Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070173416 A1
Publication typeApplication
Application numberUS 11/336,474
Publication dateJul 26, 2007
Filing dateJan 20, 2006
Priority dateJan 20, 2006
Also published asCA2637734A1, CA2637734C, CA2705597A1, CA2705597C, EP1979433A1, EP1979433B1, US7431088, US20070169938, WO2007083128A1
Publication number11336474, 336474, US 2007/0173416 A1, US 2007/173416 A1, US 20070173416 A1, US 20070173416A1, US 2007173416 A1, US 2007173416A1, US-A1-20070173416, US-A1-2007173416, US2007/0173416A1, US2007/173416A1, US20070173416 A1, US20070173416A1, US2007173416 A1, US2007173416A1
InventorsAlan Moorehead, William Shumway, Bradley Todd
Original AssigneeHalliburton Energy Services, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Well treatment compositions for use in acidizing a well
US 20070173416 A1
Abstract
An improved acidization solution is provided which comprises water and one or more esters or polyesters of hydroxy acid or of glycerol. The solution may include, for example, ethyl lactate and pure water or a brine. The hydrolysis of the esters or polyesters occurs at a slower reaction rate than that of several other known acidization esters, such as diethyleneglycol diformate, at temperatures higher than 60 C. or even higher than 100 C. Thus, the acidization solution may be distributed substantially throughout a region in a well where acidization is required before hydrolysis is completed, despite being exposed to relatively high temperatures. The hydrolysis may result in the slow release of an acid that is capable of consuming all or most of an undesirable substance in the well, e.g., a filter cake.
Images(6)
Previous page
Next page
Claims(24)
1. A well treatment composition for performing acidization in a well, comprising: an ester or polyester of a hydroxy acid and water.
2. The well treatment composition of claim 1, wherein the ester or polyester of the hydroxy acid is capable of undergoing hydrolysis when exposed to a temperature in a range of from about 60 C. to about 150 C.
3. The well treatment composition of claim 1, wherein a half-life of the ester or polyester of the hydroxy acid is effective to allow it to be pumped substantially throughout a region in the well where the acidization is required before hydrolysis of the ester or polyester is completed.
4. The well treatment composition of claim 1, wherein the ester or polyester of the hydroxy acid has a half-life in a range of from about 6 to about 16 hours when hydrolyzed with neutral water at 100 C.
5. The well treatment composition of claim 1, wherein the ester or polyester of the hydroxy acid has a half-life in a range of from about 8 to about 13 hours when hydrolyzed with neutral water at 100 C.
6. The well treatment composition of claim 1, wherein the ester or polyester of the hydroxy acid comprises lactic acid derivatives, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, trilactin, or combinations thereof.
7. The well treatment composition of claim 1, further comprising another type of ester.
8. The well treatment composition of claim 7, wherein the another type of ester comprises diethyleneglycol diformate, diethyleneglycolmonoformate, monoethyleglycoldiformate, monoethyleneglycolmonoformate, or combinations thereof.
9. The well treatment composition of claim 1, wherein the water comprises neutral water or salt water such as a brine.
10. The well treatment composition of claim 1, wherein an amount of the ester or polyester of the hydroxy acid present comprises from about 10% to about 23% by weight or volume of the composition.
11. The well treatment composition of claim 1, wherein the acidization is capable of removing a filter cake from the well.
12. The well treatment composition of claim 1, wherein the acidization is capable of repairing the well.
13. A well treatment composition for performing acidization in a well, comprising: an ester or polyester of a glycerol and water, wherein the composition is substantially absent of a hydrocarbon.
14. The well treatment composition of claim 13, wherein the ester or polyester of the glycerol is capable of undergoing hydrolysis when exposed to a temperature in a range of from about 60 C. to about 150 C.
15. The well treatment composition of claim 13, wherein a half-life of the ester or polyester of the glycerol is effective to allow it to be pumped substantially throughout a region in the well where the acidization is required before hydrolysis of the ester or polyester is completed.
16. The well treatment composition of claim 13, wherein the ester or polyester of the glycerol has a half-life in a range of from about 6 to about 16 hours when hydrolyzed with neutral water at 100 C.
17. The well treatment composition of claim 13, wherein the ester or polyester of the glycerol has a half-life in a range of from about 8 to about 13 hours when hydrolyzed with neutral water at 100 C.
18. The well treatment composition of claim 13, wherein the ester or polyester of the glycerol comprises triacetin, diacetin, monoacetin, tripropionin, trilactin, or combinations thereof.
19. The well treatment composition of claim 13, further comprising another type of ester.
20. The well treatment composition of claim 19, wherein the another type of ester comprises diethyleneglycol diformate, diethyleneglycolmonoformate, monoethyleglycoldiformate, monoethyleneglycolmonoformate, or combinations thereof.
21. The well treatment composition of claim 13, wherein the water comprises neutral water or salt water such as a brine.
22. The well treatment composition of claim 13, wherein an amount of the ester or polyester of the glycerol present comprises from about 10% to about 23% by weight or volume of the composition.
23. The well treatment composition of claim 13, wherein the acidization is capable of removing a filter cake from the well.
24. The well treatment composition of claim 13, wherein the acidization is capable of repairing the well.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention generally relates to hydrocarbon production, and more particularly to well treatment compositions comprising one or more esters or polyesters of hydroxy acid or of glycerol for obtaining controlled acidization in a well.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The following paragraphs contain some discussion, which is illuminated by the innovations disclosed in this application, and any discussion of actual or proposed or possible approaches in this Background section does not imply that those approaches are prior art.
