises a positive temperature coefficient varistor.
6. The light engine of claim 1, wherein the current limiting module comprises a series combination of a capacitor and a negative temperature coefficient varistor.
7. The light engine of claim 1, wherein the current limiting module comprises a current regulation circuit.
8. The solid-state light engine of claim 1, wherein the current limiting module comprises one or more LEDs.
9. The solid state light engine of claim 1, further comprising a pair of AC power input terminals electrically connected to the input of the LED bridge rectifier for use in coupling the LED bridge rectifier to an AC power source, and a pair of DC power input terminals connected to the rectified output of the LED bridge rectifier for use in coupling the LED bridge rectifier to a DC power source.
10. The solid state light engine of claim 1, wherein the LED bridge rectifier comprises four bridge legs, each bridge leg having at least two LEDs.
11. The solid state light engine of claim 1, further comprising phosphor particles overlying at least one of the LEDs.
12. The solid state light engine of claim 11, wherein the phosphor particles have a persistence in the range between about 40 milliseconds to about 100 milliseconds.
13. A solid state light engine comprising an LED bridge rectifier, wherein the LED bridge rectifier comprises four bridge legs, each bridge leg having at least two LEDs.
14. The solid state light engine of claim 13, further comprising phosphor particles overlying at least one of the LEDs, wherein the particles have a persistence in the range between about 40 milliseconds to about 100 milliseconds.
15. The solid state light engine of claim 13, further comprising one or more LEDs electrically connected to the rectified output of the LED bridge rectifier.
16. The solid state light engine of claim 13, further comprising a pair of AC power input terminals electrically connected to the input of the LED bridge rectifier for use in coupling the LED bridge rectifier to an AC power source, and a pair of DC power input terminals connected to the rectified output of the LED bridge rectifier for use in coupling the LED bridge rectifier to a DC power source.
17. A solid state light engine comprising an LED bridge rectifier having a plurality of LED dice, wherein the LED bridge rectifier is packaged for high temperature operation.
18. The solid state light engine of claim 17 wherein the packaging for high temperature operation comprises the plurality of LED dice mounted in thermal contact with a thermally conductive mounting base, and an apertured printed wiring board overlying the thermally conductive mounting base, wherein one or more apertures are in registration with one or more of the LED dice.
19. The solid state light engine of claim 18 wherein the thermally conductive mounting base comprises a metal layer.
20. The solid state light engine of claim 19 further comprising phosphor particles overlying one or more of the LED dice.
21. The solid state light engine of claim 20 wherein a transparent encapsulant overlies one or more of the LED dice and the phosphor particles are dispersed in the encapsulant.
22. The solid state light engine of claim 20 wherein the phosphor particles are adhered in a layer to one or more of the LED dice.
23. The solid state light engine of claim 20, wherein the phosphor particles have a persistence in the range between about 40 milliseconds to about 100 milliseconds.
24. The solid state light engine of claim 18 further comprising a current limiting module electrically connected to the rectified output of the LED bridge rectifier.
25. The solid state light engine of claim 24 wherein the current limiting module comprises one or more LEDs.
26. The solid state light engine of claim 18 further comprising an interposer disposed between the mounting base and at least one of the LED die, the interposer comprising a material having a thermal coefficient of expansion approximately equivalent to a thermal coefficient of expansion of the at least one LED die.
27. The solid state light engine of claim 18, further comprising a pair of AC power input terminals electrically connected to the input of the LED bridge rectifier, and a pair of DC power input terminals connected to the rectified output of the LED bridge rectifier.
28. The solid state light engine of claim 17 wherein the packaging for high temperature operation comprises a low temperature co-fired ceramic-on-metal (LTCC-M) base, the base including a surface cavity, and one or more of the LED dice are mounted within the cavity in thermal contact with the base.
29. The solid state light engine of claim 28 further comprising phosphor particles overlying one or more of the LED dice.
30. The solid state light engine of claim 29 wherein a transparent encapsulant overlies one or more of the LED dice and the phosphor particles are dispersed in the encapsulant.
31. The solid state light engine of claim 29 wherein the phosphor particles are adhered in a layer to one or more of the LED dice.
32. The solid state light engine of claim 28 further comprising a current limiting module electrically connected to the rectified output of the LED bridge rectifier.
33. The solid state light engine of claim 29, wherein the phosphor particles have a persistence in the range between about 40 milliseconds to about 100 milliseconds.
34. The solid state light engine of claim 32 wherein the current limiting module comprises one or more LEDs.
35. The solid state light engine of claim 28 further comprising an interposer disposed between the base and at least one of the LED die, the interposer comprising a material having a thermal coefficient of expansion approximately equivalent to a thermal coefficient of expansion of the at least one LED die.
36. The solid state light engine of claim 28, further comprising a pair of AC power input terminals electrically connected to the input of the LED bridge rectifier for use in coupling the LED bridge rectifier to an AC power source, and a pair of DC power input terminals connected to the rectified output of the LED bridge rectifier for use in coupling the LED bridge rectifier to a DC power source.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 60/685,680, filed May 27, 2005, the entire disclosure of which is hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the invention relate to a solid-state light engine that is directly compatible with alternating current (AC) input power, without the need for a separate rectification module, but that can also alternatively be powered by direct current (DC) input power.

