US20070187532A1 - Fuel injector with a metering assembly having a seat molded to a polymeric support member - Google Patents

Fuel injector with a metering assembly having a seat molded to a polymeric support member Download PDF

Info

Publication number
US20070187532A1
US20070187532A1 US11/731,913 US73191307A US2007187532A1 US 20070187532 A1 US20070187532 A1 US 20070187532A1 US 73191307 A US73191307 A US 73191307A US 2007187532 A1 US2007187532 A1 US 2007187532A1
Authority
US
United States
Prior art keywords
polymeric
support member
seat
assembly
fuel injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/731,913
Inventor
Michael Hornby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Systems Inc
Original Assignee
Siemens VDO Automotive Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Automotive Corp filed Critical Siemens VDO Automotive Corp
Priority to US11/731,913 priority Critical patent/US20070187532A1/en
Assigned to SIEMENS VDO AUTOMOTIVE CORPORATION reassignment SIEMENS VDO AUTOMOTIVE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HORNBY, MICHAEL J.
Publication of US20070187532A1 publication Critical patent/US20070187532A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/565Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits involving interference fits, e.g. force-fits or press-fits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1244Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue
    • B29C66/12441Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue being a single wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12469Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0667Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature acting as a valve or having a short valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/188Spherical or partly spherical shaped valve member ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1609Visible light radiation, e.g. by visible light lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8061Fuel injection apparatus manufacture, repair or assembly involving press-fit, i.e. interference or friction fit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9015Elastomeric or plastic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/165Filtering elements specially adapted in fuel inlets to injector

