Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070090365 A1
Publication typeApplication
Application numberUS 11/583,022
Publication dateApr 26, 2007
Filing dateOct 19, 2006
Priority dateOct 20, 2005
Publication number11583022, 583022, US 2007/0090365 A1, US 2007/090365 A1, US 20070090365 A1, US 20070090365A1, US 2007090365 A1, US 2007090365A1, US-A1-20070090365, US-A1-2007090365, US2007/0090365A1, US2007/090365A1, US20070090365 A1, US20070090365A1, US2007090365 A1, US2007090365A1
InventorsRyo Hayashi, Masafumi Sano, Katsumi Abe, Hideya Kumomi, Kojiro Nishi
Original AssigneeCanon Kabushiki Kaisha
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Field-effect transistor including transparent oxide and light-shielding member, and display utilizing the transistor
US 20070090365 A1
Abstract
A field-effect transistor includes a substrate, a source electrode, a drain electrode, a gate electrode, a gate-insulating film, and an active layer. The active layer contains an oxide having a transmittance of 70% or more in the wavelength range of 400 to 800 nm. A light-shielding member is provided as a light-shielding structure for the active layer, for example, on the bottom face of the substrate.
Images(6)
Previous page
Next page
Claims(20)
1. A field-effect transistor comprising a substrate, a source electrode, a drain electrode, a gate electrode, a gate-insulating film, and an active layer, wherein
the active layer contains an oxide having a transmittance of 70% or more in the wavelength range of 400 to 800 nm; and
a light-shielding structure is provided between the substrate and the active layer or is provided on the surface of the substrate on the side opposite the active layer.
2. The field-effect transistor according to claim 1, wherein the light-shielding structure has a light-shielding property that prevents entry of light from the substrate side toward the active layer.
3. The field-effect transistor according to claim 1, wherein the light-shielding structure has a light-shielding property that prevents entry of light having a wavelength range of 400 to 800 nm.
4. The field-effect transistor according to claim 1, wherein the light-shielding structure has a light-shielding property that prevents entry of at least light or an electromagnetic wave having a wavelength range of 300 to 500 nm.
5. The field-effect transistor according to claim 1, wherein the oxide is an amorphous oxide.
6. The field-effect transistor according to claim 1, wherein the oxide contains at least one of In, Zn, and Sn.
7. The field-effect transistor according to claim 1, wherein the oxide is an amorphous oxide containing at least one of In, Zn, and Ga.
8. A display comprising a plurality of pixel parts each provided with a field-effect transistor according to claim 1 and a liquid-crystal layer or a light-emitting layer.
9. A field-effect transistor comprising a substrate, a source electrode, a drain electrode, a gate electrode, a gate-insulating film, and an active layer, wherein
the active layer contains an oxide having a transmittance of 70% or more in the wavelength range of 400 to 800 nm; and
the substrate has a light-shielding property.
10. The field-effect transistor according to claim 9, wherein the substrate has a light-shielding property that prevents entry of light from the substrate side toward the active layer.
11. The field-effect transistor according to claim 9, wherein the substrate has a light-shielding property that prevents entry of light having a wavelength range of 400 to 800 nm.
12. The field-effect transistor according to claim 9, wherein the substrate has a light-shielding property that prevents entry of at least light or an electromagnetic wave having a wavelength range of 300 to 500 nm.
13. The field-effect transistor according to claim 9, wherein the oxide is an amorphous oxide.
14. The field-effect transistor according to claim 9, wherein the oxide contains at least one of In, Zn, and Ga.
15. The field-effect transistor according to claim 9, wherein the oxide is an amorphous oxide containing at least one of In, Zn, and Ga.
16. A display comprising a plurality of pixel parts each provided with a field-effect transistor according to claim 9 and a liquid-crystal layer or a light-emitting layer.
17. A field-effect transistor comprising a substrate, a source electrode, a drain electrode, a gate electrode, a gate-insulating film, an active layer, and a light-shielding structure, wherein
the active layer contains an oxide having a transmittance of 70% or more in the wavelength range of 400 to 800 nm; and
the light-shielding structure is provided over the active layer.
18. The field-effect transistor according to claim 17, wherein the light-shielding structure has a light-shielding property that prevents entry of light from the active layer side toward the substrate.
19. The field-effect transistor according to claim 17, wherein the light-shielding structure has a light-shielding property that prevents entry of light at angles of less than 90 degrees to the surface of the substrate toward the active layer.
20. The field-effect transistor according to claim 17, wherein the light-shielding structure overlaps the source electrode and the drain electrode.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to transistors using amorphous oxides and displays utilizing the transistors.

2. Description of the Related Art

Recently, technologies in which transparent amorphous oxide semiconductor films composed of indium, gallium, zinc, and oxygen are applied to channel layers of thin-film transistors (TFTs) have been developed. For example, International Publication No. WO 2005/088726 (Patent Document) discloses a technology for using an InGaZn system transparent amorphous oxide film as the channel layer of a TFT.

This transparent amorphous oxide semiconductor film can be formed at a low temperature and is transparent to visible light. Therefore, a flexible and transparent TFT can be formed on a substrate such as a plastic sheet or film.

In Nature (2004), 432, 488-492 (Non-Patent Document), it is disclosed that a transparent amorphous oxide semiconductor film has a visible light transmittance of about 80% or more when the composition ratio by fluorescent X-ray analysis is In:Ga:Zn=1.1:1.1:0.9, and that it is possible to produce a transparent TFT.

The present inventors have conducted studies in order to produce transparent field-effect transistors by using transparent amorphous oxide semiconductor films and have found adventitiously a phenomenon that electrical conductivity changes under visible light having a certain wavelength.

In order to investigate the phenomenon in detail, the present inventors have conducted experiments for measuring electrical conductivity under exposure to spectral light as described below (spectral sensitivity measurement experiments). As a result, a change (increase) in electrical conductivity caused by light absorption was observed in a region at the shorter-wavelength side of visible light (FIG. 8).

The results shown in FIG. 8 suggest that when a thin-film transistor (TFT) is irradiated with visible light, the OFF current of the TFT changes significantly depending on, in particular, the irradiation intensity of visible light at the shorter-wavelength side. Such a change may affect the stable performance of the TFT.

That is, it has been found for the first time that, in a transparent amorphous oxide which should be transparent to visible light, a change in electrical conductivity occurs, namely, photocarriers are practically generated by irradiation with light in a certain visible light region.

The present inventors have arrived at the understanding on the basis of the finding of the above-mentioned phenomenon that when a material which is generally recognized as a transparent oxide is used for the active layer of a TFT, it is preferable that the TFT be provided with a light-shielding structure for shielding the oxide from light in order to operate the TFT with higher stability. On the basis of the above, the present invention relating to transistors including a light-shielding structure has been accomplished.

However, the light-shielding structure may be unnecessary depending on the use of a TFT, i.e., when visible light at the shorter-wavelength side does not enter the TFT or when the incident light does not highly affect the total stability of a device even if the light enters the device.

SUMMARY OF THE INVENTION

The present invention provides a field-effect transistor including a light-shielding structure and provides a display provided with the transistor.

A field-effect transistor according to a first aspect of the present invention includes a substrate, a source electrode, a drain electrode, a gate electrode, a gate-insulating film, and an active layer. The active layer contains an oxide having a transmittance of 70% or more in the wavelength range of 400 to 800 nm. As a light-shielding structure, a light-shielding layer is provided between the substrate and the active layer or is provided on the surface of the substrate on the side opposite the active layer, or the substrate has a light-shielding property.

A field-effect transistor according to a second aspect of the present invention includes a substrate, a source electrode, a drain electrode, a gate electrode, a gate-insulating film, and an active layer. The active layer contains an oxide having a transmittance of 70% or more in the wavelength range of 400 to 800 nm. As a light-shielding structure, a light-shielding layer is provided over the active layer. The light-shielding structure shields light entering from all directions which form angles of less than 90 degrees with the direction along the surface of the substrate toward the active layer.

A field-effect transistor according to a third aspect of the present invention includes a substrate, a source electrode, a drain electrode, a gate electrode, a gate-insulating film, an active layer, and a light-shielding film. The active layer contains an oxide having a transmittance of 70% or more in the wavelength range of 400 to 800 nm. As a light-shielding structure, a light-shielding film is provided over the active layer.

The light-shielding structure according to the first to the third aspects of the present invention is a film having a light-shielding property to light having a wavelength range of 400 to 800 nm or a film having a light-shielding property to light or an electromagnetic wave having a wavelength range of around 400 nm (wavelengths ranging at least from 300 nm to 500 nm).

A display according to a fourth aspect of the present invention includes a plurality of pixel parts each provided with the above-described field-effect transistor and a liquid-crystal layer or a light-emitting layer.

Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic cross-sectional view of a field-effect transistor according to the present invention.

FIG. 2 is a schematic cross-sectional view of a field-effect transistor according to the present invention.

FIG. 3 is a schematic cross-sectional view of a field-effect transistor according to the present invention.

FIGS. 4A to 4C are schematic cross-sectional views of field-effect transistors according to the present invention.

FIG. 5 is a schematic cross-sectional view of a display utilizing a field-effect transistor according to the present invention.

FIG. 6 is a schematic cross-sectional view of a display utilizing a field-effect transistor according to the present invention.

FIGS. 7A to 7D are schematic cross-sectional views of examples of field-effect transistors to which the present invention can be applied.

FIG. 8 is a diagram showing results of spectral sensitivity measurement experiments for describing the present invention.

DESCRIPTION OF THE EMBODIMENTS

In general, the term “visible light” indicates light having a wavelength range of about 400 nm to about 800 nm. In addition, generally, a material having a light transmittance of 70% or more is recognized as a transparent material. FIG. 2 in the above-mentioned Non-Patent Document shows that the amorphous oxide relating to the present invention has a transmittance of 70% or more.

Therefore, in the present invention, an oxide having a light transmittance of 70% or more in the wavelength range of 400 to 800 nm (visible light) is defined as a transparent oxide. The transparent oxides in the present invention include not only oxides having a light transmittance of 70% or more throughout the above-mentioned light wavelength range but also oxides having a light transmittance of 70% or more in a part of the above-mentioned light wavelength range.

In addition, the transmittance in the wavelength of the above-mentioned range is preferably 80% or more, more preferably 90% or more.

First Embodiment: Light Shield to Incident Light from Substrate Side

Light entering from the substrate side toward the active layer is shielded when light-shielding films are provided at the positions shown in FIGS. 1 to 3.