2. Related Art

In many lighting applications, solid-state light engines are superior to conventional incandescent lamps. Beneficially, solid-state light engines can, in certain circumstances, achieve an almost 20% improvement in efficiency and an extended lifetime (e.g. exceeding 50,000 hours) as compared to incandescent lamps.

Traditional solid-state light engines are powered by a direct current or pulsating direct current drive. As such, to drive the light engine using an AC power source, the AC input line must first be conditioned. Power-conditioning commonly involves the rectification of AC input power, typically achieved by inserting rectifier diodes in a bridge configuration, as well as a means of limiting current, such as a series resistance or reactance in the power path. However, the addition of such electronic components into the power path may increase manufacturing costs and complexity, and can cause a decrease in the lifetime (or time to failure) of the light engine, and can decrease efficiency due to power loss.

To avoid the performance-related issues caused by the insertion of power conditioning elements into the power path, some standard solid-state light engines are powered directly from the AC line. However, the direct AC powering of a light engine causes the light output to pulsate at the frequency of the AC power source, typically in the range of 50 to 60 Hz. This line frequency pulsation can produce eye fatigue or annoyance when viewed, even in cases where the engine is viewed for a short period of time.

Accordingly, there is a need for a solid state light engine that is directly compatible with an AC input power source, which does not exhibit the deleterious pulsation effects generated by a direct AC powering arrangement, and/or which does not require the use of separate power conditioning or rectification circuitry.

SUMMARY OF THE INVENTION

Embodiments of the invention satisfy these and other needs. Embodiments of the invention relate to a solid state bridge rectifier light engine arrangement that may be powered directly by an AC input line, without the need for further power conditioning. Although full-wave bridge rectifiers are known in the art, they utilize non-light emitting diodes, and are used to convert AC current to DC current for use as a power source for external electronic components, not to produce useful illumination. Similarly, although the use of LEDs for illumination is known in the art, LEDs are typically powered by a DC power source. The present invention advantageously uses LEDs in a novel way by configuring them into a bridge rectifier to produce useful light directly from an AC power source without the need for separate rectification or other conditioning of the input power.

More specifically, embodiments of the invention provide for a solid state light engine arrangement that includes a full wave bridge rectifier configuration of light emitting diodes (LEDs) directly compatible with an AC power input, which may advantageously also be connected to a current limiting element. An added benefit to this configuration is that the light engine may be constructed with two sets of terminals for connection to a power source, so that the user has the option of powering the light engine by either AC power or the more traditional DC power, depending on the terminals to which the user connects the power source.