Definitions

  • Examples of known fuel injection systems use an injector to dispense a quantity of fuel that is to be combusted in an internal combustion engine.
  • the quantity of fuel that is dispensed is varied in accordance with a number of engine parameters such as engine speed, engine load, engine emissions, etc.
  • Known electronic fuel injection systems monitor at least one of the engine parameters and electrically operate the injector to dispense the fuel. It is believed that examples of known injectors use electromagnetic coils, piezoelectric elements, or magnetostrictive materials to actuate a valve.
  • a known fuel injector utilizes a plethora of internal components such as a metallic inlet tube connected to a valve body via a non-magnetic shell with a pole piece interposed therebetween.
  • the inlet tube, valve body, non-magnetic shell and pole piece are generally affixed to each other after a closure assembly and a metering assembly are disposed in the valve body.
  • a solenoid coil is inserted over the assembled components and the entire assembly is molded into the fuel injector.
  • one known fuel injector utilizes a plastic body molded over a solenoid coil to provide a plastic inlet fuel passage with a metallic valve body being coupled to the solenoid coil.
  • the first subassembly can include a complete coil assembly and electrical connector molded into an outer casing to provide a power group.
  • the second subassembly can include an inlet tube, pole piece, non-magnetic shell valve body, closure assembly and metering assembly affixed together to form a stand alone fuel group.
  • the two sub-assemblies are formed separately and coupled together to provide an operable fuel injector.
  • the known fuel injectors are suited to the task of metering fuel, it is believed that the known fuel injectors may have certain assembly or component drawbacks that require extensive manufacturing process to be undertaken to ensure that the injector are suitable for commercial applications. They can include, for example, the necessity for multiple seal points between components to provide leak integrity in the injector and a large number of manufacturing steps that are undertaken. These seals can be effectuated by elastomeric seals, such as, O-rings, or multiple hermetic welds to ensure structural and leak integrity of the known fuel injectors. Others include the potential manufacturing difficulties associated with thermal distortion in welding multiple metallic components at close proximity to each other or the need for a metal valve body with internal resilient seals for leak integrity. Yet another drawback can include the utilization of lift setting components that must be inserted into the valve body of the fuel injector. Thus, it would be advantageous to reduce or even eliminate some of these drawbacks.
  • the present invention provides for, in one aspect, a fuel injector that is believed to reduce or eliminate these drawbacks of the known fuel injectors while maintaining substantially the same operative performance.
  • the fuel injector of the present invention utilizes a minimal number of seal points and is designed so that an interface between a potential leak point is hermetically sealed by a polymer-to-polymer seal.
  • the fuel injector includes a polymeric housing, pole piece, filter assembly, coil assembly, spring member, armature assembly and metering assembly.
  • the polymeric housing has a passageway extending between an inlet and an outlet along a longitudinal axis.
  • the pole piece is disposed in the passageway, the pole piece having a through opening.
  • the filter assembly has a portion disposed in the through opening of the pole piece.
  • the coil assembly is disposed in the polymeric housing to surround the pole piece.
  • the spring member is disposed partly in the pole piece and including a spring portion contiguous with the portion of the filter assembly.
  • the armature assembly is disposed in the passageway in a first position having a first portion confronting the pole piece and in a second position having a closure member contiguous to an end face of the pole piece.
  • the metering assembly has an O-ring disposed between a seat molded to a polymeric support member.
  • the polymeric support member includes a peripheral portion bonded to the polymeric housing proximate the outlet.
  • the present invention provides for a method of a method of making a metering assembly at an outlet of a fuel injector.
  • the method can be achieved by molding a metering assembly having a seat and a polymeric support member, the seat including a peripheral portion molded to the polymeric support member; and securing the polymeric support member to the polymeric housing.
  • FIG. 1A is a representation of a fuel injector according a preferred embodiment.
  • FIG. 1B is an illustration of a polymeric bodied fuel injector housing that includes a complete coil assembly.
  • FIG. 1C is an illustration of a metering assembly that can be bonded to the housing of FIG. 1B .
  • FIG. 2A illustrates another embodiment of the polymeric bodied fuel injector.
  • FIG. 2B illustrates another metering assembly that can be bonded to the polymeric bodied fuel injector of FIG. 2A .
  • FIGS. 1A-1C and 2 A- 2 B illustrate the preferred embodiments of a fuel injector 100 or 200 .
  • the fuel injector 100 or 200 includes a continuous polymeric housing 10 extending from an inlet 12 to an outlet 14 along a longitudinal axis A-A.
  • the polymeric housing 10 includes a polymeric wall surface 10 A that directly faces the longitudinal axis A-A to define a first passage 16 in which fuel can flow from the inlet 12 .
  • the first passage 16 extends from the inlet 12 to communicate with a second passage 18 formed-by a plurality of internally mounted components.
  • the first passage 16 includes the polymeric bore 10 A that extends from a first external seal 20 proximate the inlet 12 to a second external seal 22 proximate an outlet 14 along the longitudinal axis A-A. Disposed within a portion of the polymeric bore 10 A is a metering assembly 24 proximate the second external seal 22 . A closure assembly 26 is disposed proximate the metering assembly 24 , which is coupled to a rim portion 28 at the outlet end 14 of the polymeric housing 10 . A portion of the closure assembly 26 is disposed in the polymeric bore 10 A and between the first and second external seals 20 , 22 .
  • the first passage 16 can be provided with a plurality of stepped surfaces 30 , 32 , 34 ( FIG.
  • the polymeric bore IOA can also include an inward (i.e., towards the longitudinal axis A-A) surface to define a guide surface 36 for a reciprocable closure member.
  • the inward surface preferably includes a tapered surface 36 .
  • the polymeric housing 10 can be formed from a suitable polymeric material such as, for example, Nylon 6-6 with about 30 percent glass filler.
  • the polymeric housing 10 provides a complete solenoid coil subassembly that is ready for assembly with the metering and closure assemblies.
  • the polymeric housing 10 includes a solenoid coil assembly 38 disposed within the polymeric housing 10 so that no part of the coil assembly 38 extends outside the boundary of the polymeric housing 10 .
  • the solenoid coil assembly 38 is connected to at least one electrical terminal 40 formed on an electrical connector portion 42 of the polymeric housing 10 .
  • the terminal 40 and the electrical harness connector portion 42 can engage a mating connector, e.g., part of a vehicle wiring harness (not shown), to facilitate connecting the injector 100 or 200 to an electrical power supply (not shown) for energizing the electromagnetic coil 48 .
  • the coil assembly 38 includes a coil housing 44 disposed about the longitudinal axis A-A to surround a bobbin 46 and at least one wire coiled about the bobbin 46 to form an electromagnetic coil 48 .
  • the coil housing 44 which provides a return path for magnetic flux, generally takes the shape of a ferro-magnetic cylinder surrounding the electromagnetic coil 48 .
  • a flux washer 50 can abut a top surface of the bobbin 46 so that the flux washer 50 is in physical contact with the coil housing 44 .
  • the flux washer 50 can be integrally formed with or separately attached to the coil housing 44 .
  • the coil housing 44 can include holes 35 , slots, or other features to break up eddy currents, which can occur when the coil 48 is de-energized.
  • the coil assembly 38 can be preferably constructed as follows.
  • a plastic bobbin 46 is molded with at least one electrical contact extending from the bobbin 46 so that the peripheral edge of the contact can be mated with a contact terminal for electrical communication between the coil and a power source.
  • a wire for the electromagnetic coil 48 is wound around the plastic bobbin 46 a predetermined number of times and connected to the at least one electrical contact portion.
  • the electromagnetic coil 48 (with bobbin 46 ) is placed into the coil housing 44 .
  • An electrical terminal 40 which is pre-bent to a desired geometry, is then electrically connected to each electrical contact portion provided on the bobbin 46 .
  • the polymeric housing 10 can be formed by a suitable technique such as, for example, thermoset casting, compression molding or injection molding.
  • the polymeric housing 10 e.g., an overmold, provides a structural casing for the injector 100 or 200 and provides predetermined electrical and thermal insulating properties.
  • the polymeric housing 10 is formed by injection molding around the coil assembly 38 and the electrical connector 40 , i.e., an insert-molding so that the metering assembly can be affixed to the polymeric housing 10 .
  • the insert-molding hermetically seals the coil assembly 38 from contamination with fuel flow through the polymeric fuel passage 16 .
  • the metering assembly 24 includes a seat 24 A that can be any suitable material such as, for example, plastic, ceramic or metal, long as it provides a suitably sealing surface.
  • the seat 24 A is formed of metallic material, and is secured to a polymeric support member 24 B with an elastomeric member 29 disposed in a circumferential pocket of the seat 24 A. That is, as the seat 24 A and the elastomeric member 29 are insert-molded, the elastomeric member 29 is captured between the seat 24 A and the polymeric molding material that, upon curing of the polymeric material, becomes polymeric support member 24 B.
  • the elastomeric member 29 is believed to provide a redundant seal in the interface between dissimilar materials being insert-molded. That is, in the event that thermal cycling could cause separation in the interface between the metallic seat and the polymeric support member, the elastomeric member 29 would be able to maintain a seal therebetween.
  • a metering disc 241 is secured to the metallic seat 24 A or to the polymeric support member 24 B.
  • the polymeric support member 24 B includes a first pocket 24 C ( FIGS. 1C and 2B ) defined by a cylindrical wall surface 25 A to receive a cup-shaped guide member 24 E.
  • the cup-shaped guide member 24 E can be formed from a suitable material such as, for example, polymeric, ceramic or metallic.
  • the guide member 24 E is stamped metallic member press-fitted into the first pocket 24 C along wall surface 25 A to a predetermined location with respect to the seat 24 A. In FIG. 1A , the guide member 24 E can be located via boss extension 25 B formed in the first pocket 24 C.
  • the cup-shaped guide member 24 E includes an aperture disposed about the longitudinal axis A-A and at least one aperture offset with respect to the longitudinal axis A-A.
  • the polymeric support member 24 B also includes a second pocket 24 D defined by an annular cylindrical portion.
  • the second pocket 24 D is configured to receive the rim portion 28 of the outlet 14 of the polymeric housing 10 .
  • the second pocket 24 D is configured so that at least a locational clearance fit to a light press-fit is formed between the rim portion 28 of the polymeric housing 10 and the inner wall surface 24 F of the annular cylinder and the outer surface 24 G of the inner cylinder of the first pocket 24 C.
  • the outer perimeter of the polymeric support member 24 B of FIG. 2A is preferably configured to provide a suitable fit, e.g., locational to light press fit, with the inner surface of the polymeric bore 16 .
  • the metallic seat 24 A can be provided with the polymeric support member 24 B by a suitable technique such as, for example, insert molding the metallic seat 24 A with a suitable polymeric material.
  • the material used for the polymeric housing 10 and bobbin 46 is Nylon 6-6 with about 30% by weight glass filler with BASF® Ultramid A3WG6LT as the material for the polymeric support member 24 B.
  • the material used for the bobbin 46 and support member 24 B is Nylon 6-6 with about 30% by weight glass filler with BASF® Ultramid A3WG6LT as the material for the housing 10 .
