Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070076373 A1
Publication typeApplication
Application numberUS 11/633,954
Publication dateApr 5, 2007
Filing dateDec 4, 2006
Priority dateMar 19, 2003
Also published asCN1777855A, CN1777855B, DE602004022144D1, EP1604263A2, EP1604263B1, EP2079000A2, EP2079000A3, EP2261769A2, EP2261769A3, US6859366, US6980433, US7145772, US20040184232, US20050099770, US20060007653, WO2004083743A2, WO2004083743A3
Publication number11633954, 633954, US 2007/0076373 A1, US 2007/076373 A1, US 20070076373 A1, US 20070076373A1, US 2007076373 A1, US 2007076373A1, US-A1-20070076373, US-A1-2007076373, US2007/0076373A1, US2007/076373A1, US20070076373 A1, US20070076373A1, US2007076373 A1, US2007076373A1
InventorsJames Fink
Original AssigneeJames Fink
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Data center cooling system
US 20070076373 A1
Abstract
A modular data center includes a plurality of racks, each of the racks having a front face and a back face, wherein the plurality of racks is arranged in a first row and a second row, such that the back faces of racks of the first row are facing the second row, and the back faces of the racks of the second row are facing the first row, a first end panel coupled between a first rack of the first row and a first rack of the second row, the first end panel having a bottom edge and a tope edge, a second end panel coupled between a second rack of the first row and a second rack of the second row, the second end panel having a top edge and a bottom edge, and a roof panel coupled between the top edge of the first panel and the top edge of the second panel.
Images(4)
Previous page
Next page
Claims(21)
1. A modular data center comprising:
a plurality of racks, each of the racks having a front face and a back face, wherein the plurality of racks is arranged in a first row and a second row, such that the back faces of racks of the first row are facing the second row, and the back faces of racks of the second row are facing the first row;
a first end panel coupled between a first rack of the first row and a first rack of the second row, the first end panel having a bottom edge and a top edge;
a second end panel coupled between a second rack of the first row and a second rack of the second row, the second end panel having a bottom edge and a top edge; and
a roof panel coupled between the top edge of the first end panel and the top edge of the second end panel.
2. The modular data center of claim 1, wherein the roof panel is coupled to a top portion of at least one rack of the first row and to a top portion of at least one rack of the second row, such that the roof panel, the first end panel, the second end panel and the first and second rows of racks form an enclosure around an area between the first row of racks and the second row of racks.
3. The modular data center of claim 2, wherein one of the plurality of racks includes cooling equipment that draws air from the area, cools the air and returns cooled air out of the front face of one of the racks.
4. The modular data center of claim 3, wherein at least one of the first end panel and the second end panel includes a door.
5. The modular data center of claim 4, wherein at least a portion of the roof panel is translucent.
6. The modular data center of claim 5, wherein at least one of the racks includes an uninterruptible power supply to provide uninterrupted power to equipment in at least one other rack of the plurality of racks.
7. The modular data center of claim 6, wherein the first row is substantially parallel to the second row.
8. The modular data center of claim 1, wherein one of the plurality of racks includes cooling equipment that draws air from an area between the first row and the second row, cools the air and returns cooled air out of the front face of one of the racks.
9. The modular data center of claim 1, wherein at least one of the first end panel and the second end panel includes a door.
10. The modular data center of claim 1, wherein at least a portion of the roof panel is translucent.
11. The modular data center of claim 8, wherein at least one of the racks includes an uninterruptible power supply to provide uninterrupted power to equipment in at least one other rack of the plurality of racks.
12. A method of cooling electronic equipment contained in racks in a data center, the method comprising:
arranging the racks in two rows, including a first row and a second row that is substantially parallel to the first row, with a back face of at least one of the racks of the first row facing towards a back face of at least one of the racks of the second row;
forming an enclosure around an area between the first row and the second row;
drawing air from the area into one of the racks and passing the air out of a front face of the one of the racks.
13. The method of claim 12, further comprising cooling the air drawn into the one of the racks prior to passing the air out of the front face.