Preferably, the light-shielding film has a light-shielding property to visible light having a wavelength range of 400 to 800 nm. More preferably, the light-shielding film further has a light-shielding property to light or an electromagnetic wave having a wavelength of 400 nm or less (for example, the wavelength range of 100 to 400 nm).

The transparent oxide (for example, transparent amorphous oxide) in the present invention causes a phenomenon of photocarrier generation in the shorter-wavelength region of visible light. Therefore, in particular, it is preferable that the light-shielding film have a light-shielding property to at least light or an electromagnetic wave having a wavelength range of 300 to 500 nm.

In addition, the light-shielding film is not required to have a transmittance of 0% as long as the light-shielding film has a light-shielding property to light having the above-mentioned wavelength. The transmittance is preferably 30% or less, more preferably 10% or less, more preferably 5% or less, and further preferably 0.01% or less.

The material for the light-shielding film in the present invention is not specifically limited. The light-shielding property of the material may be low, provided that the light-shielding property which is equivalent to the above-mentioned transmittance can be achieved by increasing the thickness of the film.

The present invention will now be specifically described.

FIG. 1 shows an example of an inverted-staggered TFT provided on a substrate. In FIG. 1, reference numeral 1000 represents a substrate, reference numeral 1020 represents an active layer, reference numeral 1030 represents a source electrode, reference numeral 1040 represents a drain electrode, reference numeral 1050 represents a gate-insulating film, and reference numeral 1060 represents a gate electrode. In addition, a light-shielding film 1090 is provided on the bottom face of the substrate 1000 (on the surface of the substrate 1000 on the side opposite the active layer 1020) as a light-shielding structure.

In order to shield light from the direction perpendicular to the surface of the substrate 1000 (i.e., from directly below the active layer 1020), the width L of light-shielding film 1090 should be equal to or longer than the width 1 of the active layer 1020. Particularly, in order to sufficiently shield obliquely incident light, the width L of the light-shielding film 1090 should be 2 times or more the width 1 of the active layer 1020, preferably 4 times more the width 1. The light-shielding film 1090 may be provided on the entire surface of the substrate 1000.

FIG. 1 is a schematic cross-section view of a TFT. The length of the light-shielding film 1090 in the direction vertical to the surface of the paper on which FIG. 1 is drawn, in the depth direction, is equal to or larger than (preferably 2 times, more preferably 4 times) that of the active layer 1020.

In FIG. 1, an inverted-staggered TFT is exemplarily described, but the structure of a TFT is not limited to the inverted-staggered type as described below.

FIG. 2 shows an example that a light-shielding film is provided on the top face of a substrate 1000 (on the surface of the substrate 1000 on the active layer 1020 side). This case also has the same relationship between the width 1 of the active layer 1020 and the width L of the light-shielding film 1090 as that in the above case. In addition, the TFT shown in FIG. 2 may have an additional light-shielding film at the same position shown in FIG. 1 so that light-shielding films are provided on both surfaces of the substrate 1000.

FIG. 3 shows a case that a substrate 1091 itself has a light-shielding property.

Second Embodiment: Light Shield to Incident Light from the Side Opposite the Substrate

In order to shield the incident light from the side opposite the substrate, a light-shielding film 4090 is provided as shown in FIG. 4A.

Preferably, the light-shielding film 4090 has a light-shielding property to visible light having a wavelength range of 400 to 800 nm. More preferably, the light-shielding film further has a light-shielding property to an electromagnetic wave having a wavelength of 400 nm or less (for example, the wavelength range of 100 to 400 nm).

The transparent oxide (for example, amorphous oxide) in the present invention causes a phenomenon of photocarrier generation in the shorter-wavelength region of visible light. Therefore, in particular, it is preferable that the light-shielding film have a light-shielding property to at least light or an electromagnetic wave having a wavelength range of 300 to 500 nm.

In addition, the light-shielding film is not required to have a transmittance of 0% as long as the light-shielding film has a light-shielding property to light having the above-mentioned wavelength. The transmittance is preferably 30% or less, more preferably 10% or less, more preferably 5% or less, and further preferably 0.01% or less.

Specifically, as shown in FIG. 4A, a light-shielding film is further provided independent of a source electrode 1030, a drain electrode 1040, and a gate electrode 1060. With such a structure, the active layer is shielded from light which cannot be shielded by only the electrodes such as the source electrode. In FIG. 4A, an example of an inverted-staggered TFT is described as an example. The present invention can be applied to TFTs having other configurations as described below. In addition, when the light-shielding film is made of a material having a high electrical conductivity, it is necessary to interpose an insulating layer (not shown) between the light-shielding film 4090 and the electrodes such as the source electrode.

Furthermore, as shown in FIG. 4A, light irradiated toward the active layer 1020 from all directions which form angles (indicated by θ in the figure) of less than 90 degrees with the direction along the surface of the substrate 1000 can be shielded by providing the light-shielding film 4090 at the upper side of the active layer 1020.

In an inverted-staggered TFT shown in FIG. 4B, a light-shielding film 4090 serves as the light-shielding structure, and an insulating layer 4095 is interposed between the light-shielding film 4090 and a source electrode 1030, an active layer 1020, and a drain electrode 1040. In the structure shown in FIG. 4B, the light-shielding film 4090 is further provided independent of the electrodes such as the source electrode 1030. It is preferable that the light-shielding film 4090 and the source electrode 1030 (and the drain electrode 1040) partially overlap one another when viewed from the direction (indicated by reference numeral 1205 in the figure) perpendicular to the direction (indicated by reference numeral 1204 in the figure) along the surface of the substrate 1000. The width (m) of the overlapped portion is preferably equal to or larger than the thickness of the insulating film 4095 provided directly on the source electrode 1030. It is preferable that the source electrode 1030 and the drain electrode 1040 are completely covered with the light-shielding film 4090 when viewed from the vertical direction (indicated by reference numeral 1205 in the figure).

FIG. 4C shows an example of a staggered TFT provided with a light-shielding film 4090 as a light-shielding structure. As in this example, the light-shielding structure may be provided so as to cover the gate-insulating layer 1050 at the portion not being covered with the gate electrode 1060 and to cover the side faces of the active layer (amorphous oxide) 1020.

In addition, the structure in the second embodiment may further include the same constitution as in the first embodiment. Such a structure is included in the scope of the present invention and provides a TFT having a light-shielding property to incident light from the substrate side and from the active layer side.

The first and second embodiments describe examples using a light-shielding member (or a film or a substrate having a light-shielding property) as the light-shielding structure. The light-shielding structure may be a film, layer, or member which achieves the light shielding by absorbing or reflecting light having a predetermined wavelength range. In addition, the light shielding may be achieved by a combination of the absorption and reflection of light. The light-shielding structure may be a multilayer of light-shielding films, light-shielding layers, or light-shielding members. In addition, the light-shielding structure may be a photonic crystal having an optical two- or three-dimensional refractive index difference.

Third Embodiment: Display

A display provided with a field-effect transistor (specifically TFT) described in the first or second embodiment will now be described.

The structure used in a display is as follows:

The drain electrode functioning as an output terminal of a TFT is connected to an input electrode of a light-emitting device such as an electroluminescence device using an organic or inorganic material, a light-transmittance-controlling device of a liquid-crystal cell or an electrophoretic particle cell, or a light-reflectance-controlling device.

For example, as shown in FIG. 5, an amorphous oxide semiconductor film 5002, a source electrode 5003, a drain electrode 5004, a gate-insulating film 5005, and a gate electrode 5006 are deposited and patterned on a substrate 5001.

The drain electrode 5004 is connected to an electrode 5008 via an interlayer-insulating film 5007. The electrode 5008 is in contact with a light-emitting layer 5010 which is in contact with an electrode 5011. A current flowing into the light-emitting layer 5010 can be controlled by the current value flowing from the source electrode 5003 to the drain electrode 5004 through a channel formed in the amorphous oxide semiconductor film 5002. This control is conducted by the voltage of the gate electrode 5006 of a TFT. Here, the light-emitting layer 5010 is an inorganic or organic electroluminescence device.

In such a device structure, the interlayer-insulating film 5007 or the electrode 5008 serves as a light-insulating film so that the amorphous oxide semiconductor film 5002 is not irradiated with visible light and light or an electromagnetic wave having a wavelength shorter than that of visible light.

The light irradiation from the substrate side is shielded by providing a light-shielding member 5009 on the top or bottom face of the substrate 5001. FIG. 5 shows a case that the light-shielding member 5009 is provided on the bottom.

In addition, the gate electrode 5006 may have a function as a light-shielding film so that it is unnecessary to separately provide the light-shielding member 5009.

When an inorganic or organic electroluminescence device has a top emission structure, it is preferably that the electrode 5008 function as a light-shielding layer.

A liquid-crystal display will now be described with reference to FIG. 6.

Reference numeral 6001 represents a substrate, reference numeral 6002 represents an active layer made of an amorphous oxide, reference numeral 6003 represents a source electrode, reference numeral 6004 represents a drain electrode, reference numeral 6005 represents a gate-insulating electrode, and reference numeral 6006 represents a gate electrode.

As shown in FIG. 6, the drain electrode 6004 is extended and thereby also serves as an electrode 6008. A light-transmittance-controlling device or light-reflectance-controlling device composed of a liquid-crystal cell or an electrophoretic particle cell 6013 is interposed between high-resistive films 6012 (for example, oriented films of a polyimide).

A voltage is applied to the liquid-crystal cell or the electrophoretic particle cell 6013 by the electrodes 6008 and 6011. With such a structure, the voltage applied between the electrode 6008 and the electrode 6011 can be controlled by controlling the voltage of the gate electrode 6006 of a TFT.

An interlayer-insulating film 6007 serving as a light-shielding layer or a gate electrode 6006 made of an opaque metal such as Al having a light-shielding function may be used so that the active layer 6002 made of amorphous oxide is not irradiated with visible light and not irradiated with light or an electromagnetic wave having a wavelength shorter than that of visible light.

The light irradiation from the substrate 6001 side is preferably shielded by providing a light-shielding film 6009 on the top or bottom face of the substrate 6001. FIG. 6 shows a case that the light-shielding film 6009 is provided on the bottom.

When a device has a structure such that the substrate is not required to have transparency to visible light, the substrate may be formed of a light-shielding member.

The display provided with the transistor described in the first or second embodiment may be a transparent type, a reflective type, or a combination thereof.

