US20070260457A1 - Audio And Video Transcription System For Manipulating Real-Time Testimony - Google Patents

Audio And Video Transcription System For Manipulating Real-Time Testimony Download PDF

Info

Publication number
US20070260457A1
US20070260457A1 US11/559,264 US55926406A US2007260457A1 US 20070260457 A1 US20070260457 A1 US 20070260457A1 US 55926406 A US55926406 A US 55926406A US 2007260457 A1 US2007260457 A1 US 2007260457A1
Authority
US
United States
Prior art keywords
audio
video
speech
synchronization
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/559,264
Inventor
James Bennett
Lawrence Jarvis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engate LLC
Original Assignee
Engate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/036,488 external-priority patent/US5369704A/en
Priority claimed from US08/326,742 external-priority patent/US5444615A/en
Application filed by Engate Inc filed Critical Engate Inc
Priority to US11/559,264 priority Critical patent/US20070260457A1/en
Assigned to ENGATE INCORPORATED reassignment ENGATE INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENNETT, JAMES D., JARVIS, LAWRENCE M.
Assigned to ENGATE LLC reassignment ENGATE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENGATE INCORPORATED
Publication of US20070260457A1 publication Critical patent/US20070260457A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/04Segmentation; Word boundary detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/332Query formulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/338Presentation of query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/18Legal services; Handling legal documents
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording

Definitions

  • This invention relates to a down-line transcription system used by attorneys for reviewing real-time transcription during a proceeding such as a trial or deposition; and more particularly, to a method and apparatus for providing real-time use and manipulation of audio and video transcripts by attorneys, judges, court reporters, witnesses and clients.
  • a stenographic recorder is a machine which provides a set of keys which are stroked by the court reporter in various combinations and sequences to represent a spoken word. To provide a backup to the key-strokes, court reporters use a tape recorder to record the entire proceeding.
  • Newer versions of stenographic recorders have been developed and linked to computer aided transcription (“CAT”) systems to help automate the manual transcription process.
  • CAT computer aided transcription
  • the stenographic recorder Instead of solely using paper tape recording methods, the stenographic recorder also electronically stores key-strokes in built-in memory or on disk. After using such a newer recorder, the court reporter returns to his office and transfers the electronically stored key-strokes to his CAT system for transcription. Although the bulk of electronically stored key-strokes may be translated automatically, the court reporter still works interactively with the CAT system to translate those key-strokes which the CAT system did not recognize.
  • court reporters often use the tape recorder to aid in translating untranscribed key-strokes.
  • the court reporter In a manual process, the court reporter repeatedly searches forward and backward and listens to the tape to identify the section of the tape that corresponds to the untranscribed key-stroke(s). In locating the corresponding audio, the court reporter wastes a great deal of time.
  • a court reporter may use a video recorder to record the entire proceeding for a similar purpose.
  • video or audio recording of a proceeding provides other advantages. For example, during a trial, an attorney often admits into evidence testimony from a prior proceeding, such as a deposition. This is normally done by reading the desired portion of the written deposition transcript into the trial record. However, there are times when this process may become tiresome and cause the jury to lose interest. To keep the jury interested, an attorney may instead want to play the actual video or audio of the desired testimony.
  • Video or audio recordings of prior testimony also offer other benefits at trial. Unlike a written transcript, video or audio enable an attorney to convey to the jury the demeanor of the witness. For example, if a witness hesitates before answering a deposition question and is then visibly and audibly uncomfortable in answering, the jury may question the witness's credibility. It is virtually impossible to convey the same to the jury from prior written testimony.
  • an attorney may want to play video or audio of prior testimony by a trial witness to ask the witness to clarify the prior testimony in view of his present testimony or to impeach the witness.
  • video and audio recordings present problems associated with storing, accessing, and annotating a large volume of material.
  • An attorney at trial normally must sift through many hours of testimony including that from numerous depositions, previous trial testimony, and possibly from a preliminary injunction or other hearing. All this testimony must be stored on tapes, creating the problem of accessing desired testimony at the desired time.
  • the trial process is often unpredictable and an attorney cannot have video or audio testimony prepared for all possible contingencies or potential uses.
  • Yet another object of the present invention is to provide a method and apparatus which will provide virtual real-time marking and annotation of audio or video.
  • a transcription network having a terminal that transcribes signals representative of spoken words into corresponding alphabetic and numeric text.
  • the terminal is linked to a tape recorder and, via the link, creates associations between recorded spoken words and the corresponding alphabetic and numeric text. Analysis is provided to synchronize the associations created by the terminal.
  • a transcription system having a terminal that selectively plays back spoken words recorded on the tape recorder using the synchronized associations.
  • the terminal also provides a digital synchronization signal using the tape recorder.
  • the terminal provides an audible synchronization signal using the tape recorder.
  • a means is provided for synchronizing the visual recording by creating associations with the corresponding signals representative of spoken words.
  • FIG. 1 is a perspective view of an embodiment of an overall transcription system according to the present invention for providing a first level of synchronization of textual, audio and video transcripts.
  • FIG. 2 is a perspective view of an embodiment of an audio and video synchronization system according to the present invention which illustrates selectable multi-mode operation.
  • FIG. 3 is a timing diagram illustrating the functionality of default synchronization of the present invention for automatically providing a second level of synchronization of the textual, audio and video transcripts.
  • FIG. 4 is a timing diagram illustrating the functionality of dead zone synchronization of the present invention for automatically providing an additional level of synchronization of the textual, audio and video transcripts.
  • FIG. 3 is a timing diagram illustrating the functionality of speaker detection synchronization of the present invention for automatically providing an additional level of synchronization of the textual, audio and video transcripts.
  • FIG. 6 is a diagram of the fundamental record of the data structure used in the present invention providing storage and access to the synchronization information according to the present invention.
  • FIG. 7 is a perspective view of an alternate embodiment of the present invention not only providing for review and analysis of synchronized audio, video and textual transcripts, but also providing video on demand via a remote relaying and storage system.
  • FIG. 1 illustrates an embodiment of an overall audio and video synchronization system configuration according to the present invention.
  • a stenographic recorder 11 is used by a court reporter at a deposition, hearing or other transcription proceeding to record digital coded signals representative of verbal communications as they are spoken.
  • the stenographic recorder 11 transfers the representative signals to a computer aided transcription (“CAT”) system 13 , a computer terminal used by the court reporter, for automated transcription.
  • CAT computer aided transcription
  • the CAT system 13 produces a textual record of the proceeding which corresponds to the actual words spoken.
  • the functionality of the recorder 11 may be directly added to the CAT system 13 .
  • the present invention also contemplates the use of voice or shorthand recording and transcription methods to create the textual record (the “textual transcript”).
  • a video camera 361 and/or a tape recorder 351 may also be used to create video and audio records (the “audio and video transcripts”) of the proceeding.
  • the court reporter always utilizes the audio record for completing the automated transcription process, i.e., to manually transcribe words that the CAT system 13 fails to transcribe. If the video camera 361 provides for audio recording, the independent tape recorder 351 is not necessary. Similarly, often times video taping is not required. In such circumstances, only the tape recorder 351 is used.
  • the camera 361 and recorder 351 may be used only as a backup, or may be completely replaced by video and audio pick-up devices having no taping capabilities.
  • the CAT system 13 stores the textual transcript in a database 360 via communication link 358 . As described in detail below, the CAT system 13 also stores synchronization information in the database 360 . Additionally, depending on the mode of operation, the database 360 may also be used to store all or portions of the audio and/or video transcripts.
  • the database 360 may be local (i.e., within the CAT system 13 itself, or otherwise), remote, or be distributed between the two (i.e., part local and part remote).
  • the CAT system 13 also communicates the textual transcript as it is created (in “real-time”) along a communication link 20 to a variety of remote or local terminals, such as attorney terminals 15 and 17 , for review. Depending on the mode of operation, the audio and video transcripts or portions thereof are also made available to the terminals 15 - 17 for real-time and/or post-proceeding review.
  • the court reporter produces a keystroke, or a series of keystrokes, to indicate a change in speakers.
  • keystroke(s) are referred to as a “transition marker”.
  • the CAT system 13 uses transition markers to separate portions of the textual record as originating from the appropriate speaker. For example, one transition marker indicates that a following portion of text originated from the witness and should thus be considered an answer. Similarly, another transition marker indicates that a subsequent portion of text, a question, originated from the examining attorney. However, the transition markers only separate text, not the corresponding actual audio or video.
  • the portion of the audio and video transcript corresponding to a single question, answer, etc. will be referred to as a “unit of speech”.
  • transition markers do not appropriately identify units of speech due to inherent synchronization in the textual transcription process.
  • a transition marker provides only a rough estimate of the time at which a unit of speech begins and ends.
  • the court reporter finishes recording a unit of speech, and may wait during several minutes of silence (the “sound gap”) before being sure in that unit of speech has been completed.
  • the court reporter upon hearing the alternate speaker, the court reporter responds to enter the transition marker.
  • the court reporter's response is not instantaneous. Therefore, in such instances, the received transition marker provides a delayed indication of the beginning of the new unit of speech, and a very late indication of the end of the previous unit of speech.
  • the court reporter may be forced to provide a transition marker well after the actual transition because of either speaker overlap (two persons talking at the same time), or due to the court reporter's falling behind.
  • the actual end and beginning transitions cannot be identified using the court reporter's transition markers.
  • units of speech in the corresponding audio and video transcripts cannot be fully synchronized with the textual transcript.
  • Full synchronization is accomplished in a variety of ways with the present invention, as described in more detail below with regards to FIG. 2 .
  • the CAT system 13 stores each textual counterpart to a unit of speech as a programming object in the database 360 . As each new unit of speech is transcribed, the CAT system 13 creates a new object and stores it in sequential order in the database 360 . In addition, upon receiving a beginning transition marker from the stenographic recorder 11 , the CAT system 13 retrieves information regarding the current tape position of both the tape recorder 351 and the video camera 361 , and stores it in the object representing the unit of speech. When the ending transition marker is received, the CAT system 13 again retrieves and stores the current tape positions with the object. Thus, the series of objects provides an association constituting a first level of synchronization of the textual transcript with the audio and video transcripts.
  • the CAT system 13 can be used to play back only the portions of audio and video which correspond to the textual counterpart to a selected unit, or several units, of speech. Basically, if the court reporter desires to replay the audio and video for a specific question and answer, upon locating the text of the question and answer, the CAT system 13 locates the corresponding audio and/or video using the programming object for replay. Although this process may occur manually, preferably, the CAT system 13 automatically locates and replays the audio and video via control through the link 356 , or via the database 360 if the desired audio and video is stored there.
  • Tape positions are received directly from the tape recorder 351 and the video camera 361 via the link 356 .
  • the CAT system 13 might send a signal representing an upcoming Q & A number to the recorder 351 for recording.
  • This signal may be either a voice-synthesized indication of the unit of speech sequence number aiding manual searching, or a digital data stream that is detectable using the recorder 351 during low or high speed searching directed via the CAT system 13 .
  • the court reporter may play back the associated audio and video by merely locating the requested Q & A on reporter terminal 13 , by stepping back through the Q & A's or through a lexical search, and selecting a play-back command.
  • the court reporter can avoid the clumsy and time consuming searching through the audio and videotape to locate Q &A's. In other words, the court reporter can quickly and easily locate desired audio and video on the respective tapes.
  • the terminals such as the terminals 15 and 17 provide opportunities for attorneys to freely mark and annotate the textual, audio, and video transcripts during and/or after the proceeding. Further detail regarding the marking and annotating of desired testimony through the attorney terminals 15 - 17 can be found in the pending parent U.S. application Ser. No. 08/036,488, filed Mar. 24, 1993, which is incorporated herein by reference.
  • FIG. 2 illustrates another embodiment of the present invention which provides multiple modes of operation for performing further levels of synchronization of the textual, audio and video transcripts.
  • the CAT system 13 may include video and sound processing boards 49 and 51 , respectively.
  • a CPU (Central Processing Unit) 47 detects the presence or absence of the processing boards 49 and 51 , and, based thereon, offers one or more modes of synchronization functionality to the court reporter. If, for example, the absence of the audio and video boards 51 and 49 is detected, the CAT system 13 automatically selects a first or minimally functional mode for performing synchronization. This mode is described in detail with regards to FIG. 1 .
  • the CAT system 13 offers the court reporter two additional modes of operation.
  • a space saving mode can be selected.
  • the CPU 47 uses the audio board 51 only for synchronization purposes, and not for sound reproduction. Without providing for sound reproduction, the storage space on the database 360 can be conserved. While in the saving mode, the CPU 47 ignores the video board 49 whether installed or not.
  • a fully functional mode may also be selected. In this mode, the CAT system 13 analyzes the space available on the database 360 and suggests an allocation of storage space for providing audio (and possibly video) synchronization and reproduction. The suggested storage space allocation may be accepted or reduced as may be desired.
  • the CPU 47 manages marking of the audio and video via a control link 372 .
  • the CPU 47 of the reporter terminal 13 provides for synchronization through the sequence of unit of speech objects stored in the database 360 . These objects provide direct synchronization between the court reporter's transition markers and the corresponding tape positions of the camera 361 and recorder 351 .
  • this mode of synchronization only provides the court reporter with a good starting point, local manual searching can provide for identification of the actual transitions.
  • the CAT system 13 sequentially steps through each unit of speech in the textual transcript and provides the court reporter with an interactive opportunity to search for actual transitions.
  • the CAT system 13 : 1) displays a unit of speech; 2) locates the corresponding tape positions from the programming object; 3) controls the positioning of the tape recorder 351 and video camera 361 to a position about three (3) seconds before the located tape positions indicate; 4) begins to play the tapes (while providing fast-forward, rewind, pause, etc., and other typical audio and video reviewing commands; and 5) awaits the court reporter's selection of the actual transition mark.
  • the CAT system 13 adds the actual transition marks (i.e., the newly retrieved tape positions) to the corresponding programming object. Afterwards, during review periods, the CAT system 13 utilizes the actual transition marks to fully synchronize the audio and video transcript with the textual transcript.
  • the CAT system 13 uses a default setting to offset the court reporter's transition markers to help minimize the amount of manual interaction that is needed to identify the exact transition points. Specifically, instead of using a court reporter's transition marker as a starting point of a unit of speech, the transition marker is offset by a maximum reporter reaction time. Upon play-back, instead of always having to rewind to find the beginning of a unit of speech, the offset generally provides a sufficient header to the transition marker to capture the beginning of a unit of speech. Rewinding and often times exact transition identification becomes unnecessary. Detail regarding this offsetting is provided below in regards to FIG. 3 .
  • the audio board 51 is used to aid in automatically providing a more exact synchronization of the video, audio and textual transcripts.
  • the CPU 47 uses the audio board 51 to provide digital samples of the audio signals representing the words being spoken.
  • the CAT system 13 analyzes the audio samples in a variety of ways to identify the actual timing of the units of speech. Based on the identified timing, the tape positions associated with each unit of speech is adjusted and stored in the corresponding programming object. Thereafter, the CAT system 13 utilizes the adjusted tape positions to provide for play-back synchronization of the audio and video transcripts per any given unit of speech recorded in the textual transcript. Additionally, although not usually necessary, the court reporter may interactively override the automatically adjusted tape positions with actual transition marks as described above.
  • the audio board 51 contains an analog to digital (A-D) converter which preferably operates on analog audio signals from both a left and right microphone 201 and 202 via respective links 203 and 204 .
  • a single microphone or an audio-tape from the recorder 351 might alternately be used with lesser synchronization functionality as will become apparent.
  • the left microphone 201 is physically positioned near or on the witness, while the right microphone 202 is located near or on the examining attorney.
  • the audio board 51 digitally samples the audio signals generated by the left and right microphones 201 and 202 .
  • the CAT system 13 identifies more exact timing (i.e., synchronization) for the units of speech. Specifically, by comparing the amplitude of left and right samples, the CAT system 13 determines which speaker is speaking and when each unit of speech takes place. This determination provides the CAT system 13 with sufficient information to provide for a more exact synchronization of the audio and video transcripts with the textual transcript.
  • the CAT system 13 analyzes the samples to identify sound gaps (or “dead zones”) between one speaker and the next. The beginning and ending of the dead zones indicate when each unit of speech takes place. Based on the indications, the CAT system 13 also provides a more exact synchronization of textual, audio and video transcripts.
  • the audio samples in the space saving mode are only used to aid in the synchronization of the units of speech, a sampling rate of only about ten hertz (10 Hz) with eight (8) bit resolution is needed.
  • Numerous companies provide suitable audio boards, such as, for example, Creative Labs of Santa Clara, Calif. However, for this mode, only a very basic dual-channel, eight (8) bit A/D converter board is needed.
  • the terminal 13 not only provides the functionality described in the saving mode, but also provides real-time digital audio and video to the terminals 15 and 17 . If storage space in the database 360 permits, the audio and video taping by the camera 361 and the recorder 351 would be unnecessary. However, as illustrated, taping is preferred not only as a backup, but also where the database 360 cannot provide for complete storage of the audio and video of the entire proceeding.
  • the audio board 51 accepts audio signal input from either the microphones 201 and 202 , from a single microphone (not shown), or directly from the audio tape recorder 351 (not shown). Because the human voice ranges from about 300 to 3000 Hz, to provide the speech reproduction quality of about that offered by a telephone network, an eight (8) bit sampling rate of 8000 Hz is chosen. A higher sampling rate or bit resolution may be selected upon setup configuration for better sound reproduction at the expense of storage space. For synchronization purposes, however, the CAT system 13 only considers one (1) out of every eight hundred (800) of these samples, although various averaging schemes might also be used.
  • the video processing board 49 accepts video signals from video camera 361 along the link 366 .
  • the video board 49 samples the incoming video signals into discrete video frames. The sampling occurs at a high enough rate (at least 24 frames per second, preferably 30) so that when played back, the video appears completely animated to the human eye.
  • Numerous companies provide video processing boards for performing such functionality, as for example, the Intel Corporation's Indeo® video recorder board.
  • the CPU 47 Upon receiving a transition marker, the CPU 47 obtains pointers to: 1) the current frame generated by the video processing board 49 ; and 2) the current sample generated by the audio processing board 51 .