  • [0003]
    Natural resources such as gas, oil, and water residing in a subterranean formation can be recovered by drilling wells into the formation. Well drilling involves drilling a wellbore down to the formation while circulating a drilling fluid through the wellbore. Various types of drilling fluids, also known as drilling muds, have been used in well drilling such as mineral oil-based fluids and synthetic oil-based fluids. Such drilling fluids typically form a thin, slick filter cake on the formation face that provides for successful drilling of the well bore and that helps prevent loss of fluid to the subterranean formation. In the hydrocarbon bearing portions of a formation, drilling fluids that produce filter cakes of cellulose and starch derivatives and sized calcium carbonate are often employed.
  • [0004]
    Several stages may be used to produce oil found in subterranean formations. The first stage, which is known as the primary production stage, allows the oil to flow into a production well (or wells) under natural forces. At first, the natural forces may be sufficient to drive the oil to the surface where it is recovered. However, at some point, pumps may be required to displace the oil from the wellbore to the surface. The primary production stage usually yields only about 5% to 15% of the oil in the reservoir. A secondary recovery operation thus is typically performed to recover additional amounts of the oil from the reservoir. A common secondary recovery operation known as secondary flooding involves injecting a fluid such as water into a so-called injection well (or wells) to drive oil in the formation to the production well (or wells). Secondary flooding usually recovers up to an additional 50% of the original oil in the reservoir. Tertiary recovery operations such as tertiary flooding may also be used to drive the remaining oil from the formation to the production well. Unfortunately, the presence of the filter cake on the face of the subterranean formation may adversely affect the flow of fluid though the injection and production wells. The filter cake may occlude the pore structure of the formation. In the case of the injection wells, particularly in deepwater environments, the injected fluid usually is not flowed back to remove the filter cake left by the drilling fluid. However, the pump pressures (e.g., fracturing pressures) required to inject past the filter cake may be higher than desirable for achieving good sweep efficiency of the oil.
  • [0005]
    A procedure known as acidization has been used for filter cake removal for over a century. In particular, the cellulose of which the filter cake is primarily composed may be decomposed by applying acid to the filter cake. It is believed that the first acidization procedure involved directly injecting strong mineral acids such as hydrochloric acid (HCl) into the well. However, the high reactivity of such strong acids commonly result in the rapid consumption of the acid before it can reach the desired treatment region where the filter cake was located. Further, such acids are highly corrosive and thus attack the metal parts of the well structure, causing irreversible damage to the well.
  • [0006]
    New acidization treatment solutions have been developed to overcome the problems associated with the use of mineral acids alone. For example, one such treatment solution includes hydrochloric acid emulsified in crude oil such that the aqueous phase, i.e. the solution of acid in water, is surrounded by a continuous oil phase emulsifier that prevents the acid from adversely affecting the metal parts of the well structure. See U.S. Pat. No. 1,922,154 to de Groote. A variation on this treatment solution uses a higher concentration of emulsifier to prolong the stability of the emulsion. See U.S. Pat. No. 2,050,932 to de Groote. Another treatment method involves removing any water in contact with the metal parts of the well before introducing HCl gas absorbed in a mineral oil that is practically immiscible with or insoluble in water to insulate the metal of the well from being attacked by the acid. See U.S. Pat. No. 2,206,187 to Herbsman. Yet another method utilizes both an aqueous fluid and a non-aqueous fluid capable of forming or releasing an acid upon dilution with water. In particular, the well may be filled with oil to protect the metal from the acid, followed by pumping the aqueous fluid down to the formation. The non-aqueous fluid containing the acid-forming substance may then be introduced to the well. See U.S. Pat. No. 2,059,459 to Hund. A treatment solution that uses an ester, such as that derived from glycerol, as an emulsifying agent for an aqueous acid in oil is described in U.S. Pat. No. 2,681,889 to Menaul et al. The ester undergoes hydrolysis to break the emulsion and release the acid. A similar solution uses an acid anhydride such as acetic anhydride in a hydrocarbon carrier fluid to release acid upon reaction with water. See U.S. Pat. No. 2,863,832 to Pernine. A treatment solution comprising an anhydrous organic acid, such as formic acid, acetic acid, or propionic acid, in an anhydrous hydrocarbon has also been described in U.S. Pat. No. 2,910,436 to Alhambra et al. Unfortunately, such acids are as likely to be prematurely exhausted as mineral acids before reaching the desired treatment region. All of the above-mentioned patents are incorporated by reference herein.
  • [0007]
    One modern acidization method involves the generation of acids in the wellbore via the action of enzymes and suitable acid precursors. However, this method is limited by the heat tolerance of the particular enzyme being used and the breakdown temperature of the acid precursor. Treatment at high temperatures results in fast acid exhaustion and enzyme deactivation which results in poor filter cake removal. The enzymes and acid precursors thus need to be stored and handled at the well site carefully to avoid being exposed to relatively high temperatures due to heat and sunlight. Another method relies on the triggered release of acid via the lowering of the pH of an aqueous solution comprising an ortho ester to below about 7. Unfortunately, at elevated temperatures this release may occur in a relatively short period of time. Yet another method growing in popularity relies on the time-dependent reaction of certain esters, such as diethyleneglycol diformate, in an aqueous solution to generate acid such as formic acid. The esters currently being used for this purpose hydrolyze at relatively slow rates at temperatures less than 60 C. However, at higher temperatures those esters hydrolyze too quickly to allow the aqueous solution to be adequately dispersed across the entire filter cake before the acid is consumed. The filter cake removal thus may be localized to a proportionately small area when using such methods, further resulting in the premature loss of the acid-generating fluid through pores that have been unclogged by this localized removal. It is therefore desirable to develop an acidization method in which the acid-releasing reaction occurs at a relatively slow rate over a wide temperature range, particularly at relatively high temperatures.