(1) Material for Light-Shielding Structure Applied to the First to the Third Embodiments

The present invention is characterized by, as described above, that a light-shielding member is provided so that the active layer is not irradiated with visible light and light or an electromagnetic wave having a wavelength shorter than that of visible light from the outside of a TFT.

The light-shielding structure has the following constitution: (a) the substrate itself of a TFT is a light-shielding member, or a layer of a light-shielding member is provided on the top or bottom face of the substrate; (b) a light-shielding layer is provided on the upper portion (the side opposite the substrate) of a TFT (the lower electrode of a light-emitting layer or the high-resistive layer of a liquid-crystal device may also serve as a light-shielding layer); (c) the interlayer-insulating film is formed of a light-shielding member; or (d) some or all electrodes, i.e., the source electrode, drain electrode, and gate electrode, of a TFT are formed so as to have a function as a light-shielding member. The present invention is achieved by a combination optionally selected from the above-mentioned constitution.

Any structure can be optionally used as long as the structure has a light-shielding property. In particular, it is preferable that the transmittance for visible light and light or an electromagnetic wave having a wavelength shorter than that of visible light (wavelength range of 300 to 800 nm) be less than 0.01%.

A deviation in the OFF-current of a TFT caused by light irradiation can be decreased to 1/100 or less by satisfying a condition that the transmittance is less than 0.01%.

Examples of the material of the light-shielding member include metals such as Al, Cr, and Ni; alloys thereof; and silicides. The structure of the light-shielding film may be a multilayer film composed of different materials. In an example composed of three layers, the center layer is made of a material having a high electrical conductivity and a high light-shielding property, and the layers at both sides are made of a material whose light-shielding property is inferior to that of the center layer, but the electrical conductivity is sufficiently lower than that of the center layer.

The light-shielding film may be formed of a high-melting point metal such as Ti, Cr, W, Ta, Mo, or Pb, an alloy containing such a metal, or a silicide. In addition, the light-shielding film may be formed of WSi, WSiN, TiN, WN, amorphous silicon, or polycrystal silicon. Furthermore, the light-shielding film may be formed of an organic material (for example, a resin such as a rubber shielding visible light).

The thickness of the light-shielding film is, for example, in the range of several tens of nanometers to several tens of micrometers.

(2) Types of Field-Effect Transistors to which the First to the Third Embodiments can be Applied

The TFTs described in the above-mentioned two examples are bottom-gate inverted-staggered and top-gate staggered types, but the present invention is not limited to these. In the present invention, the TFT may be a coplanar type, an inverted-coplanar type, or other structures as long as a light-shielding member is provided.

Examples of the structures of TFTs to which the present invention can be applied include, as shown in FIGS. 7A to 7D, a staggered TFT (FIG. 7A), an inverted-staggered TFT (FIG. 7B), a coplanar TFT (FIG. 7C), and an inverted-coplanar TFT (FIG. 7D). In the figures, reference numeral 1 represents a substrate, reference numeral 2 represents an active layer, reference numeral 3 represents a source electrode, reference numeral 4 represents a drain electrode, reference numeral 5 represents a gate-insulating film, and reference numeral 6 represents a gate electrode.

(3) Transparent Oxide Material Applied to the First to the Third Embodiments

Examples of transparent oxides in the present invention include single-crystal oxides, polycrystal oxides, amorphous oxides, and mixtures thereof. The polycrystal oxides may be, for example, ZnO or ITO.

Amorphous oxides which can be applied to the present invention are described in the above-mentioned Patent Document in detail. Hereinafter, cases that an amorphous oxide is used as a material of the active layer will be described.

The active layer for a normally-off TFT may be an oxide film having an electronic carrier concentration of lower than 1018/cm3.

Specifically, such an oxide film may have a structure in an In—Ga—Zn—O system, and the composition in the crystalline state is represented by InGaO3(ZnO)m (wherein m is an integer less than 6).

In addition, the oxide film may have a structure in an In—Ga—Zn—Mg—O system, and the composition in the crystalline state is InGaO3(Zn1-XMgXO)m (wherein m is an integer less than 6, and X is denoted by 0<X≦1).

The electron mobility of the material for the oxide characteristically increases with the number of conduction electrons. Examples of the substrate for a TFT include glass substrates, plastic resin substrates, and plastic films.

An amorphous oxide film having a low electron carrier concentration and a large electron mobility may be formed of an amorphous oxide composed of an oxide of at least one element selected from Zn, In, and Sn.

The electron mobility of this amorphous oxide film characteristically increases with the number of conduction electrons. A normally-off TFT can be produced by using this film. The normally-off TFT has excellent transistor characteristics such as an ON/OFF ratio, a saturation current in the pinch-off state, and a switching speed.

The semiconductor layer may be an amorphous oxide containing at least one element selected from Sn, In, and Zn.

In addition, when Sn is selected as the at least one element of the amorphous oxide, the Sn may be substituted with Sn1-XM4X (wherein X is denoted by 0<X<1, and M4 is a Group 4 element having an atomic number less than that of Sn selected from the group consisting of Si, Ge, and Zr).

When In is selected as the at least one element of the amorphous oxide, the In may be substituted with In1-YM3Y (wherein Y is denoted by 0<Y<1, and M3 is Lu or a Group 3 element having an atomic number less than that of In selected from the group consisting of B, Al, Ga, and Y).

When Zn is selected as the at least one element of the amorphous oxide, the Zn may be substituted with Zn1-ZM2Z (wherein the Z is denoted by 0<Z<1, and M2 is a Group 2 element having an atomic number less than that of Zn selected from the group consisting of Mg and Ca).

Specifically, examples of the amorphous material which can be applied to the present invention include Sn—In—Zn oxides, In—Zn—Ga—Mg oxides, In oxides, In—Sn oxides, In—Ga oxides, In—Zn oxides, Zn—Ga oxides, and Sn—In—Zn oxides. The composition ratio of the constituting materials is not limited to 1:1. The amorphous phase of Zn or Sn by itself alone may not be readily produced, but are readily produced by adding In. For example, in an In—Zn system, it is preferable that the composition contains about 20 at % or more of In as an atomic ratio excluding oxygen. In a Sn—In system, it is preferable that the composition contain about 80 at % or more of In as an atomic ratio excluding oxygen. In a Sn—In—Zn system, it is preferable that the composition contains about 15 at % or more of In as an atomic ratio excluding oxygen.

Amorphousness of a film is determined by confirming that no clear diffraction peak is observed (namely, a halo pattern is observed) by X-ray diffraction analysis with a low incident angle of about 0.5 degrees. In addition, in the present invention, when the above-mentioned materials are used in channel layers of field-effect transistors, the channel layers may contain a microcrystalline material. The existence of a microcrystal in an amorphous oxide can be confirmed by observation with a transmission electron microscope, for example.

(4) Substrate and Electrode Materials Applied to the First to the Third Embodiments.

The electrodes of a transistor according to the present invention are formed of materials, such as Al and Au, which have a light-shielding property as previously described. The substrate may be a light-shielding substrate such as an Al-metal substrate, a silicon substrate, or a flexible substrate such as a plastic or PET substrate.

EXAMPLE

(Spectral Sensitivity Evaluation Experiment)

First, spectral sensitivity measurement experiments for amorphous oxides according to the present invention will be described in detail.

An oxide of an amorphous In—Ga—Zn system was formed on a substrate by sputtering.

Specifically, the amorphous oxide was deposited on a glass substrate (1737: manufactured by Corning Inc.) so as to have a thickness of 50 nm by high-frequency sputtering in an atmosphere of a gas mixture of oxygen and argon. The target material was a sintered body composed of In:Ga:Zn=1:1:1. The ultimate vacuum in a growth chamber was 8×10−4 Pa, the total pressure of oxygen and argon was 5.3×10−1 Pa, and the oxygen partial pressure was 1.8×10−2 Pa.

The substrate during the forming of the film was not specifically heated. The chamber temperature during the forming of the film was about 30° C. The resulting films were examined by X-ray diffraction analysis (thin film method) with X-ray having an incident angle of 0.5 degrees with respect to the film surface. No clear diffraction peak was detected, and the results confirmed that all the resulting In—Zn—Ga—O films were amorphous.

Furthermore, the pattern analysis of the film was conducted by X-ray reflectometry to confirm that the mean square roughness (Rrms) and the thickness of the thin film were about 0.5 nm and about 50 nm, respectively.

The metal composition ratio of the thin film by fluorescent X-ray analysis (XRF) was In:Ga:Zn=1.00:0.94:0.65. Light-absorption analysis confirmed that the width of the forbidden energy band of the resulting amorphous thin film was about 3.1 eV.

An electrode having a diameter of 1 mm was formed on the thus obtained amorphous oxide film. Specifically, electrodes made of laminated metals of Au (40 nm) and Ti (5 nm) were deposited by a masked evaporation method at intervals of 2 mm. Thus, samples of measurements were prepared. The laminated electrode had the surfacemost layer of Au.

The electrical conductivity of the samples were measured (spectral sensitivity characteristics evaluation) by using a spectrum (at intervals of 10 nm) of a constant light intensity (2.5 mW/cm2) and a bias voltage of 10 V. The measurement was conducted by using a spectral-sensitivity analyzing system, CEP-2000.

FIG. 8 shows the results.

As shown in FIG. 8, the photoinduced carrier generation and an increase in the electrical conductivity were observed in the amorphous film when the wavelength was shorter than about 450 nm (about 2.8 eV), which is almost the same as an energy of about 3.1 eV corresponding to the width of the forbidden energy band. In addition, the amount of the photoinduced carrier generation in the spectral sensitivity characteristics evaluation depended on the irradiated light intensity.

The above-described experiments have revealed for the first time that it is necessary that a TFT is provided with a light-shielding film in order to be more stably operated even when an amorphous oxide which is thought to be transparent to visible light is used, for example, for the active layer of the TFT.

Example 1

In this EXAMPLE, a staggered (top-gate) MISFET device shown in FIG. 7A was produced.

Firstly, a gold film was laminated on a glass substrate 1 so as to have a thickness of 30 nm and then formed into a drain terminal 4 and a source terminal 3 by photolithography and lift-off. Then, an amorphous film to be used as a channel layer 2 having a metal composition ratio of In:Ga:Zn=1.00:0.94:0.65 was formed by sputtering so as to have a thickness of 30 nm. The conditions for forming the amorphous oxide film were the same as those in the above-described evaluation experiments.