Embodiments of the invention can also include a solid-state LED bridge rectifier circuit advantageously using phosphors to further smooth any frequency pulsation or ripple of light emitted from the light engine. The LED bridge rectifier can include one or more LEDs configured such that the LED bridge rectifier receives and rectifies an AC power signal and emits light. The current limiting module can be used to protect the LEDs by limiting the current passing through the LEDs within the LED bridge rectifier. The LEDs can emit any of a number of colors of light, depending on the type of LED used. Advantageously, LEDs that emit of blue and/or ultraviolet wavelength emissions can be used, in combination with wavelength converting phosphors known in the art, to create light that is perceived as white light by a user. See, for example, U.S. Pat. No. 5,998,925 to Shimizu. The converting phosphor can be particles of Cerium activated Yttrium Aluminum Garnet (YAG:Ce) or Europium activated Barium Orthosilicates (BOSE).

The turn-on and turn-off time for typical LEDs is in the tens to one hundred nanosecond range. With this response time, LEDs will virtually follow the low frequency AC waveform without delay. According to an aspect of an embodiment of the invention, through rectification, the light pulsation or ripple frequency will typically be increased to approximately twice the frequency of the input AC line current (e.g., 100 to 120 Hz). This frequency doubling has the advantageous effect of speeding up the light pulsation to a frequency beyond what is typically perceptible to human observers, thus making it more appealing for use in standard lighting applications than would an LED array powered directly from AC current that was not configured into a bridge rectifier. In addition, the frequency doubling that occurs in the LED bridge rectifier configuration results in a shortening of the time duration between current peaks to about 10 ms for a 50 Hz line and about 8 ms for a 60 Hz line. The shortened peak to peak period, together with the advantageous use of phosphors having a persistence of 5 to 10 times that duration, masks the light pulsation or flicker, allowing it to be smoothed and integrated into a nearly continuous white light output. Phosphors having a longer or shorter persistence may also be used advantageously.

The light engine arrangement according to certain embodiments of the invention can be used as a solid-state replacement for conventional Edison-base incandescent lamps or as a replacement for low-voltage halogen lamps or other low voltage lamps. Advantageously, since no additional electronic components need be inserted into the power path, the increased useful life offered by the solid state light engine need not be compromised.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be understood from the detailed description of exemplary embodiments presented below, considered in conjunction with the attached drawings, of which:

FIG. 1 is a basic schematic of a solid state light engine in accordance with embodiments of the invention;

FIG. 2 is a more detailed schematic of a solid state light engine, in accordance with embodiments of the invention;

FIG. 3 is a circuit diagram of a solid state light engine, in accordance with embodiments of the invention;

FIG. 4 is a graphical representation of the emissions of various structures;

FIG. 4 a is a diagram showing alternative exemplary dispositions of phosphor particles for use with LEDs in the present invention;

FIG. 5 is a circuit diagram of a solid state light engine, in accordance with embodiments of the invention;

FIG. 6 is a graphical representation of peak current through a device, in accordance with embodiments of the invention;

FIGS. 7-11 are circuit diagrams of solid state light engines, each having a different current limiting module attached thereto, in accordance with embodiments of the invention;

FIG. 12 is a circuit diagram of a solid state light engine, being powered by a DC power source, in accordance with embodiments of the invention;

FIGS. 13-17 are circuit diagrams of solid state light engines, each being driven by a low voltage AC power source, in accordance with embodiments of the invention;

FIGS. 18 a-18 d are circuit diagrams of alternate implementations of solid state light engines, in accordance with embodiments of the invention;

FIGS. 19 a-19 b are diagrams of exemplary embodiments of LED packaging for high temperature operation that may advantageously be adapted to use in the present invention.

to be understood that the attached drawings are for purposes of illustrating the concepts of the invention and may not be to scale.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the invention are directed to a solid state light engine producing white or near white light that is constructed by using LEDs that emit blue or ultraviolet wavelength emission which stimulates a phosphor, or some mixture of phosphors, that emit light in the green, yellow and/or red wavelengths. The combination of all these wavelengths is perceived as white light by the human eye. If one were to look at just a monochrome color LED driven with an AC source, one would see the pulsation of the light at the 50 Hz or 60 Hz frequencies. Even if the pulsation is above the detectable threshold to 100 Hz or 120 Hz, the pulsation can still be detected when the light interacts with objects or images moving or pulsating at close to the LED pulse rate or harmonics of that rate. This is, at the least, annoying and, at worst, potentially dangerous. Strobing light could possibly make moving or spinning objects appear to be not moving at all. An example of this is a fluorescent light source flickering at line frequency illuminating strobe marks on a turntable.