  • the metallic seat 24 A defines a seat orifice 24 H generally centered on the longitudinal axis A-A and through which fuel can flow into the internal combustion engine (not shown).
  • the seat 24 A includes a sealing surface surrounding the seat orifice 24 H.
  • the sealing surface which faces the interior of polymeric bore 10 A, can be frustoconical or concave in shape, and can have a finished or coated surface.
  • a metering disc 24 I can be used in connection with the seat 24 A to provide at least one precisely sized and oriented metering orifice 24 J in order to obtain a particular fuel spray pattern.
  • the precisely sized and oriented metering orifice 24 J can be disposed on the center axis of the metering disc 24 I or, preferably, the metering orifice 24 J can disposed off-axis, and oriented in any desirable angular configuration relative to one or more reference points on the fuel injector 100 or 200 .
  • the metallic seat 24 A is a stainless steel seat.
  • the closure assembly 26 includes a pole piece 26 A and an armature assembly 26 B configured to be magnetically coupled to the solenoid coil assembly 38 in a fully assembled fuel injector 100 or 200 .
  • the pole piece 26 A can be formed as a cylindrical component with a passage 26 A 1 extending through the pole piece 26 A.
  • the pole piece 26 A can be formed by a suitable technique such as cast, machined, pin rolled with external barbs or a combination of these techniques.
  • the pole piece passage 26 A 1 includes a resilient member 27 disposed in the pole piece passage 26 A 1 .
  • the outer surface of the pole piece 26 A can be provided with recesses or projections 26 A 2 to assist in retention of the pole piece 26 A (and any flashing of the polymeric bore in the recesses) once the pole piece 26 A has been press-fitted to a desired location in the polymeric bore 10 A of FIG. 2A .
  • a filter assembly 52 with a filter element 52 A and an adjusting tube 52 B is also disposed in the polymeric bore 10 A.
  • the filter assembly 52 includes a first end and a second end.
  • the filter element 52 A is along a central portion of the filter assembly 52 .
  • the adjusting tube 52 B is disposed in the pole piece passage 26 A 1 .
  • the adjusting tube 52 B engages the resilient member 27 and adjusts the biasing force of the resilient member 27 with respect to the pole piece 26 A.
  • the filter element 52 A is retained at an end of the filter assembly 52 spaced from the adjusting tube 52 B portion and outside of the pole piece passage 26 A 1 so that a gap between the filter assembly 52 and the polymeric bore 10 A is provided therebetween.
  • the adjusting tube 52 B provides a reaction member against which the resilient member 27 reacts in order to close the armature assembly 26 B when the solenoid coil assembly 38 is de-energized.
  • the position of the adjusting tube 52 B can be retained with respect to the pole piece 26 A or the polymeric housing 10 by an interference fit between an outer surface of the adjusting tube 52 B and an inner surface of the pole piece passage 26 A 1 .
  • the position of the adjusting tube 52 B with respect to the pole piece 26 A can be used to set a predetermined dynamic characteristic of the armature assembly 26 B.
  • the armature assembly 26 B includes an armature 26 C secured to an elongated member 26 D, which is secured to a closure member 26 E.
  • the closure member 26 E can be of any suitable shape, such as, for example, cylindrical, semi-spherical or spherical.
  • the spheroidal member can be connected to the elongated member 26 D at a diameter that is less than the diameter of the spheroidal member. Such a connection would be on side of the spheroidal member that is opposite contiguous contact with the seat 24 A.
  • the armature lower guide 24 E can be disposed in the first pocket 24 C of the polymeric support member 24 B, proximate the seat 24 A, and would slidingly engage the outer surface of the spherical closure member.
  • the lower armature lower guide 24 E can facilitate alignment of the armature assembly 26 B along the longitudinal axis A-A, and can reduce flux leakage to the closure member 26 E.
  • the armature assembly 26 B can be formed by securing an armature 26 C directly to the closure member 26 E, as shown in FIG. 2A .
  • At least one aperture 26 F can be formed through a wall of the elongated member 26 D.
  • the apertures 26 F which can be of any shape, are preferably non-circular, e.g., axially elongated, to facilitate the passage of gas bubbles.
  • the apertures can be an axially extending slit defined between non-abutting edges of the rolled sheet.
  • the apertures 26 F in addition to the slit, would preferably include openings extending through the sheet.
  • the apertures 26 F provide fluid communication between the armature passage 26 G and the fuel inlet passage 16 .
  • the closure member 26 E is movable between a closed configuration, as shown in FIGS. 1A and 2A , and an open configuration (not shown). In the closed configuration, the closure member 26 E contiguously engages a seat surface of the metallic seat 24 A to prevent fluid flow through the seat orifice 24 H. In the open configuration, the closure member 26 E is spaced from the seat surface to permit fluid flow through the seat orifice 24 H.
  • a radial end face 26 I of the armature 26 C is configured to contact a radial end face 26 J of the pole piece 26 A when the armature 26 C is moved by magnetic flux generated by the solenoid coil assembly 38 .
  • the armature 26 C is provided with a deep counterbore 26 H to receive the other end of the preload resilient element 27 .
  • no counterbore 26 H is provided and the end of the resilient element 27 is configured to abut the radial end face 26 I of the armature 26 C.
  • surface treatments can be applied to at least one of the end face of the pole piece 26 A or the armature 26 C to improve the armature's response, reduce wear on the impact surfaces and variations in the working air gap between the respective end faces.
  • the surface treatments can include coating, plating or case-hardening. Coatings or platings can include, but are not limited to, hard chromium plating, nickel plating or keronite coating. Case hardening on the other hand, can include, but are not limited to, nitriding, carburizing, carbo-nitriding, cyaniding, heat, flame, spark or induction hardening.
  • the surface treatments will typically form at least one layer of wear-resistant materials on the respective end faces. These layers, however, tend to be inherently thicker wherever there is a sharp edge, such as between junction between the circumference and the radial end face of either portions. Further, this thickening effect results in uneven contact surfaces at the radially outer edge of the end portions.
  • both end faces can be substantially in even contact with respect to each other when the solenoid coil assembly 38 is energized.
  • a suitable material e.g., a mask, a coating or a protective cover, surrounds areas other than the respective end faces during the surface treatments. Upon completion of the surface treatments, the material is removed, thereby leaving the previously masked areas unaffected by the surface treatments.
  • the armature 26 C is formed by stamping a cylindrical workpiece of a generally constant thickness into the final configuration shown herein.
  • the cylinder end portion is rolled inward so that an annular end face 261 is formed with an outer edge 26 K being imbued with a radiused surface of curvature.
  • This allows a surface coating to be formed on the radiused surface 26 K such that the coating is thicker at the junction between the radiused surface and the outer cylindrical wall surface of the armature 26 C.
  • the contact between the end faces of the pole piece 26 A and the armature 26 C is believed to be in substantially even contact with each other.
  • the respective thickness of the end face 26 I and the sidewall 26 F of the stamped armature are generally the same.
  • the armature 26 C can be formed by deep drawing a generally flat workpiece through a suitable die.
  • both embodiments illustrate an armature 26 C of about the same length
  • other lengths e.g., shorter or longer
  • the magnetic flux generated by the electromagnetic coil 48 flows in a circuit that includes the pole piece 26 A, the armature assembly 26 B, the coil housing 44 , and the flux washer 50 .
  • the magnetic flux moves along the coil housing 44 to the base of the coil housing 44 , through the polymeric housing 10 across a radial (relative to axis A-A) or parasitic airgap to the armature 26 C, and across an axial (relative to axis A-A) or working air gap towards the pole piece 26 A, thereby lifting the armature 26 C and closure member 26 E off the seat 24 A.
  • the thickness of the cross-section of the impact surface of pole piece 26 A is greater than the thickness of the cross-section of the impact surface of the armature 26 C.
  • the smaller cross-sectional area allows the armature 26 C to be lighter, and at the same time, causes the magnetic flux saturation point to be formed near the working air gap between the pole piece 26 A and the armature 26 C, rather than within the pole piece passage 26 A 1 .
  • the armature 26 C is partly within the interior of the electromagnetic coil 48 , the magnetic flux is believed to be denser, leading to a more efficient electromagnetic coil 48 .
  • the ferro-magnetic closure member 26 E is magnetically decoupled from the armature 26 C via the non-magnetic elongated member 26 D, which reduces flux leakage of the magnetic circuit, thereby improving the efficiency of the electromagnetic coil 48 .
  • the fuel injector 100 or 200 can be assembled as follows.
  • a polymeric fuel injector body 10 with an insert-molded solenoid coil assembly 38 is provided, as shown in Figure IB.
  • the metering assembly 24 is fitted onto the rim portion 28 of the outlet 14 of the polymeric housing 10 and these components are then bonded to each other by a suitable bonding technique such as, for example, UV light activated adhesive, thermal bonding, or laser welding to form a hermetic seal HW.
  • a suitable bonding technique such as, for example, UV light activated adhesive, thermal bonding, or laser welding to form a hermetic seal HW.
  • a suitable bonding technique such as, for example, UV light activated adhesive, thermal bonding, or laser welding.
  • the armature assembly 26 B is inserted into the polymeric bore 10 A for contiguous engagement with the metering assembly 24 , which form a valve assembly that regulates flow of fuel from the fuel injector 100 or 200 .
  • the pole piece 26 A is press-fitted to a predetermined location within the polymeric bore 10 A so that a lift distance (i.e., the distance the annature assembly 26 B travels to close a working air gap with the pole piece 26 A) of the armature assembly 26 B is defined by this predetermined location.
  • the resilient element 27 is inserted into the pole piece passage 26 A 1 so that one end contiguously engages the closure assembly.
  • the filter assembly 52 is press-fitted into the pole piece passage 26 A 1 so that a distal end of the filter assembly 52 preloads the resilient element 27 against the armature assembly 26 B to provide for the closure assembly 26 .
  • the external seals preferably Viton type O-rings, are installed on recessed portions proximate the inlet 12 and outlet 14 of the fuel injector 100 or 200 .
  • the fuel injector 100 or 200 is ready to be calibrated before being tested.
  • the calibration can involve modifying the preload force of the resilient element 27 such as, for example, by repositioning the adjusting tube/filter assembly 52 along axis A-A while flowing fuel through the fuel injector 100 or 200 to achieve a desired opening time for the closure member 26 E.
  • the fuel injector 100 or 200 can be tested (e.g., flow or leak testing) prior to being shipped to customers.
  • the electromagnetic coil 48 is energized, thereby generating magnetic flux in the magnetic circuit.
  • the magnetic flux moves armature assembly 26 B (along the axis A-A, according to a preferred embodiment) towards the pole piece 26 A to close the working air gap.
  • This movement of the armature assembly 26 B separates the closure member 26 E from the seat 24 A and allows fuel to flow from the fuel rail (not shown), through the polymeric inlet bore passage 16 , the pole piece passage 26 A 1 , the through-bore 26 G of the armature 26 C, the apertures 26 F to between the seat 24 A and the closure member 26 E, through the seat orifice 24 H, and finally through the metering disc 24 I into the internal combustion engine (not shown).
  • the electromagnetic coil 48 is de-energized, the armature assembly 26 B is moved by the bias force of the resilient member 27 to contiguously engage the closure member 26 E with the seat 24 A, and thereby prevent fuel flow through the injector 100 or 200 .

Abstract

A fuel injector is described that includes a polymeric housing, pole piece, filter assembly, coil assembly, spring member, armature assembly and metering assembly. The polymeric housing has a passageway extending between an inlet and an outlet along a longitudinal axis. The pole piece is disposed in the passageway. The metering assembly is secured to the polymeric housing proximate the outlet. The metering assembly has an 0-ring disposed between a seat molded to a polymeric support member. The polymeric support member includes a peripheral portion bonded to the polymeric housing proximate the outlet. A method of sealing a fuel injector outlet end is described.

Description

    PRIORITY
  • This application is a continuation and claims the benefit of U.S. application Ser. No. 11/014,691, filed Dec. 20, 2004, which claims the benefit of U.S. Provisional Appl. Ser. No. 60/531,206, filed Dec. 19, 2003 and entitled “Plastic Bodied Fuel Injector,” which application is incorporated herein in its entirety into this application.
  • BACKGROUND OF THE INVENTION
  • Examples of known fuel injection systems use an injector to dispense a quantity of fuel that is to be combusted in an internal combustion engine. The quantity of fuel that is dispensed is varied in accordance with a number of engine parameters such as engine speed, engine load, engine emissions, etc.
  • Known electronic fuel injection systems monitor at least one of the engine parameters and electrically operate the injector to dispense the fuel. It is believed that examples of known injectors use electromagnetic coils, piezoelectric elements, or magnetostrictive materials to actuate a valve.
  • A known fuel injector utilizes a plethora of internal components such as a metallic inlet tube connected to a valve body via a non-magnetic shell with a pole piece interposed therebetween. The inlet tube, valve body, non-magnetic shell and pole piece are generally affixed to each other after a closure assembly and a metering assembly are disposed in the valve body. A solenoid coil is inserted over the assembled components and the entire assembly is molded into the fuel injector.
  • It is believed that one known fuel injector utilizes a plastic body molded over a solenoid coil to provide a plastic inlet fuel passage with a metallic valve body being coupled to the solenoid coil.
  • It is believed that another known fuel injector utilizes two separate subassemblies to form the fuel injector. The first subassembly can include a complete coil assembly and electrical connector molded into an outer casing to provide a power group. The second subassembly can include an inlet tube, pole piece, non-magnetic shell valve body, closure assembly and metering assembly affixed together to form a stand alone fuel group. The two sub-assemblies are formed separately and coupled together to provide an operable fuel injector.
  • While the known fuel injectors are suited to the task of metering fuel, it is believed that the known fuel injectors may have certain assembly or component drawbacks that require extensive manufacturing process to be undertaken to ensure that the injector are suitable for commercial applications. They can include, for example, the necessity for multiple seal points between components to provide leak integrity in the injector and a large number of manufacturing steps that are undertaken. These seals can be effectuated by elastomeric seals, such as, O-rings, or multiple hermetic welds to ensure structural and leak integrity of the known fuel injectors. Others include the potential manufacturing difficulties associated with thermal distortion in welding multiple metallic components at close proximity to each other or the need for a metal valve body with internal resilient seals for leak integrity. Yet another drawback can include the utilization of lift setting components that must be inserted into the valve body of the fuel injector. Thus, it would be advantageous to reduce or even eliminate some of these drawbacks.
  • SUMMARY OF THE INVENTION
  • The present invention provides for, in one aspect, a fuel injector that is believed to reduce or eliminate these drawbacks of the known fuel injectors while maintaining substantially the same operative performance. The fuel injector of the present invention utilizes a minimal number of seal points and is designed so that an interface between a potential leak point is hermetically sealed by a polymer-to-polymer seal.
  • According to one aspect of the present invention, the fuel injector includes a polymeric housing, pole piece, filter assembly, coil assembly, spring member, armature assembly and metering assembly. The polymeric housing has a passageway extending between an inlet and an outlet along a longitudinal axis. The pole piece is disposed in the passageway, the pole piece having a through opening. The filter assembly has a portion disposed in the through opening of the pole piece. The coil assembly is disposed in the polymeric housing to surround the pole piece. The spring member is disposed partly in the pole piece and including a spring portion contiguous with the portion of the filter assembly. The armature assembly is disposed in the passageway in a first position having a first portion confronting the pole piece and in a second position having a closure member contiguous to an end face of the pole piece. The metering assembly has an O-ring disposed between a seat molded to a polymeric support member. The polymeric support member includes a peripheral portion bonded to the polymeric housing proximate the outlet.
  • In yet another aspect, the present invention provides for a method of a method of making a metering assembly at an outlet of a fuel injector. The method can be achieved by molding a metering assembly having a seat and a polymeric support member, the seat including a peripheral portion molded to the polymeric support member; and securing the polymeric support member to the polymeric housing.
  • BRIEF DESCRIPTIONS OF THE DRAWINGS
  • The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate an embodiment of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention.
  • FIG. 1A is a representation of a fuel injector according a preferred embodiment.
  • FIG. 1B is an illustration of a polymeric bodied fuel injector housing that includes a complete coil assembly.
  • FIG. 1C is an illustration of a metering assembly that can be bonded to the housing of FIG. 1B.
  • FIG. 2A illustrates another embodiment of the polymeric bodied fuel injector.
  • FIG. 2B illustrates another metering assembly that can be bonded to the polymeric bodied fuel injector of FIG. 2A.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIGS. 1A-1C and 2A-2B illustrate the preferred embodiments of a fuel injector 100 or 200. Referring to FIGS. 1A, 1B and 2A, the fuel injector 100 or 200 includes a continuous polymeric housing 10 extending from an inlet 12 to an outlet 14 along a longitudinal axis A-A. The polymeric housing 10 includes a polymeric wall surface 10A that directly faces the longitudinal axis A-A to define a first passage 16 in which fuel can flow from the inlet 12. The first passage 16 extends from the inlet 12 to communicate with a second passage 18 formed-by a plurality of internally mounted components. The first passage 16 includes the polymeric bore 10A that extends from a first external seal 20 proximate the inlet 12 to a second external seal 22 proximate an outlet 14 along the longitudinal axis A-A. Disposed within a portion of the polymeric bore 10A is a metering assembly 24 proximate the second external seal 22. A closure assembly 26 is disposed proximate the metering assembly 24, which is coupled to a rim portion 28 at the outlet end 14 of the polymeric housing 10. A portion of the closure assembly 26 is disposed in the polymeric bore 10A and between the first and second external seals 20, 22. The first passage 16 can be provided with a plurality of stepped surfaces 30, 32, 34 (FIG. 1B) defining a plurality of diameters for the polymeric bore 10A. The polymeric bore IOA can also include an inward (i.e., towards the longitudinal axis A-A) surface to define a guide surface 36 for a reciprocable closure member. The inward surface preferably includes a tapered surface 36. The polymeric housing 10 can be formed from a suitable polymeric material such as, for example, Nylon 6-6 with about 30 percent glass filler.
  • As shown in FIG. 1B, the polymeric housing 10 provides a complete solenoid coil subassembly that is ready for assembly with the metering and closure assemblies. In particular, the polymeric housing 10 includes a solenoid coil assembly 38 disposed within the polymeric housing 10 so that no part of the coil assembly 38 extends outside the boundary of the polymeric housing 10. The solenoid coil assembly 38 is connected to at least one electrical terminal 40 formed on an electrical connector portion 42 of the polymeric housing 10. The terminal 40 and the electrical harness connector portion 42 can engage a mating connector, e.g., part of a vehicle wiring harness (not shown), to facilitate connecting the injector 100 or 200 to an electrical power supply (not shown) for energizing the electromagnetic coil 48.
  • The coil assembly 38 includes a coil housing 44 disposed about the longitudinal axis A-A to surround a bobbin 46 and at least one wire coiled about the bobbin 46 to form an electromagnetic coil 48. The coil housing 44, which provides a return path for magnetic flux, generally takes the shape of a ferro-magnetic cylinder surrounding the electromagnetic coil 48. A flux washer 50 can abut a top surface of the bobbin 46 so that the flux washer 50 is in physical contact with the coil housing 44. The flux washer 50 can be integrally formed with or separately attached to the coil housing 44. The coil housing 44 can include holes 35, slots, or other features to break up eddy currents, which can occur when the coil 48 is de-energized.
  • The coil assembly 38 can be preferably constructed as follows. A plastic bobbin 46 is molded with at least one electrical contact extending from the bobbin 46 so that the peripheral edge of the contact can be mated with a contact terminal for electrical communication between the coil and a power source. A wire for the electromagnetic coil 48 is wound around the plastic bobbin 46 a predetermined number of times and connected to the at least one electrical contact portion. The electromagnetic coil 48 (with bobbin 46) is placed into the coil housing 44. An electrical terminal 40, which is pre-bent to a desired geometry, is then electrically connected to each electrical contact portion provided on the bobbin 46. Thereafter, the polymeric housing 10 can be formed by a suitable technique such as, for example, thermoset casting, compression molding or injection molding. The polymeric housing 10, e.g., an overmold, provides a structural casing for the injector 100 or 200 and provides predetermined electrical and thermal insulating properties. In a preferred embodiment, the polymeric housing 10 is formed by injection molding around the coil assembly 38 and the electrical connector 40, i.e., an insert-molding so that the metering assembly can be affixed to the polymeric housing 10. The insert-molding hermetically seals the coil assembly 38 from contamination with fuel flow through the polymeric fuel passage 16.
  • Referring to FIGS. 1A, 1C, 2A and 2B, the metering assembly 24 includes a seat 24A that can be any suitable material such as, for example, plastic, ceramic or metal, long as it provides a suitably sealing surface. In the preferred embodiments, the seat 24A is formed of metallic material, and is secured to a polymeric support member 24B with an elastomeric member 29 disposed in a circumferential pocket of the seat 24A. That is, as the seat 24A and the elastomeric member 29 are insert-molded, the elastomeric member 29 is captured between the seat 24A and the polymeric molding material that, upon curing of the polymeric material, becomes polymeric support member 24B. The elastomeric member 29 is believed to provide a redundant seal in the interface between dissimilar materials being insert-molded. That is, in the event that thermal cycling could cause separation in the interface between the metallic seat and the polymeric support member, the elastomeric member 29 would be able to maintain a seal therebetween.
  • A metering disc 241 is secured to the metallic seat 24A or to the polymeric support member 24B. The polymeric support member 24B includes a first pocket 24C (FIGS. 1C and 2B) defined by a cylindrical wall surface 25A to receive a cup-shaped guide member 24E. The cup-shaped guide member 24E can be formed from a suitable material such as, for example, polymeric, ceramic or metallic. Preferably, the guide member 24E is stamped metallic member press-fitted into the first pocket 24C along wall surface 25A to a predetermined location with respect to the seat 24A. In FIG. 1A, the guide member 24E can be located via boss extension 25B formed in the first pocket 24C. The cup-shaped guide member 24E includes an aperture disposed about the longitudinal axis A-A and at least one aperture offset with respect to the longitudinal axis A-A. In the preferred embodiment of FIGS. 1A and 1C, the polymeric support member 24B also includes a second pocket 24D defined by an annular cylindrical portion. The second pocket 24D is configured to receive the rim portion 28 of the outlet 14 of the polymeric housing 10. Preferably, the second pocket 24D is configured so that at least a locational clearance fit to a light press-fit is formed between the rim portion 28 of the polymeric housing 10 and the inner wall surface 24F of the annular cylinder and the outer surface 24G of the inner cylinder of the first pocket 24C.
  • Similarly, the outer perimeter of the polymeric support member 24B of FIG. 2A is preferably configured to provide a suitable fit, e.g., locational to light press fit, with the inner surface of the polymeric bore 16.
  • The metallic seat 24A can be provided with the polymeric support member 24B by a suitable technique such as, for example, insert molding the metallic seat 24A with a suitable polymeric material. In the preferred embodiment of FIG. 1A, the material used for the polymeric housing 10 and bobbin 46 is Nylon 6-6 with about 30% by weight glass filler with BASF® Ultramid A3WG6LT as the material for the polymeric support member 24B. In the preferred embodiment of FIG. 2A, the material used for the bobbin 46 and support member 24B is Nylon 6-6 with about 30% by weight glass filler with BASF® Ultramid A3WG6LT as the material for the housing 10.
  • The metallic seat 24A defines a seat orifice 24H generally centered on the longitudinal axis A-A and through which fuel can flow into the internal combustion engine (not shown). The seat 24A includes a sealing surface surrounding the seat orifice 24H. The sealing surface, which faces the interior of polymeric bore 10A, can be frustoconical or concave in shape, and can have a finished or coated surface. A metering disc 24I can be used in connection with the seat 24A to provide at least one precisely sized and oriented metering orifice 24J in order to obtain a particular fuel spray pattern. The precisely sized and oriented metering orifice 24J can be disposed on the center axis of the metering disc 24I or, preferably, the metering orifice 24J can disposed off-axis, and oriented in any desirable angular configuration relative to one or more reference points on the fuel injector 100 or 200. Preferably, the metallic seat 24A is a stainless steel seat.