14. The method of claim 13, wherein forming an enclosure includes coupling first and second side panels and a roof panel between the first row and the second row.
15. The method of claim 14, wherein at least one of the first side panel and the second side panel includes a door.
16. The method of claim 15, wherein the roof panel includes a translucent portion.
17. The method of claim 13, further comprising using an uninterruptible power supply to provide power to equipment in the racks.
18. A modular data center comprising:
a plurality of racks, each of the racks having a front face and a back face, wherein the plurality of racks is arranged in a first row and a second row, such that the back faces of racks of the first row are facing the second row, and the back faces of racks of the second row are facing the first row;
means for enclosing a first area between the first row and the second row; and
means for drawing air from the enclosed area, cooling the air, and returning cooled air to a second area.
19. The modular data center of claim 18, wherein the means for drawing air includes means for passing cooled air through the front face of one of the racks.
20. The modular data center of claim 19, further comprising means for providing uninterruptible power to equipment in the data racks.
21. The modular data center of claim 20, further comprising access means for allowing access into the first area.
Description
    FIELD OF THE INVENTION
  • [0001]
    Embodiments of the present invention are directed to cooling of rack-mounted devices, and more particularly to a data center infrastructure having a cooling system.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Electronic equipment racks generally are designed to receive a number of electronic components arranged vertically in the rack, mounted on shelves, and/or to front and rear mounting rails. The electronic equipment may include, for example, printed circuit boards, communications equipment, computers, including computer servers, or other electronic components.
  • [0003]
    Electronic equipment housed in racks produces a considerable amount of heat, which undesirably affects performance and reliability of the electronic equipment. Often the heat produced by the rack-mounted components is not evenly distributed in the racks. Temperature gradients causing elevated inlet temperatures at tops of racks, for example, reduce equipment reliability substantially. Equipment reliability may be reduced by as much as half the reliability of specific equipment function for each 10° F. rise in temperature. Accordingly, rack-mounted computer systems typically require effective cooling systems to maintain operational efficiency. Cooling can be accomplished by introducing cooled air into an equipment rack causing the air to flow through equipment in the rack and exit the rack at an increased temperature, thereby removing some of the heat. The heat removed from the rack is typically returned into the room containing the racks and the entire room is cooled using a relatively large air conditioning system.
  • SUMMARY OF THE INVENTION
  • [0004]
    A first aspect of the present invention is directed to a modular data center. The modular data center includes a plurality of racks, each of the racks having a front face and a back face, wherein the plurality of racks is arranged in a first row and a second row, such that the back faces of racks of the first row are facing the second row, and the back faces of the racks of the second row are facing the first row. The data center also includes a first end panel coupled between a first rack of the first row and a first rack of the second row, the first end panel having a bottom edge and a tope edge. Further, the data center includes a second end panel coupled between a second rack of the first row and a second rack of the second row, the second end panel having a top edge and a bottom edge, and a roof panel is included to couple between the top edge of the first panel and the top edge of the second panel.
  • [0005]
    The modular data center can be designed so that the roof panel is coupled to a top portion of at least one rack of the first row and to a top portion of at least one rack of the second row, such that the roof panel, the first end panel, the second end panel, and the first and second rows of racks form an enclosure around an area between the first row of racks and the second row of racks. The plurality of racks can further include cooling equipment that draws air from the area, cools the air and returns cooled air out of the front face of one of the racks. At least one of the first end panel and the second end panel can include a door. Further, at least a portion of the roof panel can be translucent. The modular data center can have at least one rack that includes an uninterruptible power supply to provide uninterrupted power to equipment in at least one other rack of the plurality of racks. The first row of racks in the modular data center can be substantially parallel to the second row. In addition, the modular data center can be designed such that one of the plurality of racks includes cooling equipment that draws air from an area between the first row and the second row, cools the air and returns cooled air out of the front face of one of the racks.
  • [0006]
    Another aspect of the present invention is directed to a method of cooling electronic equipment contained in racks in a data center. The method includes arranging the racks in two rows, including a first row and a second row that is substantially parallel to the first row, with a back face of at least one of the racks of the first row facing towards a back face of at least one of the racks of the second row. The method also includes forming an enclosure around an area between the first row and the second row, and drawing air from the area into one of the racks and passing the air out of a front face of the one of the racks.