  • Well Treatment Compositions for use in Acidizing a Well
  • [0008]
    Some teachings and advantages found in the present application are summarized briefly below. However, note that the present application may disclose multiple embodiments, and not all of the statements in this section necessarily relate to all of those embodiments. Moreover, none of these statements limit the claims in any way.
  • [0009]
    An improved acidization solution may comprise an aqueous medium and one or more esters or polyesters of a hydroxy acid or of a glycerol. In embodiments in which the solution comprises an ester or polyester of a glycerol, the solution is substantially absent of a hydrocarbon such as an oil. The hydrolysis of such esters or polyesters occurs at a slower reaction rate than that of other known acidization esters, such as diethyleneglycol diformate, at temperatures higher than 60 C. or even higher than 100 C. Thus, the improved acidization solution may be distributed substantially throughout a region in a well where acidization is required before hydrolysis is completed, despite being exposed to relatively high temperatures. The hydrolysis may result in the slow release of an acid that is capable of consuming undesirable substances in the well, e.g., a filter cake, without being concerned that this consumption might be localized. Moreover, the strength of this acid may be greater than that of the acid formed by diethyleneglycol diformate, i.e., formic acid. Accordingly, the use of esters or polyesters of hydroxy acid or of glycerol for downhole acidization procedures provides for the removal of all or most of the filter cake present in the well.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0010]
    FIG. 1 depicts an ester hydrolysis apparatus used in the examples provided below.
  • [0011]
    FIG. 2 illustrates the hydrolysis of various esters described herein and of some control esters in pure water at 100 C.
  • [0012]
    FIG. 3 illustrates the hydrolysis of various acetins in neutral water at 100 C.
  • [0013]
    FIG. 4 illustrates the hydrolysis of butyl formate and butyl lactate in neutral water at 100 C.
  • [0014]
    FIG. 5 illustrates the hydrolysis of ethyl lactate in neutral water and in various brines at 100 C.
  • [0015]
    FIG. 6 illustrates the hydrolysis of methyl-, ethyl-, propyl-, and butyl- lactate esters in neutral water at 100 C.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0016]
    Well treatment compositions, particularly compositions for performing downhole acidization, may include water combined with (a) one or more esters or polyesters of a hydroxy acid, e.g., lactic acid, and/or (b) one or more esters or polyesters of a glycerol in the absence of a hydrocarbon such as an oil. Such esters or polyesters exhibit a relatively high solubility in the water and are capable of undergoing hydrolysis to produce an acid when exposed to a temperature in a range of from about 60 C. to about 150 C. For example, lactate esters or polyesters release lactic acid when hydrolyzed. The relative amounts of the esters or polyesters and the water in the well treatment compositions may be effective to produce an effective amount of acid to remove most or all of a contaminant in the well such as a filter cake. In various embodiments, the amount of the esters or polyesters present in the aqueous treatment composition is in the range of from about 10% to about 23% by weight or volume of the composition.
  • [0017]
    Examples of suitable hydroxy acid esters or polyesters for use in the well treatment compositions include lactic acid derivatives, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, trilactin (a trimester of lactic acid and glycerol), and combinations thereof. Ethyl lactate is considered a particularly good lactate ester due to its ability to hydrolyze over the wide temperature range of from about 60 C. to about 150 C., with its half-life being particularly useful at temperatures ranging from about 80 C. to about 140 C. Further, ethyl lactate is relatively inexpensive and is available worldwide, whereas other esters typically have limited availability. For example, diethyleneglycol diformate has an availability limited to Europe and possibly Africa. Examples of suitable esters or polyesters of glycerol for use in the well treatment compositions include tripropionin (a triester of propionic acid and glycerol), trilactin, and esters of acetic acid and glycerol such as monoacetrin, diacetin, and triacetin. Various combinations of the esters or polyesters of hydroxy acid and/or glycerol also may be employed to adjust the half-life of the hydrolysis reaction.
  • [0018]
    The water contained in the well treatment compositions may be pure (i.e., neutral) water or salt water. In various embodiments, the water may comprise one or more brines capable of forming well treatment compositions having pH values in the range of from about 6 to about 8. Examples of such brines include sodium bromide (NaBr) brine, calcium chloride (CaCl2) brine, sodium formate (NaCOOH) brine, potassium formate (KCOOH) brine, calcium bromide (CaBr2) brine, potassium chloride (KCl) brine, sodium chloride (NaCl) brine, zinc chloride (ZnCl) brine, zinc bromide (ZnBr) brine, and combinations thereof. The choice of brine is usually determined primarily by the weight of fluid desired.
  • [0019]
    In additional embodiments, the well treatment compositions may include one or more other types of esters for adjusting the half-life of the hydrolysis reaction. For example, diethyleneglycol diformate may be employed in a treatment composition along with an ester or polyester of a hydroxy acid or of a glycerol to reduce the half-life thereof. The diethyleneglycol diformate therefore could be used to shorten the completion time of the well. It forms formic acid as a result of hydrolysis and is commercially available from Halliburton Energy Services, Inc. under the trade name of BDF-325 diethyleneglycol diformate. Examples of other esters with which the esters or polyesters described herein may be combined include diethyleneglycolmonoformate, monoethyleneglycoldiformate, monoethyleneglycolmonoformate, and combinations thereof. Similarly, other esters could be added in conjunction with the lactate esters or polyesters described herein to give faster rates of reaction as necessary.
  • [0020]
    The foregoing well treatment compositions may be prepared by mixing the one or more esters or polyesters and any other components with water on-site near the well before the acidization operation is to be performed. Alternatively, the components of the treatment compositions could be mixed off-site and transported on-site for storage until its use; however, the extra space required to accommodate the water, both during transport and during storage, makes this option less desirable. In addition, mixing beforehand would require the components to be kept well below 60 C. to avoid hydrolysis of the ester or polyester prior to its addition to the wellbore.
  • [0021]
    Methods of acidizing a well may be performed by pumping a well treatment composition described herein down the well. The temperatures in the well may be sufficient to cause the hydrolysis reaction between the one or more ester or polyester and the water to occur. For example, the temperatures may be in the range of from about 60 C. to about 150 C. The half-life of the one or more lactate esters or polyesters may be effective to allow the treatment composition to be pumped substantially throughout a region in the well where the acidization is required before the hydrolysis is completed. In various embodiments, the one or more lactate esters or polyesters have half-lives in a range of from about 6 hours to about 16 hours, alternatively from about 8 hours to about 13 hours, or alternatively from about 10 hours to about 11 hours, when hydrolyzed with neutral water at 100 C. Particular examples of the half-lives of various esters of lactic acid and of glycerol are presented in Table 1 below. As used herein, “half-life” refers to the time it takes for half of the original amount of the ester or polyester to react.
    TABLE 1
    Half-Life in Neutral Pseudo First Order
    Water at 100 C. Rate Constant
    Ester (seconds) (sec.−1)
    Triacetin 9,840 7.04 10−5
    Diacetin 14,600 4.75 10−5
    Monoacetin 38,400  1.8 10−5
    Tripropionin 32,344.83 1.05 10−5
    Methyl lactate 9,746.19  2.1 10−5
    Ethyl Lactate 31,363.63  2.2 10−5
    Propyl lactate 93,033.7  7.4 10−6
    Butyl lactate 76,704.55 9.03 10−6
  • [0022]
    Based on Table 1, the half-lives of such esters at relatively high temperatures are longer than that of other known acidization esters, e.g., diethyleneglycol diformate, which produces formic acid. For example, the half-life of ethyl lactate may be about 10-11 hours, whereas the half-life of diethyleneglycol diformate may be about only 18-20 minutes in neutral water at 100 C. Thus, the reaction of such esters with water proceeds at a slower rate, allowing the treatment composition to be diverted throughout the entire targeted treatment region in the well before the hydrolysis reaction is completed. The production of acid via the hydrolysis reaction occurs during the opportune time at which the acid is in contact with undesirable substances in the well. Moreover, the strength of the acid (e.g., the pH of acetic acid=4.76, the pH of propionic acid=4.86; and the pH of lactic acid=3.08 at 100 C.) is relatively high, and in the case of lactic acid, is even higher than that of formic acid (pH=3.75 at 100 C.). Therefore, the acid may consume all or most of the undesirable substances before all of the ester or polyester is consumed. The choice of which ester or polyester to use in the treatment composition may be based on the application temperature and desired half-life of the ester or polyester.
  • [0023]
    In various embodiments, the well treatment composition may be used during a well completion operation such as the removal of filter cake from the inner wall of the well. The relatively slow reaction rate of the one or more esters or polyesters may permit the treatment composition to be dispersed across the entire filter cake before the hydrolysis ends. The acid generated by the hydrolysis may decompose calcium carbonate present in the filter cake, which is a major component in the filter cake. The removal of the filter cake ensures that oil, gas, and/or water residing in a subterranean reservoir penetrated by the well can flow into and through the well during production. Otherwise, the filter cake might block migration pathways such as pores in the earth between the reservoir and the interior of the well, thereby preventing the oil, gas, and/or water from permeating through to the well.
  • EXAMPLES
  • [0024]
    The invention having been generally described, the following examples are given as particular embodiments of the invention and to demonstrate the practice and advantages thereof. It is understood that the examples are given by way of illustration and are not intended to limit the specification or the claims to follow in any manner.
  • [0025]
    In the following examples, various ester hydrolysis reactions were run in the presence of calcium carbonate (CaCO3) to simulate the consumption of filter cake material. The acid evolved in each reaction was measured per unit of time. The acid generated upon hydrolysis was rapidly consumed in a secondary reaction that produced carbon dioxide (CO2). The half-life was secured when half of the CaCO3 was consumed. That is, using PV=nRT, the amount of CaCO3 that would yield approximately 1 liter of CO2 was calculated to be about 4.47 grams. We doubled the amount of CaCO3 (8.94 grams) for the reactions and then calculated the half-life based on the yield of 1 liter of CO2. Unless otherwise specified, all half-life quotations are actually the time required for 4.47 grams of CaCO3 to be consumed.
  • [0026]
    The following general procedure was used in each of the examples. The closed system reactor shown in FIG. 1 was used to measure the amount of CO2 gas that evolved in each reaction. Water or brine was added to a boiling flask 10, which was heated to 100 C. The CaCO3 was insoluble in the water and thus was observed at the bottom of flask 10. Once the liquid was boiling, a weighed amount of ester was added to flask 10. The amount of ester employed was always in ratio to the water or to the make-up water used to formulate the brine except where commercially available brines were used. Following addition of the ester to the boiling liquid, a reflux condenser 12 was affixed to flask 10. The top of condenser 12 was fixed with an adapter 14 to an inlet tube 18 in a 2-hole rubber stopper 16. The inlet tube 18 was passed through stopper 16, providing a seal. An outlet tube 22 was run from the bottom of a flask 20 to a 1,000 mL graduated cylinder 24. The flask 20 was charged with XP-07 base oil, commercially available from Halliburton Energy Services, Inc. The outlet tube 22 served the purpose of discharging the oil into graduated cylinder 24. The hydrolysis reaction produced acid in flask 10 that reacted with the CaCO3 to produce CO2 gas. The gas displaced the oil in flask 20 into graduated cylinder 24. The rate of CO2 evolution thus could be monitored visually by reading of the amount of oil in graduated cylinder 24 per unit of time. A half-life of greater than 10 hours at 100 C. was desired.