With reference to FIG. 1, there is shown a solid-state light engine comprising an LED bridge rectifier 100 coupled to an optional current limiting module 200. The LED bridge rectifier is coupled to, and powered by, power supply module 10. LED bridge 100, comprising LEDs, emits light L, thus providing a usable light source.

With reference to FIG. 2, LED bridge rectifier 100 is shown in greater detail. Specifically, LED bridge rectifier 100 can comprise four bridge legs 110, 120, 130, 140, each leg preferably including two or more LEDs. As such, in embodiments of the invention, each of legs 110, 120, 130 and 140 can emit light when supplied with power at input 12 from AC power supply module 10.

FIG. 3 illustrates an exemplary embodiment of the invention in further detail. According to this embodiment, LED bridge rectifier 100 includes a full wave bridge configuration, with each of the bridge legs 110, 120, 130, 140 including LED modules 111, 112, 113, 121, 122, 123, 131, 132, 133, 141, 142 and 143. Although FIG. 3 depicts three LEDs in each bridge leg, the LED bridge rectifier may be configured to include one or more multiple LEDs in each bridge leg. The number of LEDs (N) in any bridge leg may be determined by the desired luminous output and the input sinusoidal peak voltage of an AC power source applied between AC1 and AC2. The current limiting module 200 is connected to the rectified DC output of the LED bridge rectifier. Although as shown in FIG. 3 the current limiting module 200 is external in this embodiment, alternatively, it may be integrated into the light engine package (LED bridge rectifier 100).

The reverse voltage seen by each leg 110, 120, 130, 140 of the bridge module 100 is represented by the following equation:
V rT =V in(RMS)*√2.
Accordingly, the reverse voltage seen by each LED module 111, 112, 113, 121, 122, 123, 131, 132, 133, 141, 142, 143 of the bridge leg 110, 120, 130, 140 is represented by the following equation:
V rd =V rT /N;
where N is the number of LED modules (LEDs) in a bridge leg 110, 120, 130, 140.

Since typical LEDs do not have the capacity to withstand high reverse voltages, the number of LEDs in the array can be chosen to limit the reverse voltage on each LED to a safe (i.e., not damaging to the LEDs) level, as would be known to one of skill in the art, as informed by the present disclosure. In addition, because individual LEDs may exhibit differing leakage current levels under the same reverse voltage, in some embodiments, a shunt resistance or reactance network can be used to assure the total reverse voltage is distributed equally, as illustrated in FIG. 3.

With reference to FIG. 4, as is depicted in the graphical representation 400, the above-described arrangement of elements produces a pulsating emission from the LEDs 403 such that the pulsed emission is twice the input AC line frequency (100 Hz or 120 Hz). If the LEDs make use of phosphors, the phosphor particles becomes excited by each light pulse. The phosphor is chosen such that, besides its photometric and wavelength-converting characteristics, it preferably has a persistence (time constant) of greater than 40 ms. Thus, the phosphor emission can persist while the LEDs are in the low output and off portion of their emission 402. The end effect is perceived as white light emission without perceptible pulsation 401. The phosphor particles preferably have effective diameters smaller than 100 microns, and more preferably, in the range 0.01 to 100 microns.

The phosphors can be disposed within a packaged LED array in several ways. Typically, in packaged LED assemblies, each LED die is encapsulated in an epoxy or silicone to protect the die from the environment, and optionally to serve as an optical element that may focus or otherwise direct the emitted light. Phosphor particles may be utilized in the LED package in a number of ways. For example, as can be seen in FIG. 4 a, in an LED package 410, the phosphor particles 40 may be applied directly to the LED die 41 before the encapsulant 43 is applied, the phosphor particles forming a thin layer bonded to the LED die 41 by a layer of tacky uncured resin 42 that is later cured. The preferred tacky transparent materials include but are not limited to partially cured silicones or fully cured gel-like silicones with high refractive index (e.g., GE Silicones IVS5022 or Nusil Gel-9617-30). The silicones can include micro amino emulsions, elastomers, resins and cationics. Other useful polymeric resins include butyrals, cellulosic, silicone polymers, acrylate compounds, high molecular weight polyethers, acrylic polymers, co-polymers, and multi-polymers. The index of refraction of the above-mentioned materials can be tailored for optical matching.