  • [0007]
    The method can include a further step of cooling the air drawn into the one of the racks prior to passing the air out of the front face. The step of forming an enclosure may include coupling first and second side panels and a roof panel between the first row and the second row. At least one of the first side panel and the second side panel may include a door and the roof panel can include a translucent portion. Additionally, the method can include using an uninterruptible power supply to provide power to equipment in the racks.
  • [0008]
    Yet another aspect of the present invention is directed to a modular data center that includes a plurality of racks, each of the racks having a front face and a back face, wherein the plurality of racks is arranged in a first row and a second row, such that the back faces of the racks of the first row are facing the second row, and the back faces of the racks of the second row are facing the first row. The modular data center further includes means for enclosing a first area between the first row and the second row, and means for drawing air from the enclosed area, cooling the air, and returning cooled air to a second area.
  • [0009]
    The means for drawing air can further include means for passing cooled air through the front face of one of the racks. The modular data center can also be comprised of means for providing uninterruptible power to equipment in the racks. Access means for allowing access into the first area may also be a design feature of the modular data center.
  • [0010]
    The invention will be more fully understood after a review of the following figures, detailed description and claims.
  • BRIEF DESCRIPTION OF THE FIGURES
  • [0011]
    For a better understanding of the present invention, reference is made to the figures which are incorporated herein by reference and in which:
  • [0012]
    FIG. 1 is a perspective view of a modular data center cooling system for rack-mounted equipment in accordance with one embodiment of the invention;
  • [0013]
    FIG. 2 is a top view of another modular data system, similar to the system of FIG. 1; and
  • [0014]
    FIG. 3 is a block flow diagram of a process of cooling equipment mounted in modular data centers in one embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0015]
    Embodiments of the invention provide a data center infrastructure having a cooling system for cooling rack-mounted electronic equipment. Embodiments of the invention provide a modular data center for rack-mounted equipment, wherein the modular data center provides power distribution, cooling and structural support for the rack-mounted equipment. The power distribution unit and cooling is provided in some embodiments using redundant systems to prevent downtime due to electrical or mechanical failures. As understood by those skilled in the art, other embodiments are within the scope of the invention, such as embodiments used to provide infrastructure for equipment other than electronic equipment.
  • [0016]
    A system for providing power distribution for rack-mounted equipment which can be used with embodiments of the present invention is described in U.S. patent application Ser. No. 10/038,106, entitled, “Adjustable Scalable Rack Power System and Method,” which is herein incorporated by reference.
  • [0017]
    Referring to FIG. 1, a perspective view of a modular data center 10 is shown. The modular data center 10 includes a power distribution unit 14, a power protection unit 12, a floor mounted cooling unit 16, equipment racks 18, and a hot room 22. The modular data center 10 also has a door 52 having a window 54, a roof 56, a cold water supply and return 60, and a voltage feed 58. The data center 10 is a modular unit comprised of the power distribution unit 14, the power protection unit 12 the floor mounted cooling unit 16, and equipment racks 18 positioned adjacent to each other to form a row 32 and a row 34. Row 32 and row 34 are substantially parallel. The power distribution unit 14 and the power protection unit 12 can be located directly adjacent to one another, and can be located at the end of one of the rows. The floor-mounted cooling unit 16 may be located and positioned adjacent to the power distribution unit 14. Remaining enclosures forming the at least one additional row in the data center 10 are equipment racks 18. The hot room 22 is located between row 32 and row 34, and rows 32 and 34 comprise two of the perimeter walls of the modular data center 10.