Lastly, a Y2O3 film to be used as a gate-insulating film was formed by electron beam evaporation, and thereon a gold film was formed. The gold film was formed into a gate terminal by photolithography and lift-off.

Then, a light-shielding member made of aluminum foil was provided on the surface of the glass substrate on the side opposite the TFT so that the TFT part was not irradiated with light from the outside. The light-shielding member of the aluminum foil had a transmittance of less than 0.01% to visible light and light or an electromagnetic wave having a wavelength of less than that of visible light.

The resulting MISFET device was evaluated for I-V characteristics under irradiation with light of a fluorescent lamp from the surface of the glass substrate. The light emitted from the fluorescent lamp had a wavelength range of 350 to 750 nm. The results were that the electron field-effect mobility was 7 cm2/Vs and the ON/OFF ratio was higher than 105. In addition, characteristics of the device were measured in the dark instead of the irradiation with the light of a fluorescent lamp, and no changes were observed in the electron field-effect mobility and the ON/OFF ratio.

For a comparative experiment, a MISFET device sample was prepared. The sample was the same as the above-described staggered (top-gate) MISFET device except that a light-shielding member was not provided.

This MISFET device was evaluated for I-V characteristics under irradiation with light of a fluorescent lamp from the surface side of the glass substrate. It was confirmed that the ON/OFF ratio was decreased by an order of magnitude.

The above-described results have revealed that a light-shielding structure is necessary for stable operation even when an amorphous oxide which is recognized to be transparent is used for the active layer of a TFT.

The field-effect transistors in accordance with the present invention can be utilized as switching devices of liquid crystal displays and inorganic or organic EL displays. In addition, the transistors can be formed on flexible substrates such as plastic films by a low-temperature process, and therefore can be widely applied to not only flexible displays but also IC cards and ID tags. According to the present invention, a novel transistor provided with a light-shielding structure can be provided as a field-effect transistor using an oxide which is recognized to be transparent for the active layer.

While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures and functions.