Alternatively, the phosphors particles 40 a may be dispersed in the encapsulant 44, or applied overlying the encapsulant 44, either directly applied in a layer 40 b to the outer surface of the encapsulant, or (not shown) in a second layer that may comprise an optical element.

As illustrated in FIG. 5, and with continued reference to FIG. 3, according to an embodiment of the invention, current limiting module 200 can comprise a single resistor 201 used to set the peak current for a given input voltage. According to an exemplary embodiment of the invention, the peak current per bridge leg 110, 120, 130, 140 may be set to:
I fPeak=(I fDC*1.57)/du,

Where du, or duty factor, is the conduction time (τ) divided by the total period (T).
du=T/T,
as is illustrated by graphical representation 600 of FIG. 6.

The resistor value (R) of resistor RL is determined by the following equation:
R=(V in(Peak)−V fT)/I fPeak.

Alternative embodiments of the invention are depicted in FIGS. 7 to 11, each embodiment including a different exemplary current limiting module 200 for use in the solid state light engine arrangement of the invention. In all embodiments, the current limiting module 200 can be applied external to the light engine, or, alternatively, it may be integrated into the light engine package (i.e., LED bridge 100).

FIG. 7 depicts an implementation wherein current limiting module 200 is configured such that the resistive element RL of FIG. 3 is replaced with a capacitor CL 202, thereby forming a “lossless” current limiting element, wherein the reactance at the line frequency equivalent to the required resistance is given by the following equation:
R=X c , C=1/(2*π*F*X C).

FIG.8 depicts a solid state light engine according to an embodiment of the present invention wherein the current limiting module 200 is configured such that the resistive element RL of FIG. 3 is replaced with an inductor LL 203, thereby also forming a “lossless” current limiting element, wherein the reactance at the line frequency equivalent to the required resistance is given by the following equation:
R=X L , L=X C/(2*π*F).

FIG. 9 depicts a solid state light engine according to an embodiment wherein the current limiting module 200 is configured such that resistor RL of FIG. 3 is replaced with a positive temperature coefficient varistor VRL 204, to provide improved current limiting under widely varying AC voltage amplitude.

FIG. 10 depicts a solid state light engine according to an embodiment wherein the current limiting module 200 is configured such that resistor RL of FIG. 3 is replaced with the series combination of a capacitor CL with a negative temperature coefficient varistor VRL 205 to provide spike current protection and improved efficiency.

FIG. 11 depicts a solid-state light engine arrangement according to an embodiment wherein the current limiting module 200 comprises a current regulation circuit 206, having a peak limit. This is possible since the current regulated by this circuit is on the rectified or DC side of the light engine, and the regulator will only see a pulsating DC current. As such, this type of regulator would typically be difficult to realize if it were required to be directly linked with AC current. This same circuit can be used to realize active current regulation to maintain nearly constant light output in response to varying AC amplitude, or to realize peak current limiting (clipping) for light engine protection under the same conditions, for improved efficiency.

One having ordinary skill in the art will appreciate that alternative current limiting elements may be used in accordance with the solid-state light engine arrangement of embodiments of the invention.

According to an embodiment of the invention, the circuit pictured in FIG. 3 can be alternatively powered by applying a DC bias from DC+ to DC−, as is depicted in FIG. 12. In this embodiment, there would be no AC power source connected to AC3 and AC4. DC power supply module 12 supplies power to LED bridge rectifier 101. This allows the embodiment of the light engine discussed above to be powered by “conventional” (i.e., via DC voltage supplies) methods. Such a configuration is also desirable to test the light engine, because it is simpler than procuring and using a current-controlled, sinusoidal power source.