  • [0018]
    The power distribution unit 14 typically contains a transformer, and power distribution circuitry, such as circuit breakers, for distributing power to each of the racks in the modular data center 10. The power distribution unit 14 provides redundant power to the racks 18 and can monitor the total current draw. An uninterruptible power supply can provide uninterruptible power to the power distribution unit 14. Preferably, the power distribution unit 14 includes a 40 kW uninterruptible power supply having N+1 redundancy, where the ability to add another power module provides N+1 redundancy. In one embodiment of the invention, input power to the power distribution unit 14 is received through the top of the rack from a voltage feed 58. In one embodiment, the voltage feed 58 is a 240 volt feed coupled to the power distribution unit 14 that enters through the roof panel 56. Alternatively, the input power may be received from underneath the rack, as through a raised floor, or through the back of the rack.
  • [0019]
    The power protection unit 12 provides redundant power protection for centralized information technology equipment, as is contained in the equipment racks 18. The power protection unit 12 can have individual power modules and battery modules that can be individually added or removed to accommodate different load requirements. The use of multiple power modules and battery modules provides redundancy by allowing continued operation despite the failure of any one power module or battery module. For example, the power protection unit can include a Symmetra PX® scalable, uninterruptible power supply having a three-phase input and a three-phase output, available from American Power Conversion Corporation, of West Kingston, R.I., or the power protection unit can include one of the uninterruptible power supplies described in U.S. Pat. No. 5,982,652, titled, “Method and Apparatus for Providing Uninterruptible Power,” which is incorporated herein by reference.
  • [0020]
    The floor mounted cooling unit 16 provides heat removal by use of a chilled water supply, which enters the unit through supply line 60. Alternatively, the cooling units can provide heat removal using DX compressorized cooling via use of a direct expansion refrigerant-based unit, which can be in the unit itself. The cooling unit contains a primary chilled water coil and secondary direct expansion coil within the same frame. The cooling unit can be configured for air, water or glycol use. Cooled air can be released through the bottom of the unit or the top of the unit. In one embodiment of the invention, cool air is released from the cooling unit 16 out its front face, so that the air flow is from the back of the rack and out the front of the rack. The cooling unit 16 can further be configured as one, two or three modules. In the embodiment shown in FIG. 1, a three-module cooling unit is used.
  • [0021]
    In the embodiment of FIG. 1, each of row 32 and row 34 is comprised of six racks. In embodiments of the invention, the number of racks and the function of the equipment in the racks can vary. In one embodiment of the invention, the racks 18 are modified standard 19 inch racks, such as those available from American Power Conversion Corporation of West Kingston, R.I., under the trade name NETSHELTER VX Enclosures®.
  • [0022]
    The back face of each of the power distribution unit 14, the power protection unit 12, the floor mounted cooling unit 16, and the equipment racks 18 faces the interior of the modular data center 10, or the hot room 22. Essentially, the back faces of the racks in row 32 face the back faces of the racks in row 34. In one embodiment, the equipment racks 18 have their rear doors removed so that each rack 18 remains open to the inside of the hot room 22. In the embodiment shown, the modular data center 10 contains seven equipment racks 18. Alternatively, in another embodiment, six equipment racks 18 complete the rows, but more than seven equipment racks 18 can complete the rows contained in the data center 10 and can be adjacent to one another or adjacent to other enclosures in the data center 10, such as the power distribution unit 14, the power protection unit 12, or the floor mounted cooling unit 16.
  • [0023]
    The door 52 located at the end of the row of racks is attached with hinges 53 to a detachable frame 55. The detachable frame 55 is located behind the power protection unit 12. The detachable frame may be positioned behind any one of the power protection unit 12, the power distribution unit 14, or the equipments racks 18, depending on which of the units are positioned at the end of a row in the data center 10. The detachable frame 55 allows the door 52 to be quickly removed for replacement of the power protection unit 12 if necessary. The hot room is accessible by thc door 52 and can be monitored through the observation window 54. Preferably, a door 52 is located at each end of the hot room 22. Generally, the door 52 is a 2×36 inch insulated, lockable steel door having an insulated observation window 54.
  • [0024]
    The cold water supply and return 60 can enter the hot room through supply pipes into the roof 56 or directly into the roofs of the racks. The voltage feed 58 can also enter through the roof 56 or through the roofs of the racks. Alternatively, the cold water supply and return 60 and the voltage feed 58 enter the hot room through a raised floor on which the modular data center rests or from another location outside of the room and into the racks, such as into the sides of the racks.