This application claims the benefit of Japanese Application No. 2005-305950 filed Oct. 20, 2005, which is hereby incorporated by reference herein in its entirety.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US20010022565 *Mar 5, 2001Sep 20, 2001Hajime KimuraElectronic device and method of driving electronic device
US20040195961 *Feb 26, 2004Oct 7, 2004Chiao-Ju Lin[active-matrix organic electroluminescent display panel and fabricating method thereof]
US20050282308 *May 6, 2005Dec 22, 2005Albrecht UhligOrganic electroluminescent display device and method of producing the same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7601984 *Nov 9, 2005Oct 13, 2009Canon Kabushiki KaishaField effect transistor with amorphous oxide active layer containing microcrystals and gate electrode opposed to active layer through gate insulator
US7656919 *Jan 25, 2009Feb 2, 2010Avago Technologies Ecbu Ip (Singapore) Pte. Ltd.Semiconductor system having a ring laser fabricated by epitaxial layer overgrowth
US7674650Sep 21, 2006Mar 9, 2010Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US7732819Aug 1, 2008Jun 8, 2010Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US7851792Nov 1, 2006Dec 14, 2010Canon Kabushiki KaishaField-effect transistor
US7855369 *Nov 20, 2008Dec 21, 2010Fujifilm CorporationRadiation imaging element
US7858451Jan 17, 2006Dec 28, 2010Semiconductor Energy Laboratory Co., Ltd.Electronic device, semiconductor device and manufacturing method thereof
US7910490Apr 29, 2009Mar 22, 2011Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US7915075Oct 16, 2009Mar 29, 2011Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US7932521Aug 1, 2008Apr 26, 2011Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US7939822Dec 30, 2008May 10, 2011Semiconductor Energy Laboratory Co., Ltd.Active matrix display device
US7948171Feb 10, 2006May 24, 2011Semiconductor Energy Laboratory Co., Ltd.Light emitting device
US7952392Oct 26, 2009May 31, 2011Semiconductor Energy Laboratory Co., Ltd.Logic circuit
US7964876Jan 27, 2010Jun 21, 2011Semiconductor Energy Laboratory Co., Ltd.Display device
US7989815Oct 1, 2009Aug 2, 2011Semiconductor Energy Laboratory Co., Ltd.Display device
US8008627 *Sep 4, 2008Aug 30, 2011Fujifilm CorporationRadiation imaging element
US8021916Aug 28, 2009Sep 20, 2011Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8021917Nov 4, 2009Sep 20, 2011Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the semiconductor device
US8030663Aug 5, 2009Oct 4, 2011Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8044402Feb 2, 2008Oct 25, 2011Canon Kabushiki KaishaAmorphous insulator film and thin-film transistor
US8049225Aug 5, 2009Nov 1, 2011Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8058647Nov 9, 2009Nov 15, 2011Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8067775Oct 20, 2009Nov 29, 2011Semiconductor Energy Laboratory Co., Ltd.Thin film transistor with two gate electrodes
US8106400Oct 20, 2009Jan 31, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8114720Dec 9, 2009Feb 14, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8115201Aug 5, 2009Feb 14, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with oxide semiconductor formed within
US8115883Aug 23, 2010Feb 14, 2012Semiconductor Energy Laboratory Co., Ltd.Display device and method for manufacturing the same
US8119465Mar 7, 2011Feb 21, 2012Au Optronics CorporationThin film transistor and method for fabricating the same
US8129717Jul 29, 2009Mar 6, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8129718Aug 3, 2009Mar 6, 2012Canon Kabushiki KaishaAmorphous oxide semiconductor and thin film transistor using the same
US8129719Aug 28, 2009Mar 6, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the semiconductor device
US8143115Nov 29, 2007Mar 27, 2012Canon Kabushiki KaishaMethod for manufacturing thin film transistor using oxide semiconductor and display apparatus
US8148721Nov 20, 2007Apr 3, 2012Canon Kabushiki KaishaBottom gate type thin film transistor, method of manufacturing the same, and display apparatus
US8158975Oct 8, 2009Apr 17, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8174021Jan 28, 2010May 8, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the semiconductor device
US8183099Dec 9, 2009May 22, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing transistor
US8188477Nov 17, 2009May 29, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8193031Nov 17, 2010Jun 5, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8207014Jun 29, 2010Jun 26, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8207025Apr 1, 2011Jun 26, 2012Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8207531Aug 18, 2010Jun 26, 2012Canon Kabushiki KaishaThin film transistor, display device using thin film transistor, and production method of thin film transistor
US8207533Dec 4, 2008Jun 26, 2012Semiconductor Energy Laboratory Co., Ltd.Electronic device, semiconductor device and manufacturing method thereof
US8207756Oct 26, 2010Jun 26, 2012Semiconductor Energy Laboratory Co., Ltd.Logic circuit and semiconductor device
US8216878Jun 29, 2010Jul 10, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8218099Aug 30, 2010Jul 10, 2012Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and method for manufacturing the same
US8236627Aug 30, 2010Aug 7, 2012Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8236635Oct 20, 2009Aug 7, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8237167Jan 25, 2012Aug 7, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8237761Oct 25, 2007Aug 7, 2012Canon Kabushiki KaishaSemiconductor member, semiconductor article manufacturing method, and LED array using the manufacturing method
US8241949Jul 13, 2010Aug 14, 2012Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing semiconductor device
US8242494Oct 20, 2009Aug 14, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing thin film transistor using multi-tone mask
US8242496Jul 13, 2010Aug 14, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8242837Oct 19, 2010Aug 14, 2012Semiconductor Energy Laboratory Co., Ltd.Analog circuit and semiconductor device
US8247276Feb 3, 2010Aug 21, 2012Semiconductor Energy Laboratory Co., Ltd.Thin film transistor, method for manufacturing the same, and semiconductor device
US8247812Feb 4, 2010Aug 21, 2012Semiconductor Energy Laboratory Co., Ltd.Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8247813Dec 1, 2010Aug 21, 2012Semiconductor Energy Laboratory Co., Ltd.Display device and electronic device including the same
US8247814May 9, 2011Aug 21, 2012Semiconductor Energy Laboratory Co., Ltd.Active matrix display device including a metal oxide semiconductor film
US8253135Mar 18, 2010Aug 28, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, display device, and electronic appliance
US8258862Feb 14, 2011Sep 4, 2012Semiconductor Energy Laboratory Co., Ltd.Demodulation circuit and RFID tag including the demodulation circuit
US8268642Sep 29, 2010Sep 18, 2012Semiconductor Energy Laboratory Co., Ltd.Method for removing electricity and method for manufacturing semiconductor device
US8269218Dec 3, 2010Sep 18, 2012Semiconductor Energy Laboratory Co., Ltd.Display device
US8274079Jan 26, 2011Sep 25, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising oxide semiconductor and method for manufacturing the same
US8278162Apr 27, 2010Oct 2, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8278657Feb 4, 2010Oct 2, 2012Semiconductor Energy Laboratory Co., Ltd.Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8283662Nov 15, 2010Oct 9, 2012Semiconductor Energy Laboratory Co., Ltd.Memory device
US8289753Nov 2, 2010Oct 16, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8293594Jul 14, 2010Oct 23, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing a display device having oxide semiconductor layer
US8293595Jul 29, 2009Oct 23, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8293661Dec 2, 2010Oct 23, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8294147Jul 8, 2010Oct 23, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method the same
US8298858Nov 9, 2011Oct 30, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8304300Jul 1, 2010Nov 6, 2012Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing display device including transistor
US8304765Sep 10, 2009Nov 6, 2012Semiconductor Energy Laboratory Co., Ltd.Display device
US8305109Sep 13, 2010Nov 6, 2012Semiconductor Energy Laboratory Co., Ltd.Logic circuit, light emitting device, semiconductor device, and electronic device
US8309961Oct 4, 2010Nov 13, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, display device, and electronic appliance
US8313980Mar 12, 2012Nov 20, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8314637Dec 13, 2010Nov 20, 2012Semiconductor Energy Laboratory Co., Ltd.Non-volatile latch circuit and logic circuit, and semiconductor device using the same
US8318551Nov 30, 2009Nov 27, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8319215Sep 30, 2009Nov 27, 2012Semiconductor Energy Laboratory Co., Ltd.Display device
US8319216Nov 5, 2009Nov 27, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the semiconductor device
US8319218Oct 4, 2010Nov 27, 2012Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor layer and semiconductor device
US8319267Nov 10, 2010Nov 27, 2012Semiconductor Energy Laboratory Co., Ltd.Device including nonvolatile memory element
US8320162Feb 7, 2011Nov 27, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method of the same
US8320516Feb 22, 2011Nov 27, 2012Semiconductor Energy Laboratory Co., Ltd.Pulse signal output circuit and shift register
US8324018Dec 18, 2009Dec 4, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, electronic device, and method of manufacturing semiconductor device
US8324027Jul 8, 2010Dec 4, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8324621Oct 7, 2010Dec 4, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having oxide semiconductor layer
US8324626Aug 5, 2010Dec 4, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8329506Nov 16, 2009Dec 11, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8330156Dec 22, 2009Dec 11, 2012Semiconductor Energy Laboratory Co., Ltd.Thin film transistor with a plurality of oxide clusters over the gate insulating layer
US8330157Oct 25, 2010Dec 11, 2012Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device and semiconductor device
US8334719Nov 10, 2010Dec 18, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having function of thyristor
US8338226Mar 29, 2010Dec 25, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8338827Nov 4, 2009Dec 25, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8339828Nov 17, 2010Dec 25, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8339836Jan 10, 2011Dec 25, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8343799Oct 20, 2009Jan 1, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8343817Aug 5, 2009Jan 1, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8344372Sep 30, 2009Jan 1, 2013Semiconductor Energy Laboratory Co., Ltd.Display device and method for manufacturing the same
US8344374Oct 5, 2010Jan 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising oxide semiconductor layer
US8344387Nov 24, 2009Jan 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8344788Jan 20, 2011Jan 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8350261Feb 4, 2010Jan 8, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including a transistor, and manufacturing method of the semiconductor device
US8350621Aug 7, 2012Jan 8, 2013Semiconductor Energy Laboratory Co., Ltd.Analog circuit and semiconductor device
US8354674Jun 13, 2008Jan 15, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer
US8357963Jul 19, 2011Jan 22, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8362538Dec 22, 2010Jan 29, 2013Semiconductor Energy Laboratory Co., Ltd.Memory device, semiconductor device, and electronic device
US8362563Jul 26, 2012Jan 29, 2013Semiconductor Energy Laboratory Co., Ltd.Thin film transistor, method for manufacturing the same, and semiconductor device
US8363452Nov 2, 2010Jan 29, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8367489Nov 22, 2010Feb 5, 2013Semiconductor Energy Laboratory Co., Ltd.Method of fabricating a stacked oxide material for thin film transistor
US8369478Feb 24, 2011Feb 5, 2013Semiconductor Energy Laboratory Co., Ltd.Pulse signal output circuit and shift register
US8372664Dec 21, 2010Feb 12, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing display device
US8373164Nov 6, 2009Feb 12, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8373203Nov 24, 2010Feb 12, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8373443May 26, 2011Feb 12, 2013Semiconductor Energy Laboratory Co., Ltd.Logic circuit
US8377744Dec 1, 2010Feb 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8377762Sep 13, 2010Feb 19, 2013Semiconductor Energy Laboratory Co., Ltd.Light-emitting device and manufacturing method thereof
US8378343Jul 13, 2010Feb 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8378344Aug 26, 2010Feb 19, 2013Semiconductor Energy Laboratory Co., Ltd.Light-emitting device with plural kinds of thin film transistors and circuits over one substrate
US8378391Nov 3, 2010Feb 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including image sensor
US8378393Oct 30, 2009Feb 19, 2013Semiconductor Energy Laboratory Co., Ltd.Conductive oxynitride and method for manufacturing conductive oxynitride film
US8378403Jun 27, 2011Feb 19, 2013Semiconductor Energy LaboratorySemiconductor device
US8383470Dec 9, 2009Feb 26, 2013Semiconductor Energy Laboratory Co., Ltd.Thin film transistor (TFT) having a protective layer and manufacturing method thereof
US8384077Dec 10, 2008Feb 26, 2013Idemitsu Kosan Co., LtdField effect transistor using oxide semicondutor and method for manufacturing the same
US8384079Jul 29, 2010Feb 26, 2013Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor device
US8384085Aug 5, 2010Feb 26, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8385105Feb 2, 2011Feb 26, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8389326Jun 13, 2012Mar 5, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8389417Nov 12, 2010Mar 5, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8389988Oct 1, 2009Mar 5, 2013Semiconductor Energy Laboratory Co., Ltd.Display device
US8389989Aug 26, 2010Mar 5, 2013Semiconductor Energy Laboratory Co., Ltd.Transistor having oxide semiconductor layer and display utilizing the same
US8390044Nov 24, 2010Mar 5, 2013Semiconductor Energy Laboratory Co., Ltd.Non-linear element, display device including non-linear element, and electronic device including display device
US8394671Jun 13, 2012Mar 12, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8395148Nov 4, 2009Mar 12, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8395153Aug 28, 2012Mar 12, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method the same
US8395716Nov 30, 2009Mar 12, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8395931Jan 19, 2011Mar 12, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and driving method thereof
US8395938Jan 10, 2011Mar 12, 2013Semiconductor Energy Laboratory Co., Ltd.Non-volatile semiconductor memory device equipped with an oxide semiconductor writing transistor having a small off-state current
US8400817Dec 27, 2010Mar 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8405092Sep 9, 2011Mar 26, 2013Semiconductor Energy Laboratory Co., Ltd.Display device
US8406038Apr 27, 2011Mar 26, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8410002Nov 12, 2010Apr 2, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8410838Nov 15, 2010Apr 2, 2013Semiconductor Energy Laboratory Co., Ltd.Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US8411480Apr 8, 2011Apr 2, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8415198Jul 26, 2007Apr 9, 2013Canon Kabushiki KaishaProduction method of thin film transistor using amorphous oxide semiconductor film
US8415665Dec 6, 2010Apr 9, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and electronic device
US8415667Dec 1, 2010Apr 9, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8415731Dec 27, 2010Apr 9, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor storage device with integrated capacitor and having transistor overlapping sections
US8416622May 16, 2011Apr 9, 2013Semiconductor Energy Laboratory Co., Ltd.Driving method of a semiconductor device with an inverted period having a negative potential applied to a gate of an oxide semiconductor transistor
US8420441Jul 29, 2010Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing oxide semiconductor device
US8420553Dec 2, 2010Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8421067Jul 29, 2010Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor device
US8421068Oct 14, 2010Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8421069Oct 14, 2010Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8421071Jan 9, 2012Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Memory device
US8421081Dec 20, 2011Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Memory device, memory module and electronic device
US8421083Jul 29, 2010Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with two oxide semiconductor layers and manufacturing method thereof
US8422272Aug 1, 2011Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method thereof
US8422298Mar 10, 2011Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Memory device and semiconductor device
US8426243Jan 18, 2012Apr 23, 2013Canon Kabushiki KaishaAmorphous oxide semiconductor and thin film transistor using the same