  • Referring to FIGS. 1A and 2A, the closure assembly 26 includes a pole piece 26A and an armature assembly 26B configured to be magnetically coupled to the solenoid coil assembly 38 in a fully assembled fuel injector 100 or 200. The pole piece 26A can be formed as a cylindrical component with a passage 26A1 extending through the pole piece 26A. The pole piece 26A can be formed by a suitable technique such as cast, machined, pin rolled with external barbs or a combination of these techniques. The pole piece passage 26A1 includes a resilient member 27 disposed in the pole piece passage 26A1. The outer surface of the pole piece 26A can be provided with recesses or projections 26A2 to assist in retention of the pole piece 26A (and any flashing of the polymeric bore in the recesses) once the pole piece 26A has been press-fitted to a desired location in the polymeric bore 10A of FIG. 2A.
  • A filter assembly 52 with a filter element 52A and an adjusting tube 52B is also disposed in the polymeric bore 10A. As shown in FIGS. 1A and 2A, the filter assembly 52 includes a first end and a second end. The filter element 52A is along a central portion of the filter assembly 52. The adjusting tube 52B is disposed in the pole piece passage 26A1. The adjusting tube 52B engages the resilient member 27 and adjusts the biasing force of the resilient member 27 with respect to the pole piece 26A. The filter element 52A is retained at an end of the filter assembly 52 spaced from the adjusting tube 52B portion and outside of the pole piece passage 26A1 so that a gap between the filter assembly 52 and the polymeric bore 10A is provided therebetween. In the preferred embodiments, the adjusting tube 52B provides a reaction member against which the resilient member 27 reacts in order to close the armature assembly 26B when the solenoid coil assembly 38 is de-energized. The position of the adjusting tube 52B can be retained with respect to the pole piece 26A or the polymeric housing 10 by an interference fit between an outer surface of the adjusting tube 52B and an inner surface of the pole piece passage 26A1. Thus, the position of the adjusting tube 52B with respect to the pole piece 26A can be used to set a predetermined dynamic characteristic of the armature assembly 26B.
  • Referring to FIGS. 1A and 2A, the armature assembly 26B includes an armature 26C secured to an elongated member 26D, which is secured to a closure member 26E. The closure member 26E can be of any suitable shape, such as, for example, cylindrical, semi-spherical or spherical. In the case of a spherical shaped closure member 26E, i.e., a spheroidal member, the spheroidal member can be connected to the elongated member 26D at a diameter that is less than the diameter of the spheroidal member. Such a connection would be on side of the spheroidal member that is opposite contiguous contact with the seat 24A. As noted earlier, the armature lower guide 24E can be disposed in the first pocket 24C of the polymeric support member 24B, proximate the seat 24A, and would slidingly engage the outer surface of the spherical closure member. The lower armature lower guide 24E can facilitate alignment of the armature assembly 26B along the longitudinal axis A-A, and can reduce flux leakage to the closure member 26E.
  • Alternatively, the armature assembly 26B can be formed by securing an armature 26C directly to the closure member 26E, as shown in FIG. 2A. At least one aperture 26F can be formed through a wall of the elongated member 26D. The apertures 26F, which can be of any shape, are preferably non-circular, e.g., axially elongated, to facilitate the passage of gas bubbles. For example, in the case of a separate armature tube that is formed by rolling a sheet substantially into a tube, the apertures can be an axially extending slit defined between non-abutting edges of the rolled sheet. However, the apertures 26F, in addition to the slit, would preferably include openings extending through the sheet. The apertures 26F provide fluid communication between the armature passage 26G and the fuel inlet passage 16.
  • The closure member 26E is movable between a closed configuration, as shown in FIGS. 1A and 2A, and an open configuration (not shown). In the closed configuration, the closure member 26E contiguously engages a seat surface of the metallic seat 24A to prevent fluid flow through the seat orifice 24H. In the open configuration, the closure member 26E is spaced from the seat surface to permit fluid flow through the seat orifice 24H.
  • A radial end face 26I of the armature 26C is configured to contact a radial end face 26J of the pole piece 26A when the armature 26C is moved by magnetic flux generated by the solenoid coil assembly 38. In the embodiment illustrated in FIG. 1A, the armature 26C is provided with a deep counterbore 26H to receive the other end of the preload resilient element 27. In the embodiment illustrated in FIG. 2A, no counterbore 26H is provided and the end of the resilient element 27 is configured to abut the radial end face 26I of the armature 26C.
  • In the preferred embodiments illustrated in FIGS. 1A and 2A, surface treatments can be applied to at least one of the end face of the pole piece 26A or the armature 26C to improve the armature's response, reduce wear on the impact surfaces and variations in the working air gap between the respective end faces. The surface treatments can include coating, plating or case-hardening. Coatings or platings can include, but are not limited to, hard chromium plating, nickel plating or keronite coating. Case hardening on the other hand, can include, but are not limited to, nitriding, carburizing, carbo-nitriding, cyaniding, heat, flame, spark or induction hardening.
  • The surface treatments will typically form at least one layer of wear-resistant materials on the respective end faces. These layers, however, tend to be inherently thicker wherever there is a sharp edge, such as between junction between the circumference and the radial end face of either portions. Further, this thickening effect results in uneven contact surfaces at the radially outer edge of the end portions. However, by forming the wear-resistant layers on at least one of the end faces, where at least one end portion has a surface generally oblique to longitudinal axis A-A, both end faces can be substantially in even contact with respect to each other when the solenoid coil assembly 38 is energized.
  • Since the surface treatments may affect the physical and magnetic properties of the ferromagnetic portion of the armature assembly 26B or the pole piece 26A, a suitable material, e.g., a mask, a coating or a protective cover, surrounds areas other than the respective end faces during the surface treatments. Upon completion of the surface treatments, the material is removed, thereby leaving the previously masked areas unaffected by the surface treatments.
  • In the preferred embodiment illustrated in FIG. 2A, the armature 26C is formed by stamping a cylindrical workpiece of a generally constant thickness into the final configuration shown herein. As a function of the stamping process, the cylinder end portion is rolled inward so that an annular end face 261 is formed with an outer edge 26K being imbued with a radiused surface of curvature. This allows a surface coating to be formed on the radiused surface 26K such that the coating is thicker at the junction between the radiused surface and the outer cylindrical wall surface of the armature 26C. By having a thicker coating at this junction, the contact between the end faces of the pole piece 26A and the armature 26C is believed to be in substantially even contact with each other. It should be noted that the respective thickness of the end face 26I and the sidewall 26F of the stamped armature are generally the same. Alternatively, the armature 26C can be formed by deep drawing a generally flat workpiece through a suitable die.
  • Although both embodiments illustrate an armature 26C of about the same length, other lengths (e.g., shorter or longer) can be provided by implementing a different length elongated member 26D and corresponding polymeric housing 10 in the embodiment of FIG. 1A or a different length stamped armature 26C and corresponding polymeric housing 10 in the embodiment of FIG. 2A.
  • According to the preferred embodiments, the magnetic flux generated by the electromagnetic coil 48 flows in a circuit that includes the pole piece 26A, the armature assembly 26B, the coil housing 44, and the flux washer 50. The magnetic flux moves along the coil housing 44 to the base of the coil housing 44, through the polymeric housing 10 across a radial (relative to axis A-A) or parasitic airgap to the armature 26C, and across an axial (relative to axis A-A) or working air gap towards the pole piece 26A, thereby lifting the armature 26C and closure member 26E off the seat 24A. As can further be seen in FIGS. 1A or 2A, the thickness of the cross-section of the impact surface of pole piece 26A is greater than the thickness of the cross-section of the impact surface of the armature 26C. The smaller cross-sectional area allows the armature 26C to be lighter, and at the same time, causes the magnetic flux saturation point to be formed near the working air gap between the pole piece 26A and the armature 26C, rather than within the pole piece passage 26A1. Furthermore, since the armature 26C is partly within the interior of the electromagnetic coil 48, the magnetic flux is believed to be denser, leading to a more efficient electromagnetic coil 48. In the embodiment of FIG. 1A, the ferro-magnetic closure member 26E is magnetically decoupled from the armature 26C via the non-magnetic elongated member 26D, which reduces flux leakage of the magnetic circuit, thereby improving the efficiency of the electromagnetic coil 48.
  • In the preferred embodiments, the fuel injector 100 or 200 can be assembled as follows. A polymeric fuel injector body 10 with an insert-molded solenoid coil assembly 38 is provided, as shown in Figure IB. The metering assembly 24 is fitted onto the rim portion 28 of the outlet 14 of the polymeric housing 10 and these components are then bonded to each other by a suitable bonding technique such as, for example, UV light activated adhesive, thermal bonding, or laser welding to form a hermetic seal HW. Details of the techniques to form the hermetic seal HW via adhesive bonding or laser bonding are also disclosed in related U.S. patent application Ser. No. 11/014,693, entitled “Method of Polymeric Bonding A Polymeric Fuel Component to Another Polymeric Fuel Component,” filed on the same date as this application, which application is incorporated herein by reference in its entirety into this application.
  • The armature assembly 26B is inserted into the polymeric bore 10A for contiguous engagement with the metering assembly 24, which form a valve assembly that regulates flow of fuel from the fuel injector 100 or 200. The pole piece 26A is press-fitted to a predetermined location within the polymeric bore 10A so that a lift distance (i.e., the distance the annature assembly 26B travels to close a working air gap with the pole piece 26A) of the armature assembly 26B is defined by this predetermined location. The resilient element 27 is inserted into the pole piece passage 26A1 so that one end contiguously engages the closure assembly. The filter assembly 52 is press-fitted into the pole piece passage 26A1 so that a distal end of the filter assembly 52 preloads the resilient element 27 against the armature assembly 26B to provide for the closure assembly 26. The external seals, preferably Viton type O-rings, are installed on recessed portions proximate the inlet 12 and outlet 14 of the fuel injector 100 or 200. At this point, the fuel injector 100 or 200 is ready to be calibrated before being tested. The calibration can involve modifying the preload force of the resilient element 27 such as, for example, by repositioning the adjusting tube/filter assembly 52 along axis A-A while flowing fuel through the fuel injector 100 or 200 to achieve a desired opening time for the closure member 26E. Subsequently, the fuel injector 100 or 200 can be tested (e.g., flow or leak testing) prior to being shipped to customers.
  • In operation, the electromagnetic coil 48 is energized, thereby generating magnetic flux in the magnetic circuit. The magnetic flux moves armature assembly 26B (along the axis A-A, according to a preferred embodiment) towards the pole piece 26A to close the working air gap. This movement of the armature assembly 26B separates the closure member 26E from the seat 24A and allows fuel to flow from the fuel rail (not shown), through the polymeric inlet bore passage 16, the pole piece passage 26A1, the through-bore 26G of the armature 26C, the apertures 26F to between the seat 24A and the closure member 26E, through the seat orifice 24H, and finally through the metering disc 24I into the internal combustion engine (not shown). When the electromagnetic coil 48 is de-energized, the armature assembly 26B is moved by the bias force of the resilient member 27 to contiguously engage the closure member 26E with the seat 24A, and thereby prevent fuel flow through the injector 100 or 200.
  • Details of the preferred embodiments are also described in the following related applications: (1) “Polymeric Bodied Fuel Injector,” Ser. No. 11/014,694; (2) “Method of Polymeric Bonding Fuel System Components,” Ser. No. 11/014,693; (3) “Polymeric Bodied Fuel Injector With A Valve Seat And Elastomeric Seal Molded To A Polymeric Support Member” Ser. No. 11/014,692; (4) “Fuel Injector With A Metering Assembly Having At Least One Annular Ridge Extension Between A Valve Seat and A Polymeric Valve Body ,” Ser. No. 11/014,699; (5) “Fuel Injector With An Armature Assembly Having A Cup-Type Armature And A Metering Assembly Having A Seat And Polymeric Support Member,” Ser. No. 11/014,698; (6) “Fuel Injector With A Metering Assembly Having A Seat Secured To Polymeric Support Member Having A Surface Surrounding A Rim Of A Polymeric Housing And A Guide Member Disposed In The Polymeric Support Member,” Ser. No. 11/014,697; (7) “Fuel Injector With A Metering Assembly Having A Polymeric Support Member Which Has An External Surface Secured To A Bore Of A Polymeric Housing And A Guide Member That Is Disposed In The Polymeric Support Member,” Ser. No. 11/014,696; (8) “Fuel Injector With A Metering Assembly With A Polymeric Support Member And An Orifice Disk Positioned A Terminal End Of The Polymeric housing,” Ser. No. 11/014,695; and (9) “Method of Manufacturing Polymeric Fuel Injectors,” Ser. No. 11/015,032, which are incorporated herein by reference in their entireties into this application.
  • While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.