  • [0025]
    The roof panel 56 is preferably a semi-transparent plexiglass roof panel supported by steel supports 62 that are positioned at intervals along the length 72 of the data center 10. The roof 56 extends to cover the top of the hot room 22 located in the middle of the rows of racks. The roof 56 can be easily detachable to allow for removal of racks 18 or the power protection unit 12 when necessary. A roof panel 56 constructed of semi-transparent plexiglass allows room light to enter the space defining the hot room 22. Additionally, the plexiglass roof 56 is preferably substantially airtight.
  • [0026]
    The hot room 22 is completely enclosed and has walls formed by the backside of the racks 18 and walls comprised of the door 52 attached at each end of the hot room 22. Alternatively, panels without doors can be the walls that complete the hot room. The hot room 22 is a substantially airtight passageway when the roof panel 56 is in place. Thus, the modular data center 10 is an enclosed computer infrastructure defined on its outside perimeter by the front face of each of the racks 18, power protection unit 12, power distribution unit 14, and cooling unit 16, and having a hot room 22 in its midsection. The outside walls of the hot room formed by the doors 52 are a portion of two of the outside walls of the modular data center 10.
  • [0027]
    Referring to FIG. 2, a top view of a modular data center 10 in one embodiment of the invention is shown. The modular data center of FIG. 2 is similar to that of FIG. 1, but has five racks in each of row 32 and row 34, rather than the six racks in each row of FIG. 1. With like numbers referring to like embodiments, the modular data center 10 of FIG. 2 is comprised of the power distribution unit 14, the power protection unit 12, the floor mounted cooling unit 16, the equipment racks 18, and the hot room 22. The power protection unit 12 is positioned directly adjacent to one side of the power distribution unit 14, while a floor-mounted cooling unit 16 is positioned on the other side of the power distribution unit. A service clearance area 20 surrounds the modular data center 10. In FIG. 2, an embodiment of the invention is shown having six equipment racks 18 and a cooling unit 16 having two modules.
  • [0028]
    The dimensions of the modular data center 10 depend on the number of racks included in each of the rows of racks. For example, and referring again to FIG. 1, a data center 10 having six equipment racks 18 can have a width of 120″, indicated by arrow 28, a length of 120″, indicated by arrow 29, and a height of 36″, indicated by arrow 24. The height 24 of the data center can be 36″, while the service clearance is preferably 36″ in width 26. With the inclusion of the service clearance 20, the floor surface area for the data center 10 is, preferably, a length 30 of 192″ and a width 30 of 192″. Alternatively, and referring to FIG. 2, a data center 10 having seven equipment racks 18 can have a width of 120″ and a length of 144″, while the height of the data center 10 is 36″. With the inclusion of the service clearance 20, the floor surface area for an alternate data center is 192″ by 216″. The dimensions of the modular data center are given only as examples, but can vary significantly depending upon the type and size of racks used to design the data center.
  • [0029]
    The modular data center 10 is operational when provided with a source of chilled water 60 and a voltage feed 58. The data center can include a number of different power input designs, but is preferably a 40 kW design, allowing 6.7 kW/rack in a system having six equipment racks 18, or 5.7 kW/rack in a system having seven equipment racks 18, for example. Cold water enters the floor mounted cooling units 16 via supply lines 60. A common supply line 60 can provide cold water to one or more cooling units simultaneously, as the cooling units 16 are connected to the common supply 60 with flexible hose that is easily disconnected.
  • [0030]
    The modular data center 10 provides cooling for equipment in the data center as follows. Air from the room, or ambient air, filters through the front of the racks 18 to cool the equipment stored in the racks 18. Air enters through the front of the racks 18 and is expelled out of the backside of the racks 18. As the air passes through the equipment racks 18, the temperature of the air rises. The respectively warmer air is expelled into the hot room 22. The hot room 22 contains the warm air and prevents the warm air from mixing with air in the surrounding room. The cooling unit 16 draws warm air from the hot room and return cool air to the room outside the data center 10. The warm air enters the cooling units 16 directly from the hot room 22. The cold water supply 60 acts within the cooling unit to lower the temperature of the air, and the cooled air is then released into the surrounding area. The air is recycled to the surrounding room at a substantially cooled temperature. For example, the cooling unit 16 generally receives air from the hot room at 95° F. and cools it to a temperature of approximately 72° F. before it is released into the area surrounding the data center 10. The floor mounted cooling unit 16 operates at substantially higher supply and return temperatures, allowing realization of high capacity without latent heat removal.
  • [0031]
    Referring to FIG. 3, with further reference to FIGS. 1-2, the data center 10 is configured to perform a process of cooling equipment stored in enclosed racks using an infrastructure having independent power and coolant supplies. The process 100 includes the stages shown, although the process 100 may be altered, e.g., by having stages added, deleted, or moved relative to the stages shown.
  • [0032]
    The process 100 of FIG. 3 includes stage 102, wherein power is supplied from a power distribution unit to a plurality of equipment racks 18. The equipment racks 18 may contain a variety of electronic equipment that requires a consistent power supply to avoid system downtime. A voltage feed 58 is connected to the power distribution unit 14, and a power protection unit 12 is installed adjacent to the power distribution unit 14 to ensure redundant power supply.
  • [0033]
    At stage 104, the racks 18 draw cool air from the surrounding room through the front face of the racks 18. There may, for example, be an air distribution unit within the racks and/or within equipment contained in the racks that draws the room air into the rack 18 and distributes the air throughout the rack to cool components contained in the rack. As the air passes through the rack 18, the air increases in temperature.
  • [0034]
    At stage 106, the racks 18 expel the air at an increased temperature into the hot room 22. The air is expelled out of the backside of the racks 18. As described above, in one embodiment, the racks 18 do not have rear doors. In other embodiments, rear doors may be included on the racks with the warm air being expelled into the hot room through vents in the doors. Air is held in the hot room 22 at an increased temperature and mixing of the warm air with the surrounding ambient air is prevented.
  • [0035]
    At stage 108, the cooling unit draws the warm air from the hot room 22. The cooling unit 16 uses the cold water from the cold water supply 60 to cool the air from the hot room. At stage 110, the cooled air is released from the cooling unit into the surrounding room, which completes the cooling cycle. The air in the surrounding room is then drawn into the racks 18 once again, and the cycle continues.
  • [0036]
    Other embodiments are within the scope and spirit of the appended claims. For example, air could be forced up through the equipment racks 18. Air moved through the racks 18 could be of varying temperatures, including hot air. The data center 10 may be configured to distribute gases other than air. Additionally, a refrigerant or other coolant may be used rather than cold water. Further, a controller can be coupled to the data center 10 to monitor air temperatures and flow rates, as well as power supply so that each rack is provided adequate power consistently. A data center may contain a single equipment rack 18 having a single cooling unit 16 creating an individual data center, whereby power is distributed to a single data center 10 or multiple single-rack data centers simultaneously.
  • [0037]
    Further, in embodiments of the present invention, the roof over the hot area may include a number of fans that are controlled to exhaust air from the hot area in the event of a failure of an air conditioning unit in the modular data center, and/or when air temperature in the hot area exceeds a predetermined limit.
  • [0038]
    Having thus described at least one illustrative embodiment of the invention, various alterations, modifications and improvements will readily occur to those skilled in the art. Such alterations, modifications and improvements are intended to be within the scope and spirit of the invention. Accordingly, the foregoing description is by way of example only and is not intended as limiting. The invention's limit is defined only in the following claims and the equivalents thereto.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7365973Jan 19, 2006Apr 29, 2008American Power Conversion CorporationCooling system and method
US7406839Oct 5, 2005Aug 5, 2008American Power Conversion CorporationSub-cooling unit for cooling system and method
US7529086 *Jan 12, 2007May 5, 2009American Power Conversion CorporationData center cooling
US7681404Dec 18, 2006Mar 23, 2010American Power Conversion CorporationModular ice storage for uninterruptible chilled water
US7681410Feb 14, 2006Mar 23, 2010American Power Conversion CorporationIce thermal storage
US7738251 *Jun 1, 2007Jun 15, 2010Google Inc.Modular computing environments
US7775055Jul 29, 2008Aug 17, 2010American Power Conversion CorporationSub-cooling unit for cooling system and method
US7861543Nov 3, 2006Jan 4, 2011American Power Conversion CorporationWater carryover avoidance method
US7881057Feb 2, 2010Feb 1, 2011American Power Conversion CorporationData center cooling
US7895855Mar 1, 2011Liebert CorporationClosed data center containment system and associated methods
US7992402Jul 17, 2009Aug 9, 2011American Power Conversion CorporationCold aisle isolation
US8156753Oct 22, 2008Apr 17, 2012American Power Conversion CorporationCold aisle isolation
US8218322Jun 15, 2010Jul 10, 2012Google Inc.Modular computing environments
US8223495 *Jan 15, 2009Jul 17, 2012Exaflop LlcElectronic device cooling system
US8256305Sep 4, 2012American Power Conversion CorporationSystem and method for air containment zone pressure differential detection
US8315841Jan 31, 2011Nov 20, 2012American Power Conversion CorporationMethods and systems for managing facility power and cooling
US8322155Dec 4, 2012American Power Conversion CorporationMethod and apparatus for cooling
US8327656Aug 15, 2006Dec 11, 2012American Power Conversion CorporationMethod and apparatus for cooling
US8347641Jan 8, 2013American Power Conversion CorporationSub-cooling unit for cooling system and method
US8355890May 8, 2009Jan 15, 2013American Power Conversion CorporationSystem and method for predicting maximum cooler and rack capacities in a data center
US8424336Apr 23, 2013Schneider Electric It CorporationModular ice storage for uninterruptible chilled water
US8425287Apr 23, 2013Schneider Electric It CorporationIn-row air containment and cooling system and method
US8432690Jan 6, 2011Apr 30, 2013American Power Conversion CorporationData center cooling
US8553416 *Mar 31, 2008Oct 8, 2013Exaflop LlcElectronic device cooling system with storage
US8554515Aug 20, 2012Oct 8, 2013Schneider Electric It CorporationSystem and method for predicting cooling performance of arrangements of equipment in a data center
US8595515Jun 6, 2008Nov 26, 2013Google Inc.Powering a data center
US8601287Jun 6, 2008Dec 3, 2013Exaflop LlcComputer and data center load determination
US8613229Aug 2, 2012Dec 24, 2013Schneider Electric It CorporationSystem and method for air containment zone pressure differential detection
US8621248May 4, 2011Dec 31, 2013Exaflop LlcLoad control in a data center
US8639482Feb 7, 2011Jan 28, 2014Schneider Electric It CorporationMethods and systems for managing facility power and cooling
US8645722May 4, 2011Feb 4, 2014Exaflop LlcComputer and data center load determination
US8650896Mar 8, 2010Feb 18, 2014Schneider Electric It CorporationIce thermal storage
US8672732Jan 19, 2006Mar 18, 2014Schneider Electric It CorporationCooling system and method
US8688413Dec 30, 2010Apr 1, 2014Christopher M. HealeySystem and method for sequential placement of cooling resources within data center layouts
US8700929Jun 6, 2008Apr 15, 2014Exaflop LlcLoad control in a data center
US8701746Mar 13, 2008Apr 22, 2014Schneider Electric It CorporationOptically detected liquid depth information in a climate control unit
US8743543Jul 9, 2012Jun 3, 2014Google Inc.Modular computing environments
US8780555May 18, 2012Jul 15, 2014American Power Conversion CorporationData center cooling
US8949646Jun 6, 2008Feb 3, 2015Google Inc.Data center load monitoring for utilizing an access power amount based on a projected peak power usage and a monitored power usage
US9009500Jan 18, 2012Apr 14, 2015Google Inc.Method of correlating power in a data center by fitting a function to a plurality of pairs of actual power draw values and estimated power draw values determined from monitored CPU utilization of a statistical sample of computers in the data center
US9080802Apr 22, 2013Jul 14, 2015Schneider Electric It CorporationModular ice storage for uninterruptible chilled water
US9115916Nov 16, 2012Aug 25, 2015Schneider Electric It CorporationMethod of operating a cooling system having one or more cooling units
US9144172 *Aug 8, 2012Sep 22, 2015Cupertino Electric, Inc.Modular data center and associated methods
US9287710May 8, 2012Mar 15, 2016Google Inc.Supplying grid ancillary services using controllable loads
US9310855Jul 12, 2010Apr 12, 2016Hewlett Packard Enterprise Development LpFlexible data center and methods for deployment
US9383791Mar 9, 2015Jul 5, 2016Google Inc.Accurate power allotment
US20070074537 *Oct 5, 2005Apr 5, 2007American Power Conversion CorporationSub-cooling unit for cooling system and method
US20070163748 *Jan 19, 2006Jul 19, 2007American Power Conversion CorporationCooling system and method
US20070274035 *Jan 12, 2007Nov 29, 2007Fink James RData center cooling
US20080015838 *Sep 1, 2005Jan 17, 2008Logiccon Design Automation LtdMethod And System For Designing A Structural Level Description Of An Electronic Circuit
US20080041077 *Aug 15, 2006Feb 21, 2008American Power Conversion CorporationMethod and apparatus for cooling
US20080055846 *Jun 1, 2007Mar 6, 2008Jimmy ClidarasModular Computing Environments
US20080104987 *Nov 3, 2006May 8, 2008American Power Conversion CorporationWater carryover avoidance mehtod
US20080198549 *Apr 22, 2008Aug 21, 2008American Power Conversion CorporationCooling system and method
US20090019875 *Jul 19, 2007Jan 22, 2009American Power Conversion CorporationA/v cooling system and method
US20090107652 *Oct 22, 2008Apr 30, 2009American Power Conversion CorporationCold aisle isolation
US20090138313 *May 15, 2008May 28, 2009American Power Conversion CorporationMethods and systems for managing facility power and cooling
US20090151910 *Aug 4, 2008Jun 18, 2009Electronics And Telecommunications Research InstituteCombination rack system for discharging hot air separately, and system and method for cooling data center using the combination rack system
US20090211773 *May 1, 2009Aug 27, 2009Gooch Rodger JFire suppression system and associated methods
US20090259343 *Jun 24, 2009Oct 15, 2009American Power Conversion CorporationCooling system and method
US20090277605 *Jul 17, 2009Nov 12, 2009American Power Conversion CorporationCold aisle isolation
US20100154438 *Mar 8, 2010Jun 24, 2010American Power Conversion CorporationIce thermal storage
US20100165572 *Feb 2, 2010Jul 1, 2010American Power Conversion CorporationData center cooling
US20100251629 *Jun 15, 2010Oct 7, 2010Google Inc.Modular Computing Environments
US20100286955 *May 8, 2009Nov 11, 2010American Power Conversion CorporationSystem and method for predicting maximum cooler and rack capacities in a data center
US20110009047 *Jan 13, 2011Yahoo! Inc.Integrated Building Based Air Handler for Server Farm Cooling System
US20110023508 *Aug 16, 2010Feb 3, 2011American Power Conversion CorporationSub-cooling unit for cooling system and method
US20110103014 *Jan 6, 2011May 5, 2011American Power Conversion CorporationData Center Cooling
US20120118553 *May 17, 2012Hon Hai Precision Industry Co., Ltd.Heat ventilation apparatus
US20120300372 *Nov 29, 2012NxGen Modular, LLCModular Data Center and Associated Methods
WO2012008945A1 *Jul 12, 2010Jan 19, 2012Hewlett-Packard Development Company, L.P.Flexible data center and methods for deployment
Classifications
U.S. Classification361/695, 361/690
International ClassificationH05K7/20
Cooperative ClassificationE04H2005/005, H05K7/2079, H05K7/20745, E04H5/02
European ClassificationE04H5/02, H05K7/20S20D, H05K7/20S10D