FIG. 13 illustrates an exemplary embodiment as applies to a low-voltage AC input application. In this embodiment, a low voltage AC power supply module 13 provides power to LED bridge rectifier 102. In this embodiment, the current limiting elements are inherent to the LED bridge rectifier 102 and are included in the same package. LEDs D1 through D4 form the rectifier bridge and feed LEDs D5 and D6, which are connected in parallel across the DC output terminals and act as the current limiting module. Each D1/D4 and D2/D3 diode pair in the bridge conducts on alternate half cycles of the AC input and see the full peak current. Since the diode pairs conduct on half cycles, the duty factor seen by these LEDs is one-half the total duty factor referenced previously. This allows a higher than typical sinusoidal peak current with the resulting root-mean-square (RMS) current reduced by the duty factor. LEDs D5 and D6 see both half cycles but share the peak current, each seeing ½ Ipk, so the power dissipated is nearly equally distributed among the six LEDs. Using the LEDs on the rectified DC output side of the light engine has the benefit that, in addition to the LEDs being current-limiting elements, they also contribute to the total light output. This helps maximize efficiency. The embodiment shown is directly compatible with power supply modules 13 having low voltage AC lines in the 9 VAC to 12 VAC range, which is a popular low voltage lighting range. If required, a small resistance or voltage drop can be inserted in the DC path to trim the peak current to the desired level. The use of germanium, Schottky, Schottky Barrier, silicon or Zener diodes can provide voltage trimming from about 0.25 Volt to several Volts. A positive temperature coefficient varistor can provide peak current limiting under widely varying AC line amplitude. Alternative embodiments to the low voltage AC circuit of FIG. 13 are depicted in FIGS. 14 (with inline resistor R1 301), 15 (with inline positive temperature coefficient varistor VRL 302), 16 (with inline Zener diode D8 303), and 17 (with inline diode D7 304).

FIGS. 18 a through 18 b illustrate alternative superposition equivalents of the solid-state light engine emitter arrangements described above and depicted in previous figures.

The above described LED bridge rectifier light engine can be manufactured using any method suitable for the assembly of LED arrays, including the use of pre-packaged LEDs mounted on conventional printed wiring boards with other components. Alternatively, the above described LED bridge rectifier light engine can be manufactured in pre-packaged integrated arrays where LED dice are mounted on thermally-conductive substrates for heat management and integrated with other components.

Preferably, the LED bridge rectifier light engine is made using packaging methods suitable for high temperature operation LED light engines. In a typical high temperature package, LED dice are mounted, directly or indirectly, on a metal substrate layer that serves as a heat spreader or sink. Alternatively, non-metallic materials with proper heat conduction and strength properties may be used instead of a metal layer. The circuit traces in a high temperature package may be embedded in or imposed on ceramic layers or contained in a conventional printed wiring board layer or layers overlying the metal layer. The LED dice may be electrically connected to the circuit traces through methods known in the art, including use of lead frames, bonding wires, or other known methods. Other electronic components may be mounted on the ceramic layers or printed wiring board, or mounted on the metal layer, directly or indirectly through an interposing element for electrical isolation or other advantageous purposes.

In a preferred embodiment, the LED bridge rectifier light engine can be fabricated using the packaging methods, including the low temperature co-fired ceramic-on-metal (LTCC-M) technique, described in U.S. Patent Application Publication No. 2006/0006405, Mazzochette, “Surface mountable light emitting diode assemblies packaged for high temperature operation,” published Jan. 12, 2006 (“Mazzochette”), the entire contents of which are hereby incorporated as if fully set forth at length herein. Although the description and diagrams in Mazzochette do not embody an LED bridge rectifier, one of skill in the art may readily adapt the disclosed packaging methods for use in the present invention.