  • Example 1
  • [0027]
    Solutions containing various esters of lactic acid and of glycerol (i.e., monoacetin, ethyl lactate, triacetin, tripropionin), butyl formate (a control), and BDF-325 diethyleneglycol diformate (a control) in neutral water were prepared and combined with a molar ratio of CaCO3. Hydrolysis reactions were then carried out using the resulting solutions at 100 C. The hydrolysis reactions were monitored, and the half-lives of the esters were compared. The volume of oil displaced by the CO2 gas is plotted as a function of time in FIG. 2. The half-lives of the esters of lactic acid and of glycerol were longer than that of the BDF-325 diethyleneglycol diformate. The butyl formate to CaCO3 molar ratio was doubled for comparison purposes. The curve for the 1:1 molar ratio reaction was surprisingly similar to that for the 2:1 molar ratio reaction. Doubling the molar ratio of the butyl formate should have lead to an increase in the relative reaction rate; however, this did not happen. It is believed that this behavior was due to the relative insolubility of the butyl formate since the rate of hydrolysis was determined by the concentration of the butyl formate in solution and not by the amount added.
  • Example 2
  • [0028]
    Solutions containing 10 volume % monoacetin, diacetin, and triacetin in deionized water were prepared and combined with a molar ratio of CaCO3. Hydrolysis reactions were then carried out using the resulting solutions at 100 C. The hydrolysis reactions were monitored, and the half-lives of the esters were compared. The volume of oil displaced by the CO2 gas is plotted as a function of time in FIG. 3. The hydrolysis rates of the triacetin and the diacetin were very similar. However, the monoacetin consumed 4-5 times more slowly relative to the other two acetins, and the monoacetin displayed a half-life within the targeted range. It is believed that the presence of the two hydroxyl groups in monoacetin slowed the rate of hydrolysis through hydrogen bonding with water. Another theory relies on the fact that monoacetin is a mixture of isomers. The acetate group may be on either a primary hydroxyl group or a secondary group. One isomer may be more reactive than the other. Despite the slight differences in rate between the triacetin and the diacetin, it is not believed that the differences in rate are the result of a kinetic effect since triacetin has three acetate groups and monoacetin has one. Thus, the differences in rate may be related to hydrogen bonding.
  • Example 3
  • [0029]
    Solutions containing butyl lactate and butyl formate (a control) in deionized water were prepared and combined with a molar ratio of CaCO3. Similar solutions in which the butyl formate and butyl lactate to CaCO3 molar ratio were doubled were also prepared for comparison purposes. Hydrolysis reactions were then carried out using the resulting solutions at 100 C. The hydrolysis reactions were monitored, and the half-lives of the esters were compared. The volume of oil displaced by the CO2 gas is plotted as a function of time in FIG. 4. The reaction rate of the butyl lactate was faster than that of the butyl formate. This difference in reaction rates was probably due to the difference in solubilities of these two compounds in water. That is, butyl lactate is slightly soluble in water while butyl formate exhibits poor solubility in water. Doubling the concentration of butyl lactate doubled its reaction rate. The poor solubility of butyl formate governed its slow reaction rate, making it unsuitable for use in the acidization of a well. This behavior indicates that an ester needs to be soluble in the aqueous phase before any appreciable reaction can take place.
  • Example 4
  • [0030]
    Solutions containing 10 volume % ethyl lactate in deionized water and various brines were prepared and combined with a molar ratio of CaCO3. Hydrolysis reactions were then carried out using the resulting solutions at 100 C. The hydrolysis reactions were monitored, and the half-lives of the esters were compared. The volume of oil displaced by the CO2 gas is plotted as a function of time in FIG. 5. The ethyl lactate performed consistently in the different aqueous solutions. These results indicate that ethyl lactate would be very suitable for use in the acidization of a well.
  • Example 5
  • [0031]
    Solutions containing 10 volume % methyl-, ethyl-, propyl-, and butyl- lactate in deionized water were prepared and combined with a molar ratio of CaCO3. Hydrolysis reactions were then carried out using the resulting solutions at 100 C. The hydrolysis reactions were monitored, and the half-lives of the esters were compared. The volume of oil displaced by the CO2 gas is plotted as a function of time in FIG. 5. The reaction velocities of the lactate esters decreased as the relative reaction rates of the esters decreased based on the following order:
    methyl->ethyl->propyl->butyl
  • [0032]
    In various embodiments, methods of acidizing in a well comprise placing an ester or polyester of a hydroxyl acid and water in the well, thereby allowing the ester or polyester to undergo hydrolysis. In more embodiments, methods of acidizing in a well comprise placing an aqueous solution comprising an ester or polyester of glycerol in a well, thereby allowing the ester or polyester to undergo hydrolysis, wherein the aqueous solution is substantially absent of a hydrocarbon. In further embodiments, well treatment compositions for performing acidization in a well comprise an ester or polyester of a hydroxy acid and water. In more embodiments, well treatment compositions for performing acidization in a well comprise an ester or polyester of a glycerol and water.
  • MODIFICATIONS AND VARIATIONS
  • [0033]
    In additional embodiments, the acidization procedure described herein also may be employed to repair damage to the subterranean formation surrounding the well. This damage may be in the form of hydrocarbon wax deposits and/or inorganic salt deposits, such as calcium carbonate deposits, in the pores of a lime sand, lime stone, calcareous, or magnesium formation. Such inorganic salt deposits may occur as a result of subterranean water becoming saturated with alkaline earth carbonates under pressure, followed by the precipitation of the carbonates when the pressure is released after the drill-in of the well. The lactic acid produced by the hydrolysis of the lactate ester or polyester may attack and dissolve the wax and salt deposits, thus increasing the porosity of the formation.
  • [0034]
    In alternative embodiments, the one or more lactate ester or polyester and water may be added to different types of carrier fluids commonly used in the well. Examples of suitable carrier fluids include but are not limited to a gravel packing fluid, a drilling fluid, a completion fluid, a displacement fluid, and a work-over fluid, all of which are known in the art.
  • [0035]
    While preferred embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention.
  • [0036]
    Accordingly, the scope of protection is not limited by the description set out above but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated into the specification as an embodiment of the present invention. Thus, the claims are a further description and are an addition to the preferred embodiments of the present invention. The discussion of a reference herein is not an admission that it is prior art to the present invention, especially any reference that may have a publication date after the priority date of this application. The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated by reference, to the extent that they provide exemplary, procedural, or other details supplementary to those set forth herein.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2703316 *Jun 5, 1951Mar 1, 1955Du PontPolymers of high melting lactide
US3173484 *Sep 2, 1958Mar 16, 1965Gulf Research Development CoFracturing process employing a heterogeneous propping agent
US3302719 *Jan 25, 1965Feb 7, 1967Union Oil CoMethod for treating subterranean formations
US3364036 *Nov 7, 1963Jan 16, 1968Gen Foods CorpDispersing hydrophilic colloids
US3364995 *Feb 14, 1966Jan 23, 1968Dow Chemical CoHydraulic fracturing fluid-bearing earth formations
US3366178 *Sep 10, 1965Jan 30, 1968Halliburton CoMethod of fracturing and propping a subterranean formation
US3784585 *Oct 21, 1971Jan 8, 1974American Cyanamid CoWater-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same
US3868998 *May 15, 1974Mar 4, 1975Shell Oil CoSelf-acidifying treating fluid positioning process
US4010071 *Dec 17, 1975Mar 1, 1977Merck & Co., Inc.Clarification of xanthan gum
US4068718 *Oct 26, 1976Jan 17, 1978Exxon Production Research CompanyHydraulic fracturing method using sintered bauxite propping agent
US4252421 *Nov 9, 1978Feb 24, 1981John D. McCarryContact lenses with a colored central area
US4498995 *Jul 1, 1983Feb 12, 1985Judith GockelLost circulation drilling fluid
US4502540 *Feb 4, 1983Mar 5, 1985Mobil Oil CorporationTertiary oil recovery
US4506734 *Sep 7, 1983Mar 26, 1985The Standard Oil CompanyFracturing fluid breaker system which is activated by fracture closure
US4716964 *Dec 10, 1986Jan 5, 1988Exxon Production Research CompanyUse of degradable ball sealers to seal casing perforations in well treatment fluid diversion
US4797262 *Jun 3, 1987Jan 10, 1989Shell Oil CompanyDownflow fluidized catalytic cracking system
US4809783 *Jan 14, 1988Mar 7, 1989Halliburton ServicesMethod of dissolving organic filter cake
US4894231 *Jul 28, 1987Jan 16, 1990Biomeasure, Inc.Therapeutic agent delivery system
US4986353 *Sep 14, 1988Jan 22, 1991Conoco Inc.Placement process for oil field chemicals
US4986354 *Sep 14, 1988Jan 22, 1991Conoco Inc.Composition and placement process for oil field chemicals
US4986355 *May 18, 1989Jan 22, 1991Conoco Inc.Process for the preparation of fluid loss additive and gel breaker
US5082056 *Oct 16, 1990Jan 21, 1992Marathon Oil CompanyIn situ reversible crosslinked polymer gel used in hydrocarbon recovery applications
US5294649 *Apr 2, 1993Mar 15, 1994Borden, Inc.Accelerators for curing phenolic resole resins
US5295542 *Oct 5, 1992Mar 22, 1994Halliburton CompanyWell gravel packing methods
US5386874 *Nov 8, 1993Feb 7, 1995Halliburton CompanyPerphosphate viscosity breakers in well fracture fluids
US5396957 *Mar 4, 1994Mar 14, 1995Halliburton CompanyWell completions with expandable casing portions
US5484881 *Aug 23, 1993Jan 16, 1996Cargill, Inc.Melt-stable amorphous lactide polymer film and process for manufacturing thereof
US5487897 *Sep 28, 1993Jan 30, 1996Atrix Laboratories, Inc.Biodegradable implant precursor
US5492177 *Dec 1, 1994Feb 20, 1996Mobil Oil CorporationMethod for consolidating a subterranean formation
US5496557 *Jan 30, 1991Mar 5, 1996Akzo N.V.Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
US5497830 *Apr 6, 1995Mar 12, 1996Bj Services CompanyCoated breaker for crosslinked acid
US5499678 *Aug 2, 1994Mar 19, 1996Halliburton CompanyCoplanar angular jetting head for well perforating
US5501276 *Sep 15, 1994Mar 26, 1996Halliburton CompanyDrilling fluid and filter cake removal methods and compositions
US5591700 *Dec 22, 1994Jan 7, 1997Halliburton CompanyFracturing fluid with encapsulated breaker
US5594095 *Jul 27, 1994Jan 14, 1997Cargill, IncorporatedViscosity-modified lactide polymer composition and process for manufacture thereof
US5602083 *Mar 31, 1995Feb 11, 1997Baker Hughes Inc.Use of sized salts as bridging agent for oil based fluids
US5604186 *Feb 15, 1995Feb 18, 1997Halliburton CompanyEncapsulated enzyme breaker and method for use in treating subterranean formations
US5607905 *Mar 15, 1994Mar 4, 1997Texas United Chemical Company, Llc.Well drilling and servicing fluids which deposit an easily removable filter cake
US5613558 *Jun 2, 1995Mar 25, 1997Bj Services CompanyMethod for controlling the set time of cement
US5723416 *Apr 1, 1997Mar 3, 1998Liao; W. AndrewWell servicing fluid for trenchless directional drilling
US6024170 *Jun 3, 1998Feb 15, 2000Halliburton Energy Services, Inc.Methods of treating subterranean formation using borate cross-linking compositions
US6028113 *Sep 27, 1995Feb 22, 2000Sunburst Chemicals, Inc.Solid sanitizers and cleaner disinfectants
US6169058 *Jun 5, 1997Jan 2, 2001Bj Services CompanyCompositions and methods for hydraulic fracturing
US6172011 *Mar 8, 1996Jan 9, 2001Schlumberger Technolgy CorporationControl of particulate flowback in subterranean wells
US6189615 *Dec 15, 1998Feb 20, 2001Marathon Oil CompanyApplication of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery
US6202751 *Jul 28, 2000Mar 20, 2001Halliburton Energy Sevices, Inc.Methods and compositions for forming permeable cement sand screens in well bores
US6357527 *May 5, 2000Mar 19, 2002Halliburton Energy Services, Inc.Encapsulated breakers and method for use in treating subterranean formations
US6508305 *Sep 14, 2000Jan 21, 2003Bj Services CompanyCompositions and methods for cementing using elastic particles
US6509301 *Aug 25, 2000Jan 21, 2003Daniel Patrick VollmerWell treatment fluids and methods for the use thereof
US6527051 *Jul 12, 2002Mar 4, 2003Halliburton Energy Services, Inc.Encapsulated chemicals for use in controlled time release applications and methods
US6681856 *May 16, 2003Jan 27, 2004Halliburton Energy Services, Inc.Methods of cementing in subterranean zones penetrated by well bores using biodegradable dispersants
US6686328 *Jul 9, 1999Feb 3, 2004The Procter & Gamble CompanyDetergent tablet
US6691780 *Apr 18, 2002Feb 17, 2004Halliburton Energy Services, Inc.Tracking of particulate flowback in subterranean wells
US6702021 *Nov 15, 2002Mar 9, 2004Halliburton Energy Services, Inc.Methods and drilling fluids for drilling well bores and sealing pipe strings therein
US6702023 *Mar 7, 2000Mar 9, 2004Cleansorb LimitedMethod for treatment of underground reservoirs
US6710019 *Jul 16, 1999Mar 23, 2004Christopher Alan SawdonWellbore fluid
US6837309 *Aug 8, 2002Jan 4, 2005Schlumberger Technology CorporationMethods and fluid compositions designed to cause tip screenouts
US6981552 *Mar 21, 2003Jan 3, 2006Halliburton Energy Services, Inc.Well treatment fluid and methods with oxidized polysaccharide-based polymers
US6983801 *Aug 23, 2004Jan 10, 2006Bj Services CompanyWell treatment fluid compositions and methods for their use
US6987083 *Apr 11, 2003Jan 17, 2006Halliburton Energy Services, Inc.Xanthan gels in brines and methods of using such xanthan gels in subterranean formations
US6997259 *Sep 5, 2003Feb 14, 2006Halliburton Energy Services, Inc.Methods for forming a permeable and stable mass in a subterranean formation
US7007752 *Dec 4, 2003Mar 7, 2006Halliburton Energy Services, Inc.Well treatment fluid and methods with oxidized polysaccharide-based polymers
US7156174 *Jan 30, 2004Jan 2, 2007Halliburton Energy Services, Inc.Contained micro-particles for use in well bore operations
US7165617 *Jul 27, 2004Jan 23, 2007Halliburton Energy Services, Inc.Viscosified treatment fluids and associated methods of use
US7168489 *Feb 24, 2004Jan 30, 2007Halliburton Energy Services, Inc.Orthoester compositions and methods for reducing the viscosified treatment fluids
US7172022 *Mar 17, 2004Feb 6, 2007Halliburton Energy Services, Inc.Cement compositions containing degradable materials and methods of cementing in subterranean formations
US7178596 *Sep 20, 2004Feb 20, 2007Halliburton Energy Services, Inc.Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7195068 *Dec 15, 2003Mar 27, 2007Halliburton Energy Services, Inc.Filter cake degradation compositions and methods of use in subterranean operations
US7322412 *Aug 30, 2004Jan 29, 2008Halliburton Energy Services, Inc.Casing shoes and methods of reverse-circulation cementing of casing
US7475728 *Jul 23, 2004Jan 13, 2009Halliburton Energy Services, Inc.Treatment fluids and methods of use in subterranean formations
US7484564 *Aug 16, 2005Feb 3, 2009Halliburton Energy Services, Inc.Delayed tackifying compositions and associated methods involving controlling particulate migration
US20020036088 *Jan 9, 2001Mar 28, 2002Todd Bradley L.Well drilling and servicing fluids and methods of removing filter cake deposited thereby
US20030054962 *Jul 15, 2002Mar 20, 2003England Kevin W.Methods for stimulating hydrocarbon production
US20030060374 *Sep 24, 2002Mar 27, 2003Cooke Claude E.Method and materials for hydraulic fracturing of wells
US20040014606 *Mar 25, 2003Jan 22, 2004Schlumberger Technology CorpMethod For Completing Injection Wells
US20040014607 *Jul 16, 2002Jan 22, 2004Sinclair A. RichardDownhole chemical delivery system for oil and gas wells
US20040040706 *Aug 28, 2002Mar 4, 2004Tetra Technologies, Inc.Filter cake removal fluid and method
US20040055747 *Sep 20, 2002Mar 25, 2004M-I Llc.Acid coated sand for gravel pack and filter cake clean-up
US20050028976 *Aug 5, 2003Feb 10, 2005Nguyen Philip D.Compositions and methods for controlling the release of chemicals placed on particulates
US20050034861 *Dec 15, 2003Feb 17, 2005Saini Rajesh K.On-the fly coating of acid-releasing degradable material onto a particulate
US20050045384 *Aug 26, 2003Mar 3, 2005Nguyen Philip D.Methods of drilling and consolidating subterranean formation particulate
US20050059556 *Apr 26, 2004Mar 17, 2005Trinidad MunozTreatment fluids and methods of use in subterranean formations
US20050059557 *Sep 17, 2003Mar 17, 2005Todd Bradley L.Subterranean treatment fluids and methods of treating subterranean formations
US20050059558 *Sep 20, 2004Mar 17, 2005Blauch Matthew E.Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US20050061509 *Oct 29, 2004Mar 24, 2005Halliburton Energy Services, Inc.Methods for prodcing fluids from acidized and consolidated portions of subterranean formations
US20060016596 *Jul 23, 2004Jan 26, 2006Pauls Richard WTreatment fluids and methods of use in subterranean formations
US20060027135 *Aug 5, 2005Feb 9, 2006Willis W CGuide apparatus for power hand tools
US20060032633 *Aug 10, 2004Feb 16, 2006Nguyen Philip DMethods and compositions for carrier fluids comprising water-absorbent fibers
US20060046938 *Sep 2, 2004Mar 2, 2006Harris Philip CMethods and compositions for delinking crosslinked fluids
US20060048938 *Sep 3, 2004Mar 9, 2006Kalman Mark DCarbon foam particulates and methods of using carbon foam particulates in subterranean applications
US20060065397 *Sep 24, 2004Mar 30, 2006Nguyen Philip DMethods and compositions for inducing tip screenouts in frac-packing operations
US20070042912 *Aug 16, 2005Feb 22, 2007Halliburton Energy Services, Inc.Delayed tackifying compositions and associated methods involving controlling particulate migration
US20070049501 *Sep 1, 2005Mar 1, 2007Halliburton Energy Services, Inc.Fluid-loss control pills comprising breakers that comprise orthoesters and/or poly(orthoesters) and methods of use
US20070066492 *Sep 22, 2005Mar 22, 2007Halliburton Energy Services, Inc.Orthoester-based surfactants and associated methods
US20070066493 *Sep 22, 2005Mar 22, 2007Halliburton Energy Services, Inc.Orthoester-based surfactants and associated methods
US20080026955 *Sep 6, 2007Jan 31, 2008Halliburton Energy Services, Inc.Degradable particulates and associated methods
US20080026959 *Jul 25, 2006Jan 31, 2008Halliburton Energy Services, Inc.Degradable particulates and associated methods
US20080026960 *Sep 15, 2006Jan 31, 2008Halliburton Energy Services, Inc.Degradable particulates and associated methods
US20080027157 *Apr 6, 2007Jan 31, 2008Halliburton Energy Services, Inc.Degradable particulates and associated methods
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7833943Nov 16, 2010Halliburton Energy Services Inc.Microemulsifiers and methods of making and using same
US7906464Mar 15, 2011Halliburton Energy Services, Inc.Compositions and methods for the removal of oil-based filtercakes
US7960314Jun 14, 2011Halliburton Energy Services Inc.Microemulsifiers and methods of making and using same
US7998910Aug 16, 2011Halliburton Energy Services, Inc.Treatment fluids comprising relative permeability modifiers and methods of use
US8714249Oct 26, 2012May 6, 2014Halliburton Energy Services, Inc.Wellbore servicing materials and methods of making and using same
US9115304Apr 9, 2012Aug 25, 2015Halliburton Energy Services, Inc.Wellbore servicing fluid system and methods of use
US9206673Apr 9, 2012Dec 8, 2015Halliburton Energy Services, Inc.Wellbore servicing fluid system and methods of use
US9410076Oct 29, 2013Aug 9, 2016Halliburton Energy Services, Inc.Wellbore servicing methods and compositions comprising degradable polymers
WO2014065972A1Sep 24, 2013May 1, 2014Halliburton Energy Services, Inc.Wellbore servicing compositions and methods of making and using same
WO2014065975A1Sep 24, 2013May 1, 2014Halliburton Energy Services, Inc.Wellbore servicing materials and methods of making and using same
WO2014092888A1Nov 6, 2013Jun 19, 2014Halliburton Energy Services, Inc.Wellbore servicing compositions and methods of making and using same
WO2016010548A1 *Jul 18, 2014Jan 21, 2016Halliburton Energy Services, Inc.Methods for increasing the surface area of fractures or to increase the depth of penetration fractures in low permeability oil and gas reservoirs containing shale to increase productivity
Classifications
U.S. Classification507/260
International ClassificationC09K8/84
Cooperative ClassificationC09K8/72, C09K8/52
European ClassificationC09K8/72, C09K8/52
Legal Events
DateCodeEventDescription
Jan 20, 2006ASAssignment
Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOOREHEAD, ALAN W.;SHUMWAY, WILLIAM W.;TODD, BRADLEY L.;REEL/FRAME:017484/0837;SIGNING DATES FROM 20060109 TO 20060113