  • the CPU 47 associates the pointers with the transition marker in the programming objects for the previous and the new units of speech. In the previous unit of speech, the association provides an indication of the end of the previous unit of speech. In the new unit of speech, the association indicates the beginning of the new unit of speech. Further levels of synchronization occur in a similar way as with the space saving mode.
  • All of the audio and video samples are then stored, via the link 358 , in the database 360 .
  • the CAT system 13 begins to treat the database 360 allocation as a FIFO (first in first out device) so as not to exceed the allocated storage space.
  • the database 360 acts as a window of opportunity for instant access to the samples.
  • the attorney terminals 15 and 17 may independently store all of the audio and video samples generated if local memory permits. However, because a majority of a deposition or trial testimony has little value, the attorneys using the terminals 15 and 17 are more likely to only want to store the important audio and video for review and annotation. To do this, upon identifying an important series of units of speech, attorneys merely select the units of speech and request audio and/or video via an attorney terminal, such as terminals 15 and 17 .
  • the audio and video samples are extracted from the database 360 either directly via the link 362 or indirectly via the CAT system 13 acting as a file server.
  • the requesting attorney terminal stores the extracted samples, and associates them with the textual transcript. The extraction process may occur during and after the proceeding.
  • the attorneys can only access the most recent window of audio and video. Typically, a window of opportunity lasting about an hour proves sufficient for such marking, because attorneys identify most important questions and answers usually within minutes of their occurrence.
  • FIG. 3 is a timing diagram which represents an exemplary question and answer interchange between an attorney and a witness in the minimal functionality mode of operation.
  • a time line 401 illustrates an exemplary window in time of the taking of testimony in a proceeding.
  • Time periods 403 , 405 , 407 represent units of speech during which the attorney asks questions.
  • time periods 409 and 411 represent units of speech during which the witness is testifying (i.e., answering the questions).
  • Time periods 413 , 415 , 417 and 419 represent sound gaps or “dead zones” between question and answer units of speech during which no one is talking.
  • While dead zones are the normal transition between questions and answers, there may also be other transition situations. For example, at the trailing end of question 405 , there is a simultaneous transition to answer 411 (i.e., where the witness begins testifying immediately at the end of the question). Overlap of question and answer units of speech may also occur, as is shown with respect to the transition between answer 411 and question 407 . Overlap occurs where two speakers talk at the same time.
  • a time line 501 illustrates the court reporter's keystroke recording of the units of speech of the time line 401 .
  • Arrowheads indicate the receipt of transition markers.
  • Time periods 523 , 525 and 527 represent the court reporter's reaction time delay.
  • Time period 529 represents a delay due to the court reporter's falling behind.
  • Time period 531 represents a delay caused by the overlapping speakers.
  • the court reporter responds to the question 403 after the reaction time 523 with a transition marker indicated by the upward pointing arrowhead. Thereafter, the court reporter completes the keystroking of the question 403 and waits for the next unit of speech, both during a time period 503 .
  • the court reporter responds some reaction time 525 later with a transition marker indicated by the downward pointing arrowhead. The court reporter then strokes the answer 409 and again awaits a new unit of speech, both during a time period 509 .
  • This process illustrates the ordinary interaction of the attorney and the witness, providing insight into the core synchronization problems due to: 1) the court reporter's reaction time; and 2) the failure to mark the actual end of a unit of speech.
  • the reporter upon hearing the beginning of the question 405 , the reporter reacts after the time period 527 and begins to keystroke the question 405 during a time period 505 .
  • the court reporter is unable to finish stroking the question 405 , before the witness begins the answer 411 .
  • the court reporter finishes the question 405 some variable time period, the time period 529 , after the answer 411 has begun.
  • the court reporter registers a transition marker and begins stroking the answer during a period 511 .
  • the attorney begins the question 407 while the witness is still finishing the answer 411 .
  • the court reporter finishes the answer 411 and begins the question 407 during a period 507 .
  • the court reporter's own keystroking delay time causes an offset from the true speaker transition points in cases such as between the question 405 and the answer 411 or the overlapping regions, such as between the answer 411 and the question 407 .
  • a time line 601 illustrates how an offset is used to minimize having to rewinding.
  • a standard offset value of about three (3) seconds is subtracted from the transition markers when determining the beginning of a unit of speech.
  • offsets 623 , 625 and 627 help ensure that the beginning of the questions 403 , 405 and 407 are not be missed.
  • the offset provides the court reporter with a sufficient lead time to capture the beginning of most units of speech without rewinding.
  • FIG. 4 is a timing diagram of the dead zone synchronization scheme of the present invention.
  • the time lines 401 and 501 are identical to that found and described in regards to FIG. 3 . They are duplicated to provide time referencing with the dead zone timing of a time line 701 .
  • the CAT system 13 can automatically identify appropriate beginnings and endings for most all units of speech recorded during the proceeding. In fact, if no speaker overlap exists, exact synchronization is possible for all recorded units of speech. For overlapping situations without dead zones, the CAT system 13 reverts to the default offset to help identify an appropriate, although not exact, beginning as described in detail above with regards to FIG. 3 .
  • the CAT system 13 performs dead zone synchronization by first identifying the dead zones. This is accomplished by: (1) continuously computing the average value of the noise level during each unit of speech recorded; (2) using the average value to compute a threshold value below which noise is considered ambient; and (3) checking the noise level during a window of time before each of the court reporter's transition markers to locate the dead zones, i.e., a period of time during which the noise level is below the threshold value.
  • each dead zone provides a beginning marker for the beginning of a new unit of speech. Similarly, the beginning of each dead zone provides an ending marker for the end of the previous unit of speech.
  • a lead-in time period is subtracted from the beginning markers, while a trailer time period is added to all ending markers. The trailer and lead-in (both about 1 second) ensure that the full unit of speech is captured. All of these calculations are performed by the CPU 47 within the CAT system 13 .
  • n sample number
  • N avg current average noise level
  • N n noise level associated with sample n
  • the threshold noise level is continuously updated during the proceeding to compensate for speakers of various voice levels.
  • step (3) average noise levels during a window of time before each court reporter's transition marker must first be calculated. If, for example, the sampling rate is 10 Hz and averaging is desired at every half second interval, the average for each interval may be computed by simply dividing the noise level associated with each sample during the half second interval (5 samples) by 5 and then adding them together. Although only a 10 Hz sampling is used, higher sampling rates with further averaging might be used to increase the accuracy of detection of dead zone edges. Moreover, even though the sampling rate might increase to rates sufficient to accommodate sound reproduction, the majority of these samples might be skipped when performing dead zone identification. For example, only one (1) actual sample might be considered out of every eight hundred (800) incoming so as to simulate a 10 Hz sampling rate for dead zone calculations.
  • 800 eight hundred
  • the duration of the time window must next be selected, and may vary depending on the efficiency of the court reporter. If a court reporter has traditionally experienced a longer stroking delay, a longer time window may be chosen.
  • the time window provides a time period during which the CAT system 13 may search for a dead zone. By confining the area of dead zone searching, incorrect identification of pauses between words or sentences in a single unit of speech as being dead zones can be avoided.
  • the time window is adjusted to a time period slightly larger than the default offset described above with regard to FIG. 3 . For illustrative purposes, a three second time window is chosen here.
  • a dead zone is determined to exist.
  • the CAT system 13 subtracts a one second lead-in time from the ending edge of the dead zone, and associates the results with the programming object corresponding to the new unit of speech. The results constitute the beginning of the new unit of speech.
  • the CAT system 13 begins to further trace back until a beginning of the dead zone is identified.
  • the court reporter's transition marker for the previous unit of speech sets an absolute barrier beyond which tracing back will not occur. If, prior to reaching the absolute barrier, the average noise level rises above the threshold value, the beginning edge of a dead zone is detected.
  • the CAT system 13 adds a one second trailer time from the beginning edge of the dead zone and then associates the results with the programming object corresponding to the previous unit of speech. The results constitute the end of the previous unit of speech.
  • the CAT system 13 first indicates to the court reporter that two units of speech by the same speaker have been indicated. If the absolute barrier is reached twice in a row, the CAT system 13 determines that there is a system problem and warns the court reporter of this status.
  • the CAT system 13 subtracts the default offset ( FIG. 3 ) from the reporter's transition marker, and associates the results with the programming object of the new unit of speech as the beginning thereof.
  • the CAT system 13 also associates the court reporter's transition marker plus a trailer time (1 second) with the programming object corresponding to the previous unit of speech. The results constitute the end of the previous unit of speech.
  • dead zone identification may occur during the sampling process. For example, the beginning of a potential dead zone could be detected, followed by a potential end. Only if the end of the potential dead zone occurs during the three second window would the CAT system 13 conclude that the sound gap actually constitutes a gap between speakers.
  • the advantages of this approach would be to instantly provide synchronization information upon detecting a court reporter's transition marker.
  • the disadvantages include the additional calculation overhead resulting from analysis outside of the three second window.
  • the CAT system 13 may keep track of the court reporter's average delay time and adjust the value accordingly. For example, if no more than two seconds is ever required to detect a transition (i.e., the trailing edge of a dead zone) then the time window may be reduced to two seconds.
  • FIG. 5 is a timing diagram of the differential signal synchronization scheme of the present invention.
  • the time lines 401 and 501 are identical to that found and described above in regards to FIG. 3 .
  • Their duplication provides time referencing for the differential signal timing of a time line 801 .
  • the time line 801 illustrates a synchronization scheme in which separate microphones and recording channels are used, one for the attorney and another for the witness, to provide differentiation between question and answer units of speech. For example, when the attorney asks a question 403 , the CAT system 13 detects that the attorney's microphone produces a larger audio signal than the witness's microphone. Similarly, when the witness answers, the CAT system 13 detects that the witness's microphone produces the largest audio signal. When neither party talks, the CAT system 13 detects that amplitude of both microphones being very low and categorizes the region as a dead zone. During periods of overlap, the CAT system 13 detects high amplitudes on both microphones and categorizes the period appropriately.
  • the time line 801 illustrates an exemplary categorization made by the CAT system 13 using the differential analysis of the two microphones.
  • exact synchronization can be achieved for ordinary situations such as the question 403 , answer 409 and questions 405 interchange which correspond directly to differential signals 803 , 809 and 805 .
  • the differentiation scheme also provides for identification of the beginning and ending of units of speech which overlap.
  • the two microphones 201 and 202 are positioned at trial as follows: one at the podium or attached to the attorney, and another at the witness stand. In a deposition, the microphones 201 and 202 would be placed directly in front of the attorney and the witness. Each of the microphones 201 and 202 records on a separate channel.
  • the audio board 51 via communication link 509 , receives the analog audio signals on each channel and digitizes it (i.e., through sampling as discussed above). After sampling, the digital audio data on each channel is stored in the database 360 .
  • the CAT system 13 performs differential amplitude calculations upon receiving each transition marker so as to provide for more accurate synchronization of the audio and video transcripts with the textual transcript. As with the dead zone calculations, it is not necessary that the CAT system 13 consider all of the data samples on each channel to adequately perform these calculations. Instead, the CAT system 13 may only consider a sample every tenth of a second (10 Hz), for example.
  • the CAT system 13 looks for amplitude transitions from one channel to the other to determine when an actual transition occurs. Specifically, when the CAT system 13 receives a transition marker from the court reporter terminal 11 , the CAT system 13 traces back until it finds a beginning transition of the new unit of speech. Thereafter, the CAT system 13 continues tracing back until the ending transition of the previous unit of speech is identified. For the tracing back, the previous transition marker is the absolute barrier for both the beginning and ending transition identifications. In addition, trailer and lead-in times are appropriately added as described above in relation to dead zone synchronization.
  • the CAT system 13 uses the transition marker (i.e. the one from which it was originally tracing) as a default setting for the end of the previous unit of speech. Although this situation could occur during periods of speaker overlap, the CAT system 13 generally prevents such occurrences by evaluating the amplitude levels of the signals on both channels. If questionable periods of overlap seem at issue, the CAT system 13 responds by using the default offset procedure described in relation to FIG. 3 .
  • the CAT system 13 identifies actual transitions by first subtracting the signals to determine which one predominates, i.e., is greater. The average difference is then compared to a threshold value to determine whether the average difference is great enough to constitute a voice signal on the predominant channel. A transition occurs when a new channel predominates and the resulting signal on the new predominating channel is above the threshold value. The average difference and threshold value are calculated in a manner similar to that discussed above with regard to the dead zone synchronization scheme.
  • dead zone and differential signal synchronization schemes can be used together to further ensure accurate synchronization of the audio and video transcripts with the textual transcript.
  • a court reporter may still, after the proceeding, manually review the tape and set new markers, if necessary.
  • FIG. 6 illustrates the programming object used to store all of the synchronization information described heretofore regarding a single unit of speech.
  • the CAT system 13 utilizes a transcribed text time frame (TTTF) record 901 , a programming object, to associate a variety of synchronization information.
  • TTTF transcribed text time frame
  • the TTTF record 911 provides the preferred synchronization storage structure for the present invention.
  • the CAT system 13 uses record 901 to associate the transcribed text of each individual question and answer units of speech with the corresponding audio and video.
  • the TTTF record 901 associates: (1) a unit of speech field 903 for storing an identifier for identifying the specific textual counterpart to a specific unit of speech, such as whether the text is a question or answer and the associated question or answer number; (2) a beginning transition marker field 905 for storing a frame or sample number associated with the court reporter's first transition marker; (3) an ending transition marker field 907 for storing a frame or sample number associated with the court reporter's subsequent transition marker; (4) a computed beginning marker field 909 for storing a frame or sample number associated with the beginning of the unit of speech as computed by the CAT system 13 ; (5), a computed ending marker field 911 for storing a frame or sample number associated with the end of the unit of speech as computed by the CAT system 13 ; (6) a selected beginning marker field 913 for storing a sample or frame
  • the illustrated TTTF record 901 provides for association of the textual transcript with a combined audio and video transcript.
  • the fields 905 through 915 are merely duplicated, with the duplicate fields being assigned to the video information and the original fields being assigned to the audio. In either configuration, a single TTTF record 901 is used for each unit of speech transcribed during the proceeding.
  • FIG. 7 is a perspective view of an alternate embodiment of the present invention not only providing for review and analysis of synchronized audio, video and textual transcripts, but also providing real-time audio and video on demand via a remote relaying and storage system 955 .
  • the CAT system 13 receives audio and video signals from the video recorder 957 , processes and transmits them to the remote relaying and storage system 955 . Synchronization information and the textual record are also transmitted.
  • the first function of the system 955 is to provide repeater functionality wherein the incoming signal is relayed to any number of selected communication ports providing access to remote terminals.
  • the remote terminals such as remote terminals 951 and 953 , may receive virtual real-time video and audio on demand.
  • the system 955 performs storage and play-back of the video and audio transcripts along with the textual transcript and synchronization information so that the transcript can be selectively parsed and reviewed during and after the proceeding.
  • the system 955 first converts the incoming video signals into any one of a number of established bit-parallel digital interface formats for component video.
  • the CCIR recommendation 601 , the SMPTE RP 125 , and the SMPTE 240M-1988 standards are exemplary formats which may be adopted.
  • the CAT system 13 divides the video signal into three components, a luminance signal (Y) and two color difference signals (R-Y, B-Y).
  • the luminance component is sampled into the digital domain at 13.5 MHz and the color difference components are sampled at 6.75 MHz each.
  • One byte of color difference is transmitted (byte serial over eight differential conductor pairs with a ninth pair carrying a clock signal of 27 MHz) followed by a luminance byte which is then followed by the second color difference component.
  • the net result is a 27 Mbytes/second digital data stream that can pass through hundreds of meters of cables and through many stages of processing without degradation.
  • the storage system 955 incorporates a series of storage disks arranged in parallel. This might be accomplished by combining several heads in a single large disk or by combining several small disks (often referred to as RAID architecture). However, preferably, the system 955 incorporates real time disks grouped in a modular fashion. For example, two subsystems of six disks combined to transfer at a sustained rate of 26.8 Mbytes/second will support the CCIR 601 standard. Recognition Concepts, Inc., manufactures a DataSTORE® Real Time Disk series for such purposes.
  • a variety of input devices including video camera 951 might also be converted to the CCIR standard. Encoders and decoders are available to allow inputs and outputs from PAL, NTSC, RGB, YUV, and CCIR 601 , permitting many different formats to be conveniently reformatted into a single standard digital path for temporary or permanent storage onto magnetic disk or tape.
  • the storage system 955 may act as a “warehouse” for storage of the audio, video and textual transcripts for post-proceeding review. Individuals may, via remote terminals such as the terminals 951 and 953 , access any prior stored data. Because the system 955 also provides storage for the synchronization information as mentioned above, the video and audio transcript can be fully synchronized with the corresponding textual record.