Claims (9)

1. A fuel injector comprising:
a polymeric housing having a passageway extending between an inlet opening and an outlet opening along a longitudinal axis;
a pole piece disposed in the passageway, the pole piece having a through opening;
a filter assembly having a portion disposed in the through opening of the pole piece;
a coil assembly disposed in the polymeric housing to surround the pole piece;
a spring member disposed partly in the pole piece and including a spring portion contiguous with the portion of the filter assembly;
an armature assembly disposed in the passageway in a first position confronting the pole piece and in a second position contiguous to a portion of an end face of the pole piece, the armature assembly having a closure member; and
a metering assembly secured to the housing proximate the outlet, the metering assembly comprising a seat and a polymeric support member, the seat molded to the polymeric support member and the polymeric support member attached to the polymeric housing such that the polymeric support member supports the seat relative to the polymeric housing proximal to the outlet opening in the polymeric housing.
2. The fuel injector of claim 1, wherein the seat comprises a metallic body having at least one annular flange molded to the polymeric support member.
3. The fuel injector of claim 2, wherein the metallic body has first and second annular flanges spaced apart and about the longitudinal axis to define a pocket for retaining a sealing member between the seat and the polymeric support member.
4. The fuel injector of claim 1, wherein the polymeric support member and the seat are insert-molded.
5. The fuel injector of claim 4, wherein the seat comprises a metallic body.
6. The fuel injector of claim 5, wherein the polymeric housing comprises a nylon member.
7. The fuel injector of claim 6, wherein the polymeric support member comprises a nylon member.
8. A method of making a metering assembly at an outlet of a fuel injector having a polymeric housing extending from an inlet to the outlet along a longitudinal axis, the method comprising:
molding a metering assembly comprising a seat and a polymeric support member for the seat, the seat including a peripheral portion molded to the polymeric support member; and
securing the polymeric support member to the polymeric housing such that the polymeric support member supports the seat relative to the polymeric housing proximal to the outlet in the polymeric housing.
9. The method of claim 8, wherein the molding comprises insert-molding a metallic seat in a mold.
US11/731,913 2003-12-19 2007-04-02 Fuel injector with a metering assembly having a seat molded to a polymeric support member Abandoned US20070187532A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/731,913 US20070187532A1 (en) 2003-12-19 2007-04-02 Fuel injector with a metering assembly having a seat molded to a polymeric support member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US53120603P 2003-12-19 2003-12-19
US11/014,691 US7258284B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having a seat molded to a polymeric support member
US11/731,913 US20070187532A1 (en) 2003-12-19 2007-04-02 Fuel injector with a metering assembly having a seat molded to a polymeric support member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/014,691 Continuation US7258284B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having a seat molded to a polymeric support member

Publications (1)

Publication Number Publication Date
US20070187532A1 true US20070187532A1 (en) 2007-08-16

Family

ID=34710211

Family Applications (12)

Application Number Title Priority Date Filing Date
US11/014,699 Expired - Fee Related US7314184B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having at least one annular ridge extension between a valve seat and a polymeric valve body
US11/014,696 Expired - Fee Related US7258281B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having a polymeric support member which has an external surface secured to a bore of a polymeric housing and a guide member that is disposed in the polymeric support member
US11/014,695 Active 2025-05-30 US7219847B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly with a polymeric support member and an orifice disk positioned at a terminal end of the polymeric housing
US11/014,692 Expired - Fee Related US7306168B2 (en) 2003-12-19 2004-12-20 Polymeric bodied fuel injector with a seat and elastomeric seal molded to a polymeric support member
US11/014,691 Expired - Fee Related US7258284B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having a seat molded to a polymeric support member
US11/014,698 Expired - Fee Related US7258282B2 (en) 2003-12-19 2004-12-20 Fuel injector with an armature assembly having a continuous elongated armature and a metering assembly having a seat and polymeric support member
US11/014,694 Expired - Fee Related US7481378B2 (en) 2003-12-19 2004-12-20 Polymeric bodied fuel injector
US11/014,693 Expired - Fee Related US7374632B2 (en) 2003-12-19 2004-12-20 Methods of polymeric bonding fuel system components
US11/014,697 Expired - Fee Related US7530507B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having a seat secured to polymeric support member that is secured to a polymeric housing with a guide member and a seat disposed in the polymeric support member
US11/731,913 Abandoned US20070187532A1 (en) 2003-12-19 2007-04-02 Fuel injector with a metering assembly having a seat molded to a polymeric support member
US11/806,913 Expired - Fee Related US7879176B2 (en) 2003-12-19 2007-06-05 Methods of polymeric bonding fuel system components
US11/895,476 Expired - Fee Related US7762477B2 (en) 2003-12-19 2007-08-24 Polymeric bodied fuel injector with a seat and elastomeric seal molded to a polymeric support member

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US11/014,699 Expired - Fee Related US7314184B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having at least one annular ridge extension between a valve seat and a polymeric valve body
US11/014,696 Expired - Fee Related US7258281B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having a polymeric support member which has an external surface secured to a bore of a polymeric housing and a guide member that is disposed in the polymeric support member
US11/014,695 Active 2025-05-30 US7219847B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly with a polymeric support member and an orifice disk positioned at a terminal end of the polymeric housing
US11/014,692 Expired - Fee Related US7306168B2 (en) 2003-12-19 2004-12-20 Polymeric bodied fuel injector with a seat and elastomeric seal molded to a polymeric support member
US11/014,691 Expired - Fee Related US7258284B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having a seat molded to a polymeric support member
US11/014,698 Expired - Fee Related US7258282B2 (en) 2003-12-19 2004-12-20 Fuel injector with an armature assembly having a continuous elongated armature and a metering assembly having a seat and polymeric support member
US11/014,694 Expired - Fee Related US7481378B2 (en) 2003-12-19 2004-12-20 Polymeric bodied fuel injector
US11/014,693 Expired - Fee Related US7374632B2 (en) 2003-12-19 2004-12-20 Methods of polymeric bonding fuel system components
US11/014,697 Expired - Fee Related US7530507B2 (en) 2003-12-19 2004-12-20 Fuel injector with a metering assembly having a seat secured to polymeric support member that is secured to a polymeric housing with a guide member and a seat disposed in the polymeric support member

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/806,913 Expired - Fee Related US7879176B2 (en) 2003-12-19 2007-06-05 Methods of polymeric bonding fuel system components
US11/895,476 Expired - Fee Related US7762477B2 (en) 2003-12-19 2007-08-24 Polymeric bodied fuel injector with a seat and elastomeric seal molded to a polymeric support member

Country Status (2)

Country Link
US (12) US7314184B2 (en)
WO (1) WO2005061878A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160290295A1 (en) * 2015-04-02 2016-10-06 Continental Automotive Gmbh Valve Assembly With A Particle Retainer Element And Fluid Injection Valve

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223279B2 (en) * 2000-04-21 2007-05-29 Vascular Control Systems, Inc. Methods for minimally-invasive, non-permanent occlusion of a uterine artery
DE10256662A1 (en) * 2002-12-04 2004-06-17 Robert Bosch Gmbh Fuel injector
DE10215939C1 (en) * 2002-04-11 2003-08-21 Ina Schaeffler Kg Electromagnetic hydraulic valve, for controlling camshaft setting device, has control piston moved by magnetic armature for controlling radial openings in axial bore of valve housing
US7552880B2 (en) * 2004-08-05 2009-06-30 Continental Automotive Systems Us, Inc. Fuel injector with a deep-drawn thin shell connector member and method of connecting components
DE102004049281A1 (en) * 2004-10-09 2006-04-20 Robert Bosch Gmbh Fuel injector
DE102004051246A1 (en) * 2004-10-20 2006-05-04 Merck Patent Gmbh Laser weldable polymers
DE102005017807B4 (en) * 2005-04-18 2007-07-26 Siemens Ag Actuator for actuating a fuel injection valve, comprising a cover for covering a contacting and / or sealing arrangement
DE102005025147B4 (en) * 2005-06-01 2014-11-06 Continental Automotive Gmbh Fuel injector with housing, as well as method for finishing and labeling the housing
DE102005061424A1 (en) * 2005-12-22 2007-07-05 Robert Bosch Gmbh Fuel injection valve for internal combustion engine, has movable actuating part with valve seat body including saw-tooth structure at outer periphery to provide firm connection with valve seat carrier
US7621469B2 (en) * 2006-11-29 2009-11-24 Continental Automotive Canada, Inc. Automotive modular LPG injector
PL1975486T3 (en) * 2007-03-28 2015-05-29 Fillon Tech Sas Societe Par Actions Simplifiee Dispensing valve
DE102007044400B3 (en) * 2007-08-24 2009-06-04 Continental Automotive Gmbh Injector e.g. gas injector, heating method for motor vehicle, involves activating injector by additional control device in such that injector is heated or rendered viable by moving valve pin
BRPI0816027B1 (en) * 2007-09-24 2019-05-28 Dow Global Technologies Inc. SYNTHETIC LAWN SURFACE
US20090090794A1 (en) * 2007-10-04 2009-04-09 Visteon Global Technologies, Inc. Low pressure fuel injector
US20090256009A1 (en) * 2008-04-10 2009-10-15 Perry Robert B Protection device for a lower guide system of a fuel injector
WO2009134579A2 (en) 2008-04-28 2009-11-05 Borgwarner Inc. Overmolded or pressed-in sleeve for hydraulic routing of solenoid
US20090291575A1 (en) * 2008-05-22 2009-11-26 Henry James P Laser sealing of injector solenoids
EP2177747A1 (en) * 2008-10-15 2010-04-21 Continental Automotive GmbH Injection valve and method for its manufacturing
DE102009000872B4 (en) * 2009-02-16 2018-05-30 Robert Bosch Gmbh Injector
WO2010112562A1 (en) * 2009-03-31 2010-10-07 Sanofi-Aventis Deutschland Gmbh Method for manufacturing a composite work piece for a drug delivery device and composite work piece for a drug delivery device
EP2354528B1 (en) * 2010-01-15 2012-08-29 Continental Automotive GmbH Valve assembly and injection valve
EP2363595A1 (en) * 2010-02-25 2011-09-07 Continental Automotive GmbH Valve assembly for an injection valve and injection valve
DE102010040898A1 (en) * 2010-09-16 2012-03-22 Robert Bosch Gmbh Fuel injector
JP5771516B2 (en) * 2011-12-09 2015-09-02 株式会社日立製作所 Laser bonding method
CN104732861B (en) * 2015-02-06 2017-03-22 淮阴工学院 Technology for making engine physical anatomy teaching tool
DE102015217673A1 (en) 2015-09-15 2017-03-16 Continental Automotive Gmbh Injection device for metering a fluid and motor vehicle with such an injection device
US10227906B2 (en) * 2016-07-21 2019-03-12 Continental Powertrain USA, LLC Diesel exhaust fluid injector calibration freeze protection insert
KR101904014B1 (en) * 2016-09-21 2018-10-05 동방테크 주식회사 Injector having integral type solenoid valve
JP6673797B2 (en) * 2016-10-06 2020-03-25 日立オートモティブシステムズ株式会社 Fuel injection valve
TR201705918A3 (en) * 2017-04-21 2018-12-21 Bosch Sanayi Ve Tic A S Fuel injector having hydrophobic coating
JP6753817B2 (en) * 2017-06-06 2020-09-09 株式会社Soken Fuel injection valve
US10502112B2 (en) * 2017-09-14 2019-12-10 Vitesco Technologies USA, LLC Injector for reductant delivery unit having fluid volume reduction assembly
US10947880B2 (en) * 2018-02-01 2021-03-16 Continental Powertrain USA, LLC Injector for reductant delivery unit having fluid volume reduction assembly
DE102019104294A1 (en) * 2018-03-15 2019-09-19 Denso Corporation Corrosion resistant device
WO2019206895A1 (en) * 2018-04-25 2019-10-31 Robert Bosch Gmbh Fuel injector valve seat assembly including insert locating and retention features
DE112019001538T5 (en) * 2018-04-25 2020-12-10 Robert Bosch Gmbh FUEL INJECTOR SEAT ASSEMBLY INCLUDING A POSITIONALLY FORMED INSERT AND METHOD OF MANUFACTURING IT BACKGROUND
CN111391217B (en) * 2020-03-20 2021-11-30 东莞市艾尔玛塑件科技有限公司 Automatic demoulding type thermal transfer printing mould and equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967959A (en) * 1989-06-22 1990-11-06 Siemens-Bendix Automotive Electronics L.P. Fuel injector having flat seat and needle fuel seal
US5081766A (en) * 1990-10-11 1992-01-21 Siemens Automotive L.P. Method of making an electrically-operated fluid valve having improved sealing of the valve needle to the valve seat when the valve is closed
US5190223A (en) * 1988-10-10 1993-03-02 Siemens Automotive L.P. Electromagnetic fuel injector with cartridge embodiment
US5372313A (en) * 1993-02-16 1994-12-13 Siemens Automotive L.P. Fuel injector
US5544816A (en) * 1994-08-18 1996-08-13 Siemens Automotive L.P. Housing for coil of solenoid-operated fuel injector
US5823445A (en) * 1994-05-26 1998-10-20 Sofer; Daniel Fuel injector with electromagnetically autonomous sub assembly
US6105884A (en) * 1999-09-15 2000-08-22 Delphi Technologies, Inc. Fuel injector with molded plastic valve guides
US6390067B1 (en) * 2000-08-10 2002-05-21 Delphi Technologies, Inc. Valve seat retainer for a fuel injector
US6814312B2 (en) * 2001-11-06 2004-11-09 Denso Corporation Fuel injection valve

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1199479A (en) * 1967-10-23 1970-07-22 Electricity Council Improvements in or relating to Door Operating Mechanisms.
BE792903A (en) 1971-12-30 1973-06-18 American Can Co LASER BEAM WELDING PLASTIC TUBES
US3789690A (en) * 1972-11-17 1974-02-05 Dura Corp Overload release device for a motor drive
US4621772A (en) * 1985-05-06 1986-11-11 General Motors Corporation Electromagnetic fuel injector with thin orifice director plate
US4951878A (en) 1987-11-16 1990-08-28 Casey Gary L Pico fuel injector valve
US5150842A (en) * 1990-11-19 1992-09-29 Ford Motor Company Molded fuel injector and method for producing
US5159915A (en) * 1991-03-05 1992-11-03 Nippon Soken, Inc. Fuel injector
EP0751865B2 (en) 1994-03-31 2004-07-14 Marquardt GmbH Plastic workpiece and process for producing it
DE19503821A1 (en) * 1995-02-06 1996-08-08 Bosch Gmbh Robert Electromagnetically actuated valve
US5979866A (en) * 1995-06-06 1999-11-09 Sagem, Inc. Electromagnetically actuated disc-type valve
US5803983A (en) 1996-06-26 1998-09-08 Lockheed Martin Energy Systems, Inc. Method for removing solid particulate material from within liquid fuel injector assemblies
DE19629589B4 (en) * 1996-07-23 2007-08-30 Robert Bosch Gmbh Fuel injector
DE19638201B4 (en) * 1996-09-19 2005-05-04 Robert Bosch Gmbh Fuel injector
JPH11132127A (en) * 1996-11-13 1999-05-18 Denso Corp Fuel injection valve and assembling method thereof
GB9625491D0 (en) * 1996-12-07 1997-01-22 Central Research Lab Ltd Fluid connections
DE19654322C2 (en) 1996-12-24 1999-12-23 Bosch Gmbh Robert Electromagnetically actuated valve
US5944262A (en) * 1997-02-14 1999-08-31 Denso Corporation Fuel injection valve and its manufacturing method
DE19712591A1 (en) * 1997-03-26 1998-10-01 Bosch Gmbh Robert Fuel injector and method for manufacturing and using a fuel injector
US6015103A (en) * 1998-06-08 2000-01-18 General Motors Corporation Filter for fuel injector
EP1105286A4 (en) * 1998-07-10 2002-07-10 Edison Welding Inst Simultaneous butt and lap joints
US6193833B1 (en) 1998-09-04 2001-02-27 Spx Corporation Method of laser welding transmission filter housing components
ATE192692T1 (en) * 1999-01-28 2000-05-15 Leister Process Tech LASER JOINING METHOD AND DEVICE FOR CONNECTING VARIOUS PLASTIC WORKPIECES OR PLASTIC WITH OTHER MATERIALS
DE19927898A1 (en) * 1999-06-18 2000-12-21 Bosch Gmbh Robert Fuel injection valve comprises a layer of material which is located on the outer surface of the valve body and ensures a hydraulically tight joint between the valve seat body and its carrier structure
JP2001012636A (en) * 1999-06-29 2001-01-16 Aisan Ind Co Ltd Fuel injection device having a plurality of solenoids and a common cylinder
DE19946602A1 (en) * 1999-09-29 2001-04-12 Bosch Gmbh Robert Fuel injector
US6328232B1 (en) * 2000-01-19 2001-12-11 Delphi Technologies, Inc. Fuel injector spring force calibration tube with internally mounted fuel inlet filter
US6464153B1 (en) 2000-10-12 2002-10-15 Delphi Technologies, Inc. Fuel injector having a molded shroud formed of a structural adhesive polymer
JP3837282B2 (en) * 2000-10-24 2006-10-25 株式会社ケーヒン Fuel injection valve
US6631857B2 (en) * 2000-12-22 2003-10-14 Caterpillar Inc Partially plastic fuel injector component and method of making the same
US6533188B1 (en) * 2000-12-29 2003-03-18 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and dynamic adjustment assembly
US6523760B2 (en) * 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6589380B2 (en) 2001-02-07 2003-07-08 Delphi Technologies, Inc. Laser welded air control valve and method
US6520432B2 (en) * 2001-02-13 2003-02-18 Delphi Technologies, Inc. Laser welding stainless steel components by stabilized ferritic stainless steel fusion zone modifiers
LU90784B1 (en) 2001-05-29 2002-12-02 Delphi Tech Inc Process for transmission laser welding of plastic parts
JP3931802B2 (en) * 2001-12-27 2007-06-20 株式会社日立製作所 FUEL INJECTION VALVE AND DEVICE, INTERNAL COMBUSTION ENGINE, FUEL INJECTION VALVE MANUFACTURING METHOD, NOZZLE BODY, AND ITS MANUFACTURING METHOD
DE10217104A1 (en) 2002-04-17 2003-11-06 Tyco Electronics Amp Gmbh Method and device for welding contacts to optical fibers
DE10224685A1 (en) * 2002-06-04 2003-12-18 Bosch Gmbh Robert Process for producing tightly welded connections between a lead frame and a plastic component
CA2488817A1 (en) 2002-07-12 2004-01-22 E.I. Du Pont De Nemours And Company A process for laser welding together articles of polyester resin compositions and related products
US6782869B2 (en) * 2002-08-30 2004-08-31 Hewlett-Packard Development Company, L.P. Fuel delivery system and method
ATE305381T1 (en) * 2002-10-02 2005-10-15 Leister Process Tech METHOD AND DEVICE FOR CONNECTING PLASTIC WORKPIECES IN A THREE-DIMENSIONAL SHAPE USING A LASER BEAM
ATE302683T1 (en) 2003-05-22 2005-09-15 Leister Process Tech LASER JOINING PROCESS FOR STRUCTURED PLASTIC
US7013917B2 (en) * 2003-06-05 2006-03-21 Joseph Iii Thomas Anthony Rotary valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190223A (en) * 1988-10-10 1993-03-02 Siemens Automotive L.P. Electromagnetic fuel injector with cartridge embodiment
US4967959A (en) * 1989-06-22 1990-11-06 Siemens-Bendix Automotive Electronics L.P. Fuel injector having flat seat and needle fuel seal
US5081766A (en) * 1990-10-11 1992-01-21 Siemens Automotive L.P. Method of making an electrically-operated fluid valve having improved sealing of the valve needle to the valve seat when the valve is closed
US5372313A (en) * 1993-02-16 1994-12-13 Siemens Automotive L.P. Fuel injector
US5823445A (en) * 1994-05-26 1998-10-20 Sofer; Daniel Fuel injector with electromagnetically autonomous sub assembly
US5544816A (en) * 1994-08-18 1996-08-13 Siemens Automotive L.P. Housing for coil of solenoid-operated fuel injector
US6105884A (en) * 1999-09-15 2000-08-22 Delphi Technologies, Inc. Fuel injector with molded plastic valve guides
US6390067B1 (en) * 2000-08-10 2002-05-21 Delphi Technologies, Inc. Valve seat retainer for a fuel injector
US6814312B2 (en) * 2001-11-06 2004-11-09 Denso Corporation Fuel injection valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160290295A1 (en) * 2015-04-02 2016-10-06 Continental Automotive Gmbh Valve Assembly With A Particle Retainer Element And Fluid Injection Valve
US9982641B2 (en) * 2015-04-02 2018-05-29 Continental Automotive Gmbh Valve assembly with a particle retainer element and fluid injection valve

Also Published As

Publication number Publication date
US20050133632A1 (en) 2005-06-23
US7530507B2 (en) 2009-05-12
US20050133640A1 (en) 2005-06-23
US7481378B2 (en) 2009-01-27
US7258284B2 (en) 2007-08-21
WO2005061878A2 (en) 2005-07-07
US20050133631A1 (en) 2005-06-23
US20050133634A1 (en) 2005-06-23
US7258281B2 (en) 2007-08-21
US7258282B2 (en) 2007-08-21
US20050133630A1 (en) 2005-06-23
US7219847B2 (en) 2007-05-22
US7306168B2 (en) 2007-12-11
US20070290447A1 (en) 2007-12-20
US7879176B2 (en) 2011-02-01
US20050133638A1 (en) 2005-06-23
US7314184B2 (en) 2008-01-01
US20050133639A1 (en) 2005-06-23
US20050133633A1 (en) 2005-06-23
US7762477B2 (en) 2010-07-27
WO2005061878A3 (en) 2005-12-29
US20080029199A1 (en) 2008-02-07
US20050133635A1 (en) 2005-06-23
US7374632B2 (en) 2008-05-20

Similar Documents

Publication Publication Date Title
US7258284B2 (en) Fuel injector with a metering assembly having a seat molded to a polymeric support member
US6676044B2 (en) Modular fuel injector and method of assembling the modular fuel injector
US6364220B2 (en) Fuel injection valve
US6708906B2 (en) Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6607143B2 (en) Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a lift set sleeve
US6499668B2 (en) Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US7377040B2 (en) Method of manufacturing a polymeric bodied fuel injector
US7552880B2 (en) Fuel injector with a deep-drawn thin shell connector member and method of connecting components
US6536681B2 (en) Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and O-ring retainer assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS VDO AUTOMOTIVE CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HORNBY, MICHAEL J.;REEL/FRAME:019556/0780

Effective date: 20070712

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION