US20070138472A1 - Method for fabricating TFT array substrate - Google Patents

Method for fabricating TFT array substrate Download PDF

Info

Publication number
US20070138472A1
US20070138472A1 US11/642,042 US64204206A US2007138472A1 US 20070138472 A1 US20070138472 A1 US 20070138472A1 US 64204206 A US64204206 A US 64204206A US 2007138472 A1 US2007138472 A1 US 2007138472A1
Authority
US
United States
Prior art keywords
layer
photo
forming
substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/642,042
Other versions
US7611929B2 (en
Inventor
Tzu-Min Yan
Chien-Ting Lai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innolux Corp
Original Assignee
Innolux Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Display Corp filed Critical Innolux Display Corp
Assigned to INNOLUX DISPLAY CORP. reassignment INNOLUX DISPLAY CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAI, CHIEN-TING, YAN, TZU-MIN
Publication of US20070138472A1 publication Critical patent/US20070138472A1/en
Application granted granted Critical
Publication of US7611929B2 publication Critical patent/US7611929B2/en
Assigned to CHIMEI INNOLUX CORPORATION reassignment CHIMEI INNOLUX CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INNOLUX DISPLAY CORP.
Assigned to Innolux Corporation reassignment Innolux Corporation CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CHIMEI INNOLUX CORPORATION
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Definitions