US8426853Dec 3, 2010Apr 23, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8426868Oct 23, 2009Apr 23, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8427417Sep 8, 2010Apr 23, 2013Semiconductor Energy Laboratory Co., Ltd.Driver circuit, display device including the driver circuit, and electronic device including the display device
US8427595Sep 10, 2009Apr 23, 2013Semiconductor Energy Laboratory Co., Ltd.Display device with pixel portion and common connection portion having oxide semiconductor layers
US8431449Apr 1, 2011Apr 30, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8432187Dec 7, 2010Apr 30, 2013Semiconductor Energy Laboratory Co., Ltd.Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US8432502Dec 1, 2010Apr 30, 2013Semiconductor Energy Laboratory Co., Ltd.Display device and electronic device including the same
US8432718Dec 3, 2010Apr 30, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8432730Jul 19, 2011Apr 30, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving the same
US8436350Jan 25, 2010May 7, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device using an oxide semiconductor with a plurality of metal clusters
US8436403Jan 26, 2011May 7, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including transistor provided with sidewall and electronic appliance
US8436431Jan 26, 2011May 7, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including gate and three conductor electrodes
US8437165Feb 25, 2011May 7, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and semiconductor device
US8440502Sep 9, 2011May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the semiconductor device
US8440510May 10, 2011May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8441007Dec 9, 2009May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Display device and manufacturing method thereof
US8441009Dec 21, 2010May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8441010Jun 21, 2011May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8441011Oct 23, 2012May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8441047Apr 5, 2010May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8441425Nov 24, 2009May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8441841Feb 15, 2011May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method of semiconductor device
US8441868Apr 1, 2011May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory having a read circuit
US8442183Feb 28, 2011May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Pulse signal output circuit and shift register
US8445905Aug 6, 2012May 21, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8446171Apr 23, 2012May 21, 2013Semiconductor Energy Laboratory Co., Ltd.Signal processing unit
US8450123Aug 19, 2011May 28, 2013Semiconductor Energy Laboratory Co., Ltd.Oxygen diffusion evaluation method of oxide film stacked body
US8450144Mar 12, 2010May 28, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8450735Aug 25, 2010May 28, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including a transistor, and manufacturing method of semiconductor device
US8450783Dec 27, 2010May 28, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8451651Feb 15, 2011May 28, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8455868Dec 22, 2010Jun 4, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8461007Apr 21, 2011Jun 11, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8461582Feb 24, 2010Jun 11, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8461584Mar 25, 2011Jun 11, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with metal oxide film
US8461586Jul 1, 2011Jun 11, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8461630Nov 18, 2011Jun 11, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8466014Jul 26, 2012Jun 18, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8466740Oct 27, 2011Jun 18, 2013Semiconductor Energy Laboratory Co., Ltd.Receiving circuit, LSI chip, and storage medium
US8467231Jul 29, 2011Jun 18, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method thereof
US8467232Jul 29, 2011Jun 18, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8467825Nov 16, 2010Jun 18, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8470649Dec 1, 2010Jun 25, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8470650Oct 18, 2010Jun 25, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method for the same
US8471252Aug 5, 2009Jun 25, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8472231Mar 31, 2011Jun 25, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8472235Mar 15, 2011Jun 25, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8476625Dec 2, 2009Jul 2, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising gate electrode of one conductive layer and gate wiring of two conductive layers
US8476626Nov 18, 2010Jul 2, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device including semiconductor and oxide semiconductor transistors
US8476719May 18, 2011Jul 2, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
US8476927Apr 23, 2012Jul 2, 2013Semiconductor Energy Laboratory Co., Ltd.Programmable logic device
US8477158Feb 15, 2011Jul 2, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and electronic device
US8481363Sep 8, 2011Jul 9, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8481377Feb 14, 2011Jul 9, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing a semiconductor device with impurity doped oxide semiconductor
US8482001Dec 22, 2010Jul 9, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8482004Oct 4, 2010Jul 9, 2013Semiconductor Energy Laboratory Co., Ltd.Light-emitting display device and electronic device including the same
US8482005Dec 1, 2010Jul 9, 2013Semiconductor Energy Laboratory Co., Ltd.Display device comprising an oxide semiconductor layer
US8482690Oct 4, 2010Jul 9, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and electronic device including the same
US8482974Feb 7, 2011Jul 9, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and method for driving the same
US8487303Mar 14, 2011Jul 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8487436May 12, 2009Jul 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, electronic device, and method of manufacturing semiconductor device
US8487844Aug 18, 2011Jul 16, 2013Semiconductor Energy Laboratory Co., Ltd.EL display device and electronic device including the same
US8488077Feb 1, 2012Jul 16, 2013Semiconductor Energy Laboratory Co., Ltd.Display device and method for manufacturing the same
US8488394Aug 4, 2011Jul 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8492756Jan 7, 2010Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8492757Mar 4, 2010Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8492758Sep 22, 2010Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor film and semiconductor device
US8492759Dec 6, 2010Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Field effect transistor
US8492760Feb 8, 2012Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8492764Aug 2, 2010Jul 23, 2013Semicondcutor Energy Laboratory Co., Ltd.Light-emitting device and manufacturing method thereof
US8492806Oct 26, 2010Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Non-linear element, display device including non-linear element, and electronic device including display device
US8492840Jan 18, 2011Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having an oxide semiconductor layer
US8492853Jan 26, 2011Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Field effect transistor having conductor electrode in contact with semiconductor layer
US8492862Nov 12, 2010Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Sputtering target and manufacturing method thereof, and transistor
US8493766Feb 2, 2011Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of driving semiconductor device
US8501555Sep 10, 2009Aug 6, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8501564Nov 30, 2010Aug 6, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor element, semiconductor device, and method for manufacturing the same
US8502216Nov 5, 2009Aug 6, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8502217Nov 27, 2008Aug 6, 2013Canon Kabushiki KaishaOxide semiconductor device including insulating layer and display apparatus using the same
US8502220Aug 2, 2010Aug 6, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8502221Mar 29, 2011Aug 6, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with two metal oxide films and an oxide semiconductor film
US8502226Feb 17, 2011Aug 6, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8502292Jul 14, 2011Aug 6, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with memory cells
US8502772Jun 30, 2011Aug 6, 2013Semiconductor Energy Laboratory Co., Ltd.Driving method of input/output device
US8507907Jan 27, 2011Aug 13, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8508256May 15, 2012Aug 13, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor integrated circuit
US8508276Aug 19, 2011Aug 13, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including latch circuit
US8508967Sep 1, 2011Aug 13, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method of semiconductor device
US8513053Feb 4, 2013Aug 20, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method the same
US8513054Feb 14, 2013Aug 20, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8513773Jan 9, 2012Aug 20, 2013Semiconductor Energy Laboratory Co., Ltd.Capacitor and semiconductor device including dielectric and N-type semiconductor
US8514609Feb 2, 2011Aug 20, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of driving semiconductor device
US8518739Nov 10, 2009Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8518740Jul 1, 2010Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8518755Feb 17, 2011Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8518761Apr 13, 2011Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Deposition method and method for manufacturing semiconductor device
US8519387Jul 19, 2011Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing
US8519990Mar 24, 2011Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor display device
US8520426Sep 1, 2011Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Method for driving semiconductor device
US8525304May 18, 2011Sep 3, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8525551May 16, 2012Sep 3, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8525585Jul 26, 2012Sep 3, 2013Semiconductor Energy Laboratory Co., Ltd.Demodulation circuit and RFID tag including the demodulation circuit
US8526567Oct 4, 2010Sep 3, 2013Semiconductor Energy Laboratory Co., Ltd.Shift register and display device and driving method thereof
US8530285Dec 22, 2010Sep 10, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8530289Apr 21, 2011Sep 10, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8530892Nov 2, 2010Sep 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8530944Mar 1, 2011Sep 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8531618Nov 29, 2010Sep 10, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device, method for driving the same, and electronic device including the same
US8531870Jul 28, 2011Sep 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method of semiconductor device
US8536571Jan 9, 2012Sep 17, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8537600Jul 27, 2011Sep 17, 2013Semiconductor Energy Laboratory Co., Ltd.Low off-state leakage current semiconductor memory device
US8541266Mar 26, 2012Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8541780Aug 31, 2010Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having oxide semiconductor layer
US8541781Mar 2, 2012Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8541782Nov 5, 2010Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Method for evaluating oxide semiconductor and method for manufacturing semiconductor device
US8541846Feb 14, 2011Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8542004Nov 21, 2012Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method of the same
US8542034May 16, 2012Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8542528Aug 3, 2011Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving semiconductor device
US8546161Sep 7, 2011Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of thin film transistor and liquid crystal display device
US8546180Jul 29, 2010Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing oxide semiconductor device
US8546181Sep 25, 2012Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8546182Nov 19, 2012Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8546225Apr 21, 2011Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8546811Feb 1, 2011Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8546892Oct 17, 2011Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8547493Oct 6, 2010Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with indium or zinc layer in contact with oxide semiconductor layer and method for manufacturing the semiconductor device
US8547753Jan 13, 2011Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8547771Aug 2, 2011Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor integrated circuit
US8551810Mar 25, 2011Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8551824Feb 17, 2011Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8552423Jul 14, 2010Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8552425 *Jun 10, 2011Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8552434Nov 19, 2012Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8552712Apr 13, 2011Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Current measurement method, inspection method of semiconductor device, semiconductor device, and test element group
US8553447Sep 20, 2011Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and driving method thereof
US8557641Jun 29, 2010Oct 15, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8558233Sep 14, 2012Oct 15, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8558960Sep 7, 2011Oct 15, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and method for manufacturing the same
US8559220Nov 23, 2010Oct 15, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8563973Mar 7, 2011Oct 22, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8563976Dec 6, 2010Oct 22, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8564331May 2, 2012Oct 22, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8569753May 27, 2011Oct 29, 2013Semiconductor Energy Laboratory Co., Ltd.Storage device comprising semiconductor elements
US8569754Oct 31, 2011Oct 29, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8570065Apr 3, 2012Oct 29, 2013Semiconductor Energy Laboratory Co., Ltd.Programmable LSI
US8575610Aug 19, 2011Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving the same
US8575618Jun 25, 2012Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Electronic device, semiconductor device and manufacturing method thereof
US8575678Jan 4, 2012Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device with floating gate
US8575960May 15, 2012Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8575985Dec 30, 2011Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Storage element, storage device, and signal processing circuit
US8576620Nov 12, 2010Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method thereof
US8576636Jul 1, 2011Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8576978Oct 25, 2012Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Pulse signal output circuit and shift register
US8581625May 3, 2012Nov 12, 2013Semiconductor Energy Laboratory Co., Ltd.Programmable logic device
US8581818Mar 28, 2011Nov 12, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and method for driving the same
US8582348Aug 1, 2011Nov 12, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving semiconductor device
US8582349Aug 24, 2011Nov 12, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8586905Feb 4, 2011Nov 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method thereof
US8587342May 15, 2012Nov 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor integrated circuit
US8587999Nov 9, 2012Nov 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8588000May 16, 2011Nov 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device having a reading transistor with a back-gate electrode
US8592251May 9, 2012Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8592261Aug 25, 2011Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Method for designing semiconductor device
US8592814Sep 22, 2010Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Device with oxide semiconductor thin film transistor
US8592879Aug 30, 2011Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8593856Jan 18, 2011Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Signal processing circuit and method for driving the same
US8593857Feb 10, 2011Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device, driving method thereof, and method for manufacturing semiconductor device
US8593858Aug 26, 2011Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Driving method of semiconductor device
US8597992Feb 14, 2011Dec 3, 2013Semiconductor Energy Laboratory Co., Ltd.Transistor and manufacturing method of the same
US8598591May 27, 2011Dec 3, 2013Semiconductor Energy Laboratory Co., Ltd.Display device including clock wiring and oxide semiconductor transistor
US8598635Oct 26, 2010Dec 3, 2013Semiconductor Energy Laboratory Co., Ltd.Transistor
US8598648Mar 10, 2011Dec 3, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method of semiconductor device
US8599177Dec 15, 2010Dec 3, 2013Semiconductor Energy Laboratory Co., Ltd.Method for driving liquid crystal display device
US8599604Oct 19, 2011Dec 3, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and driving method thereof
US8599998Feb 11, 2011Dec 3, 2013Semiconductor Energy Laboratory Co., Ltd.Display device, semiconductor device, and driving method thereof
US8603841Aug 24, 2011Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing methods of semiconductor device and light-emitting display device
US8604472Nov 1, 2012Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8604473Apr 18, 2013Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8604476Oct 11, 2011Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including memory cell
US8605059Jun 22, 2011Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Input/output device and driving method thereof
US8605073Feb 14, 2011Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Pulse signal output circuit and shift register
US8605477Apr 25, 2011Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8609478Jun 29, 2010Dec 17, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8610120Sep 7, 2011Dec 17, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and manufacturing method thereof
US8610180Jun 7, 2011Dec 17, 2013Semiconductor Energy Laboratory Co., Ltd.Gas sensor and method for manufacturing the gas sensor
US8610187Dec 13, 2010Dec 17, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8610482May 22, 2012Dec 17, 2013Semiconductor Energy Laboratory Co., Ltd.Trimming circuit and method for driving trimming circuit
US8610696Feb 4, 2011Dec 17, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and display device including the same
US8614910Jul 20, 2011Dec 24, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving the same
US8614916Aug 2, 2011Dec 24, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method thereof
US8617920Feb 8, 2011Dec 31, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8618586Jan 18, 2013Dec 31, 2013Semiconductor Energy Laboratory Co., Ltd.Memory device, semiconductor device, and electronic device
US8619104Feb 4, 2011Dec 31, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and electronic device
US8619454Nov 19, 2012Dec 31, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8619470Jun 16, 2011Dec 31, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device with long data holding period
US8623698Mar 4, 2013Jan 7, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8624237Jul 29, 2009Jan 7, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8624239May 11, 2011Jan 7, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8624240Jul 21, 2011Jan 7, 2014Canon Kabushiki KaishaTop gate thin film transistor and display apparatus including the same
US8624244Jan 9, 2012Jan 7, 2014Mitsubishi Electric CorporationThin film transistor including a light-transmitting semiconductor film and active matrix substrate
US8624245Dec 1, 2010Jan 7, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8624650Dec 20, 2010Jan 7, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8625085Feb 29, 2012Jan 7, 2014Semiconductor Energy Laboratory Co., Ltd.Defect evaluation method for semiconductor
US8628987Aug 24, 2011Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing methods of thin film transistor, liquid crystal display device, and semiconductor device
US8629000Jan 8, 2013Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Thin film transistor, method for manufacturing the same, and semiconductor device
US8629432Jan 7, 2010Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8629434May 2, 2013Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and manufacturing method thereof
US8629438May 18, 2011Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8629441Aug 2, 2010Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8629496Nov 16, 2011Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8630110Apr 30, 2012Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8630127Jun 22, 2011Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving the same
US8630130Mar 26, 2012Jan 14, 2014Semiconductor Energy Laboratory Co., Ltd.Memory circuit, memory unit, and signal processing circuit
US8633480Nov 3, 2010Jan 21, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having an oxide semiconductor with a crystalline region and manufacturing method thereof
US8633492Nov 29, 2012Jan 21, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8634228Aug 29, 2011Jan 21, 2014Semiconductor Energy Laboratory Co., Ltd.Driving method of semiconductor device
US8634230Jan 12, 2012Jan 21, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving the same
US8637347Jul 1, 2010Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8637348Jul 24, 2013Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8637354Jun 14, 2011Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8637802Jun 7, 2011Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Photosensor, semiconductor device including photosensor, and light measurement method using photosensor
US8637861Nov 18, 2010Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Transistor having oxide semiconductor with electrode facing its side surface
US8637863Aug 27, 2012Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Display device
US8637864Oct 1, 2012Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
US8637865Feb 15, 2013Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8638123May 16, 2012Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Adder including transistor having oxide semiconductor layer
US8638322Jan 26, 2011Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Display device
US8642380Jun 22, 2011Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8642412Oct 18, 2010Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing an oxide-based semiconductor thin film transistor (TFT) including out diffusing hydrogen or moisture from the oxide semiconductor layer into an adjacent insulating layer which contains a halogen element
US8643004Oct 26, 2010Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Power diode including oxide semiconductor
US8643007Feb 16, 2012Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8643008Jul 12, 2012Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8643009Sep 4, 2012Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8643011Nov 15, 2012Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8643018Sep 14, 2012Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising a pixel portion and a driver circuit
US8644048Sep 12, 2011Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8647919Sep 7, 2011Feb 11, 2014Semiconductor Energy Laboratory Co., Ltd.Light-emitting display device and method for manufacturing the same
US8648343Jul 20, 2010Feb 11, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8649208May 17, 2012Feb 11, 2014Semiconductor Energy Laboratory Co., Ltd.Method for driving semiconductor device
US8653513Feb 17, 2011Feb 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with sidewall insulating layer
US8653514Apr 5, 2011Feb 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8653520Feb 4, 2011Feb 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8654231Mar 1, 2011Feb 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8654272Aug 2, 2010Feb 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device wherein each of a first oxide semiconductor layer and a second oxide semiconductor layer includes a portion that is in an oxygen-excess state which is in contact with a second insulatng layer
US8654582Mar 8, 2013Feb 18, 2014Semiconductor Energy Laboratory Co., Ltd.Non-volatile semiconductor memory device equipped with an oxide semiconductor writing transistor having a small off-state current
US8658448Dec 1, 2011Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and method for manufacturing the same
US8659013Apr 5, 2011Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8659015Feb 23, 2012Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8659934Oct 9, 2012Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8659935Jan 25, 2013Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device with transistor having oxide semiconductor channel formation region
US8659941Nov 22, 2010Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory cell having an oxide semiconductor transistor and erasable by ultraviolet light
US8659957Feb 23, 2012Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of driving semiconductor device
US8664036Dec 15, 2010Mar 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8664097Aug 30, 2011Mar 4, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8664118Jul 2, 2012Mar 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8664652Dec 21, 2010Mar 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8664653Mar 1, 2011Mar 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8664658May 5, 2011Mar 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8665403May 16, 2011Mar 4, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8669148Aug 13, 2013Mar 11, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8669556Nov 30, 2011Mar 11, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8669781May 25, 2012Mar 11, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8670015Jul 16, 2012Mar 11, 2014Canon Kabushiki KaishaSemiconductor member, semiconductor article manufacturing method, and LED array using the manufacturing method
US8673426Jun 21, 2012Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Driver circuit, method of manufacturing the driver circuit, and display device including the driver circuit
US8674351Dec 22, 2011Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and semiconductor memory device
US8674354Sep 13, 2012Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Display device with an oxide semiconductor including a crystal region
US8674738May 17, 2012Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8674972Sep 2, 2011Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8675382Jan 31, 2012Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Programmable LSI
US8675394Jul 27, 2011Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device with oxide semiconductor transistor
US8679986Sep 24, 2011Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing display device
US8680520Nov 18, 2010Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8680521Jan 30, 2013Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8680522Mar 15, 2013Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor film and semiconductor device
US8680529May 3, 2012Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8680679Mar 1, 2011Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8681533Apr 23, 2012Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Memory circuit, signal processing circuit, and electronic device
US8685787Aug 17, 2011Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8686416Mar 15, 2012Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor film and semiconductor device
US8686417Jul 23, 2012Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor device formed by using multi-tone mask
US8686425Aug 14, 2012Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8686486Mar 21, 2012Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Memory device
US8686750May 5, 2011Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Method for evaluating semiconductor device
US8687411Jan 6, 2012Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Memory device, semiconductor device, and detecting method for defective memory cell in memory device
US8687416Dec 23, 2011Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Signal processing circuit comprising buffer memory device
US8692243Apr 11, 2011Apr 8, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8692579May 15, 2012Apr 8, 2014Semiconductor Energy Laboratory Co., Ltd.Circuit and method of driving the same
US8692823Jul 29, 2011Apr 8, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and driving method of the same
US8693617May 10, 2013Apr 8, 2014Semiconductor Energy Laboratory Co., Ltd.Pulse signal output circuit and shift register
US8697488Aug 15, 2013Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8698138Dec 13, 2012Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor film on amorphous insulating surface
US8698143Aug 6, 2012Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Display device
US8698155Jun 24, 2013Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Display device
US8698214Oct 18, 2012Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8698219Jan 11, 2011Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device having a low off state current and high repeatability
US8698521May 15, 2012Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8698717Dec 15, 2010Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and driving method thereof
US8698970Jul 11, 2013Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and method for manufacturing the same
US8703531Feb 25, 2011Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of oxide semiconductor film and manufacturing method of transistor
US8704216Feb 17, 2010Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8704218Oct 26, 2010Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having an oxide semiconductor film
US8704219Mar 25, 2011Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8704221Dec 17, 2012Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8704222Jul 8, 2013Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Field effect transistor
US8704267Oct 15, 2009Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Light-emitting display device
US8704806Dec 6, 2010Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and driving method thereof
US8705267Nov 30, 2011Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Integrated circuit, method for driving the same, and semiconductor device
US8705292May 8, 2012Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Nonvolatile memory circuit with an oxide semiconductor transistor for reducing power consumption and electronic device
US8709864Nov 3, 2010Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor element and semiconductor device, and deposition apparatus
US8709889May 15, 2012Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and manufacturing method thereof
US8709920Feb 16, 2012Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8709922Apr 17, 2012Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8710499Feb 19, 2013Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Transistor and display device
US8710762Jun 7, 2011Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.DC/DC converter, power supply circuit, and semiconductor device
US8711312Apr 8, 2011Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8711314Mar 11, 2013Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8711623Mar 22, 2013Apr 29, 2014Semicondoctor Energy Laboratory Co., Ltd.Memory device and semiconductor device
US8716061Dec 18, 2012May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8716073Jul 12, 2012May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Method for processing oxide semiconductor film and method for manufacturing semiconductor device
US8716646Oct 4, 2011May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Photoelectric conversion device and method for operating the same
US8716708Sep 25, 2012May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8716712Feb 15, 2011May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8717806Jan 3, 2012May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Storage element, storage device, signal processing circuit, and method for driving storage element
US8718224Jul 30, 2012May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Pulse signal output circuit and shift register
US8723173Sep 22, 2010May 13, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, power circuit, and manufacturing method of semiconductor device
US8723176Jan 28, 2013May 13, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8724407Mar 23, 2012May 13, 2014Semiconductor Energy Laboratory Co., Ltd.Signal processing circuit
US8728860Aug 17, 2011May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8728883Nov 16, 2011May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8729545Apr 24, 2012May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8729546Jul 25, 2012May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8729547Dec 26, 2012May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8729550Jul 14, 2010May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8729613Oct 11, 2012May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8729938May 16, 2012May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Phase locked loop and semiconductor device using the same
US8730416Dec 1, 2011May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8730730Jan 24, 2012May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Temporary storage circuit, storage device, and signal processing circuit
US8735884Oct 1, 2012May 27, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including oxide semiconductor
US8735892Dec 23, 2011May 27, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device using oxide semiconductor
US8736371May 10, 2012May 27, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having transistors each of which includes an oxide semiconductor
US8737109Aug 23, 2011May 27, 2014Semiconductor Energy Laboratory Co., Ltd.Memory device and semiconductor device
US8741702Oct 20, 2009Jun 3, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8742422Aug 30, 2010Jun 3, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8742544Feb 19, 2013Jun 3, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8742804May 17, 2012Jun 3, 2014Semiconductor Energy Laboratory Co., Ltd.Divider circuit and semiconductor device using the same
US8743590Apr 5, 2012Jun 3, 2014Semiconductor Energy Laboratory Co., Ltd.Memory device and semiconductor device using the same
US8748215Nov 22, 2010Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US8748223Sep 23, 2010Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing oxide semiconductor film and method for manufacturing semiconductor device
US8748224Aug 4, 2011Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8748240Dec 13, 2012Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8748241Dec 17, 2012Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8748880Nov 19, 2010Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with oxide semiconductor
US8748881Nov 22, 2010Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8748886Jun 26, 2012Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8748887Sep 13, 2012Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8748889Jul 22, 2011Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
US8749930Jan 26, 2010Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Protection circuit, semiconductor device, photoelectric conversion device, and electronic device
US8750022Apr 4, 2011Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and semiconductor device
US8750023Sep 12, 2011Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8753491Nov 12, 2010Jun 17, 2014Semiconductor Energy Laboratory Co., Ltd.Method for packaging target material and method for mounting target
US8753928Mar 7, 2012Jun 17, 2014Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing semiconductor device
US8754409Mar 23, 2012Jun 17, 2014Semiconductor Energy Laboratory Co., Ltd.Field-effect transistor, and memory and semiconductor circuit including the same
US8754693Mar 1, 2013Jun 17, 2014Semiconductor Energy Laboratory Co., Ltd.Latch circuit and semiconductor device
US8754839Nov 1, 2011Jun 17, 2014Semiconductor Energy Laboratory Co., Ltd.Method for driving display device
US8759132Dec 3, 2012Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8759167Nov 29, 2012Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8759206Jun 4, 2013Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8759820Aug 9, 2011Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8759829Aug 14, 2012Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising oxide semiconductor layer as channel formation layer
US8759917 *Dec 28, 2010Jun 24, 2014Samsung Electronics Co., Ltd.Thin-film transistor having etch stop multi-layer and method of manufacturing the same
US8760442Feb 17, 2011Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and E-book reader provided therewith
US8760903Mar 5, 2012Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Storage circuit
US8760931Sep 23, 2013Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8765522Nov 22, 2010Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US8766250Nov 19, 2010Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Thin film transistor
US8766252Jun 23, 2011Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising an oxide semiconductor
US8766253Aug 24, 2011Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8766255Mar 13, 2012Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor device including gate trench and isolation trench
US8766329Jun 14, 2012Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and a method for manufacturing the same
US8766338Mar 3, 2011Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including photosensor and transistor having oxide semiconductor
US8766608Oct 21, 2010Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Voltage regulator circuit and semiconductor device, including transistor using oxide semiconductor
US8767159Apr 20, 2012Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8767442Sep 12, 2011Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including memory cell array
US8767443Sep 19, 2011Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and method for inspecting the same
US8772093Dec 18, 2012Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8772094Nov 20, 2012Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8772160Feb 17, 2011Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor element and deposition apparatus
US8772701May 23, 2011Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Photodetector and display device with light guide configured to face photodetector circuit and reflect light from a source
US8772768Dec 20, 2011Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing
US8772769Oct 5, 2012Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8772771Apr 25, 2013Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8772784Feb 21, 2013Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including pair of electrodes and oxide semiconductor film with films of low conductivity therebetween
US8772849Mar 2, 2012Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8773173Dec 13, 2012Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, image display device, storage device, and electronic device
US8773906Jan 24, 2012Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Memory circuit
US8778729Jul 28, 2011Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8779418Oct 7, 2010Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8779420 *Nov 23, 2012Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8779432Jan 20, 2012Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8779433May 25, 2011Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8779479Feb 28, 2013Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8779488Apr 10, 2012Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8779799May 9, 2012Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Logic circuit
US8780614Feb 1, 2012Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8785241Jul 1, 2011Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8785242Sep 13, 2011Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8785258Dec 11, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8785265Nov 26, 2013Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8785266Jan 9, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8785923Apr 17, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8785926Apr 11, 2013Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8785928May 30, 2013Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8785929Jun 25, 2013Jul 22, 2014Semiconductor Energy Laboratory Co. Ltd.Semiconductor device and method for manufacturing the same
US8785933Feb 23, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8786311Oct 22, 2013Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8786588Feb 18, 2011Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and driving method thereof
US8787073Aug 23, 2011Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Signal processing circuit and method for driving the same
US8787083Feb 3, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Memory circuit
US8787084Mar 26, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method thereof
US8787102May 17, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Memory device and signal processing circuit
US8790942Feb 7, 2013Jul 29, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing display device
US8790960Apr 13, 2011Jul 29, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8790961Dec 17, 2012Jul 29, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8791456Mar 15, 2013Jul 29, 2014Semiconductor Energy Laboratory Co. Ltd.Non-linear element, display device including non- linear element, and electronic device including display device
US8791458Nov 21, 2013Jul 29, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8791516May 16, 2012Jul 29, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8791529Apr 2, 2013Jul 29, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including gate and conductor electrodes
US8792260Sep 15, 2011Jul 29, 2014Semiconductor Energy Laboratory Co., Ltd.Rectifier circuit and semiconductor device using the same
US8792284Aug 2, 2011Jul 29, 2014Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor memory device
US8796078May 26, 2010Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8796681Sep 4, 2012Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8796682Nov 1, 2012Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing a semiconductor device
US8796683Dec 17, 2012Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8796785Jan 12, 2011Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including switch electrically connected to signal line
US8797487Sep 7, 2011Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Transistor, liquid crystal display device, and manufacturing method thereof
US8797785Nov 10, 2011Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8797788Apr 18, 2012Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8802493Sep 6, 2012Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of oxide semiconductor device
US8802515Nov 4, 2011Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8803142Oct 19, 2010Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8803143Oct 12, 2011Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Thin film transistor including buffer layers with high resistivity
US8803146Feb 11, 2013Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8803149May 17, 2012Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Thin-film transistor device including a hydrogen barrier layer selectively formed over an oxide semiconductor layer
US8803154Feb 10, 2014Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and method for manufacturing the same
US8803164Jul 29, 2011Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Solid-state image sensing device and semiconductor display device
US8803559Apr 23, 2012Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor circuit having switching element, capacitor, and operational amplifier circuit
US8803589Jan 3, 2013Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Analog circuit and semiconductor device
US8804396Oct 22, 2013Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8804405Jun 11, 2012Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Memory device and semiconductor device
US8809115Aug 11, 2011Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8809154Dec 20, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8809850Dec 8, 2010Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having switching transistor that includes oxide semiconductor material
US8809851May 5, 2011Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8809852Nov 23, 2011Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
US8809853Mar 1, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8809854Apr 13, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8809855Oct 15, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8809856Mar 5, 2013Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8809870Jan 20, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8809927Jan 26, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8809928Apr 25, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, memory device, and method for manufacturing the semiconductor device
US8809992Jan 23, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8811064Jan 6, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device including multilayer wiring layer
US8811066Mar 8, 2013Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and driving method thereof
US8811067Feb 19, 2014Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8815640Oct 16, 2012Aug 26, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8816344 *May 2, 2011Aug 26, 2014Samsung Display Co., Ltd.Thin-film transistor and organic light-emitting display device including the same
US8816349Oct 5, 2010Aug 26, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising oxide semiconductor layer
US8816425Nov 16, 2011Aug 26, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8816469Jan 24, 2011Aug 26, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising protection circuit with oxide semiconductor
US8816662May 17, 2011Aug 26, 2014Semiconductor Energy Laboratory Co., Ltd.DC-DC converter, semiconductor device and display device
US8817009Jan 13, 2011Aug 26, 2014Semiconductor Energy Laboratory Co., Ltd.Method for driving display device and liquid crystal display device
US8817516Jan 29, 2013Aug 26, 2014Semiconductor Energy Laboratory Co., Ltd.Memory circuit and semiconductor device
US8817527May 9, 2012Aug 26, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8822264Jan 23, 2012Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the semiconductor device
US8822989Sep 13, 2012Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8822990Jan 28, 2013Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8822991Jan 31, 2013Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Transistor and method for manufacturing the transistor
US8823074Aug 1, 2013Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor element, semiconductor device, and method for manufacturing the same
US8823082Aug 9, 2011Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8823092Nov 16, 2011Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8823439Dec 28, 2012Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with oxide semiconductor
US8823754Apr 1, 2011Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and method for driving the same
US8824192Apr 25, 2012Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8824193May 11, 2012Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor storage device
US8824194May 16, 2012Sep 2, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving the same
US8828794Mar 7, 2012Sep 9, 2014Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing semiconductor device
US8828811Apr 21, 2011Sep 9, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device comprising steps of forming oxide semiconductor film, performing heat treatment on the oxide semiconductor film, and performing oxygen doping treatment on the oxide semiconductor film after the heat treatment
US8829512Dec 20, 2011Sep 9, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8829528Nov 21, 2012Sep 9, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including groove portion extending beyond pixel electrode
US8829586Jan 26, 2011Sep 9, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device having oxide semiconductor layer
US8830661Jan 13, 2011Sep 9, 2014Semiconductor Energy Laboratory Co., Ltd.Portable electronic device
US8835214Aug 30, 2011Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Sputtering target and method for manufacturing semiconductor device
US8835917Aug 30, 2011Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, power diode, and rectifier
US8835918Sep 10, 2012Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8835920Apr 4, 2013Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8835921Feb 27, 2014Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor film and semiconductor device
US8836555Jan 14, 2013Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Circuit, sensor circuit, and semiconductor device using the sensor circuit
US8836626Jun 28, 2012Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving the same
US8837202Sep 20, 2011Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and method for driving the same
US8837203May 9, 2012Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8837232Jul 12, 2013Sep 16, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8841165Aug 27, 2013Sep 23, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8841661Feb 5, 2010Sep 23, 2014Semiconductor Energy Laboratory Co., Ltd.Staggered oxide semiconductor TFT semiconductor device and manufacturing method thereof
US8841662Nov 2, 2010Sep 23, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8841664Feb 24, 2012Sep 23, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8841675Sep 11, 2012Sep 23, 2014Semiconductor Energy Laboratory Co., Ltd.Minute transistor
US8841710Jul 11, 2012Sep 23, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US20110163310 *Dec 28, 2010Jul 7, 2011Samsung Electronics Co., Ltd.Thin-film transistor having etch stop multi-layer and method of manufacturing the same
US20110287593 *May 13, 2011Nov 24, 2011Semiconductor Energy Laboratory Co., Ltd.Method for forming semiconductor film and method for manufacturing semiconductor device
US20110309355 *Jun 10, 2011Dec 22, 2011Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US20120091452 *Mar 10, 2010Apr 19, 2012Sharp Kabushiki KaishaOxide semiconductor, thin film transistor array substrate and production method thereof, and display device
US20120138933 *May 2, 2011Jun 7, 2012Samsung Mobile Display Co., Ltd.Thin-film transistor and organic light-emitting display device including the same
US20130157393 *Feb 19, 2013Jun 20, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method of the same
US20130277672 *Jun 20, 2013Oct 24, 2013Tokyo Institute Of TechnologyAmorphous oxide and field effect transistor
WO2011145468A1 *Apr 27, 2011Nov 24, 2011Semiconductor Energy Laboratory Co., Ltd.Memory device and semiconductor device
Classifications
U.S. Classification257/72
International ClassificationH01L29/04
Cooperative ClassificationH01L29/7869
European ClassificationH01L29/786K
Legal Events
DateCodeEventDescription
Jan 5, 2007ASAssignment
Owner name: CANON KABUSHIKI KAISHA, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAYASHI, RYO;SANO, MASAFUMI;ABE, KATSUMI;AND OTHERS;REEL/FRAME:018762/0186
Effective date: 20061219