Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070122998 A1
Publication typeApplication
Application numberUS 11/698,558
Publication dateMay 31, 2007
Filing dateJan 26, 2007
Priority dateSep 28, 2004
Also published asUS7179719, US7183179, US7659582, US20060068565, US20060073678
Publication number11698558, 698558, US 2007/0122998 A1, US 2007/122998 A1, US 20070122998 A1, US 20070122998A1, US 2007122998 A1, US 2007122998A1, US-A1-20070122998, US-A1-2007122998, US2007/0122998A1, US2007/122998A1, US20070122998 A1, US20070122998A1, US2007122998 A1, US2007122998A1
InventorsSteve Droes, Masao Moriguchi, Yutaka Takafuji
Original AssigneeSharp Laboratories Of America, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Active silicon device on a cleaved silicon-on-insulator substrate
US 20070122998 A1
Abstract
A system and method for hydrogen (H) exfoliation are provided for attaching silicon-on-insulator (SOI) fabricated circuits to carrier substrates. The method comprises: providing a SOI substrate, including a silicon (Si) active layer and buried oxide (BOX) layer overlying a Si substrate; forming a circuit in the Si active layer; forming a blocking mask over selected circuit areas; implanting H in the Si substrate; annealing; removing the blocking mask; in response to the H implanting, forming a cleaving plane in the Si substrate; bonding the circuit the top oxide layer to the carrier substrate; and, cleaving the Si substrate. More specifically, the cleaving plane is formed along a horizontal peak concentration (Rp) H layer in the Si substrate and along the buried oxide layer interface.
Images(7)
Previous page
Next page
Claims(15)
1-18. (canceled)
19. An active silicon (Si) device cleaved from a silicon-on-insulator (SOI) substrate, the active Si device comprising:
a Si substrate with a cleaving plane surface and a bottom surface;
a SOI substrate, including a Si active layer and buried oxide (BOX) layer overlying the Si substrate bottom surface; and,
a circuit formed in the Si active layer;
20. The active Si device of claim 19 wherein the circuit in the Si active area includes a channel region and regions adjacent the channel region; and,
wherein the Si substrate cleaving plane surface includes:
a first thickness surface in areas underlying the Si active layer channel-adjacent areas;
a second thickness surface, where the second thickness is less than the first thickness, in areas underlying the Si active layer channel region; and,
vertical plane surfaces formed between the areas of first and second thickness surfaces.
21. The active Si device of claim 20 wherein the Si substrate first thickness surface includes a peak concentration of hydrogen (H), and the second thickness includes a minimum concentration of H.
22. The active Si device of claim 21 wherein the Si substrate first thickness surface peak concentration of hydrogen is in the range of 5×1015 to 5×1017.
23. The active Si device of claim 21 wherein the Si substrate first thickness surface includes a peak concentration of boron, and the second thickness surface includes a minimum concentration of boron.
24. The active Si device of claim 23 wherein the Si active layer first thickness surface boron concentration is in the range of 5×1012 to 5×1014 at/cm2.
25. The active Si device of claim 20 further comprising:
a temporary H blocking mask overlying the SI active layer channel region.
26. The active Si device of claim 25 wherein the blocking mask is forming from a photoresist material.
27. The active Si device of claim 20 further comprising:
a planarized oxide layer overlying the active Si layer circuit;
a carrier substrate, made from a material selected from the group including glass, plastic, quartz, and metal foil bonded to the oxide layer.
28. The active Si device of claim 21 wherein the Si substrate first thickness surface includes a peak concentration of an additional element selected group including boron, He, Ne, Ar, and Si, and the second thickness surface includes a minimum concentration of the additional element.
29. The active Si device of claim 19 wherein the circuit in the Si active layer is selected from the group including TFTs, CMOS circuits, and VLSI devices.
30. The active Si device of claim 21 wherein the Si substrate first thickness surface includes a peak concentration of H at a dosage in the range of 2×1016 at/cm2 to 3×1016 at/cm2, He at a dosage in the range of 1×1016 at/cm2 to 3×1016 at/cm2, and the second thickness surface includes a minimum concentration of H and He.
31. The active Si device of claim 19 wherein the Si active layer is formed from single-crystal Si.
32. The active Si device of claim 19 wherein the Si substrate cleaving plane first thickness is in the range of 20 to 1000 nanometers; and,
wherein the Si substrate cleaving plane second thickness is in the range of 0 to 1000 Å.
Description
RELATED APPLICATIONS

This application is a Divisional of a pending application entitled, SYSTEM AND METHOD FOR HYDROGEN EXFOLIATION, invented by Droes et al., U.S. Ser. No. 10/953,938, filed on Sep. 28, 2004, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention generally relates to integrated circuit (IC) and liquid crystal display (LCD) fabrication and, more particularly, to a method for the transfer of partially completed very-large-scale integration (VLSI) circuits from single crystal silicon substrates to glass panels, for the production of flat panel displays.

2. Description of the Related Art

There is broad agreement in the flat panel display (FPD) industry that system-on-glass (SOG) technology is a natural evolutionary step for flat panel displays, especially for mobile devices. In fact, SOG is a natural confluence of display and microprocessor evolution because integration is a proven solution for greatly reducing costs, while improving the compactness and reliability of electrical systems.

Display modules have received some enhanced functionality, like display drivers and analog-to-digital converters, thanks to low-temperature polysilicon (LTPS) technology. Conventionally, the best means for achieving adequate LTPS performance for SOG devices at a competitive cost is the crystallization of a thin amorphous layer of silicon with a laser beam. Unfortunately, this approach remains relatively expensive, even years after being introduced to LCD production. Moreover, even if polysilicon thin film transistors (TFTs) could be efficiently produced using this method, it is unlikely that they will have sufficient capability to realize some sophisticated functions like CPU operations and digital signal processing. Finally, the steadiness of drive currents produced by poly-Si TFTs may be inadequate for new technologies such organic electroluminescent displays.

In short, the convolution between cost and performance of polysilicon devices still pales compared to that of single-crystal silicon (c-Si). The trouble is in creating quality thin films of c-Si on transparent or flexible substrates, which usually are made of materials other than silicon. Other solutions to this hybrid field problem include Fluidic-Self-Assembly™ (FSA) by Alien Technology. FSA works fairly well for plastic substrates and semiconductor blocks thicker than 50 microns. Unfortunately, FSA placement depends on random probability and gravity. Because the probability of successful placement is small (<<20%), a large amount of blocks are needed. Also, as the blocks get smaller, Brownian motion becomes more disruptive to precise placement and more time is required for settlement. Finally, if glass substrates are desired, then another problem is the efficient etching of precise-sized holes. Other rapid assembly techniques, like capillary self-assembly, still require fluid, which usually demands use of surfactants, and remain susceptible to Brownian motion.

SOITEC and other researchers have developed and refined a means of efficiently creating thin films of c-Si by ion-cutting with a high dose hydrogen implantation. In related work, Joly et al. have extended the ion-cutting process (Smart-Cut) to produce devices on one substrate, and transfer these devices to a different substrate. While their work describes a process for transferring the devices, there is little discussion regarding the impact of high dose hydrogen implantation on device performance. It is acknowledged by many that the required large doses of hydrogen (˜5e16 atoms/cm2) can result in highly defective regions in the transferred silicon films.

FIG. 1 is a diagram of a hydrogen-induced cleaving process using a hydrogen blocking mask (prior art). To address some of the problems associated with the use of hydrogen, Bruel et al., describe the use of a blocking mask to protect active silicon regions from damage during the hydrogen implant. However, while blocking the channel areas during the hydrogen implant prevents damage, the subsequent transfer of the blocked regions (areas without H+ implant) is problematic. It is difficult to cleave the active Si regions from the underlying Si substrate in any reliable or predictable manner. Therefore, this process has not proved to be practical for large-scale fabrication processes, or for the transfer of very large active Si areas, such as VLSI circuits with a plurality of blocked areas.

It would be advantageous if a process existed for placing partially completed VLSI crystalline silicon devices onto non-silicon substrates for the purpose of making large area devices, especially display systems, such as display matrices, complementary signal processes, and control circuitry.

It would be advantageous if the above-mentioned transfer process included the use of blocking masks to prevent damage to sensitive areas during H+ implant, while permitting those areas to be transferred to another substrate via wafer bonding and cleaving.

It would be advantageous if the heat load of above-mentioned transfer process could be accommodated by plastic substrates, including PET materials.

SUMMARY OF THE INVENTION

This application describes a process for partially, or completely fabricating single-crystalline devices on non-silicon, heat sensitive substrates. The method avoids the use of an intermediate substrate for the transfer of devices, and avoids the need for post-transfer thinning of active silicon layers. The process provides a means for transferring devices with more than 1 layer of metal. The process permits a blocking mask to be used, to prevent damage to active channel regions from H+ implants. Further, the method permits high temperature processing to be completed on silicon substrates and then transferred to low temperature substrate such as glass or plastic.

Accordingly, a hydrogen (H) exfoliation method is provided for attaching silicon-on-insulator (SOI) fabricated circuits to carrier substrates. The method comprises: providing a SOI substrate, including a silicon (Si) active layer and buried oxide (BOX) layer overlying a Si substrate; forming a circuit in the Si active layer, such as a TFT; forming a blocking mask over selected circuit areas, such as the TFT gate; implanting H in the Si substrate; annealing; removing the blocking mask; depositing a top oxide layer overlying the circuit; planarizing the top oxide layer; in response to the H implanting, forming a cleaving plane in the Si substrate; bonding the circuit the top oxide layer to the carrier substrate; and, cleaving the Si substrate.

More specifically, forming a cleaving plane in the Si substrate includes forming a horizontal peak concentration (Rp) H layer in a mask non-underlying area in the Si substrate. Then, cleaving the Si substrate includes: cleaving a first region along the horizontal Rp layer in the mask non-underlying area in the Si substrate; cleaving a second region along a horizontal interface between the buried oxide layer and Si substrate; and, cleaving vertically between the first and second regions.

Using this process, the circuit in the Si active layer can be formed at process temperatures greater than some critical temperature, and the circuit can be subsequently bonded to a carrier substrate, such as glass or plastic, that is sensitive to temperatures greater than the critical temperature.

Additional details of the above-described method and an active Si layer cleaved from an SOI substrate are provided below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a hydrogen-induced cleaving process using a hydrogen blocking mask (prior art).

FIG. 2 is a partial cross-sectional view of an active silicon (Si) device cleaved from a silicon-on-insulator (SOI) substrate.

FIGS. 3 through 10 are partial cross-sectional views depicting steps in the fabrication of the active Si device of FIG. 2.

FIGS. 11 through 13 are plan and partial cross-sectional views providing some additional process details.

FIG. 14 is a flowchart illustrating a hydrogen (H) exfoliation method for attaching silicon-on-insulator (SOI) fabricated circuits to carrier substrates.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 2 is a partial cross-sectional view of an active silicon (Si) device cleaved from a silicon-on-insulator (SOI) substrate. The active Si device 200 comprises a Si substrate 202 with a cleaving plane surface 204 and a bottom surface 206. A SOI substrate 208, including a Si active layer 210 and buried oxide (BOX) layer 212 overlies the Si substrate bottom surface 206. A circuit 214 is formed in the Si active layer 210. The active layer 210 can be single-crystal or polycrystalline Si. In this case, the circuit 214 is a thin-film transistor with a gate 216, source/drain (S/D) areas 218, and a channel region 220 adjacent the S/D regions 218. With a TFT circuit 214, it is desirable that the hydrogen (H) used in the cleaving process be kept from diffusing into the channel region 220, as it degrades transistor electrical performance. Although a transistor circuit is shown as an example, the cleaved structure has application to any sensitive semiconductor region that must be kept hydrogen free. For example, the circuit 214 in the Si active layer 210 may also be CMOS circuits, VLSI devices, or a TFT integrated into CMOS or VLSI devices.

The Si substrate cleaving plane surface includes a first thickness surface 204 a in areas underlying the Si active layer channel-adjacent areas, for example the S/D areas 218. A second thickness surface 204 b, where the second thickness 222 is less than the first thickness 224, is formed in areas underlying the Si active layer channel region 220. Vertical plane surfaces 204 c are formed between the areas of the first and second thickness surfaces 204 a and 204 b. Also shown is a third thickness surface 204 d underlying the Si active layer field regions 226, adjacent the S/D areas 218. Vertical plane surfaces 204 e are formed between the areas of the second and third thickness surfaces 204 b and 204 d. As shown, the second thickness 222 is approximately zero. That is, the second thickness surface 204 b is formed on the surface 230 of the BOX. In other aspects, the second thickness 222 is in the range of 0 to 1000 Å. The first thickness 224 is in the range of 20 to 1000 nanometers (nm), depending on a variety of factors such as SOI thickness 240, dosage, implanting species, and implantation times.

As explained in greater detail below, a H-blocking mask temporarily overlies the SI active layer channel region 220, and more directly overlies the gate 216 (see FIG. 5). The blocking mask prevents the incorporation of H into the channel region 220 during the implantation process. Alternately stated, the Si substrate first thickness surface 204 a includes a peak concentration of hydrogen (H), while the second thickness surface 204 b includes a minimum concentration of H, typically none (zero), see FIG. 5. The Si substrate first thickness surface 204 a peak concentration of hydrogen is in the range of 5×1015 to 5×1017.

In other aspects, the Si substrate first thickness surface 204 a includes a peak concentration of an additional element such as boron He, Ne, Ar, or Si, while the second thickness surface 204 b includes a minimum concentration of the additional element, typically none (zero). In the case of boron, the Si active layer first thickness surface 204 a boron concentration is in the range of 5×1012 to 5×1014 at/cm2. In the case of He, the Si substrate first thickness surface 204 a includes a peak concentration of H at a dosage in the range of 2×1016 at/cm2 to 3×1016 at/cm2 and He at a dosage in the range of 1×1016 at/cm2 to 3×1016 at/cm2. Again, the second thickness surface 204 b includes a minimum (typically zero) concentration of H and He.

A planarized oxide layer 240 overlies the active Si layer circuit 214. A carrier substrate 242, made from a material such as glass, plastic, quartz, and metal foil is bonded to the oxide layer 240. Alternately, the carrier substrate can be any semiconductor film or material that is sensitive to single crystal active circuit fabrication (high temperature) processes. After bonding and cleaving the carrier substrate 242, a planarization process is typically performed to remove the Si cleaving plane 204, down to the BOX surface 230. However, in some aspects the remaining Si is not removed.

Functional Description

FIGS. 3 through 10 are partial cross-sectional views depicting steps in the fabrication of the active Si device of FIG. 2. In FIG. 3, the process begins with a SOI type wafer, including an active silicon layer of desired thickness and buried oxide layer of required thickness. In FIG. 4 the devices are fabricated in accordance to standard VLSI processing (i.e. CMOS, SOI, etc.) techniques. The conventional processes are stopped after activation of source/drain implants or a last high temperature step. In FIG. 5, a blocking mask is patterned to protect channel, and other regions, from hydrogen. Implantation is performed with H+ or H2 to place Rp (a maximum concentration) of hydrogen within the handle silicon substrate. In FIG. 6, processing continues to complete the metal layers. Typically, the temperature of deposition and subsequent processing is kept less than the cleaving temperature of the H+ implanted wafer. A smoothing oxide layer is deposited and planarized with either chemical-mechanical polishing (CMP) or by using spin-on-glass (SOG).

In FIG. 7, the bond wafer (or diced die) is attached to a non-silicon substrate. In FIG. 8, it can be seen that the implanted H+ establishes a cleaving plane at the Rp location. When the bonded wafers (or die) are heated, cleaving results at the Rp location. Where there is no H+ implant (i.e. under the channel) the cleaving will propagate vertically until the buried oxide/silicon oxide layer is reached. Then, the cleaving will proceed laterally at the BOX interface. In FIG. 9, a high temperature annealing process is performed to cleave the handle silicon wafer. In FIG. 10, the remaining silicon is removed using standard reactive ion etch techniques, for example.

The above-described fabrication process uses silicon-on-insulator wafers implanted with H+. For example, this process permits thin film transistors to be fabricated on SIMOX substrates. Photoresist is patterned to block the channel areas of these devices from subsequent H+ implant according to the method described above. After H+ implant, TEOS oxide is deposited and planarized, and the SIMOX wafer (with the TFT's) is bonded to a glass substrate. The bonded pair is then heated to 600° C. to induce cleaving.

FIGS. 11 through 13 are plan and partial cross-sectional views providing some additional process details. In FIG. 11, H+ is implanted into a SOI wafer using a blocking mask to protect the channel area. The bonded pair (SOI substrate/glass substrate) is heated to induce cleaving along H+ layer and buried oxide layer. FIG. 12 shows the cleaving profile, as measured via profilometry, after cleaving. The step height of the underlying silicon layer corresponds with that predicted by simulation (849 nm). In FIG. 13, the top transferred Si layer is etched to remove it. After removing the top silicon layer, the channel region and the buried device layer is now visible. There is a slight depression in the oxide layer due to the silicon etch step that also slightly etches oxide. Note that a silicon layer free of H+ implant damage is obtained, sandwiched by thermal oxide. The structure yields higher performance, as well as greater stability and reliability.

In other aspects (see FIG. 6), the fabrication of the devices can be stopped at gate metal deposition. Instead of producing the first layer of metal, the devices can be transferred to the non-silicon substrate with only the gate metal and source/drain activation completed.

In another variation, the implant step can include a boron implant to the same depth as the hydrogen implant. The addition of implanted boron can induce breakage at a much lower temperature, often 200° C. to 300° C., which allows a wider choice of substrates and metals. Other species can be co-implanted to improve the cleaving performance. These other species include He, Ne, Ar, or Si.

In a different aspect, the cleaving step need not be thermally induced. If the bonding strength is stronger than the required cleaving force, the cleaving could be induced by mechanical methods.

In another aspect, the etching process discussed in the explanation of FIG. 10 can be eliminated. Instead, the remaining silicon can be used as a protective layer for subsequent processing. More specifically, in the case of blanket laser crystallization, this silicon layer can act as a thermal sink to prevent dopant redistribution in the source/drain regions during laser crystallization. The buried oxide layer of the original SOI material can be utilized as a basecoat material for subsequent polysilicon processing of hybrid circuits.

In one aspect, instead of using the buried oxide layer in the original SOI substrate, the SOI substrate can be fabricated in an alternative stack layer that allows for easier cleaving. For example, a porous Si layer can be used instead of SOI.

In a different aspect (see FIG. 9), the top silicon layer remaining on the BOX after cleaving can be used as an active device layer for subsequent device fabrication. This structure could be used for 3-D device integration. Further, the overall transfer process can be repeated (i.e. device fabrication on single crystal, then transfer to different substrate) to yield 3-D device integration.

FIG. 14 is a flowchart illustrating a hydrogen (H) exfoliation method for attaching silicon-on-insulator (SOI) fabricated circuits to carrier substrates. Although the method is depicted as a sequence of numbered steps for clarity, no order should be inferred from the numbering unless explicitly stated. It should be understood that some of these steps may be skipped, performed in parallel, or performed without the requirement of maintaining a strict order of sequence. The method starts at Step 300.

Step 302 provides a SOI substrate, including a silicon (Si) active layer and buried oxide (BOX) layer overlying a Si substrate. Step 304 forms a circuit in the Si active layer. For example, TFTs, CMOS circuits, or VLSI devices may be formed. Step 306 forms a blocking mask over selected circuit areas. For example, the mask can be a photoresist material. Step 308 implants H in the Si substrate. Step 312 forms a cleaving plane in the Si substrate in response to the H implanting. Alternately stated, Step 306 forms a blocking mask over selected areas of the Si substrate, and Step 312 prevents the formation of H in the selected areas of the Si substrate, in response to the blocking mask. Step 314 bonds the circuit to a carrier substrate. Step 316 cleaves the Si substrate. In one aspect, Step 318 ion etches, following the cleaving of the Si substrate, and Step 320 removes any remaining Si substrate material.

In one aspect, forming a cleaving plane in the Si substrate in Step 312 includes forming a horizontal peak concentration (Rp) H layer in a mask non-underlying area in the Si substrate. Then, cleaving the Si substrate in Step 316 includes substeps. Step 316 a cleaves a first region along the horizontal Rp layer in the mask non-underlying area in the Si substrate. Step 316 b cleaves a second region along a horizontal interface between the buried oxide layer and Si substrate. Step 316 c cleaves vertically between the first and second regions. The terms “horizontal” and “vertical” are relative and only used for convenience.

In one aspect, forming a circuit in the Si active layer (Step 304) includes forming a thin-film transistor (TFT). Then, forming the blocking mask over selected circuit areas in Step 306 includes forming the blocking mask overlying a TFT gate.

In a different aspect, Step 304 forms the circuit at process temperatures greater than a first temperature. Then, bonding the circuit to a carrier substrate in Step 314 includes bonding to a carrier substrate sensitive to temperatures greater than the first temperature. For example, the carrier substrate may be glass, plastic, quartz, metal foil, or a carrier fabricated with components sensitive to temperatures greater than the first temperature. In one aspect, Step 304 forms the circuit at a (first) temperature greater than 600 degrees C.

In one variation, implanting H in the Si substrate (Step 308) includes substeps (not shown). Step 308 a implants H in a form such as H+ or H2. Step 308 b implants (H) at a maximum energy of 1 MeV. Step 308 c implants at a dosage in the range of 5×1016 to 5×1017.

In another aspect Step 309 a (not shown), following the H implanting, removes the blocking mask. Step 309 b (not shown) deposits a top oxide layer overlying the circuit. Step 309 c (not shown) planarizes the top oxide layer. Then, bonding the circuit to a carrier substrate in Step 314 includes directly bonding the top oxide layer to the carrier substrate.

Typically, the method includes the additional step (Step 310) of annealing the Si substrate. Then, the Si substrate is cleaved (Step 316) in response to the annealing. In one aspect, the annealing temperature is in the range of 400 to 600 degrees C. In another aspect, Step 316 cleaves the Si substrate in response to a mechanical separation process. The mechanical separation process may additionally include the annealing step.

In another aspect, implanting H in the Si substrate (Step 308) may include additional implanting a species such as boron, He, Ne, Ar, or Si. For example, boron can be implanted at a dosage in the range of 5×1012 to 5×1014 at/cm2. Then, Step 310 anneals the Si substrate at a temperature in the range of 200 to 300 degrees C. In another example, H is implanted at a dosage in the range of 2×1016 at/cm2 to 3×1016 at/cm2. In addition, He is implanted at a dosage in the range of 1×1016 at/cm2 to 3×1016 at/cm2.

A method for cleaving active Si circuitry from a Si substrate, for attachment to a temperature sensitive substrate, has been presented. Details of particular materials, temperatures, and implantation species have been provided to illustrate the invention. However, the invention is not limited to merely these examples. Other variations and embodiments of the invention will occur to those skilled in the art.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7767546Jan 12, 2009Aug 3, 2010International Business Machines CorporationLow cost fabrication of double box back gate silicon-on-insulator wafers with built-in shallow trench isolation in back gate layer
US8030174Dec 7, 2009Oct 4, 2011Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing SOI substrate
US8030177 *Nov 10, 2009Oct 4, 2011Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor devices using embrittled layers
US8198172Feb 25, 2009Jun 12, 2012Micron Technology, Inc.Methods of forming integrated circuits using donor and acceptor substrates
US8211780Dec 1, 2008Jul 3, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing SOI substrate
US8227865Mar 31, 2010Jul 24, 2012International Business Machines CorporationLow cost fabrication of double box back gate silicon-on-insulator wafers with built-in shallow trench isolation in back gate layer
US8420455May 12, 2010Apr 16, 2013International Business Machines CorporationGeneration of multiple diameter nanowire field effect transistors
US8445337May 12, 2010May 21, 2013International Business Machines CorporationGeneration of multiple diameter nanowire field effect transistors
US8519479May 12, 2010Aug 27, 2013International Business Machines CorporationGeneration of multiple diameter nanowire field effect transistors
US8587063Nov 6, 2009Nov 19, 2013International Business Machines CorporationHybrid double box back gate silicon-on-insulator wafers with enhanced mobility channels
US8673698Sep 11, 2012Mar 18, 2014International Business Machines CorporationGeneration of multiple diameter nanowire field effect transistors
US8816489May 14, 2012Aug 26, 2014Micron Technology, Inc.Integrated circuit structures, semiconductor structures, and semiconductor die
Classifications
U.S. Classification438/458, 257/E29.295, 257/E21.568
International ClassificationH01L21/30, H01L21/46
Cooperative ClassificationH01L21/76254, H01L29/78603
European ClassificationH01L21/762D8B, H01L29/786A
Legal Events
DateCodeEventDescription
Mar 13, 2013FPAYFee payment
Year of fee payment: 4
Mar 23, 2010ASAssignment
Owner name: SHARP KABUSHIKI KAISHA,JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHARP LABORATORIES OF AMERICA INC.;US-ASSIGNMENT DATABASEUPDATED:20100323;REEL/FRAME:24120/751
Effective date: 20100323
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHARP LABORATORIES OF AMERICA INC.;US-ASSIGNMENT DATABASEUPDATED:20100324;REEL/FRAME:24120/751
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHARP LABORATORIES OF AMERICA INC.;REEL/FRAME:024120/0751