FIGS. 19 a and 19 b depict an alternative exemplary LED packaging method for high temperature operation that may advantageously be adapted to use with the present invention. Although the embodiments depicted in FIGS. 19 a and 19 b do not embody an LED bridge rectifier, one of skill in the art may readily adapt the disclosed packaging methods of FIGS. 19 a and 19 b for use in the present invention. In FIGS. 19 a and 19 b, the LED package comprises a metal layer 191, a printed wiring board (PWB) 192 having one or more layers and one or more apertures, the PWB being used to route wiring traces for interconnecting the LED dice 193 and to mount and interconnect the other components used in the LED bridge rectifier. The printed wire board 192 overlies the metal layer 191. The metal layer 191, which preferably may comprise copper, serves as a thermally conductive mounting base that manages heat generated by the LED dice 193 by spreading the heat and conducting it toward an optional external heat sink that may be mounted beneath the metal base. The package further comprises one or more isolators or interposers 194 in registration with the apertures of the PWB 192 and mounted on the metal layer 191. The LED dice 193 are mounted on the one or more isolators 194 wherein the isolators 194 comprise a material having a thermal coefficient of expansion (TCE) that matches that of the LED dice 193 mounted thereon, thus managing any thermal mechanical stresses caused by the heat generated by the LED dice 193. Suitable TCE-matching materials that may be used in accordance with the present invention include, but are not limited to, copper-moybdenum-copper (CuMoCu), tungsten-copper (WCu), aluminum-silicon-carbide (AlSiC), aluminum nitride (AlN), silicon (Si), beryllim oxide (BeO), diamond, or other material that has a TCE that is matched to that of the LED die. Optionally, an encapsulant 195 may be disposed over the LED dice 193.

It is to be understood that the exemplary embodiments are merely illustrative of the present invention. Many variations, modifications and improvements to the above-described embodiments will occur to those skilled in the art upon reading the foregoing description and viewing the Figures. It should be understood that all such variations, modifications and improvements have not been included herein for the sake of conciseness and readability, but are properly within, and are intended to be within, the scope of the invention and the following claims.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7649327Aug 18, 2006Jan 19, 2010Permlight Products, Inc.System and method for selectively dimming an LED
US7729147Sep 13, 2007Jun 1, 2010Henry WongIntegrated circuit device using substrate-on-insulator for driving a load and method for fabricating the same
US7863825 *Dec 10, 2007Jan 4, 2011Addtek Corp.LED driver circuit for providing desired luminance with constant current
US8026675Jun 20, 2008Sep 27, 2011Samsung Led Co., Ltd.Light emitting diode driving circuit and light emitting diode array device
US8110835 *Apr 19, 2007Feb 7, 2012Luminus Devices, Inc.Switching device integrated with light emitting device
US8143805Jan 18, 2010Mar 27, 2012Permlight Products, Inc.System and method for selectively dimming an LED
US8174196 *Jan 25, 2007May 8, 2012Everlight Electronics Co., Ltd.Alternating current light emitting diode device
US8179055Oct 6, 2008May 15, 2012Lynk Labs, Inc.LED circuits and assemblies
US8338849Jun 14, 2012Dec 25, 2012Cooledge Lighting, Inc.High efficiency LEDS and LED lamps
US8339050Aug 12, 2011Dec 25, 2012Samsung Electronics Co., Ltd.Light emitting diode driving circuit and light emitting diode array device
US8362703Dec 22, 2008Jan 29, 2013Luminus Devices, Inc.Light-emitting devices
US8384114Jun 23, 2010Feb 26, 2013Cooledge Lighting Inc.High efficiency LEDs and LED lamps
US8384121Jun 29, 2011Feb 26, 2013Cooledge Lighting Inc.Electronic devices with yielding substrates
US8427070Aug 20, 2010Apr 23, 2013Toshiba Lighting & Technology CorporationLighting circuit and illumination device
US8466488May 8, 2012Jun 18, 2013Cooledge Lighting Inc.Electronic devices with yielding substrates
US8513902Sep 10, 2009Aug 20, 2013Toshiba Lighting & Technology CorporationPower supply unit having dimmer function and lighting unit
US8525427 *Feb 27, 2009Sep 3, 2013Iurii N. SamoilenkoLight-emitting diode lamp
US8531118Apr 2, 2012Sep 10, 2013Lynk Labs, Inc.AC light emitting diode and AC LED drive methods and apparatus
US8610363Sep 2, 2010Dec 17, 2013Toshiba Lighting & Technology CorporationLED lighting device and illumination apparatus
US8643288 *Apr 22, 2010Feb 4, 2014Toshiba Lighting & Technology CorporationLight-emitting device and illumination apparatus
US8648539May 28, 2010Feb 11, 2014Lynk Labs, Inc.Multi-voltage and multi-brightness LED lighting devices and methods of using same
US8653539Jul 15, 2011Feb 18, 2014Cooledge Lighting, Inc.Failure mitigation in arrays of light-emitting devices
US8680567Aug 30, 2013Mar 25, 2014Cooledge Lighting Inc.Electronic devices with yielding substrates
US8716946Oct 20, 2010May 6, 2014Seoul Opto Device Co., Ltd.Light emitting device for AC power operation
US20080169766 *Jan 25, 2007Jul 17, 2008Everlight Electronics Co., Ltd.Alternating light emitting diode device
US20100270935 *Apr 22, 2010Oct 28, 2010Toshiba Lighting & Technology CorporationLight-emitting device and illumination apparatus
US20110089456 *Dec 22, 2010Apr 21, 2011Andrews Peter SSemiconductor light emitting devices with applied wavelength conversion materials and methods for forming the same
US20110317405 *Feb 27, 2009Dec 29, 2011Iurii SamoilenkoLight-emitting diode lamp
US20120043897 *Apr 30, 2010Feb 23, 2012Link Labs, Inc.Led circuits and assemblies
US20120262085 *Apr 19, 2012Oct 18, 2012Lynk Labs, Inc.LED Circuits and Assemblies
US20130169174 *Feb 8, 2013Jul 4, 2013Seoul Opto Device Co., Ltd.Light emitting device for ac power operation
EP2009961A2 *Jun 23, 2008Dec 31, 2008Samsung Electro-Mechanics Co., Ltd.Light emitting diode driving circuit and light emitting diode array device
EP2099259A1 *Mar 4, 2009Sep 9, 2009Tai-Her YangUnipolar (DIS)charging LED drive method and circuit thereof
EP2099260A1 *Mar 4, 2009Sep 9, 2009Yang Tai-HerBipolar (DIS) charging LED drive method and circuit thereof
WO2009045548A1 *Oct 6, 2008Apr 9, 2009Robert L KottrischLed circuits and assemblies
WO2013090176A1 *Dec 10, 2012Jun 20, 2013Once Innovations Inc.Light emitting system
Classifications
U.S. Classification315/312
International ClassificationH05B39/00
Cooperative ClassificationY02B20/348, H01L33/56, H05B33/0821, H05B33/0809, H05B33/0803, Y02B20/342
European ClassificationH05B33/08D1C, H05B33/08D, H05B33/08D1L
Legal Events
DateCodeEventDescription
Aug 26, 2009ASAssignment
Owner name: LIGHTING SCIENCE GROUP CORPORATION, FLORIDA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAMINA LIGHTING, INC.;LLI ACQUISITION, INC.;REEL/FRAME:023141/0517
Effective date: 20080729
Owner name: LIGHTING SCIENCE GROUP CORPORATION,FLORIDA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAMINA LIGHTING, INC.;LLI ACQUISITION, INC.;US-ASSIGNMENT DATABASE UPDATED:20100316;REEL/FRAME:23141/517
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAMINA LIGHTING, INC.;LLI ACQUISITION, INC.;US-ASSIGNMENT DATABASE UPDATED:20100518;REEL/FRAME:23141/517
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAMINA LIGHTING, INC.;LLI ACQUISITION, INC.;REEL/FRAME:23141/517
Dec 20, 2007ASAssignment
Owner name: LAMINA LIGHTING, INC., NEW JERSEY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURDALSKI, ROBERT J.;MAZZOCHETTE, JOSEPH B.;REEL/FRAME:020276/0810;SIGNING DATES FROM 20071210 TO 20071211