Abstract

A transcription network having linked computer terminals for a court reporter and for examining, defending, and associate attorneys is disclosed. Based on the hardware present, the court reporter terminal automatically selects the most appropriate synchronization and audio and video transcript delivery schemes for the other terminals. A multi-mode synchronization scheme provides for various levels of synchronization of the textual transcript with the audio and video transcripts of the proceeding. A first-in first-out arrangement is provided for controlling the video and audio storage space so that a window of available audio and video can be specifically marked and retrieved for post-proceeding review.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS (CLAIMING BENEFIT UNDER 35 U.S.C. 120)
  • This application is a continuation-in-part application of pending U.S. application Ser. No. 08/036,488, filed Mar. 24, 1993, by Bennett et al. (Attorney Docket No. P93-00).
  • INCORPORATION BY REFERENCE
  • The descriptive matter of the above-referred to pending U.S. application Ser. No. 08/036,488, filed Mar. 24, 1993, by Bennett et al. (Attorney Docket No. P93-00) is incorporated herein by reference in its entirety, and is made part of this application.
  • BACKGROUND OF THE INVENTION
  • This invention relates to a down-line transcription system used by attorneys for reviewing real-time transcription during a proceeding such as a trial or deposition; and more particularly, to a method and apparatus for providing real-time use and manipulation of audio and video transcripts by attorneys, judges, court reporters, witnesses and clients.
  • As is well known, legal proceedings such as a deposition or trial involve the participation of, among others, an examining attorney who asks questions and a witness who must answer (“testify”) while under oath. These answers (“testimony”) are recorded by the court reporter, along with the associated questions and related conversation, using a stenographic recorder. A stenographic recorder is a machine which provides a set of keys which are stroked by the court reporter in various combinations and sequences to represent a spoken word. To provide a backup to the key-strokes, court reporters use a tape recorder to record the entire proceeding.
  • Newer versions of stenographic recorders have been developed and linked to computer aided transcription (“CAT”) systems to help automate the manual transcription process. Instead of solely using paper tape recording methods, the stenographic recorder also electronically stores key-strokes in built-in memory or on disk. After using such a newer recorder, the court reporter returns to his office and transfers the electronically stored key-strokes to his CAT system for transcription. Although the bulk of electronically stored key-strokes may be translated automatically, the court reporter still works interactively with the CAT system to translate those key-strokes which the CAT system did not recognize.
  • For the transcription system mentioned above, court reporters often use the tape recorder to aid in translating untranscribed key-strokes. In a manual process, the court reporter repeatedly searches forward and backward and listens to the tape to identify the section of the tape that corresponds to the untranscribed key-stroke(s). In locating the corresponding audio, the court reporter wastes a great deal of time.
  • In addition to transcribing the proceeding using automatic, post-processed transcription and audio taping, a court reporter may use a video recorder to record the entire proceeding for a similar purpose. In addition to aiding transcription, video or audio recording of a proceeding provides other advantages. For example, during a trial, an attorney often admits into evidence testimony from a prior proceeding, such as a deposition. This is normally done by reading the desired portion of the written deposition transcript into the trial record. However, there are times when this process may become tiresome and cause the jury to lose interest. To keep the jury interested, an attorney may instead want to play the actual video or audio of the desired testimony.
  • Video or audio recordings of prior testimony also offer other benefits at trial. Unlike a written transcript, video or audio enable an attorney to convey to the jury the demeanor of the witness. For example, if a witness hesitates before answering a deposition question and is then visibly and audibly uncomfortable in answering, the jury may question the witness's credibility. It is virtually impossible to convey the same to the jury from prior written testimony.
  • In addition, an attorney may want to play video or audio of prior testimony by a trial witness to ask the witness to clarify the prior testimony in view of his present testimony or to impeach the witness.
  • Despite the desirability of video or audio recordings, their use in court proceedings has been very limited due to various problems. For example, if an attorney wants to use prior video or audio testimony at trial, he must, as part of pre-trial preparation, consult the written transcript and then manually search through any number of tapes to find the desired material. The attorney may also want to edit out any undesired material. Most attorneys, however, do not have the equipment or time (especially immediately prior to or during a trial) to perform these tasks. Consequently, an attorney often must send the tapes to an editing company, or court reporter, that specializes in video and audio editing. Besides being time consuming, this alternative process is also expensive and forces the attorney to rely on the accuracy and dependability of the editing company or court reporter. Mistakes often occur that are not discovered until trial when it is too late.
  • In addition, video and audio recordings present problems associated with storing, accessing, and annotating a large volume of material. An attorney at trial normally must sift through many hours of testimony including that from numerous depositions, previous trial testimony, and possibly from a preliminary injunction or other hearing. All this testimony must be stored on tapes, creating the problem of accessing desired testimony at the desired time. The trial process is often unpredictable and an attorney cannot have video or audio testimony prepared for all possible contingencies or potential uses.
  • Furthermore, even if an attorney could have prior testimony prepared for use at any given time during the trial, he is still unable to access previous video or audio trial testimony given the same day. Say, for example, an attorney wants to revisit testimony given a half hour earlier. To do so would require the court reporter to stop taping and manually rewind to find the desired testimony and eventually fast forward to reset the tape in order to continue the proceeding. Because it is time consuming and burdensome, this process is not practicable in a fast paced trial setting.
  • If, for example, an attorney does not understand an answer, the video and audio taping proceeds while the court reporter reads the answer back from the paper tape record. This requires the court reporter to stop recording, pick up the paper tape output from the stenographic recorder, search for the portion of the record at issue, and read the stenographic key strokes. This reading is often broken with misplaced delays in pronunciation between phonemes and words making it difficult to understand. Furthermore, because searching for a portion of the record in a series of printed key-strokes proves to be very difficult and time consuming, attorneys are forced to limit requests to have only the most recent Q & A's read back.
  • It is therefore an object of the present invention to provide a method and apparatus which will provide real-time synchronization of a written transcript with audio and video.
  • It is a further object of the present invention to provide a method and apparatus which will provide virtual real-time access to prior audio or video testimony.
  • Yet another object of the present invention is to provide a method and apparatus which will provide virtual real-time marking and annotation of audio or video.
  • SUMMARY OF THE INVENTION
  • These and other objects of the present invention are achieved in a transcription network having a terminal that transcribes signals representative of spoken words into corresponding alphabetic and numeric text. The terminal is linked to a tape recorder and, via the link, creates associations between recorded spoken words and the corresponding alphabetic and numeric text. Analysis is provided to synchronize the associations created by the terminal.
  • Other objects are achieved in a transcription system having a terminal that selectively plays back spoken words recorded on the tape recorder using the synchronized associations. The terminal also provides a digital synchronization signal using the tape recorder. In addition, the terminal provides an audible synchronization signal using the tape recorder.
  • Other objects are also achieved in a transcription system having a video camera for recording a proceeding. A means is provided for synchronizing the visual recording by creating associations with the corresponding signals representative of spoken words.
  • Other objects and further aspects of the present invention will become apparent in view of the following detailed description and claims with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an embodiment of an overall transcription system according to the present invention for providing a first level of synchronization of textual, audio and video transcripts.
  • FIG. 2 is a perspective view of an embodiment of an audio and video synchronization system according to the present invention which illustrates selectable multi-mode operation.
  • FIG. 3 is a timing diagram illustrating the functionality of default synchronization of the present invention for automatically providing a second level of synchronization of the textual, audio and video transcripts.
  • FIG. 4 is a timing diagram illustrating the functionality of dead zone synchronization of the present invention for automatically providing an additional level of synchronization of the textual, audio and video transcripts.
  • FIG. 3 is a timing diagram illustrating the functionality of speaker detection synchronization of the present invention for automatically providing an additional level of synchronization of the textual, audio and video transcripts.
  • FIG. 6 is a diagram of the fundamental record of the data structure used in the present invention providing storage and access to the synchronization information according to the present invention.
  • FIG. 7 is a perspective view of an alternate embodiment of the present invention not only providing for review and analysis of synchronized audio, video and textual transcripts, but also providing video on demand via a remote relaying and storage system.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 illustrates an embodiment of an overall audio and video synchronization system configuration according to the present invention. A stenographic recorder 11 is used by a court reporter at a deposition, hearing or other transcription proceeding to record digital coded signals representative of verbal communications as they are spoken. Using a communication link 19, the stenographic recorder 11 transfers the representative signals to a computer aided transcription (“CAT”) system 13, a computer terminal used by the court reporter, for automated transcription. In virtual real-time, the CAT system 13 produces a textual record of the proceeding which corresponds to the actual words spoken.
  • Although an independent stenographic recorder 11 is illustrated, the functionality of the recorder 11 may be directly added to the CAT system 13. Similarly, instead of using stenographic keystroking as the vehicle for recording the proceeding, the present invention also contemplates the use of voice or shorthand recording and transcription methods to create the textual record (the “textual transcript”).
  • A video camera 361 and/or a tape recorder 351 may also be used to create video and audio records (the “audio and video transcripts”) of the proceeding. The court reporter always utilizes the audio record for completing the automated transcription process, i.e., to manually transcribe words that the CAT system 13 fails to transcribe. If the video camera 361 provides for audio recording, the independent tape recorder 351 is not necessary. Similarly, often times video taping is not required. In such circumstances, only the tape recorder 351 is used. Moreover, in some modes of operation, where the full storage of the audio and video occurs via the database 360, the camera 361 and recorder 351 may be used only as a backup, or may be completely replaced by video and audio pick-up devices having no taping capabilities.
  • The CAT system 13 stores the textual transcript in a database 360 via communication link 358. As described in detail below, the CAT system 13 also stores synchronization information in the database 360. Additionally, depending on the mode of operation, the database 360 may also be used to store all or portions of the audio and/or video transcripts. The database 360 may be local (i.e., within the CAT system 13 itself, or otherwise), remote, or be distributed between the two (i.e., part local and part remote).
  • The CAT system 13 also communicates the textual transcript as it is created (in “real-time”) along a communication link 20 to a variety of remote or local terminals, such as attorney terminals 15 and 17, for review. Depending on the mode of operation, the audio and video transcripts or portions thereof are also made available to the terminals 15-17 for real-time and/or post-proceeding review.
  • Specifically, during the proceeding, the court reporter produces a keystroke, or a series of keystrokes, to indicate a change in speakers. Hereinafter, such keystroke(s) are referred to as a “transition marker”. The CAT system 13 uses transition markers to separate portions of the textual record as originating from the appropriate speaker. For example, one transition marker indicates that a following portion of text originated from the witness and should thus be considered an answer. Similarly, another transition marker indicates that a subsequent portion of text, a question, originated from the examining attorney. However, the transition markers only separate text, not the corresponding actual audio or video. Hereinafter, the portion of the audio and video transcript corresponding to a single question, answer, etc., will be referred to as a “unit of speech”.
  • Although they provide a relatively close estimate, the transition markers do not appropriately identify units of speech due to inherent synchronization in the textual transcription process. In particular, a transition marker provides only a rough estimate of the time at which a unit of speech begins and ends. For example, typically, the court reporter finishes recording a unit of speech, and may wait during several minutes of silence (the “sound gap”) before being sure in that unit of speech has been completed. Either the same speaker could continue the unit of speech ending the sound gap, or an alternate speaker could begin an new unit of speech indicating a need for a transition marker. In the latter instance, upon hearing the alternate speaker, the court reporter responds to enter the transition marker. However, the court reporter's response is not instantaneous. Therefore, in such instances, the received transition marker provides a delayed indication of the beginning of the new unit of speech, and a very late indication of the end of the previous unit of speech.
  • Other situations provide for further synchronization of the transition markers. For example, the court reporter may be forced to provide a transition marker well after the actual transition because of either speaker overlap (two persons talking at the same time), or due to the court reporter's falling behind. In either situation, the actual end and beginning transitions cannot be identified using the court reporter's transition markers. Without actual beginning and ending transitions, units of speech in the corresponding audio and video transcripts cannot be fully synchronized with the textual transcript. Full synchronization is accomplished in a variety of ways with the present invention, as described in more detail below with regards to FIG. 2.
  • The CAT system 13 stores each textual counterpart to a unit of speech as a programming object in the database 360. As each new unit of speech is transcribed, the CAT system 13 creates a new object and stores it in sequential order in the database 360. In addition, upon receiving a beginning transition marker from the stenographic recorder 11, the CAT system 13 retrieves information regarding the current tape position of both the tape recorder 351 and the video camera 361, and stores it in the object representing the unit of speech. When the ending transition marker is received, the CAT system 13 again retrieves and stores the current tape positions with the object. Thus, the series of objects provides an association constituting a first level of synchronization of the textual transcript with the audio and video transcripts.
  • Although additional levels of synchronization may be implemented, with the CAT system 13 can be used to play back only the portions of audio and video which correspond to the textual counterpart to a selected unit, or several units, of speech. Basically, if the court reporter desires to replay the audio and video for a specific question and answer, upon locating the text of the question and answer, the CAT system 13 locates the corresponding audio and/or video using the programming object for replay. Although this process may occur manually, preferably, the CAT system 13 automatically locates and replays the audio and video via control through the link 356, or via the database 360 if the desired audio and video is stored there.
  • Tape positions are received directly from the tape recorder 351 and the video camera 361 via the link 356. In the alternative, it is also contemplated that the CAT system 13 might send a signal representing an upcoming Q & A number to the recorder 351 for recording. This signal may be either a voice-synthesized indication of the unit of speech sequence number aiding manual searching, or a digital data stream that is detectable using the recorder 351 during low or high speed searching directed via the CAT system 13.
  • Upon a request from a judge or attorney to read back a Q & A, the court reporter may play back the associated audio and video by merely locating the requested Q & A on reporter terminal 13, by stepping back through the Q & A's or through a lexical search, and selecting a play-back command. With synchronization, the court reporter can avoid the clumsy and time consuming searching through the audio and videotape to locate Q &A's. In other words, the court reporter can quickly and easily locate desired audio and video on the respective tapes.
  • In the illustrated configuration, the terminals such as the terminals 15 and 17 provide opportunities for attorneys to freely mark and annotate the textual, audio, and video transcripts during and/or after the proceeding. Further detail regarding the marking and annotating of desired testimony through the attorney terminals 15-17 can be found in the pending parent U.S. application Ser. No. 08/036,488, filed Mar. 24, 1993, which is incorporated herein by reference.
  • FIG. 2 illustrates another embodiment of the present invention which provides multiple modes of operation for performing further levels of synchronization of the textual, audio and video transcripts. In this embodiment, the CAT system 13 may include video and sound processing boards 49 and 51, respectively. Also within the CAT system 13, a CPU (Central Processing Unit) 47 detects the presence or absence of the processing boards 49 and 51, and, based thereon, offers one or more modes of synchronization functionality to the court reporter. If, for example, the absence of the audio and video boards 51 and 49 is detected, the CAT system 13 automatically selects a first or minimally functional mode for performing synchronization. This mode is described in detail with regards to FIG. 1.
  • Where at least the audio processing board 51 is present, the CAT system 13 offers the court reporter two additional modes of operation. First, a space saving mode can be selected. In the space saving mode, the CPU 47 uses the audio board 51 only for synchronization purposes, and not for sound reproduction. Without providing for sound reproduction, the storage space on the database 360 can be conserved. While in the saving mode, the CPU 47 ignores the video board 49 whether installed or not. Second, a fully functional mode may also be selected. In this mode, the CAT system 13 analyzes the space available on the database 360 and suggests an allocation of storage space for providing audio (and possibly video) synchronization and reproduction. The suggested storage space allocation may be accepted or reduced as may be desired.
  • More specifically, in the minimal functionality mode, the CPU 47 manages marking of the audio and video via a control link 372. As described in detail regarding. FIG. 1, the CPU 47 of the reporter terminal 13 provides for synchronization through the sequence of unit of speech objects stored in the database 360. These objects provide direct synchronization between the court reporter's transition markers and the corresponding tape positions of the camera 361 and recorder 351. Although this mode of synchronization only provides the court reporter with a good starting point, local manual searching can provide for identification of the actual transitions.
  • To aid manual searching for actual transitions, the CAT system 13 sequentially steps through each unit of speech in the textual transcript and provides the court reporter with an interactive opportunity to search for actual transitions. In particular, the CAT system 13: 1) displays a unit of speech; 2) locates the corresponding tape positions from the programming object; 3) controls the positioning of the tape recorder 351 and video camera 361 to a position about three (3) seconds before the located tape positions indicate; 4) begins to play the tapes (while providing fast-forward, rewind, pause, etc., and other typical audio and video reviewing commands; and 5) awaits the court reporter's selection of the actual transition mark. As each actual transition mark is selected, the CAT system 13 adds the actual transition marks (i.e., the newly retrieved tape positions) to the corresponding programming object. Afterwards, during review periods, the CAT system 13 utilizes the actual transition marks to fully synchronize the audio and video transcript with the textual transcript.
  • To aid in the synchronization process associated with the first mode of operation, the CAT system 13 uses a default setting to offset the court reporter's transition markers to help minimize the amount of manual interaction that is needed to identify the exact transition points. Specifically, instead of using a court reporter's transition marker as a starting point of a unit of speech, the transition marker is offset by a maximum reporter reaction time. Upon play-back, instead of always having to rewind to find the beginning of a unit of speech, the offset generally provides a sufficient header to the transition marker to capture the beginning of a unit of speech. Rewinding and often times exact transition identification becomes unnecessary. Detail regarding this offsetting is provided below in regards to FIG. 3.
  • In the saving mode, the audio board 51 is used to aid in automatically providing a more exact synchronization of the video, audio and textual transcripts. In this mode, the CPU 47 uses the audio board 51 to provide digital samples of the audio signals representing the words being spoken. The CAT system 13 analyzes the audio samples in a variety of ways to identify the actual timing of the units of speech. Based on the identified timing, the tape positions associated with each unit of speech is adjusted and stored in the corresponding programming object. Thereafter, the CAT system 13 utilizes the adjusted tape positions to provide for play-back synchronization of the audio and video transcripts per any given unit of speech recorded in the textual transcript. Additionally, although not usually necessary, the court reporter may interactively override the automatically adjusted tape positions with actual transition marks as described above.
  • Particularly, among other circuitry, the audio board 51 contains an analog to digital (A-D) converter which preferably operates on analog audio signals from both a left and right microphone 201 and 202 via respective links 203 and 204. A single microphone or an audio-tape from the recorder 351 might alternately be used with lesser synchronization functionality as will become apparent. The left microphone 201 is physically positioned near or on the witness, while the right microphone 202 is located near or on the examining attorney.
  • The audio board 51 digitally samples the audio signals generated by the left and right microphones 201 and 202. By comparing and analyzing the resultant samples, the CAT system 13 identifies more exact timing (i.e., synchronization) for the units of speech. Specifically, by comparing the amplitude of left and right samples, the CAT system 13 determines which speaker is speaking and when each unit of speech takes place. This determination provides the CAT system 13 with sufficient information to provide for a more exact synchronization of the audio and video transcripts with the textual transcript.
  • Where only a single audio pick-up is used, such as a single microphone or the recorder 351, the CAT system 13 analyzes the samples to identify sound gaps (or “dead zones”) between one speaker and the next. The beginning and ending of the dead zones indicate when each unit of speech takes place. Based on the indications, the CAT system 13 also provides a more exact synchronization of textual, audio and video transcripts.
  • Synchronization based on the analysis of the differential signal and the dead zone are described in more detail below.
  • Because the audio samples in the space saving mode are only used to aid in the synchronization of the units of speech, a sampling rate of only about ten hertz (10 Hz) with eight (8) bit resolution is needed. Numerous companies provide suitable audio boards, such as, for example, Creative Labs of Santa Clara, Calif. However, for this mode, only a very basic dual-channel, eight (8) bit A/D converter board is needed.
  • In the fully functional mode, the terminal 13 not only provides the functionality described in the saving mode, but also provides real-time digital audio and video to the terminals 15 and 17. If storage space in the database 360 permits, the audio and video taping by the camera 361 and the recorder 351 would be unnecessary. However, as illustrated, taping is preferred not only as a backup, but also where the database 360 cannot provide for complete storage of the audio and video of the entire proceeding.
  • The audio board 51 accepts audio signal input from either the microphones 201 and 202, from a single microphone (not shown), or directly from the audio tape recorder 351 (not shown). Because the human voice ranges from about 300 to 3000 Hz, to provide the speech reproduction quality of about that offered by a telephone network, an eight (8) bit sampling rate of 8000 Hz is chosen. A higher sampling rate or bit resolution may be selected upon setup configuration for better sound reproduction at the expense of storage space. For synchronization purposes, however, the CAT system 13 only considers one (1) out of every eight hundred (800) of these samples, although various averaging schemes might also be used.
  • The video processing board 49 accepts video signals from video camera 361 along the link 366. The video board 49 samples the incoming video signals into discrete video frames. The sampling occurs at a high enough rate (at least 24 frames per second, preferably 30) so that when played back, the video appears completely animated to the human eye. Numerous companies provide video processing boards for performing such functionality, as for example, the Intel Corporation's Indeo® video recorder board.
  • Upon receiving a transition marker, the CPU 47 obtains pointers to: 1) the current frame generated by the video processing board 49; and 2) the current sample generated by the audio processing board 51. The CPU 47 associates the pointers with the transition marker in the programming objects for the previous and the new units of speech. In the previous unit of speech, the association provides an indication of the end of the previous unit of speech. In the new unit of speech, the association indicates the beginning of the new unit of speech. Further levels of synchronization occur in a similar way as with the space saving mode.
  • All of the audio and video samples are then stored, via the link 358, in the database 360. However, if the storage space taken up by the samples reaches the storage space allocation (configured upon setup as described above), the CAT system 13 begins to treat the database 360 allocation as a FIFO (first in first out device) so as not to exceed the allocated storage space. In effect, where the video and audio samples exceeds the storage space allocation, the database 360 acts as a window of opportunity for instant access to the samples.
  • The attorney terminals 15 and 17 may independently store all of the audio and video samples generated if local memory permits. However, because a majority of a deposition or trial testimony has little value, the attorneys using the terminals 15 and 17 are more likely to only want to store the important audio and video for review and annotation. To do this, upon identifying an important series of units of speech, attorneys merely select the units of speech and request audio and/or video via an attorney terminal, such as terminals 15 and 17. The audio and video samples are extracted from the database 360 either directly via the link 362 or indirectly via the CAT system 13 acting as a file server. The requesting attorney terminal stores the extracted samples, and associates them with the textual transcript. The extraction process may occur during and after the proceeding.
  • If the space allocation does not permit full storage of the samples in the database 360, the attorneys can only access the most recent window of audio and video. Typically, a window of opportunity lasting about an hour proves sufficient for such marking, because attorneys identify most important questions and answers usually within minutes of their occurrence.
  • As illustrated in FIG. 3, in the minimal functionality mode, an offset feature is provided for aiding in the synchronization process. FIG. 3 is a timing diagram which represents an exemplary question and answer interchange between an attorney and a witness in the minimal functionality mode of operation. Specifically, a time line 401 illustrates an exemplary window in time of the taking of testimony in a proceeding. Time periods 403, 405, 407 represent units of speech during which the attorney asks questions. Similarly, time periods 409 and 411 represent units of speech during which the witness is testifying (i.e., answering the questions). Time periods 413, 415, 417 and 419 represent sound gaps or “dead zones” between question and answer units of speech during which no one is talking. While dead zones are the normal transition between questions and answers, there may also be other transition situations. For example, at the trailing end of question 405, there is a simultaneous transition to answer 411 (i.e., where the witness begins testifying immediately at the end of the question). Overlap of question and answer units of speech may also occur, as is shown with respect to the transition between answer 411 and question 407. Overlap occurs where two speakers talk at the same time.
  • A time line 501 illustrates the court reporter's keystroke recording of the units of speech of the time line 401. Arrowheads indicate the receipt of transition markers. Time periods 523, 525 and 527 represent the court reporter's reaction time delay. Time period 529 represents a delay due to the court reporter's falling behind. Time period 531 represents a delay caused by the overlapping speakers.
  • More specifically, the court reporter responds to the question 403 after the reaction time 523 with a transition marker indicated by the upward pointing arrowhead. Thereafter, the court reporter completes the keystroking of the question 403 and waits for the next unit of speech, both during a time period 503. At the beginning of the answer 409, the court reporter responds some reaction time 525 later with a transition marker indicated by the downward pointing arrowhead. The court reporter then strokes the answer 409 and again awaits a new unit of speech, both during a time period 509. This process illustrates the ordinary interaction of the attorney and the witness, providing insight into the core synchronization problems due to: 1) the court reporter's reaction time; and 2) the failure to mark the actual end of a unit of speech.
  • In addition, upon hearing the beginning of the question 405, the reporter reacts after the time period 527 and begins to keystroke the question 405 during a time period 505. However, the court reporter is unable to finish stroking the question 405, before the witness begins the answer 411. The court reporter finishes the question 405 some variable time period, the time period 529, after the answer 411 has begun. The court reporter registers a transition marker and begins stroking the answer during a period 511.
  • To complicate matters, the attorney begins the question 407 while the witness is still finishing the answer 411. Again, at some time after the overlap, the court reporter finishes the answer 411 and begins the question 407 during a period 507. As can be appreciated, the court reporter's own keystroking delay time causes an offset from the true speaker transition points in cases such as between the question 405 and the answer 411 or the overlapping regions, such as between the answer 411 and the question 407.
  • In the minimal functionality mode if the CAT system 13 uses the actual transition markers to provide an indication of the beginning of a unit of speech, it can be appreciated that upon play-back the beginning of each unit of speech will be missed. Rewinding will always have to occur. In anticipation of this problem, a time line 601 illustrates how an offset is used to minimize having to rewinding. Particularly, a standard offset value of about three (3) seconds is subtracted from the transition markers when determining the beginning of a unit of speech. As illustrated, offsets 623, 625 and 627 help ensure that the beginning of the questions 403, 405 and 407 are not be missed. However, in circumstances where overlap continues for a period longer than the offset, such as between the answer 411 and the question 407, rewinding will still be required. In most instances however, the offset provides the court reporter with a sufficient lead time to capture the beginning of most units of speech without rewinding.
  • FIG. 4 is a timing diagram of the dead zone synchronization scheme of the present invention. The time lines 401 and 501 are identical to that found and described in regards to FIG. 3. They are duplicated to provide time referencing with the dead zone timing of a time line 701. By identifying the beginning and ending of dead zones, the CAT system 13 can automatically identify appropriate beginnings and endings for most all units of speech recorded during the proceeding. In fact, if no speaker overlap exists, exact synchronization is possible for all recorded units of speech. For overlapping situations without dead zones, the CAT system 13 reverts to the default offset to help identify an appropriate, although not exact, beginning as described in detail above with regards to FIG. 3.
  • The CAT system 13 performs dead zone synchronization by first identifying the dead zones. This is accomplished by: (1) continuously computing the average value of the noise level during each unit of speech recorded; (2) using the average value to compute a threshold value below which noise is considered ambient; and (3) checking the noise level during a window of time before each of the court reporter's transition markers to locate the dead zones, i.e., a period of time during which the noise level is below the threshold value.
  • The end of each dead zone provides a beginning marker for the beginning of a new unit of speech. Similarly, the beginning of each dead zone provides an ending marker for the end of the previous unit of speech. A lead-in time period is subtracted from the beginning markers, while a trailer time period is added to all ending markers. The trailer and lead-in (both about 1 second) ensure that the full unit of speech is captured. All of these calculations are performed by the CPU 47 within the CAT system 13.
  • More specifically, the average value in step (1) above may be calculated by the following equation:
    AVERAGE=((n−1)/n)*N avg+(1/n)*N n
    where:
  • n=sample number;
  • Navg=current average noise level; and
  • Nn=noise level associated with sample n
  • If, for example, the threshold value of step (2) above is selected as one quarter (¼) of the average noise level during questions and answers, the equation becomes:
    THRESHOLD=((n−1)/n)*N avg+(0.25/n)*N n
    By this equation, the threshold noise level is continuously updated during the proceeding to compensate for speakers of various voice levels.
  • Next, to accomplish step (3) above, average noise levels during a window of time before each court reporter's transition marker must first be calculated. If, for example, the sampling rate is 10 Hz and averaging is desired at every half second interval, the average for each interval may be computed by simply dividing the noise level associated with each sample during the half second interval (5 samples) by 5 and then adding them together. Although only a 10 Hz sampling is used, higher sampling rates with further averaging might be used to increase the accuracy of detection of dead zone edges. Moreover, even though the sampling rate might increase to rates sufficient to accommodate sound reproduction, the majority of these samples might be skipped when performing dead zone identification. For example, only one (1) actual sample might be considered out of every eight hundred (800) incoming so as to simulate a 10 Hz sampling rate for dead zone calculations.
  • The duration of the time window must next be selected, and may vary depending on the efficiency of the court reporter. If a court reporter has traditionally experienced a longer stroking delay, a longer time window may be chosen. The time window provides a time period during which the CAT system 13 may search for a dead zone. By confining the area of dead zone searching, incorrect identification of pauses between words or sentences in a single unit of speech as being dead zones can be avoided. The time window is adjusted to a time period slightly larger than the default offset described above with regard to FIG. 3. For illustrative purposes, a three second time window is chosen here.
  • Beginning at the court reporter's transition marker for a new unit of speech, by checking the calculated average noise level against the threshold value over a 1-½ second interval, a dead zone is determined to exist. Upon detecting a dead zone, the CAT system 13 subtracts a one second lead-in time from the ending edge of the dead zone, and associates the results with the programming object corresponding to the new unit of speech. The results constitute the beginning of the new unit of speech.
  • Once a dead zone has been detected, the three second window is ignored, and the CAT system 13 begins to further trace back until a beginning of the dead zone is identified. The court reporter's transition marker for the previous unit of speech sets an absolute barrier beyond which tracing back will not occur. If, prior to reaching the absolute barrier, the average noise level rises above the threshold value, the beginning edge of a dead zone is detected. The CAT system 13 adds a one second trailer time from the beginning edge of the dead zone and then associates the results with the programming object corresponding to the previous unit of speech. The results constitute the end of the previous unit of speech.
  • If the absolute barrier is reached before identifying the beginning of a dead zone, the CAT system 13 first indicates to the court reporter that two units of speech by the same speaker have been indicated. If the absolute barrier is reached twice in a row, the CAT system 13 determines that there is a system problem and warns the court reporter of this status.
  • If, however, no dead zone is detected during the three second window, the CAT system 13 subtracts the default offset (FIG. 3) from the reporter's transition marker, and associates the results with the programming object of the new unit of speech as the beginning thereof. The CAT system 13 also associates the court reporter's transition marker plus a trailer time (1 second) with the programming object corresponding to the previous unit of speech. The results constitute the end of the previous unit of speech.
  • It is also contemplated that dead zone identification may occur during the sampling process. For example, the beginning of a potential dead zone could be detected, followed by a potential end. Only if the end of the potential dead zone occurs during the three second window would the CAT system 13 conclude that the sound gap actually constitutes a gap between speakers. The advantages of this approach would be to instantly provide synchronization information upon detecting a court reporter's transition marker. The disadvantages include the additional calculation overhead resulting from analysis outside of the three second window.
  • While three seconds may be chosen as an initial value for the time window, the CAT system 13 may keep track of the court reporter's average delay time and adjust the value accordingly. For example, if no more than two seconds is ever required to detect a transition (i.e., the trailing edge of a dead zone) then the time window may be reduced to two seconds.
  • FIG. 5 is a timing diagram of the differential signal synchronization scheme of the present invention. The time lines 401 and 501 are identical to that found and described above in regards to FIG. 3. Their duplication provides time referencing for the differential signal timing of a time line 801.
  • The time line 801 illustrates a synchronization scheme in which separate microphones and recording channels are used, one for the attorney and another for the witness, to provide differentiation between question and answer units of speech. For example, when the attorney asks a question 403, the CAT system 13 detects that the attorney's microphone produces a larger audio signal than the witness's microphone. Similarly, when the witness answers, the CAT system 13 detects that the witness's microphone produces the largest audio signal. When neither party talks, the CAT system 13 detects that amplitude of both microphones being very low and categorizes the region as a dead zone. During periods of overlap, the CAT system 13 detects high amplitudes on both microphones and categorizes the period appropriately.
  • In particular, the time line 801 illustrates an exemplary categorization made by the CAT system 13 using the differential analysis of the two microphones. As can be seen, exact synchronization can be achieved for ordinary situations such as the question 403, answer 409 and questions 405 interchange which correspond directly to differential signals 803, 809 and 805. Furthermore, during periods such as the period 843, the differentiation scheme also provides for identification of the beginning and ending of units of speech which overlap.
  • Referring back to FIG. 2, the two microphones 201 and 202 are positioned at trial as follows: one at the podium or attached to the attorney, and another at the witness stand. In a deposition, the microphones 201 and 202 would be placed directly in front of the attorney and the witness. Each of the microphones 201 and 202 records on a separate channel. The audio board 51, via communication link 509, receives the analog audio signals on each channel and digitizes it (i.e., through sampling as discussed above). After sampling, the digital audio data on each channel is stored in the database 360.
  • Thereafter, the CAT system 13 performs differential amplitude calculations upon receiving each transition marker so as to provide for more accurate synchronization of the audio and video transcripts with the textual transcript. As with the dead zone calculations, it is not necessary that the CAT system 13 consider all of the data samples on each channel to adequately perform these calculations. Instead, the CAT system 13 may only consider a sample every tenth of a second (10 Hz), for example.
  • In essence, using the samples, the CAT system 13 looks for amplitude transitions from one channel to the other to determine when an actual transition occurs. Specifically, when the CAT system 13 receives a transition marker from the court reporter terminal 11, the CAT system 13 traces back until it finds a beginning transition of the new unit of speech. Thereafter, the CAT system 13 continues tracing back until the ending transition of the previous unit of speech is identified. For the tracing back, the previous transition marker is the absolute barrier for both the beginning and ending transition identifications. In addition, trailer and lead-in times are appropriately added as described above in relation to dead zone synchronization.
  • If, while tracing back, the CAT system 13 does not encounter a second transition before it reaches the absolute barrier, it uses the transition marker (i.e. the one from which it was originally tracing) as a default setting for the end of the previous unit of speech. Although this situation could occur during periods of speaker overlap, the CAT system 13 generally prevents such occurrences by evaluating the amplitude levels of the signals on both channels. If questionable periods of overlap seem at issue, the CAT system 13 responds by using the default offset procedure described in relation to FIG. 3.
  • The CAT system 13 identifies actual transitions by first subtracting the signals to determine which one predominates, i.e., is greater. The average difference is then compared to a threshold value to determine whether the average difference is great enough to constitute a voice signal on the predominant channel. A transition occurs when a new channel predominates and the resulting signal on the new predominating channel is above the threshold value. The average difference and threshold value are calculated in a manner similar to that discussed above with regard to the dead zone synchronization scheme.
  • It should be understood that the dead zone and differential signal synchronization schemes can be used together to further ensure accurate synchronization of the audio and video transcripts with the textual transcript. In addition, whether one or both embodiments are used, a court reporter may still, after the proceeding, manually review the tape and set new markers, if necessary.
  • FIG. 6 illustrates the programming object used to store all of the synchronization information described heretofore regarding a single unit of speech. In particular, the CAT system 13 utilizes a transcribed text time frame (TTTF) record 901, a programming object, to associate a variety of synchronization information. Although other types of objects and additional fields are contemplated, the TTTF record 911 provides the preferred synchronization storage structure for the present invention.
  • Basically, the CAT system 13 uses record 901 to associate the transcribed text of each individual question and answer units of speech with the corresponding audio and video. Particularly, the TTTF record 901 associates: (1) a unit of speech field 903 for storing an identifier for identifying the specific textual counterpart to a specific unit of speech, such as whether the text is a question or answer and the associated question or answer number; (2) a beginning transition marker field 905 for storing a frame or sample number associated with the court reporter's first transition marker; (3) an ending transition marker field 907 for storing a frame or sample number associated with the court reporter's subsequent transition marker; (4) a computed beginning marker field 909 for storing a frame or sample number associated with the beginning of the unit of speech as computed by the CAT system 13; (5), a computed ending marker field 911 for storing a frame or sample number associated with the end of the unit of speech as computed by the CAT system 13; (6) a selected beginning marker field 913 for storing a sample or frame number associated with the beginning of the unit of speech as manually selected by the court reporter after the proceeding; and (7) a selected ending marker field 915 for storing a sample or frame number associated with the end of the unit of speech as manually set by the court reporter after the proceeding.
  • The illustrated TTTF record 901 provides for association of the textual transcript with a combined audio and video transcript. To accommodate independent audio and video transcripts, the fields 905 through 915 are merely duplicated, with the duplicate fields being assigned to the video information and the original fields being assigned to the audio. In either configuration, a single TTTF record 901 is used for each unit of speech transcribed during the proceeding.
  • FIG. 7 is a perspective view of an alternate embodiment of the present invention not only providing for review and analysis of synchronized audio, video and textual transcripts, but also providing real-time audio and video on demand via a remote relaying and storage system 955. The CAT system 13 receives audio and video signals from the video recorder 957, processes and transmits them to the remote relaying and storage system 955. Synchronization information and the textual record are also transmitted.
  • The first function of the system 955 is to provide repeater functionality wherein the incoming signal is relayed to any number of selected communication ports providing access to remote terminals. In this way, the remote terminals, such as remote terminals 951 and 953, may receive virtual real-time video and audio on demand. In addition, the system 955 performs storage and play-back of the video and audio transcripts along with the textual transcript and synchronization information so that the transcript can be selectively parsed and reviewed during and after the proceeding.
  • To store the video transcript, the system 955 first converts the incoming video signals into any one of a number of established bit-parallel digital interface formats for component video. The CCIR recommendation 601, the SMPTE RP 125, and the SMPTE 240M-1988 standards are exemplary formats which may be adopted. For example, to achieve the CCIR recommendation 601 standard, the CAT system 13 divides the video signal into three components, a luminance signal (Y) and two color difference signals (R-Y, B-Y). The luminance component is sampled into the digital domain at 13.5 MHz and the color difference components are sampled at 6.75 MHz each. One byte of color difference is transmitted (byte serial over eight differential conductor pairs with a ninth pair carrying a clock signal of 27 MHz) followed by a luminance byte which is then followed by the second color difference component. The net result is a 27 Mbytes/second digital data stream that can pass through hundreds of meters of cables and through many stages of processing without degradation.
  • To capture and play-back the video, the storage system 955 incorporates a series of storage disks arranged in parallel. This might be accomplished by combining several heads in a single large disk or by combining several small disks (often referred to as RAID architecture). However, preferably, the system 955 incorporates real time disks grouped in a modular fashion. For example, two subsystems of six disks combined to transfer at a sustained rate of 26.8 Mbytes/second will support the CCIR 601 standard. Recognition Concepts, Inc., manufactures a DataSTORE® Real Time Disk series for such purposes.
  • A variety of input devices, including video camera 951 might also be converted to the CCIR standard. Encoders and decoders are available to allow inputs and outputs from PAL, NTSC, RGB, YUV, and CCIR 601, permitting many different formats to be conveniently reformatted into a single standard digital path for temporary or permanent storage onto magnetic disk or tape.
  • In addition, the storage system 955 may act as a “warehouse” for storage of the audio, video and textual transcripts for post-proceeding review. Individuals may, via remote terminals such as the terminals 951 and 953, access any prior stored data. Because the system 955 also provides storage for the synchronization information as mentioned above, the video and audio transcript can be fully synchronized with the corresponding textual record.
  • It is obvious that the embodiments of the present invention described hereinabove are merely illustrative and that other modifications and adaptations may be made without departing from the scope of the appended claims.