  • the present invention relates to methods of fabricating thin film transistor (TFT) array substrates used in liquid crystal displays (LCDs).
  • TFT thin film transistor
  • a typical liquid crystal display is capable of displaying a clear and sharp image through thousands or even millions of pixels that make up the complete image.
  • the liquid crystal display has thus been applied to various electronic equipment in which messages or pictures need to be displayed, such as mobile phones and notebook computers.
  • a liquid crystal panel is a major component of the LCD.
  • the liquid crystal panel generally includes a thin film transistor (TFT) array substrate, a color filter substrate opposite to the TFT array substrate, and a liquid crystal layer sandwiched between the two substrates.
  • TFT thin film transistor
  • the TFT array substrate 100 includes a plurality of parallel gate lines 110 , and a plurality of parallel data lines 120 perpendicular to the plurality of gate lines 110 .
  • the plurality of gate lines 110 and data lines 120 cross each other to define a plurality of pixel units.
  • Each pixel unit has a thin film transistor (TFT) 130 , a pixel electrode 140 , and a storage capacitance electrode line 150 .
  • the TFT 130 is disposed at an intersection of a corresponding one of the gate lines 110 and a corresponding one of the data lines 120 .
  • the TFT 130 has a gate electrode 131 connected to the gate line 110 , a source electrode 132 connected to the data line 120 , and a drain electrode 133 connected to the pixel electrode 140 .
  • the storage capacitance electrode line 150 is parallel to the gate lines 110 , and forms a storage capacitance with the pixel electrode 140 .
  • the TFT array substrate 100 further includes: a substrate 101 , the gate lines 110 and the storage capacitance electrode line 150 being formed on the substrate 101 ; a gate insulating layer 102 formed on the substrate 101 having the gate lines 110 and the storage capacitance electrode line 150 ; a semiconductor layer 103 formed on the gate insulating layer 102 , the source electrode 132 and the drain electrode 133 being formed on the gate insulating layer 102 and the semiconductor layer 103 ; and a passivation layer 104 formed on the gate insulating layer 102 , the source electrode 132 and the drain electrode 133 .
  • the pixel electrode 140 is formed on the passivation layer 104 , and electrically connects with the drain electrode 133 through a through hole 105 defined in the passivation layer 104 .
  • the pixel electrode 140 is made from Indium Tin Oxide (ITO).
  • ITO Indium Tin Oxide
  • the gate lines 110 electrically connect with an external driving circuit.
  • the gate lines 110 and the storage electrode lines 150 are made from molybdenum (Mo), which can help avoid chemical reaction occurring between the gate lines 110 and the storage electrode lines 150 .
  • a method of manufacturing the TFT substrate 100 includes the following steps (described in relation to a part of the TFT array substrate 100 only): forming a gate metal layer; forming a gate electrode; forming a gate insulating layer and an amorphous silicon (a-Si) and doped a-Si layer; forming a semiconductor layer on the gate insulating layer; forming a source/drain metal layer; forming source/drain electrodes; forming a passivation material layer; forming a passivation layer; forming a transparent conductive layer; and forming a pixel electrode.
  • the method includes five photo-mask processes, each of which is rather complicated and costly.
  • the method for fabricating the TFT array substrate 100 is correspondingly complicated and costly.
  • An exemplary method for fabricating a thin film transistor (TFT) array substrate includes: providing an insulating substrate; forming a plurality of gate electrodes and a plurality of reflective patterns on the insulating substrate using a first photo-mask process; forming a gate insulating layer, an amorphous silicon layer, a doped amorphous silicon layer, and a source/drain metal layer on the insulating substrate having the gate electrodes and the reflective patterns; forming a plurality of source electrodes and a plurality of drain electrodes on the doped amorphous silicon layer; depositing a passivation layer on the source electrodes, the drain electrodes and the gate insulating layer; and forming a pixel electrode on the passivation layer.
  • FIGS. 1 through 15 relate to a method for manufacturing a TFT array substrate according to an exemplary embodiment of the present invention.
  • FIGS. 16 and 17 relate to structure of a conventional TFT array substrate. In the drawings, all the views are schematic.
  • FIG. 1 is a side cross-sectional view relating to a step of providing a substrate and forming a first metal layer, and a second metal layer, and a first photo-resist layer on the substrate.
  • FIG. 2 is a side cross-sectional view relating to a first photo-mask process.
  • FIG. 3 is an isometric view of a photo mask used in the first photo-mask process of FIG. 2 .
  • FIG. 4 is a side cross-sectional view relating to a step of forming a photo-resist layer having different heights.
  • FIG. 5 is a side cross-sectional view of the substrate after the first and second metal layers have been etched.
  • FIG. 6 is a side cross-sectional view of the substrate after the photo-resist layer having different heights has been etched.
  • FIG. 7 is a side cross-sectional view relating to a next step of forming a gate electrode and a reflective pattern.
  • FIG. 8 is a side cross-sectional view relating to a next step of forming a gate insulating layer, and an amorphous silicon (a-Si) and doped a-Si layer, on the substrate.
  • a-Si amorphous silicon
  • FIG. 9 is a side cross-sectional view relating to a next step of forming a semiconductor pattern.
  • FIG. 10 is a side cross-sectional view relating to a next step of forming a source/drain metal layer.
  • FIG. 11 is a side cross-sectional view relating to a next step of forming a source/drain pattern.
  • FIG. 12 is a side cross-sectional view relating to a next step of depositing a passivation layer.
  • FIG. 13 is a side cross-sectional view relating to a next step of forming a passivation pattern.
  • FIG. 14 is a side cross-sectional view relating to a next step of forming a transparent conductive layer.
  • FIG. 15 is a side cross-sectional view relating to a next step of forming a pixel electrode.
  • FIG. 16 is essentially a top plan view of a pixel unit of a conventional TFT array substrate.
  • FIG. 17 is a side cross-sectional view of part of the pixel unit of the TFT array substrate of FIG. 16 , corresponding to line XVII-XVII thereof.
  • a method for manufacturing a thin film transistor (TFT) array substrate includes the following processes. For the sake of simplicity, unless the context indicates otherwise, only formation of a part of the TFT array substrate as shown in FIGS. 1 through 15 is described.
  • an insulating substrate 301 is provided.
  • the substrate 301 may be made from glass or quartz.
  • a first metal layer 311 , a second metal layer 312 , and a first photo-resist layer 341 are sequentially formed on the substrate 301 .
  • the first metal layer 311 may be made from material having high reflectivity, such as aluminum (Al) or an alloy of aluminum and neodymium (Nd).
  • the second metal layer 312 may be made from material including any one or more items selected from the group consisting of molybdenum (Mo), chromium (Cr), and titanium (Ti).
  • a light source (not shown) and a first photo-mask 320 are used to expose the first photo-resist layer 341 .
  • the photo-mask 320 is a slit mask, which has a slit region 322 and a shielding region 321 (as shown in FIG. 3 ).
  • the slit region 322 of the photo-mask 320 has a higher light transmittance ratio than the shielding region 321 . Thus, light energy exiting from the slit region 322 is higher than that exiting from the shielding region 321 .
  • the exposed first photo-resist layer 341 is developed, thereby forming a first photo-resist sub-patternfirst photo-resist sub-pattern.
  • the first photo-resist sub-patternfirst photo-resist sub-pattern has a first photo-resist sub-patternfirst photo-resist sub-pattern 351 corresponding to the slit region 322 , and a second photo-resist sub-patternsecond photo-resist sub-pattern 361 corresponding to the shielding region 321 , as shown in FIG. 4 .
  • the first photo-resist sub-patternfirst photo-resist sub-pattern 351 is thinner than the second photo-resist sub-patternsecond photo-resist sub-pattern 361 .
  • the second metal layer 312 and the first metal layer 311 are etched, thereby forming a first metal layer pattern and a second metal layer pattern, as shown in FIG. 5 .
  • a second etching process is performed in order to etch the first photo-resist sub-patternfirst photo-resist sub-pattern 351 and the second photo-resist sub-patternsecond photo-resist sub-pattern 361 .
  • the first photo-resist sub-patternfirst photo-resist sub-pattern 351 is completely etched away, and the second photo-resist sub-patternsecond photo-resist sub-pattern 361 has a reduced thickness (as shown in FIG. 6 ).
  • the exposed second metal layer 312 is etched a predetermined time.
  • a reflective pattern 350 corresponding to the first photo-resist sub-patternfirst photo-resist sub-pattern 351 is formed, as shown in FIG. 7 .
  • the residual second photo-resist sub-patternsecond photo-resist sub-pattern 361 is then removed by an acetone solution, thereby forming a gate electrode 310 , as shown in FIG. 7 .
  • the substrate 301 is then cleaned and dried.
  • a gate insulating layer 302 is formed on the substrate 301 having the gate electrode 310 and the reflective pattern 350 by a chemical vapor deposition (CVD) process.
  • silane (SiH 4 ) reacts with alkaline air (NH 4 + ) to obtain silicon nitride (SiN x ), a material of the gate insulating layer 302 .
  • An amorphous silicon (a-Si) material layer is deposited on the gate insulating layer 302 by a CVD process.
  • the a-Si layer is doped, thereby respectively forming an a-Si and doped a-Si layer 303 .
  • a second photo-resist layer 342 is deposited on the a-Si and doped a-Si layer 303 .
  • a light source and a photo-mask are used to expose the second photo-resist layer 342 .
  • the exposed second photo-resist layer 342 is developed, thereby forming a second photo-resist sub-patternsecond photo-resist sub-pattern (not shown).
  • the second photo-resist sub-patternsecond photo-resist sub-pattern as a mask, the a-Si and doped a-Si layer 303 is etched, thereby forming a semiconductor pattern 313 .
  • a source/drain metal layer 314 and a third photo-resist layer 343 are sequentially formed on the semiconductor pattern 313 and the gate insulating layer 302 .
  • the source/drain metal layer 314 may be made from material including any one or more items selected from the group consisting of molybdenum alloy and molybdenum.
  • the third photo-resist layer 343 is exposed by a third photo-mask, and then is developed, thereby forming a third photo-resist pattern (not shown).
  • the source/drain metal layer 314 is etched according to the third photo-resist pattern, thereby forming a pattern of the source electrode 332 and the drain electrode 333 .
  • the third photo-resist layer is then removed by an acetone solution. Thereby, the layered and patterned substrate 301 as shown in FIG. 11 is attained.
  • a passivation layer 304 and a fourth photo-resist layer 344 are sequentially formed on the combination of the source electrode 332 , the drain electrode 333 , the semiconductor pattern 313 , and the gate insulating layer 302 .
  • the fourth photo-resist layer 344 is exposed by a fourth photo-mask, and then is developed, thereby forming a fourth photo-resist pattern (not shown).
  • the passivation layer 304 is etched according to the fourth photo-resist pattern, thereby forming a connecting hole 305 in the passivation layer 304 .
  • the fourth photo-resist pattern is then removed by an acetone solution. Thereby, the layered and patterned substrate 301 as shown in FIG. 13 is attained.
  • a transparent conductive layer 306 and a fifth photo-resist layer 345 are sequentially formed on the passivation layer 304 including the connecting hole 305 .
  • the fifth photo-resist layer 345 is exposed by a fifth photo-mask, and then is developed, thereby forming a fifth photo-resist pattern (not shown).
  • the transparent conductive layer 306 is etched according to the fifth photo-resist pattern, thereby forming a pattern of the pixel electrode 308 .
  • the fifth photo-resist pattern is then removed by an acetone solution. Thereby, the layered and patterned substrate 301 as shown in FIG. 15 is attained.
  • the layered and patterned substrate 301 constitutes the TFT array substrate 300 .

Abstract

An exemplary method for fabricating a thin film transistor (TFT) array substrate includes: providing an insulating substrate; forming a plurality of gate electrodes and a plurality of reflective patterns on the insulating substrate using a first photo-mask process; forming a gate insulating layer, an amorphous silicon layer, a doped amorphous silicon layer, and a source/drain metal layer on the insulating substrate having the gate electrodes and the reflective patterns; forming a plurality of source electrodes and a plurality of drain electrodes on the doped amorphous silicon layer; depositing a passivation layer on the source electrodes, the drain electrodes and the gate insulating layer; and forming a pixel electrode on the passivation layer.

Description

    FIELD OF THE INVENTION
  • The present invention relates to methods of fabricating thin film transistor (TFT) array substrates used in liquid crystal displays (LCDs).
  • GENERAL BACKGROUND
  • A typical liquid crystal display (LCD) is capable of displaying a clear and sharp image through thousands or even millions of pixels that make up the complete image. The liquid crystal display has thus been applied to various electronic equipment in which messages or pictures need to be displayed, such as mobile phones and notebook computers. A liquid crystal panel is a major component of the LCD. The liquid crystal panel generally includes a thin film transistor (TFT) array substrate, a color filter substrate opposite to the TFT array substrate, and a liquid crystal layer sandwiched between the two substrates.
  • Referring to FIG. 16, part of a typical TFT array substrate is shown. The TFT array substrate 100 includes a plurality of parallel gate lines 110, and a plurality of parallel data lines 120 perpendicular to the plurality of gate lines 110. The plurality of gate lines 110 and data lines 120 cross each other to define a plurality of pixel units. Each pixel unit has a thin film transistor (TFT) 130, a pixel electrode 140, and a storage capacitance electrode line 150. The TFT 130 is disposed at an intersection of a corresponding one of the gate lines 110 and a corresponding one of the data lines 120. The TFT 130 has a gate electrode 131 connected to the gate line 110, a source electrode 132 connected to the data line 120, and a drain electrode 133 connected to the pixel electrode 140. The storage capacitance electrode line 150 is parallel to the gate lines 110, and forms a storage capacitance with the pixel electrode 140.
  • Referring also to FIG. 17, the TFT array substrate 100 further includes: a substrate 101, the gate lines 110 and the storage capacitance electrode line 150 being formed on the substrate 101; a gate insulating layer 102 formed on the substrate 101 having the gate lines 110 and the storage capacitance electrode line 150; a semiconductor layer 103 formed on the gate insulating layer 102, the source electrode 132 and the drain electrode 133 being formed on the gate insulating layer 102 and the semiconductor layer 103; and a passivation layer 104 formed on the gate insulating layer 102, the source electrode 132 and the drain electrode 133. The pixel electrode 140 is formed on the passivation layer 104, and electrically connects with the drain electrode 133 through a through hole 105 defined in the passivation layer 104.
  • The pixel electrode 140 is made from Indium Tin Oxide (ITO). The gate lines 110 electrically connect with an external driving circuit. The gate lines 110 and the storage electrode lines 150 are made from molybdenum (Mo), which can help avoid chemical reaction occurring between the gate lines 110 and the storage electrode lines 150.
  • A method of manufacturing the TFT substrate 100 includes the following steps (described in relation to a part of the TFT array substrate 100 only): forming a gate metal layer; forming a gate electrode; forming a gate insulating layer and an amorphous silicon (a-Si) and doped a-Si layer; forming a semiconductor layer on the gate insulating layer; forming a source/drain metal layer; forming source/drain electrodes; forming a passivation material layer; forming a passivation layer; forming a transparent conductive layer; and forming a pixel electrode. However, the method includes five photo-mask processes, each of which is rather complicated and costly. Thus, the method for fabricating the TFT array substrate 100 is correspondingly complicated and costly.
  • What is needed, therefore, is a method for fabricating a TFT array substrate that can overcome the above-described problems.
  • SUMMARY
  • An exemplary method for fabricating a thin film transistor (TFT) array substrate includes: providing an insulating substrate; forming a plurality of gate electrodes and a plurality of reflective patterns on the insulating substrate using a first photo-mask process; forming a gate insulating layer, an amorphous silicon layer, a doped amorphous silicon layer, and a source/drain metal layer on the insulating substrate having the gate electrodes and the reflective patterns; forming a plurality of source electrodes and a plurality of drain electrodes on the doped amorphous silicon layer; depositing a passivation layer on the source electrodes, the drain electrodes and the gate insulating layer; and forming a pixel electrode on the passivation layer.
  • Other advantages and novel features will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 through 15 relate to a method for manufacturing a TFT array substrate according to an exemplary embodiment of the present invention. FIGS. 16 and 17 relate to structure of a conventional TFT array substrate. In the drawings, all the views are schematic.
  • FIG. 1 is a side cross-sectional view relating to a step of providing a substrate and forming a first metal layer, and a second metal layer, and a first photo-resist layer on the substrate.
  • FIG. 2 is a side cross-sectional view relating to a first photo-mask process.
  • FIG. 3 is an isometric view of a photo mask used in the first photo-mask process of FIG. 2.
  • FIG. 4 is a side cross-sectional view relating to a step of forming a photo-resist layer having different heights.
  • FIG. 5 is a side cross-sectional view of the substrate after the first and second metal layers have been etched.
  • FIG. 6 is a side cross-sectional view of the substrate after the photo-resist layer having different heights has been etched.
  • FIG. 7 is a side cross-sectional view relating to a next step of forming a gate electrode and a reflective pattern.
  • FIG. 8 is a side cross-sectional view relating to a next step of forming a gate insulating layer, and an amorphous silicon (a-Si) and doped a-Si layer, on the substrate.
  • FIG. 9 is a side cross-sectional view relating to a next step of forming a semiconductor pattern.
  • FIG. 10 is a side cross-sectional view relating to a next step of forming a source/drain metal layer.
  • FIG. 11 is a side cross-sectional view relating to a next step of forming a source/drain pattern.
  • FIG. 12 is a side cross-sectional view relating to a next step of depositing a passivation layer.
  • FIG. 13 is a side cross-sectional view relating to a next step of forming a passivation pattern.
  • FIG. 14 is a side cross-sectional view relating to a next step of forming a transparent conductive layer.
  • FIG. 15 is a side cross-sectional view relating to a next step of forming a pixel electrode.
  • FIG. 16 is essentially a top plan view of a pixel unit of a conventional TFT array substrate.
  • FIG. 17 is a side cross-sectional view of part of the pixel unit of the TFT array substrate of FIG. 16, corresponding to line XVII-XVII thereof.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • A method for manufacturing a thin film transistor (TFT) array substrate according to an exemplary embodiment of the present invention includes the following processes. For the sake of simplicity, unless the context indicates otherwise, only formation of a part of the TFT array substrate as shown in FIGS. 1 through 15 is described.
  • In a first step, referring to FIG. 1, an insulating substrate 301 is provided. The substrate 301 may be made from glass or quartz. A first metal layer 311, a second metal layer 312, and a first photo-resist layer 341 are sequentially formed on the substrate 301. The first metal layer 311 may be made from material having high reflectivity, such as aluminum (Al) or an alloy of aluminum and neodymium (Nd). The second metal layer 312 may be made from material including any one or more items selected from the group consisting of molybdenum (Mo), chromium (Cr), and titanium (Ti).
  • In a second step, referring to FIG. 2, a light source (not shown) and a first photo-mask 320 are used to expose the first photo-resist layer 341. The photo-mask 320 is a slit mask, which has a slit region 322 and a shielding region 321 (as shown in FIG. 3). The slit region 322 of the photo-mask 320 has a higher light transmittance ratio than the shielding region 321. Thus, light energy exiting from the slit region 322 is higher than that exiting from the shielding region 321. Then the exposed first photo-resist layer 341 is developed, thereby forming a first photo-resist sub-patternfirst photo-resist sub-pattern. The first photo-resist sub-patternfirst photo-resist sub-pattern has a first photo-resist sub-patternfirst photo-resist sub-pattern 351 corresponding to the slit region 322, and a second photo-resist sub-patternsecond photo-resist sub-pattern 361 corresponding to the shielding region 321, as shown in FIG. 4. The first photo-resist sub-patternfirst photo-resist sub-pattern 351 is thinner than the second photo-resist sub-patternsecond photo-resist sub-pattern 361. Using the first photo-resist sub-patternfirst photo-resist sub-pattern 351 as a mask, the second metal layer 312 and the first metal layer 311 are etched, thereby forming a first metal layer pattern and a second metal layer pattern, as shown in FIG. 5. After that, a second etching process is performed in order to etch the first photo-resist sub-patternfirst photo-resist sub-pattern 351 and the second photo-resist sub-patternsecond photo-resist sub-pattern 361. By controlling the etching time, the first photo-resist sub-patternfirst photo-resist sub-pattern 351 is completely etched away, and the second photo-resist sub-patternsecond photo-resist sub-pattern 361 has a reduced thickness (as shown in FIG. 6). In addition, using the residual second photo-resist sub-patternsecond photo-resist sub-pattern 361 as a mask, the exposed second metal layer 312 (corresponding to where the first photo-resist sub-patternfirst photo-resist sub-pattern 351 was) is etched a predetermined time. Thereby, a reflective pattern 350 corresponding to the first photo-resist sub-patternfirst photo-resist sub-pattern 351 is formed, as shown in FIG. 7. The residual second photo-resist sub-patternsecond photo-resist sub-pattern 361 is then removed by an acetone solution, thereby forming a gate electrode 310, as shown in FIG. 7. The substrate 301 is then cleaned and dried.
  • In a third step, referring to FIG. 8, a gate insulating layer 302 is formed on the substrate 301 having the gate electrode 310 and the reflective pattern 350 by a chemical vapor deposition (CVD) process. In this process, silane (SiH4) reacts with alkaline air (NH4 +) to obtain silicon nitride (SiNx), a material of the gate insulating layer 302. An amorphous silicon (a-Si) material layer is deposited on the gate insulating layer 302 by a CVD process. The a-Si layer is doped, thereby respectively forming an a-Si and doped a-Si layer 303. A second photo-resist layer 342 is deposited on the a-Si and doped a-Si layer 303.
  • In a fourth step, referring to FIG. 9, a light source and a photo-mask (not shown) are used to expose the second photo-resist layer 342. Then the exposed second photo-resist layer 342 is developed, thereby forming a second photo-resist sub-patternsecond photo-resist sub-pattern (not shown). Using the second photo-resist sub-patternsecond photo-resist sub-pattern as a mask, the a-Si and doped a-Si layer 303 is etched, thereby forming a semiconductor pattern 313.
  • In a fifth step, referring to FIG. 10, a source/drain metal layer 314 and a third photo-resist layer 343 are sequentially formed on the semiconductor pattern 313 and the gate insulating layer 302. The source/drain metal layer 314 may be made from material including any one or more items selected from the group consisting of molybdenum alloy and molybdenum. The third photo-resist layer 343 is exposed by a third photo-mask, and then is developed, thereby forming a third photo-resist pattern (not shown). The source/drain metal layer 314 is etched according to the third photo-resist pattern, thereby forming a pattern of the source electrode 332 and the drain electrode 333. The third photo-resist layer is then removed by an acetone solution. Thereby, the layered and patterned substrate 301 as shown in FIG. 11 is attained.
  • In a sixth step, referring to FIG. 12, a passivation layer 304 and a fourth photo-resist layer 344 are sequentially formed on the combination of the source electrode 332, the drain electrode 333, the semiconductor pattern 313, and the gate insulating layer 302. The fourth photo-resist layer 344 is exposed by a fourth photo-mask, and then is developed, thereby forming a fourth photo-resist pattern (not shown). The passivation layer 304 is etched according to the fourth photo-resist pattern, thereby forming a connecting hole 305 in the passivation layer 304. The fourth photo-resist pattern is then removed by an acetone solution. Thereby, the layered and patterned substrate 301 as shown in FIG. 13 is attained.
  • In a seventh step, referring to FIG. 14, a transparent conductive layer 306 and a fifth photo-resist layer 345 are sequentially formed on the passivation layer 304 including the connecting hole 305. The fifth photo-resist layer 345 is exposed by a fifth photo-mask, and then is developed, thereby forming a fifth photo-resist pattern (not shown). The transparent conductive layer 306 is etched according to the fifth photo-resist pattern, thereby forming a pattern of the pixel electrode 308. The fifth photo-resist pattern is then removed by an acetone solution. Thereby, the layered and patterned substrate 301 as shown in FIG. 15 is attained. The layered and patterned substrate 301 constitutes the TFT array substrate 300.
  • In summary, compared to the above-described conventional method, in the above-described exemplary method for fabricating the TFT array substrate 300, only one photo-mask process is used to form the gate electrode 310 and the reflective pattern 350, thus saving one photo-mask process. Therefore, a simplified method at a reduced cost is attained.
  • It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.

Claims (9)

1. A method for fabricating a thin film transistor (TFT) array substrate, the method comprising:
providing an insulating substrate;
forming a plurality of gate electrodes and a reflective pattern on the insulating substrate using a first photo-mask process;
forming a gate insulating layer, an amorphous silicon layer, a doped amorphous silicon layer, and a source/drain metal layer on the insulating substrate having the gate electrodes and the reflective pattern;
forming a plurality of source electrodes and a plurality of drain electrodes on the doped amorphous silicon layer;
depositing a passivation layer on the source electrodes, the drain electrodes and the gate insulating layer; and
forming a plurality of pixel electrodes on the passivation layer.
2. The method as claimed in claim 1, wherein the photo-mask process for forming the gate electrodes and the reflective pattern comprises coating a photo-resist layer on the insulating substrate, exposing the photo-resist layer using a slit photo-mask, and developing the exposed photo-resist layer to form a photo-resist pattern.
3. The method as claimed in claim 2, wherein the slit photo-mask comprises a plurality of shielding regions and a plurality of slit regions, the shielding regions corresponding to the gate electrodes, and the slit regions corresponding to the reflective pattern.
4. The method as claimed in claim 1, wherein each of the gate electrodes comprises a first metal layer and a second metal layer.
5. The method as claimed in claim 4, wherein the first metal layer is made from a material having high reflectivity.
6. The method as claimed in claim 5, wherein the first metal layer is made from aluminum (Al), or an alloy of aluminum and neodymium (Nd).
7. The method as claimed in claim 4, wherein the second metal layer is made from material including any one or more items selected from the group consisting of molybdenum (Mo), chromium (Cr), and titanium (Ti).
8. The method as claimed in claim 5, wherein the reflective pattern is made of a same material as that of the first metal layer.
9. A thin film transistor comprising:
an insulative substrate;
two metal layers stacked upon said substrate and dimensioned less than said substrate in a direction;
a gate insulating layer directly applied upon both the metal layers and said insulative substrate wherein the gate insulating layer have two chamfered configuration around said metal layers;
a semiconductor pattern essentially having a uniformed thickness and formed upon the gate insulating layer and generally in vertical alignment with the metal layers;
spaced source electrode and drain electrode essentially having a uniformed thickness and applied upon the semiconductor pattern and generally in vertical alignment with the metal layers; and
a passivation layer applied upon the spaced source electrode and drain electrode and filling the gap therebetween.
US11/642,042 2005-12-16 2006-12-18 Method for fabricating TFT array substrate Expired - Fee Related US7611929B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW094144818A TWI285433B (en) 2005-12-16 2005-12-16 Method of manufacturing thin film transistor substrate
TW94144818 2005-12-16

Publications (2)

Publication Number Publication Date
US20070138472A1 true US20070138472A1 (en) 2007-06-21
US7611929B2 US7611929B2 (en) 2009-11-03

Family

ID=38172426

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/642,042 Expired - Fee Related US7611929B2 (en) 2005-12-16 2006-12-18 Method for fabricating TFT array substrate

Country Status (2)

Country Link
US (1) US7611929B2 (en)
TW (1) TWI285433B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160315199A1 (en) * 2013-12-26 2016-10-27 Shenzhen China Star Optoelectronics Technology Co., Ltd Photo mask, thin film transistor and method for manufacturing thin film transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926702A (en) * 1996-04-16 1999-07-20 Lg Electronics, Inc. Method of fabricating TFT array substrate
US6960484B2 (en) * 2002-12-30 2005-11-01 Lg.Philips Lcd Co., Ltd. Method of manufacturing liquid crystal display device
US7468527B2 (en) * 2004-05-27 2008-12-23 Lg Display Co., Ltd. Liquid crystal display device and fabricating method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926702A (en) * 1996-04-16 1999-07-20 Lg Electronics, Inc. Method of fabricating TFT array substrate
US6960484B2 (en) * 2002-12-30 2005-11-01 Lg.Philips Lcd Co., Ltd. Method of manufacturing liquid crystal display device
US7468527B2 (en) * 2004-05-27 2008-12-23 Lg Display Co., Ltd. Liquid crystal display device and fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160315199A1 (en) * 2013-12-26 2016-10-27 Shenzhen China Star Optoelectronics Technology Co., Ltd Photo mask, thin film transistor and method for manufacturing thin film transistor

Also Published As

Publication number Publication date
TWI285433B (en) 2007-08-11
US7611929B2 (en) 2009-11-03
TW200725891A (en) 2007-07-01

Similar Documents

Publication Publication Date Title
US7833813B2 (en) Thin film transistor array panel and method of manufacturing the same
US20120081651A1 (en) Display panel
US7956963B2 (en) Pixel structure for transflective LCD panel having a reflective structure formed in a depression on the TFT substrate
US7167217B2 (en) Liquid crystal display device and method for manufacturing the same
US9281325B2 (en) Array substrate, manufacturing method thereof and display device
JP5007171B2 (en) Thin film transistor array substrate, manufacturing method thereof, and display device
US7491593B2 (en) TFT array substrate and photo-masking method for fabricating same
US7768012B2 (en) LCD pixel array structure
US20080111935A1 (en) Pixel structure and fabricating method thereof
US20080116459A1 (en) Thin film transistor array substrate and method for fabricating same
KR100519372B1 (en) liquid crystal display device and method for fabricating the same
US20140071553A1 (en) Color filter substrate, tft array substrate, manufacturing method of the same, and liquid crystal display panel
US7901951B2 (en) Thin film transistor array substrate and method for fabricating same
US9019462B2 (en) Array substrate and method for manufacturing the same, and display device
US8421096B2 (en) Pixel structure and display panel
US20070090366A1 (en) TFT array substrate and photo-masking method for fabricating same
US7611929B2 (en) Method for fabricating TFT array substrate
US20070249111A1 (en) TFT array substrate and photo-masking method for fabricating same
US6861671B2 (en) Thin film transistor liquid crystal display and fabrication method thereof
US7929070B2 (en) Pixel structures and fabricating methods thereof
US11221532B2 (en) Display substrate, method of manufacturing the same, display panel and display device
KR100492728B1 (en) A liquid crystal display device having partially removed activation layer in drain region and method of fabricating thereof
US20070159564A1 (en) Thin film transistor substrate of liquid crystal display and method for fabricating the same
KR100928491B1 (en) LCD and its manufacturing method
US7989142B2 (en) Photo-masking method for fabricating TFT array substrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: INNOLUX DISPLAY CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAN, TZU-MIN;LAI, CHIEN-TING;REEL/FRAME:018707/0083

Effective date: 20061212

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: CHIMEI INNOLUX CORPORATION, TAIWAN

Free format text: CHANGE OF NAME;ASSIGNOR:INNOLUX DISPLAY CORP.;REEL/FRAME:032672/0685

Effective date: 20100330

Owner name: INNOLUX CORPORATION, TAIWAN

Free format text: CHANGE OF NAME;ASSIGNOR:CHIMEI INNOLUX CORPORATION;REEL/FRAME:032672/0746

Effective date: 20121219

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20211103