Claims (2)

1. In a computer network having an attorney terminal and an outline library, a method used by the attorney terminal for preparing for examination of a witness in a legal proceeding comprising the steps of:
providing access to an outline library comprised of a plurality of categorization entries;
enabling selection of at least one of said plurality of categorization entries; and
providing access to the selected ones of said plurality of categorization entries during a legal proceeding.
2-5. (canceled)
US11/559,264 1993-03-24 2006-11-13 Audio And Video Transcription System For Manipulating Real-Time Testimony Abandoned US20070260457A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/559,264 US20070260457A1 (en) 1993-03-24 2006-11-13 Audio And Video Transcription System For Manipulating Real-Time Testimony

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US08/036,488 US5369704A (en) 1993-03-24 1993-03-24 Down-line transcription system for manipulating real-time testimony
US08/066,948 US5878186A (en) 1993-03-24 1993-05-24 Audio and video transcription system for manipulating real-time testimony
US7380993A 1993-06-07 1993-06-07
US08/326,742 US5444615A (en) 1993-03-24 1994-10-20 Attorney terminal having outline preparation capabilities for managing trial proceeding
US08/518,102 US5815392A (en) 1993-03-24 1995-08-22 Attorney terminal having outline preparation capabilities for managing trial proceedings
US08/818,402 US5949952A (en) 1993-03-24 1997-03-12 Audio and video transcription system for manipulating real-time testimony
US09/144,576 US5940800A (en) 1993-03-24 1998-08-31 Attorney terminal having outline preparation capabilities for managing trial proceedings
US09/185,114 US6023675A (en) 1993-03-24 1998-11-03 Audio and video transcription system for manipulating real-time testimony
US09/332,317 US7249026B1 (en) 1993-03-24 1999-06-14 Attorney terminal having outline preparation capabilities for managing trial proceedings
US11/559,264 US20070260457A1 (en) 1993-03-24 2006-11-13 Audio And Video Transcription System For Manipulating Real-Time Testimony

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/332,317 Continuation US7249026B1 (en) 1993-03-24 1999-06-14 Attorney terminal having outline preparation capabilities for managing trial proceedings

Publications (1)

Publication Number Publication Date
US20070260457A1 true US20070260457A1 (en) 2007-11-08

Family

ID=38266933

Family Applications (8)

Application Number Title Priority Date Filing Date
US09/332,317 Expired - Fee Related US7249026B1 (en) 1993-03-24 1999-06-14 Attorney terminal having outline preparation capabilities for managing trial proceedings
US11/559,251 Abandoned US20070286573A1 (en) 1993-03-24 2006-11-13 Audio And Video Transcription System For Manipulating Real-Time Testimony
US11/559,246 Abandoned US20070271236A1 (en) 1993-03-24 2006-11-13 Down-line Transcription System Having Context Sensitive Searching Capability
US11/559,299 Expired - Fee Related US7831437B2 (en) 1993-03-24 2006-11-13 Attorney terminal having outline preparation capabilities for managing trial proceedings
US11/559,233 Abandoned US20070266018A1 (en) 1993-03-24 2006-11-13 Down-line Transcription System Having Context Sensitive Searching Capability
US11/559,264 Abandoned US20070260457A1 (en) 1993-03-24 2006-11-13 Audio And Video Transcription System For Manipulating Real-Time Testimony
US11/559,283 Expired - Fee Related US7983990B2 (en) 1993-03-24 2006-11-13 Attorney terminal having outline preparation capabilities for managing trial proceedings
US11/779,771 Abandoned US20080015885A1 (en) 1993-03-24 2007-07-18 Attorney terminal having outline preparation capabilities for managing trial proceedings

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US09/332,317 Expired - Fee Related US7249026B1 (en) 1993-03-24 1999-06-14 Attorney terminal having outline preparation capabilities for managing trial proceedings
US11/559,251 Abandoned US20070286573A1 (en) 1993-03-24 2006-11-13 Audio And Video Transcription System For Manipulating Real-Time Testimony
US11/559,246 Abandoned US20070271236A1 (en) 1993-03-24 2006-11-13 Down-line Transcription System Having Context Sensitive Searching Capability
US11/559,299 Expired - Fee Related US7831437B2 (en) 1993-03-24 2006-11-13 Attorney terminal having outline preparation capabilities for managing trial proceedings
US11/559,233 Abandoned US20070266018A1 (en) 1993-03-24 2006-11-13 Down-line Transcription System Having Context Sensitive Searching Capability

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/559,283 Expired - Fee Related US7983990B2 (en) 1993-03-24 2006-11-13 Attorney terminal having outline preparation capabilities for managing trial proceedings
US11/779,771 Abandoned US20080015885A1 (en) 1993-03-24 2007-07-18 Attorney terminal having outline preparation capabilities for managing trial proceedings

Country Status (1)

Country Link
US (8) US7249026B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050209859A1 (en) * 2004-01-22 2005-09-22 Porto Ranelli, Sa Method for aiding and enhancing verbal communication
US7761295B2 (en) 1993-03-24 2010-07-20 Engate Llc Computer-aided transcription system using pronounceable substitute text with a common cross-reference library
US20100228546A1 (en) * 2009-03-05 2010-09-09 International Buisness Machines Corporation System and methods for providing voice transcription
US7797730B2 (en) 1999-06-24 2010-09-14 Engate Llc Downline transcription system using automatic tracking and revenue collection
US7831437B2 (en) 1993-03-24 2010-11-09 Engate Llc Attorney terminal having outline preparation capabilities for managing trial proceedings
US7908145B2 (en) 1993-03-24 2011-03-15 Engate Llc Down-line transcription system using automatic tracking and revenue collection
EP2413325A1 (en) * 2010-07-30 2012-02-01 Samsung Electronics Co., Ltd. Audio playing method and apparatus
US20120029668A1 (en) * 2010-07-30 2012-02-02 Samsung Electronics Co., Ltd. Audio playing method and apparatus
GB2488772A (en) * 2011-03-05 2012-09-12 Sonocent Ltd Creating annotated recordings from two devices using audio synchronisation
US20160052294A1 (en) * 2004-03-12 2016-02-25 Advantage Technology And Innovations, Inc. Adjustable stenographic keyboard device and method for electronically adjusting key depth sensitivity
US20220059096A1 (en) * 2018-09-13 2022-02-24 Magna Legal Services, Llc Systems and Methods for Improved Digital Transcript Creation Using Automated Speech Recognition
US20220327239A1 (en) * 2021-04-09 2022-10-13 VIQ Solutions Inc. Securing and managing offline digital evidence with a smart data lease system
US11588911B2 (en) 2021-01-14 2023-02-21 International Business Machines Corporation Automatic context aware composing and synchronizing of video and audio transcript

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080010603A1 (en) * 1993-05-20 2008-01-10 Engate Incorporated Context Sensitive Searching Front End
NZ515293A (en) * 1999-05-05 2004-04-30 West Publishing Company D Document-classification system, method and software
US8126818B2 (en) 2002-12-30 2012-02-28 West Publishing Company Knowledge-management systems for law firms
US20070005637A1 (en) * 2005-07-01 2007-01-04 Juliano Elizabeth B System for Litigation Management
US20080120101A1 (en) * 2006-11-16 2008-05-22 Cisco Technology, Inc. Conference question and answer management
WO2009003281A1 (en) * 2007-07-03 2009-01-08 Tlg Partnership System, method, and data structure for providing access to interrelated sources of information
US7941412B2 (en) * 2007-10-16 2011-05-10 Monica Mary Dunne Presenting evidentiary information
US8332384B2 (en) * 2007-11-29 2012-12-11 Bloomberg Finance Lp Creation and maintenance of a synopsis of a body of knowledge using normalized terminology
US8224832B2 (en) * 2008-02-29 2012-07-17 Kemp Richard Douglas Computerized document examination for changes
US9579397B1 (en) * 2009-05-05 2017-02-28 Hopkins Bruce Research Corporation Computer-implemented systems and methods for analyzing court activity
US8583727B2 (en) * 2009-12-23 2013-11-12 Veritext Corp. Deposition exhibit management system
US8635207B2 (en) * 2010-01-27 2014-01-21 26-F, Llc Computerized system and method for assisting in resolution of litigation discovery in conjunction with the federal rules of practice and procedure and other jurisdictions
US10146864B2 (en) * 2010-02-19 2018-12-04 The Bureau Of National Affairs, Inc. Systems and methods for validation of cited authority
US8886713B2 (en) 2010-03-31 2014-11-11 Prospx, Inc. System for providing information to a plurality of users
US8843548B2 (en) 2010-03-31 2014-09-23 Prospx, Inc. System for providing information and information experts to a plurality of users
US20120030315A1 (en) * 2010-07-29 2012-02-02 Reesa Parker Remote Transcription and Reporting System and Method
TWI407764B (en) * 2010-08-16 2013-09-01 Wistron Neweb Corp Item switching method, man-machine interface and cordless phone handset
ITMI20130371A1 (en) * 2013-03-12 2014-09-13 Phonetica Lab Srl SIMULTANEOUS REMOTE DOCUMENT MANAGEMENT SYSTEM.
US9507758B2 (en) * 2013-07-03 2016-11-29 Icebox Inc. Collaborative matter management and analysis
USD741368S1 (en) * 2013-10-17 2015-10-20 Microsoft Corporation Display screen with transitional graphical user interface
USD781914S1 (en) * 2015-11-18 2017-03-21 Domo, Inc. Display screen or portion thereof with a graphical user interface
CN106485619A (en) * 2016-09-30 2017-03-08 江苏四五安全科技有限公司 The method of automatic decision examination paper correctness
BE1025360B1 (en) * 2017-12-28 2019-01-30 Advocatenkantoor Thierry Lauwers Bv Bvba MANAGING AND USING LEGAL FISCAL DOCUMENTS FROM LAW
US11106664B2 (en) * 2018-05-03 2021-08-31 Thomson Reuters Enterprise Centre Gmbh Systems and methods for generating a contextually and conversationally correct response to a query
CN109688430A (en) * 2018-12-12 2019-04-26 北京东土科技股份有限公司 A kind of court trial file playback method, system and storage medium
WO2022051242A1 (en) * 2020-09-01 2022-03-10 Courtroom5, Inc. Method and system for guiding a user through stages of a legal action
CN112468753B (en) * 2020-11-20 2022-05-20 武汉烽火信息集成技术有限公司 Method and device for acquiring and checking record data based on audio and video recognition technology

Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557927A (en) * 1967-12-08 1971-01-26 Stenographic Machines Inc Stenographic transcription system
US3597538A (en) * 1969-04-23 1971-08-03 Zvi Binenbaum Means for transmitting stenotype produced input
US3798387A (en) * 1971-10-04 1974-03-19 B Gallagher Recording system for judicial proceedings
US3879751A (en) * 1973-01-05 1975-04-22 Joseph Julius Gimelli Court reporting dictating system and method
US3892915A (en) * 1973-12-10 1975-07-01 Transcripts Inc Stenographic data recording apparatus and method
US4041467A (en) * 1975-11-28 1977-08-09 Xerox Corporation Transcriber system for the automatic generation and editing of text from shorthand machine outlines
US4205351A (en) * 1976-12-08 1980-05-27 Stenograph Corporation Digital data recorder
US4249041A (en) * 1977-03-25 1981-02-03 Lanier Business Products, Inc. Dictation-transcription system
US4435617A (en) * 1981-08-13 1984-03-06 Griggs David T Speech-controlled phonetic typewriter or display device using two-tier approach
US4461203A (en) * 1981-07-10 1984-07-24 Jawdat Nameer A Breech-locking mechanism for firearms
US4566065A (en) * 1983-04-22 1986-01-21 Kalman Toth Computer aided stenographic system
US4641203A (en) * 1981-03-13 1987-02-03 Miller Richard L Apparatus for storing and relating visual data and computer information
US4692042A (en) * 1983-06-13 1987-09-08 Digitext, Inc. Computerized printing system
US4724285A (en) * 1985-11-07 1988-02-09 Digitext, Inc. Stenographic translation system
US4725694A (en) * 1986-05-13 1988-02-16 American Telephone And Telegraph Company, At&T Bell Laboratories Computer interface device
US4765764A (en) * 1986-02-20 1988-08-23 Digitext, Inc. Keyboard
US4817127A (en) * 1986-08-08 1989-03-28 Dictaphone Corporation Modular dictation/transcription system
US4858170A (en) * 1986-10-24 1989-08-15 Dewick Sr Robert S Shorthand notation and transcribing method
US4864501A (en) * 1987-10-07 1989-09-05 Houghton Mifflin Company Word annotation system
US4866778A (en) * 1986-08-11 1989-09-12 Dragon Systems, Inc. Interactive speech recognition apparatus
US4908866A (en) * 1985-02-04 1990-03-13 Eric Goldwasser Speech transcribing system
US4908873A (en) * 1983-05-13 1990-03-13 Philibert Alex C Document reproduction security system
US4924387A (en) * 1988-06-20 1990-05-08 Jeppesen John C Computerized court reporting system
US4965763A (en) * 1987-03-03 1990-10-23 International Business Machines Corporation Computer method for automatic extraction of commonly specified information from business correspondence
US4965819A (en) * 1988-09-22 1990-10-23 Docu-Vision, Inc. Video conferencing system for courtroom and other applications
US5031113A (en) * 1988-10-25 1991-07-09 U.S. Philips Corporation Text-processing system
US5043891A (en) * 1985-08-16 1991-08-27 Wang Laboratories, Inc. Document generation apparatus and methods
US5051924A (en) * 1988-03-31 1991-09-24 Bergeron Larry E Method and apparatus for the generation of reports
US5101402A (en) * 1988-05-24 1992-03-31 Digital Equipment Corporation Apparatus and method for realtime monitoring of network sessions in a local area network
US5127003A (en) * 1991-02-11 1992-06-30 Simpact Associates, Inc. Digital/audio interactive communication network
US5146439A (en) * 1989-01-04 1992-09-08 Pitney Bowes Inc. Records management system having dictation/transcription capability
US5148366A (en) * 1989-10-16 1992-09-15 Medical Documenting Systems, Inc. Computer-assisted documentation system for enhancing or replacing the process of dictating and transcribing
US5239462A (en) * 1992-02-25 1993-08-24 Creative Solutions Groups, Inc. Method and apparatus for automatically determining the approval status of a potential borrower
US5247575A (en) * 1988-08-16 1993-09-21 Sprague Peter J Information distribution system
US5278980A (en) * 1991-08-16 1994-01-11 Xerox Corporation Iterative technique for phrase query formation and an information retrieval system employing same
US5280430A (en) * 1991-06-27 1994-01-18 Tariq Chaudhary Computer-aided transcription system providing individualized electonic marking of stenographic records
US5293616A (en) * 1991-10-22 1994-03-08 Flint Orin O Method and apparatus for representing and interrogating an index in a digital memory
US5303361A (en) * 1989-01-18 1994-04-12 Lotus Development Corporation Search and retrieval system
US5309359A (en) * 1990-08-16 1994-05-03 Boris Katz Method and apparatus for generating and utlizing annotations to facilitate computer text retrieval
US5329608A (en) * 1992-04-02 1994-07-12 At&T Bell Laboratories Automatic speech recognizer
US5329609A (en) * 1990-07-31 1994-07-12 Fujitsu Limited Recognition apparatus with function of displaying plural recognition candidates
US5392428A (en) * 1991-06-28 1995-02-21 Robins; Stanford K. Text analysis system
US5414754A (en) * 1990-05-16 1995-05-09 Messager Partners System for providing proactive call services utilizing remote monitors
US5444615A (en) * 1993-03-24 1995-08-22 Engate Incorporated Attorney terminal having outline preparation capabilities for managing trial proceeding
US5463547A (en) * 1990-04-19 1995-10-31 New York Mercantile Exchange Portable trade recordation system including means for abbreviated entry of data
US5519808A (en) * 1993-03-10 1996-05-21 Lanier Worldwide, Inc. Transcription interface for a word processing station
US5557722A (en) * 1991-07-19 1996-09-17 Electronic Book Technologies, Inc. Data processing system and method for representing, generating a representation of and random access rendering of electronic documents
US5598557A (en) * 1992-09-22 1997-01-28 Caere Corporation Apparatus and method for retrieving and grouping images representing text files based on the relevance of key words extracted from a selected file to the text files
US5613032A (en) * 1994-09-02 1997-03-18 Bell Communications Research, Inc. System and method for recording, playing back and searching multimedia events wherein video, audio and text can be searched and retrieved
US5615309A (en) * 1990-11-13 1997-03-25 International Business Machines Corporation Inferencing production control computer system
US5732400A (en) * 1995-01-04 1998-03-24 Citibank N.A. System and method for a risk-based purchase of goods
US5740245A (en) * 1993-03-24 1998-04-14 Engate Incorporated Down-line transcription system for manipulating real-time testimony
US5903721A (en) * 1997-03-13 1999-05-11 cha|Technologies Services, Inc. Method and system for secure online transaction processing
US5950194A (en) * 1993-03-24 1999-09-07 Engate Incorporated Down-line transcription system having real-time generation of transcript and searching thereof
US6014645A (en) * 1996-04-19 2000-01-11 Block Financial Corporation Real-time financial card application system
US6029149A (en) * 1993-11-01 2000-02-22 The Golden 1 Credit Union Lender direct credit evaluation and loan processing system
US6088686A (en) * 1995-12-12 2000-07-11 Citibank, N.A. System and method to performing on-line credit reviews and approvals
US6091835A (en) * 1994-08-31 2000-07-18 Penop Limited Method and system for transcribing electronic affirmations
US6175822B1 (en) * 1998-06-05 2001-01-16 Sprint Communications Company, L.P. Method and system for providing network based transcription services
US6208979B1 (en) * 1998-11-09 2001-03-27 E-Fin, Llc Computer-driven information management system for selectively matching credit applicants with money lenders through a global communications network
US6311169B2 (en) * 1998-06-11 2001-10-30 Consumer Credit Associates, Inc. On-line consumer credit data reporting system
US6393436B1 (en) * 2001-01-05 2002-05-21 Jv Export Trading Company, Inc. Method for commercializing goods and services over a global digital network
US6405181B2 (en) * 1998-11-03 2002-06-11 Nextcard, Inc. Method and apparatus for real time on line credit approval
US6434607B1 (en) * 1997-06-19 2002-08-13 International Business Machines Corporation Web server providing role-based multi-level security
US6453306B1 (en) * 1998-01-26 2002-09-17 Ict Software S.A. Internet commerce method and apparatus
US6466981B1 (en) * 1998-06-30 2002-10-15 Microsoft Corporation Method using an assigned dynamic IP address and automatically restoring the static IP address
US6507823B1 (en) * 1904-05-29 2003-01-14 Pierre Hercules Nel System and method for on-line purchasing of goods and services
US6567791B2 (en) * 1998-11-03 2003-05-20 Nextcard, Inc. Method and apparatus for a verifiable on line rejection of an application for credit
US6587841B1 (en) * 1995-09-12 2003-07-01 First American Credit Management Solutions, Inc. Computer implemented automated credit application analysis and decision routing system
US6675142B2 (en) * 1999-06-30 2004-01-06 International Business Machines Corporation Method and apparatus for improving speech recognition accuracy
US6766302B2 (en) * 1998-11-09 2004-07-20 Joseph Bach Method and apparatus for advertisement
US6795812B1 (en) * 1998-11-03 2004-09-21 Nextcard, Inc. Implementing a counter offer for an on line credit card application
US6847942B1 (en) * 2000-05-02 2005-01-25 General Electric Canada Equipment Finance G.P. Method and apparatus for managing credit inquiries within account receivables
US6868395B1 (en) * 1999-12-22 2005-03-15 Cim, Ltd. Business transactions using the internet
US6898570B1 (en) * 1997-12-01 2005-05-24 Walker Digital, Llc Billing statement customer acquistion system
US6928412B2 (en) * 1999-09-17 2005-08-09 Paul C. DeBiasse Computerized system to improve process of bringing consumer product to market
US6957192B1 (en) * 2000-08-23 2005-10-18 Chevron U.S.A. Inc. System and method for automated credit matching
US6988085B2 (en) * 1999-10-19 2006-01-17 Shad Hedy System and method for real-time electronic inquiry, delivery, and reporting of credit information
US7047219B1 (en) * 1999-10-04 2006-05-16 Trade Finance Systems, Inc. Trade finance automation system
US7082412B1 (en) * 1998-11-23 2006-07-25 Enet 30, Inc. Electronic factoring
US7103568B1 (en) * 1995-08-08 2006-09-05 Eugene August Fusz Online product exchange system
US7127395B1 (en) * 2001-01-22 2006-10-24 At&T Corp. Method and system for predicting understanding errors in a task classification system
US7249026B1 (en) * 1993-03-24 2007-07-24 Engate Llc Attorney terminal having outline preparation capabilities for managing trial proceedings
US20070239446A1 (en) * 1993-03-24 2007-10-11 Engate Incorporated Down-line Transcription System Using Automatic Tracking And Revenue Collection
US20070250315A1 (en) * 1999-06-24 2007-10-25 Engate Incorporated Downline Transcription System Using Automatic Tracking And Revenue Collection

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2903721A (en) * 1956-03-02 1959-09-15 Frederick W Braun Apparatus having spring urged die forging members for making extruded hollow articles of external polygonal form
US4706212A (en) 1971-08-31 1987-11-10 Toma Peter P Method using a programmed digital computer system for translation between natural languages
US4596041A (en) * 1983-06-17 1986-06-17 Mack John L Participant-identification recording and playback system
US4633430A (en) 1983-10-03 1986-12-30 Wang Laboratories, Inc. Control structure for a document processing system
US4800510A (en) 1985-07-31 1989-01-24 Computer Associates International, Inc. Method and system for programmed control of computer generated graphics layout
IE59659B1 (en) * 1985-11-07 1994-03-09 Digitext Inc Stenographic translation system
US5384701A (en) 1986-10-03 1995-01-24 British Telecommunications Public Limited Company Language translation system
US4972349A (en) * 1986-12-04 1990-11-20 Kleinberger Paul J Information retrieval system and method
US5193055A (en) 1987-03-03 1993-03-09 Brown Gordon T Accounting system
US4939689A (en) 1987-04-09 1990-07-03 Crowninshield Software, Inc. Outline-driven database editing and retrieval system
CA1300289C (en) 1987-10-27 1992-05-05 Paul Anton Nysen Passive universal communicator
US5157783A (en) 1988-02-26 1992-10-20 Wang Laboratories, Inc. Data base system which maintains project query list, desktop list and status of multiple ongoing research projects
JPH027159A (en) * 1988-06-27 1990-01-11 Matsushita Electric Ind Co Ltd Japanese processor
US5369763A (en) 1989-02-01 1994-11-29 Kansas State University Research Foundation Data storage and retrieval system with improved data base structure
US4992940A (en) 1989-03-13 1991-02-12 H-Renee, Incorporated System and method for automated selection of equipment for purchase through input of user desired specifications
US5002491A (en) 1989-04-28 1991-03-26 Comtek Electronic classroom system enabling interactive self-paced learning
US5367619A (en) 1990-04-27 1994-11-22 Eaton Corporation Electronic data entry system employing an expert system to facilitate generation of electronic data forms with complex interrelationships between fields and subforms
US5172281A (en) 1990-12-17 1992-12-15 Ardis Patrick M Video transcript retriever
US5272571A (en) 1991-08-13 1993-12-21 L. R. Linn And Associates Stenotype machine with linked audio recording
US5265065A (en) 1991-10-08 1993-11-23 West Publishing Company Method and apparatus for information retrieval from a database by replacing domain specific stemmed phases in a natural language to create a search query
US5375235A (en) 1991-11-05 1994-12-20 Northern Telecom Limited Method of indexing keywords for searching in a database recorded on an information recording medium
US5855000A (en) 1995-09-08 1998-12-29 Carnegie Mellon University Method and apparatus for correcting and repairing machine-transcribed input using independent or cross-modal secondary input
US5960447A (en) * 1995-11-13 1999-09-28 Holt; Douglas Word tagging and editing system for speech recognition
US6031526A (en) * 1996-08-08 2000-02-29 Apollo Camera, Llc Voice controlled medical text and image reporting system
US6119103A (en) 1997-05-27 2000-09-12 Visa International Service Association Financial risk prediction systems and methods therefor
US6484149B1 (en) 1997-10-10 2002-11-19 Microsoft Corporation Systems and methods for viewing product information, and methods for generating web pages
US5986655A (en) 1997-10-28 1999-11-16 Xerox Corporation Method and system for indexing and controlling the playback of multimedia documents
US6490557B1 (en) 1998-03-05 2002-12-03 John C. Jeppesen Method and apparatus for training an ultra-large vocabulary, continuous speech, speaker independent, automatic speech recognition system and consequential database
US6122614A (en) * 1998-11-20 2000-09-19 Custom Speech Usa, Inc. System and method for automating transcription services
US6167385A (en) 1998-11-30 2000-12-26 The Chase Manhattan Bank Supply chain financing system and method
US8036941B2 (en) 2000-03-21 2011-10-11 Bennett James D Online purchasing system supporting lenders with affordability screening
US7542922B2 (en) 2000-03-21 2009-06-02 Bennett James D Online purchasing system supporting sellers with affordability screening
US6477575B1 (en) 2000-09-12 2002-11-05 Capital One Financial Corporation System and method for performing dynamic Web marketing and advertising
US20020143562A1 (en) * 2001-04-02 2002-10-03 David Lawrence Automated legal action risk management
WO2004097791A2 (en) * 2003-04-29 2004-11-11 Custom Speech Usa, Inc. Methods and systems for creating a second generation session file
KR100856231B1 (en) * 2006-04-10 2008-09-03 삼성전자주식회사 Method and device for instant messaging in wireless mobile

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507823B1 (en) * 1904-05-29 2003-01-14 Pierre Hercules Nel System and method for on-line purchasing of goods and services
US3557927A (en) * 1967-12-08 1971-01-26 Stenographic Machines Inc Stenographic transcription system
US3597538A (en) * 1969-04-23 1971-08-03 Zvi Binenbaum Means for transmitting stenotype produced input
US3798387A (en) * 1971-10-04 1974-03-19 B Gallagher Recording system for judicial proceedings
US3879751A (en) * 1973-01-05 1975-04-22 Joseph Julius Gimelli Court reporting dictating system and method
US3892915A (en) * 1973-12-10 1975-07-01 Transcripts Inc Stenographic data recording apparatus and method
US4041467A (en) * 1975-11-28 1977-08-09 Xerox Corporation Transcriber system for the automatic generation and editing of text from shorthand machine outlines
US4205351A (en) * 1976-12-08 1980-05-27 Stenograph Corporation Digital data recorder
US4249041A (en) * 1977-03-25 1981-02-03 Lanier Business Products, Inc. Dictation-transcription system
US4641203A (en) * 1981-03-13 1987-02-03 Miller Richard L Apparatus for storing and relating visual data and computer information
US4461203A (en) * 1981-07-10 1984-07-24 Jawdat Nameer A Breech-locking mechanism for firearms
US4435617A (en) * 1981-08-13 1984-03-06 Griggs David T Speech-controlled phonetic typewriter or display device using two-tier approach
US4566065A (en) * 1983-04-22 1986-01-21 Kalman Toth Computer aided stenographic system
US4908873A (en) * 1983-05-13 1990-03-13 Philibert Alex C Document reproduction security system
US4692042A (en) * 1983-06-13 1987-09-08 Digitext, Inc. Computerized printing system
US4908866A (en) * 1985-02-04 1990-03-13 Eric Goldwasser Speech transcribing system
US5043891A (en) * 1985-08-16 1991-08-27 Wang Laboratories, Inc. Document generation apparatus and methods
US4724285A (en) * 1985-11-07 1988-02-09 Digitext, Inc. Stenographic translation system
US4765764A (en) * 1986-02-20 1988-08-23 Digitext, Inc. Keyboard
US4725694A (en) * 1986-05-13 1988-02-16 American Telephone And Telegraph Company, At&T Bell Laboratories Computer interface device
US4817127A (en) * 1986-08-08 1989-03-28 Dictaphone Corporation Modular dictation/transcription system
US4866778A (en) * 1986-08-11 1989-09-12 Dragon Systems, Inc. Interactive speech recognition apparatus
US4858170A (en) * 1986-10-24 1989-08-15 Dewick Sr Robert S Shorthand notation and transcribing method
US4965763A (en) * 1987-03-03 1990-10-23 International Business Machines Corporation Computer method for automatic extraction of commonly specified information from business correspondence
US4864501A (en) * 1987-10-07 1989-09-05 Houghton Mifflin Company Word annotation system
US5051924A (en) * 1988-03-31 1991-09-24 Bergeron Larry E Method and apparatus for the generation of reports
US5101402A (en) * 1988-05-24 1992-03-31 Digital Equipment Corporation Apparatus and method for realtime monitoring of network sessions in a local area network
US4924387A (en) * 1988-06-20 1990-05-08 Jeppesen John C Computerized court reporting system
US5247575A (en) * 1988-08-16 1993-09-21 Sprague Peter J Information distribution system
US4965819A (en) * 1988-09-22 1990-10-23 Docu-Vision, Inc. Video conferencing system for courtroom and other applications
US5031113A (en) * 1988-10-25 1991-07-09 U.S. Philips Corporation Text-processing system
US5146439A (en) * 1989-01-04 1992-09-08 Pitney Bowes Inc. Records management system having dictation/transcription capability
US5303361A (en) * 1989-01-18 1994-04-12 Lotus Development Corporation Search and retrieval system
US5148366A (en) * 1989-10-16 1992-09-15 Medical Documenting Systems, Inc. Computer-assisted documentation system for enhancing or replacing the process of dictating and transcribing
US5463547A (en) * 1990-04-19 1995-10-31 New York Mercantile Exchange Portable trade recordation system including means for abbreviated entry of data
US5414754A (en) * 1990-05-16 1995-05-09 Messager Partners System for providing proactive call services utilizing remote monitors
US5329609A (en) * 1990-07-31 1994-07-12 Fujitsu Limited Recognition apparatus with function of displaying plural recognition candidates
US5309359A (en) * 1990-08-16 1994-05-03 Boris Katz Method and apparatus for generating and utlizing annotations to facilitate computer text retrieval
US5615309A (en) * 1990-11-13 1997-03-25 International Business Machines Corporation Inferencing production control computer system
US5127003A (en) * 1991-02-11 1992-06-30 Simpact Associates, Inc. Digital/audio interactive communication network
US5280430A (en) * 1991-06-27 1994-01-18 Tariq Chaudhary Computer-aided transcription system providing individualized electonic marking of stenographic records
US5392428A (en) * 1991-06-28 1995-02-21 Robins; Stanford K. Text analysis system
US5557722A (en) * 1991-07-19 1996-09-17 Electronic Book Technologies, Inc. Data processing system and method for representing, generating a representation of and random access rendering of electronic documents
US5278980A (en) * 1991-08-16 1994-01-11 Xerox Corporation Iterative technique for phrase query formation and an information retrieval system employing same
US5293616A (en) * 1991-10-22 1994-03-08 Flint Orin O Method and apparatus for representing and interrogating an index in a digital memory
US5239462A (en) * 1992-02-25 1993-08-24 Creative Solutions Groups, Inc. Method and apparatus for automatically determining the approval status of a potential borrower
US5329608A (en) * 1992-04-02 1994-07-12 At&T Bell Laboratories Automatic speech recognizer
US5598557A (en) * 1992-09-22 1997-01-28 Caere Corporation Apparatus and method for retrieving and grouping images representing text files based on the relevance of key words extracted from a selected file to the text files
US5519808A (en) * 1993-03-10 1996-05-21 Lanier Worldwide, Inc. Transcription interface for a word processing station
US20020049588A1 (en) * 1993-03-24 2002-04-25 Engate Incorporated Computer-aided transcription system using pronounceable substitute text with a common cross-reference library
US5940800A (en) * 1993-03-24 1999-08-17 Engate Incorporated Attorney terminal having outline preparation capabilities for managing trial proceedings
US5815392A (en) * 1993-03-24 1998-09-29 Engate Incorporated Attorney terminal having outline preparation capabilities for managing trial proceedings
US5815639A (en) * 1993-03-24 1998-09-29 Engate Incorporated Computer-aided transcription system using pronounceable substitute text with a common cross-reference library
US20080015885A1 (en) * 1993-03-24 2008-01-17 Engate Incorporated Attorney terminal having outline preparation capabilities for managing trial proceedings
US5878186A (en) * 1993-03-24 1999-03-02 Engate Incorporated Audio and video transcription system for manipulating real-time testimony
US5884256A (en) * 1993-03-24 1999-03-16 Engate Incorporated Networked stenographic system with real-time speech to text conversion for down-line display and annotation
US20070239446A1 (en) * 1993-03-24 2007-10-11 Engate Incorporated Down-line Transcription System Using Automatic Tracking And Revenue Collection
US5926787A (en) * 1993-03-24 1999-07-20 Engate Incorporated Computer-aided transcription system using pronounceable substitute text with a common cross-reference library
US6282510B1 (en) * 1993-03-24 2001-08-28 Engate Incorporated Audio and video transcription system for manipulating real-time testimony
US5950194A (en) * 1993-03-24 1999-09-07 Engate Incorporated Down-line transcription system having real-time generation of transcript and searching thereof
US5949952A (en) * 1993-03-24 1999-09-07 Engate Incorporated Audio and video transcription system for manipulating real-time testimony
US5970141A (en) * 1993-03-24 1999-10-19 Engate Incorporated Down-line transcription system for manipulating real-time testimony
US5740245A (en) * 1993-03-24 1998-04-14 Engate Incorporated Down-line transcription system for manipulating real-time testimony
US6023675A (en) * 1993-03-24 2000-02-08 Engate Incorporated Audio and video transcription system for manipulating real-time testimony
US7249026B1 (en) * 1993-03-24 2007-07-24 Engate Llc Attorney terminal having outline preparation capabilities for managing trial proceedings
US6026395A (en) * 1993-03-24 2000-02-15 Engate Incorporated Down-line transcription system having real-time generation of transcript and searching thereof
US6055531A (en) * 1993-03-24 2000-04-25 Engate Incorporated Down-line transcription system having context sensitive searching capability
US5444615A (en) * 1993-03-24 1995-08-22 Engate Incorporated Attorney terminal having outline preparation capabilities for managing trial proceeding
US6029149A (en) * 1993-11-01 2000-02-22 The Golden 1 Credit Union Lender direct credit evaluation and loan processing system
US6091835A (en) * 1994-08-31 2000-07-18 Penop Limited Method and system for transcribing electronic affirmations
US5613032A (en) * 1994-09-02 1997-03-18 Bell Communications Research, Inc. System and method for recording, playing back and searching multimedia events wherein video, audio and text can be searched and retrieved
US5732400A (en) * 1995-01-04 1998-03-24 Citibank N.A. System and method for a risk-based purchase of goods
US7103568B1 (en) * 1995-08-08 2006-09-05 Eugene August Fusz Online product exchange system
US6587841B1 (en) * 1995-09-12 2003-07-01 First American Credit Management Solutions, Inc. Computer implemented automated credit application analysis and decision routing system
US6088686A (en) * 1995-12-12 2000-07-11 Citibank, N.A. System and method to performing on-line credit reviews and approvals
US6014645A (en) * 1996-04-19 2000-01-11 Block Financial Corporation Real-time financial card application system
US5903721A (en) * 1997-03-13 1999-05-11 cha|Technologies Services, Inc. Method and system for secure online transaction processing
US6434607B1 (en) * 1997-06-19 2002-08-13 International Business Machines Corporation Web server providing role-based multi-level security
US6898570B1 (en) * 1997-12-01 2005-05-24 Walker Digital, Llc Billing statement customer acquistion system
US6453306B1 (en) * 1998-01-26 2002-09-17 Ict Software S.A. Internet commerce method and apparatus
US6175822B1 (en) * 1998-06-05 2001-01-16 Sprint Communications Company, L.P. Method and system for providing network based transcription services
US6311169B2 (en) * 1998-06-11 2001-10-30 Consumer Credit Associates, Inc. On-line consumer credit data reporting system
US6466981B1 (en) * 1998-06-30 2002-10-15 Microsoft Corporation Method using an assigned dynamic IP address and automatically restoring the static IP address
US6795812B1 (en) * 1998-11-03 2004-09-21 Nextcard, Inc. Implementing a counter offer for an on line credit card application
US6405181B2 (en) * 1998-11-03 2002-06-11 Nextcard, Inc. Method and apparatus for real time on line credit approval
US6567791B2 (en) * 1998-11-03 2003-05-20 Nextcard, Inc. Method and apparatus for a verifiable on line rejection of an application for credit
US6766302B2 (en) * 1998-11-09 2004-07-20 Joseph Bach Method and apparatus for advertisement
US6208979B1 (en) * 1998-11-09 2001-03-27 E-Fin, Llc Computer-driven information management system for selectively matching credit applicants with money lenders through a global communications network
US7082412B1 (en) * 1998-11-23 2006-07-25 Enet 30, Inc. Electronic factoring
US20070250315A1 (en) * 1999-06-24 2007-10-25 Engate Incorporated Downline Transcription System Using Automatic Tracking And Revenue Collection
US6675142B2 (en) * 1999-06-30 2004-01-06 International Business Machines Corporation Method and apparatus for improving speech recognition accuracy
US6928412B2 (en) * 1999-09-17 2005-08-09 Paul C. DeBiasse Computerized system to improve process of bringing consumer product to market
US7047219B1 (en) * 1999-10-04 2006-05-16 Trade Finance Systems, Inc. Trade finance automation system
US6988085B2 (en) * 1999-10-19 2006-01-17 Shad Hedy System and method for real-time electronic inquiry, delivery, and reporting of credit information
US6868395B1 (en) * 1999-12-22 2005-03-15 Cim, Ltd. Business transactions using the internet
US6847942B1 (en) * 2000-05-02 2005-01-25 General Electric Canada Equipment Finance G.P. Method and apparatus for managing credit inquiries within account receivables
US6957192B1 (en) * 2000-08-23 2005-10-18 Chevron U.S.A. Inc. System and method for automated credit matching
US6393436B1 (en) * 2001-01-05 2002-05-21 Jv Export Trading Company, Inc. Method for commercializing goods and services over a global digital network
US7127395B1 (en) * 2001-01-22 2006-10-24 At&T Corp. Method and system for predicting understanding errors in a task classification system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7761295B2 (en) 1993-03-24 2010-07-20 Engate Llc Computer-aided transcription system using pronounceable substitute text with a common cross-reference library
US7769586B2 (en) 1993-03-24 2010-08-03 Engate Llc Computer-aided transcription system using pronounceable substitute text with a common cross-reference library
US7805298B2 (en) 1993-03-24 2010-09-28 Engate Llc Computer-aided transcription system using pronounceable substitute text with a common cross-reference library
US7831437B2 (en) 1993-03-24 2010-11-09 Engate Llc Attorney terminal having outline preparation capabilities for managing trial proceedings
US7908145B2 (en) 1993-03-24 2011-03-15 Engate Llc Down-line transcription system using automatic tracking and revenue collection
US7983990B2 (en) 1993-03-24 2011-07-19 Engate Llc Attorney terminal having outline preparation capabilities for managing trial proceedings
US7797730B2 (en) 1999-06-24 2010-09-14 Engate Llc Downline transcription system using automatic tracking and revenue collection
US20050209859A1 (en) * 2004-01-22 2005-09-22 Porto Ranelli, Sa Method for aiding and enhancing verbal communication
US20160052294A1 (en) * 2004-03-12 2016-02-25 Advantage Technology And Innovations, Inc. Adjustable stenographic keyboard device and method for electronically adjusting key depth sensitivity
US9487021B2 (en) * 2004-03-12 2016-11-08 Advantage Technology And Innovations, Inc. Adjustable stenographic keyboard device and method for electronically adjusting key depth sensitivity
US9871916B2 (en) * 2009-03-05 2018-01-16 International Business Machines Corporation System and methods for providing voice transcription
US20100228546A1 (en) * 2009-03-05 2010-09-09 International Buisness Machines Corporation System and methods for providing voice transcription
US20180176371A1 (en) * 2009-03-05 2018-06-21 International Business Machines Corporation System and methods for providing voice transcription
US10623563B2 (en) * 2009-03-05 2020-04-14 International Business Machines Corporation System and methods for providing voice transcription
US20120029668A1 (en) * 2010-07-30 2012-02-02 Samsung Electronics Co., Ltd. Audio playing method and apparatus
US9355683B2 (en) * 2010-07-30 2016-05-31 Samsung Electronics Co., Ltd. Audio playing method and apparatus
EP2413325A1 (en) * 2010-07-30 2012-02-01 Samsung Electronics Co., Ltd. Audio playing method and apparatus
GB2488772A (en) * 2011-03-05 2012-09-12 Sonocent Ltd Creating annotated recordings from two devices using audio synchronisation
US20220059096A1 (en) * 2018-09-13 2022-02-24 Magna Legal Services, Llc Systems and Methods for Improved Digital Transcript Creation Using Automated Speech Recognition
US11588911B2 (en) 2021-01-14 2023-02-21 International Business Machines Corporation Automatic context aware composing and synchronizing of video and audio transcript
US20220327239A1 (en) * 2021-04-09 2022-10-13 VIQ Solutions Inc. Securing and managing offline digital evidence with a smart data lease system
US11822701B2 (en) * 2021-04-09 2023-11-21 VIQ Solutions Inc. Securing and managing offline digital evidence with a smart data lease system

Also Published As

Publication number Publication date
US20070265871A1 (en) 2007-11-15
US20070286573A1 (en) 2007-12-13
US7831437B2 (en) 2010-11-09
US20070266018A1 (en) 2007-11-15
US20080015885A1 (en) 2008-01-17
US20070271236A1 (en) 2007-11-22
US20070260472A1 (en) 2007-11-08
US7249026B1 (en) 2007-07-24
US7983990B2 (en) 2011-07-19

Similar Documents

Publication Publication Date Title
US5878186A (en) Audio and video transcription system for manipulating real-time testimony
US20070260457A1 (en) Audio And Video Transcription System For Manipulating Real-Time Testimony
EP0846395B1 (en) Method and apparatus for recording and indexing an audio and multimedia conference
US7047191B2 (en) Method and system for providing automated captioning for AV signals
CA2024925C (en) Computerized court reporting system
US8966360B2 (en) Transcript editor
US7848493B2 (en) System and method for capturing media
US6378132B1 (en) Signal capture and distribution system
US20020091658A1 (en) Multimedia electronic education system and method
US7617445B1 (en) Log note system for digitally recorded audio
US20040132432A1 (en) Voice recordal methods and systems
US20020133513A1 (en) Log note system for digitally recorded audio
US8270587B2 (en) Method and arrangement for capturing of voice during a telephone conference
JP2001256335A (en) Conference recording system
JP2002238027A (en) Video and audio information processing
AU2002250360A1 (en) Log note system for digitally recorded audio
US5790236A (en) Movie processing system
CA2271745A1 (en) Method and apparatus for storing and retrieving labeled interval data for multimedia recordings
US20010046096A1 (en) Redactable recording apparatus
USRE35658E (en) Computerized court reporting system
KR101783872B1 (en) Video Search System and Method thereof
CN1195445A (en) Phone based dynamic image annotation
KR100911830B1 (en) Speaker annotation system and method for recorded data
JPH1185456A (en) Conversation recorder
JPH04362769A (en) Automatic preparation device for electronic conference report

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENGATE INCORPORATED, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENNETT, JAMES D.;JARVIS, LAWRENCE M.;SIGNING DATES FROM 19980911 TO 19980923;REEL/FRAME:018602/0822

Owner name: ENGATE INCORPORATED, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENNETT, JAMES D.;JARVIS, LAWRENCE M.;REEL/FRAME:018602/0822;SIGNING DATES FROM 19980911 TO 19980923

AS Assignment

Owner name: ENGATE LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENGATE INCORPORATED;REEL/FRAME:018702/0217

Effective date: 20061204

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION