Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070276496 A1
Publication typeApplication
Application numberUS 11/438,891
Publication dateNov 29, 2007
Filing dateMay 23, 2006
Priority dateMay 23, 2006
Also published asEP2029036A2, US8690919, US20100114320, WO2007140170A2, WO2007140170A3
Publication number11438891, 438891, US 2007/0276496 A1, US 2007/276496 A1, US 20070276496 A1, US 20070276496A1, US 2007276496 A1, US 2007276496A1, US-A1-20070276496, US-A1-2007276496, US2007/0276496A1, US2007/276496A1, US20070276496 A1, US20070276496A1, US2007276496 A1, US2007276496A1
InventorsEric C. Lange, Hai H. Trieu, Kent M. Anderson, Randall L. Allard, Aurelien Bruneau
Original AssigneeSdgi Holdings, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Surgical spacer with shape control
US 20070276496 A1
Abstract
An interspinous spacer for placement between adjacent spinous processes includes a flexible, fillable container (e.g., a bag or balloon) for containing a material that is compressible during end use, for example, silicone after curing. The container is impermeable to the material it will be filled with. A structural mesh, for example, made of PET fabric and interwoven shape-memory alloy wire, provides structure for and containment of the container, as well as shape control. The material can be injected into the container through an optional conduit, for example, a one-way valve.
Images(6)
Previous page
Next page
Claims(56)
1. A surgical spacer, comprising:
a flexible container for containing a material that is compressible during end use, wherein the container is substantially impermeable to the material; and
a structure for at least part of the container when containing the material;
wherein the structure controls at least part of a shape of the surgical spacer.
2. The surgical spacer of claim 1, wherein the material is flowable during filling of the container, the surgical spacer further comprising a conduit coupled to the container for accepting the material.
3. The surgical spacer of claim 2, wherein the conduit comprises a one-way valve.
4. The surgical spacer of claim 1, wherein the container is situated inside the structure.
5. The surgical spacer of claim 1, wherein the container is situated outside the structure.
6. The surgical spacer of claim 1, wherein the container is integral with the structure.
7. The surgical spacer of claim 1, wherein the structure comprises a shape memory alloy.
8. The surgical spacer of claim 7, wherein the shape memory alloy is body temperature activated.
9. The surgical spacer of claim 7, wherein the shape memory alloy is superelastic.
10. The surgical spacer of claim 7, wherein the shape memory alloy is coupled to an inside of the structure.
11. The surgical spacer of claim 7, wherein the shape memory alloy is coupled to an outside of the structure.
12. The surgical spacer of claim 11, wherein the structure comprises a plurality of interlocking links, and wherein the plurality of interlocking links comprise the shape memory alloy.
13. The surgical spacer of claim 7, wherein the structure comprises a structural mesh, and wherein the shape memory alloy comprises at least one shape memory alloy wire within the structural mesh.
14. The surgical spacer of claim 1, wherein the structure has at least a partially preformed shape.
15. The surgical spacer of claim 1, wherein the structure comprises at least one substantially inflexible shaped member.
16. The surgical spacer of claim 15, wherein the at least one substantially inflexible shaped member comprises a substantially straight member.
17. The surgical spacer of claim 15, wherein the at least one substantially inflexible shaped member comprises a roughly U-shaped member.
18. The surgical spacer of claim 1, wherein the container and the structure together comprise a layer of rubber thick enough to roughly maintain a desired shape.
19. The surgical spacer of claim 1, wherein the container comprises at least one of silicone, rubber, polyurethane, polyethylene terephthalate (PET), polyolefin, polycarbonate urethane, and silicone copolymer.
20. The surgical spacer of claim 1, wherein the material comprises at least one of a curable polymer and an adhesive.
21. The surgical spacer of claim 1, wherein the structure comprises at least one of PET fabric, polypropylene fabric, polyethylene fabric and metal wire.
22. The surgical spacer of claim 1, wherein the surgical spacer comprises an interspinous spacer, and wherein the structure is shaped to fit between adjacent spinous processes.
23. The surgical spacer of claim 1, wherein the structure is shaped for spacing adjacent spinous processes, and wherein the surgical spacer is capable of resisting a compressive load with a stiffness of about 40 N/mm to about 240 N/mm.
24. The surgical spacer of claim 1, wherein the structure is shaped to replace at least part of an intervertebral disc.
25. The surgical spacer of claim 1, wherein the structure is at least partially permeable.
26. An interspinous spacer, comprising:
a flexible container for containing an injectable material that is compressible during end use, wherein the container is substantially impermeable to the injectable material;
a conduit coupled to the container for accepting the injectable material; and
a structure for at least part of the container when containing the material;
wherein the structure has a shape during end use to fit between adjacent spinous processes.
27. The interspinous spacer of claim 26, wherein the structure is roughly H-shaped.
28. The interspinous spacer of claim 26, wherein the structure comprises:
at least one substantially inflexible member; and
a mesh for enveloping the at least one substantially inflexible member.
29. The interspinous spacer of claim 28, wherein the at least one substantially inflexible shaped member comprises a substantially straight member.
30. The interspinous spacer of claim 28, wherein the at least one substantially inflexible shaped member comprises a roughly U-shaped member.
31. The interspinous spacer of claim 26, wherein the conduit comprises a one-way valve.
32. The interspinous spacer of claim 26, wherein the container is situated inside the structure.
33. The interspinous spacer of claim 26, wherein the container is situated outside the structure.
34. The interspinous spacer of claim 26, wherein the container is integral with the structure.
35. The interspinous spacer of claim 26, wherein the structure comprises a shape memory alloy.
36. The interspinous spacer of claim 35, wherein the shape memory alloy is body temperature activated.
37. The interspinous spacer of claim 35, wherein the shape memory alloy is superelastic.
38. The interspinous spacer of claim 35, wherein the shape memory alloy is coupled to an inside of the structure.
39. The interspinous spacer of claim 35, wherein the shape memory alloy is coupled to an outside of the structure.
40. The interspinous spacer of claim 39, wherein the structure comprises a plurality of interlocking links, and wherein the plurality of interlocking links comprise the shape memory alloy.
41. The interspinous spacer of claim 35, wherein the structure comprises a structural mesh, and wherein the shape memory alloy comprises at least one shape memory alloy wire within the structural mesh.
42. The interspinous spacer of claim 26, wherein the structure has at least a partially preformed shape.
43. The interspinous spacer of claim 26, wherein the structure comprises at least one substantially inflexible shaped member.
44. The interspinous spacer of claim 43, wherein the at least one substantially inflexible shaped member comprises a substantially straight member.
45. The interspinous spacer of claim 43, wherein the at least one substantially inflexible shaped member comprises a roughly U-shaped member.
46. The interspinous spacer of claim 26, wherein the container and the structure together comprise a layer of rubber thick enough to roughly maintain a desired shape.
47. The interspinous spacer of claim 26, wherein the container comprises at least one of silicone, rubber, polyurethane, polyethylene terephthalate (PET), polyolefin, polycarbonate urethane, and silicone copolymer.
48. The interspinous spacer of claim 26, wherein the material comprises at least one of a curable polymer and an adhesive.
49. The interspinous spacer of claim 26, wherein the structure comprises at least one of PET fabric, polypropylene fabric, polyethylene fabric and metal wire.
50. A method of controlling at least part of a shape of a surgical spacer, the surgical spacer comprising a flexible container for containing a material that is compressible during end use, wherein the container is substantially impermeable to the material, and a structure for at least part of the container when containing the material, the method comprising creating the structure with at least one material for controlling at least part of a shape of the surgical spacer.
51. The method of claim 50, wherein the creating comprises adding a shape memory alloy to the structure.
52. The method of claim 51, wherein the structure comprises a structural mesh, and wherein the creating comprises adding at least one shape-memory alloy wire to the structural mesh.
53. The method of claim 51, wherein the creating comprises coupling the at least one shape memory alloy to the structure.
54. The method of claim 50, wherein the creating comprises adding at least one substantially inflexible shaped member to the structure.
55. The method of claim 50, wherein the creating comprises adding a layer of rubber thick enough to roughly maintain a desired shape.
56. A method of spacing adjacent spinous processes, the method comprising:
providing an interspinous spacer, the interspinous spacer comprising:
a flexible container for containing an injectable material that is compressible during end use, wherein the container is substantially impermeable to the injectable material;
a conduit coupled to the container for accepting the injectable material; and
a structure for at least part of the container when containing the material;
wherein the structure has a shape during end use to fit between adjacent spinous processes;
implanting the interspinous spacer between adjacent spinous processes; and
injecting the injectable material into the container through the conduit such that the shape is achieved.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS/PATENTS
  • [0001]
    This application contains subject matter which is related to the subject matter of the following applications, each of which is assigned to the same assignee as this application and filed on the same day as this application. Each of the below listed applications is hereby incorporated herein by reference in its entirety:
  • [0002]
    “Surgical Spacer,” by Lange et al. (Attorney Docket No. P22790.00).
  • [0003]
    “Systems and Methods for Adjusting Properties of a Spinal Implant,” by Lange et al. (Attorney Docket No. P23186.00); and
  • TECHNICAL FIELD
  • [0004]
    The present invention generally relates to surgical spacers for spacing adjacent body parts. More particularly, the present invention relates to surgical spacers having a flexible container for containing a material that is compressible during end use, the container being substantially impermeable to the material, and a structure for controlling at least part of a shape of the container when containing the material.
  • BACKGROUND OF THE INVENTION
  • [0005]
    The human spine is a biomechanical structure with thirty-three vertebral members, and is responsible for protecting the spinal cord, nerve roots and internal organs of the thorax and abdomen. The spine also provides structural support for the body while permitting flexibility of motion. A significant portion of the population will experience back pain at some point in their lives resulting from a spinal condition. The pain may range from general discomfort to disabling pain that immobilizes the individual. Back pain may result from a trauma to the spine, the natural aging process, or the result of a degenerative disease or condition.
  • [0006]
    Procedures to address back problems sometimes require correcting the distance between spinous processes by inserting a device (e.g., a spacer) therebetween. The spacer, which is carefully positioned and aligned within the area occupied by the interspinous ligament, after removal thereof, is sized to position the spinous processes in a manner to return proper spacing thereof.
  • [0007]
    Dynamic interspinous spacers are currently used to treat patients with a variety of indications. Essentially, these patients present a need for distraction of the posterior elements (e.g., the spinal processes) using a mechanical device. Current clinical indications for the device, as described at SAS (Spine Arthroplasty Society) Summit 2005 by Guizzardi et al., include stenosis, disc herniation, facet arthropathy, degenerative disc disease and adjacent segment degeneration.
  • [0008]
    Marketed interspinous devices include rigid and flexible spacers made from PEEK, titanium or silicone. Clinical success with these devices has been extremely positive so far as an early stage treatment option, avoiding or delaying the need for lumbar spinal fusion. However, all devices require an open technique to be implanted, and many require destroying important anatomical stabilizers, such as the supraspinous ligament.
  • [0009]
    Current devices for spacing adjacent interspinous processes are preformed, and are not customizable for different sizes and dimensions of the anatomy of an interspinous area of an actual patient. Instead, preformed devices of an approximately correct size are inserted into the interspinous area of the patient. Further, the stiffness or flexibility of the devices must be determined prior to the devices being inserted into the interspinous area.
  • [0010]
    Thus, a need exists for improvements to surgical spacers, such as those for spacing adjacent interspinous processes.
  • SUMMARY OF THE INVENTION
  • [0011]
    Briefly, the present invention satisfies the need for improvements to surgical spacers by providing shape control. A flexible container is provided that is fillable in situ to a desired amount, with a structure for at least part of the container providing shape control thereto. An optional conduit coupled to the container allows for filling of the container, for example, by injecting a material into the container.
  • [0012]
    The present invention provides in a first aspect, a surgical spacer. The surgical spacer comprises a flexible container for containing a material that is compressible during end use, wherein the container is substantially impermeable to the material. The surgical spacer further comprises a structure for at least part of the container when containing the material, wherein the structure controls at least part of a shape of the surgical spacer.
  • [0013]
    The present invention provides in a second aspect, an interspinous spacer. The interspinous spacer comprises a flexible container for containing an injectable material that is compressible during end use, wherein the container is substantially impermeable to the injectable material. The interspinous spacer further comprises a conduit coupled to the container for accepting the injectable material, and a structure for at least part of the container when containing the material, wherein the structure has a shape during end use to fit between adjacent spinous processes.
  • [0014]
    The present invention provides in a third aspect, a method of controlling at least part of a shape of a surgical spacer. The surgical spacer comprises a flexible container for containing a material that is compressible during end use, wherein the container is substantially impermeable to the material. The surgical spacer further comprises a structure for at least part of the container when containing the material. The method comprises creating the structure with at least one material for controlling at least part of a shape of the surgical spacer during end use.
  • [0015]
    The present invention provides in a fourth aspect, a method of spacing adjacent spinous processes. The method comprises providing an interspinous spacer, the interspinous spacer comprising a flexible container for containing an injectable material that is compressible during end use, wherein the container is substantially impermeable to the injectable material. The interspinous spacer further comprises a conduit coupled to the container for accepting the injectable material, and a structure for at least part of the container when containing the material, wherein the structure has a shape during end use to fit between adjacent spinous processes. The method further comprises implanting the interspinous spacer between adjacent spinous processes, and injecting the injectable material into the container through the conduit such that the shape is achieved.
  • [0016]
    Further, additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0017]
    The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
  • [0018]
    FIG. 1 depicts adjacent vertebrae of the lumber region of a human spinal column.
  • [0019]
    FIG. 2 depicts a more detailed view of a portion of a human spinal column including the vertebrae of FIG. 1.
  • [0020]
    FIG. 3 depicts the spinal column portion of FIG. 2 after implantation and filling of one example of an interspinous spacer in accordance with an aspect of the present invention.
  • [0021]
    FIG. 4 is a partial cut-away view of one example of an unfilled surgical spacer with the container in the structure, in accordance with an aspect of the present invention.
  • [0022]
    FIG. 5 depicts an example of a surgical spacer with integrated container and structure, in accordance with an aspect of the present invention.
  • [0023]
    FIG. 6 is a cross-sectional view of one example of a surgical spacer with external container, in accordance with an aspect of the present invention.
  • [0024]
    FIG. 7 depicts one example of the construction of a structure for use with one example of a surgical spacer, in accordance with another aspect of the present invention.
  • [0025]
    FIG. 8 depicts another example of a surgical spacer with integrated container and structure, in accordance with another aspect of the present invention.
  • [0026]
    FIG. 9 depicts one example of a structure for a surgical spacer including at least one substantially inflexible shaped member, in accordance with another aspect of the present invention.
  • [0027]
    FIG. 10 depicts another example of a structure for a surgical spacer including at least one substantially inflexible shaped member, in accordance with another aspect of the present invention.
  • [0028]
    FIG. 11 depicts still another example of a structure for a surgical spacer including a supra-structure, in accordance with another aspect of the present invention.
  • [0029]
    FIG. 12 depicts a portion of a surgical spacer with a structural mesh coupled at least one least one substantially inflexible shaped member, in accordance with another aspect of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0030]
    A surgical spacer of the present invention can be formed in situ during a procedure. The spacer includes the following basic aspects: a flexible container, and a structure for at least part of the container that controls at least part of the shape of the surgical spacer. The flexible container can be filled or injected though an optional conduit after placement. Further, the structure may be folded or otherwise reduced in size prior to use in some aspects. Together with an unfilled container, in some aspects, the spacer can create a smaller footprint during implantation. Once filled, the structure provides support and containment for the container, as well as providing shape control for at least part of the spacer.
  • [0031]
    FIG. 1 depicts adjacent vertebrae 100, 102 of the lumbar region of a human spinal column. As known in the art, each vertebrae comprises a vertebral body (e.g., vertebral body 104), a superior articular process (e.g., superior articular process 106), a transverse process (e.g., transverse process 108), an inferior articular process (e.g., inferior articular process 110), and a spinous process (e.g., spinous process 112). In addition, between vertebral bodies 104 and 114 is a space 116 normally occupied by an intervertebral disc (see FIG. 2), and between spinous processes 112 and 118 is a space 120 normally occupied by an interspinous ligament (see FIG. 2).
  • [0032]
    FIG. 2 depicts the vertebrae of FIG. 1 within an area 200 of the lumbar region of a human spine. As shown in FIG. 2, spinous processes 112 and 118 are touching and pinching interspinous ligament 202, calling for spacing of the spinous processes.
  • [0033]
    FIG. 3 depicts spinous processes 112 and 118 after spacing with an interspinous spacer 300 in accordance with one aspect of the present invention. As shown in FIG. 3, interspinous ligament 202 has been removed in a conventional manner prior to insertion of spacer 300. Although shown in its filled state, in this example, spacer 300 is implanted in its unexpanded state, as described more fully below. The spacer is filled with a material described below through a conduit 302 after implantation. For example, the material may be injected into the spacer through the conduit (e.g., a one-way valve). Prior to implantation and filling, measurement of the space between the interspinous processes and determination of the spacer size and desired amount of filling can be performed. Conventional methods can be used, such as, for example, the use of templates, trials, distractors, scissor-jacks or balloon sizers.
  • [0034]
    FIG. 4 depicts a partially cut-away view of one example of a spacer 400, in accordance with one aspect of the present invention. As shown in FIG. 4, the spacer comprises an unfilled container 402 inside a structure 404. Preferably, the container is in an evacuated state during implantation and prior to being filled. Where a valve (e.g., a one-way valve) is coupled to the container, the container is preferably evacuated prior to or during the process of coupling the valve thereto. In the present example, the structure is outside the container. However, as will be described in more detail below, the container can be outside the structure, or the container and structure can be integrated. In addition, although the structure is shown to be roughly H-shaped to fit between adjacent spinous processes, the structure can have any shape necessary for the particular surgical application. For example, the structure could instead have a roughly cylindrical shape to replace an intervertebral disc. As another example, the structure could be spherically or elliptically shaped to replace part of the intervertebral disc, for example, the nucleus pulpous, leaving the rest of the disc intact. Further, although the structure is shown enveloping the container, the structure could be for only a portion of the container, depending on the particular application. For example, it may be desired to prevent bulging of the container only in a particular area. Coupled to the container is an optional conduit 406 for accepting a material that is compressible during end use. The structure provides support for and containment of the container when filled.
  • [0035]
    The container is flexible and substantially impermeable to the material it will be filled with. However, depending on the application, the container may be permeable to other materials, for example, it may be air and/or water permeable. In the present example, the container takes the form of a bag or balloon, but can take other forms, so long as flexible and substantially impermeable to the material it will be filled with. Thus, the container must be substantially impermeable to the filling material, for example, in a liquid state during filling and prior to curing. Examples of container materials include silicone, rubber, polyurethane, polyethylene terephthalate (PET), polyolefin, polycarbonate urethane, and silicone copolymers.
  • [0036]
    Conduit 406 accepts the material being used to fill the container. Preferably, the conduit comprises a one-way valve, however, a two-way valve is also contemplated, as another example. The conduit can comprise any material suitable for implanting, for example, various plastics. Also preferably, the conduit is constructed to be used with a delivery system for filling the container, such as, for example, a pressurized syringe-type delivery system. However, the delivery system itself forms no part of the present invention. As noted above, the conduit is optional. Other examples of how to fill the container comprise the use of a self-sealing material for the container, or leaving an opening in the container that is closed (e.g., sewn shut) intraoperatively after filling. Using a curable material to fill the container may also serve to self-seal the container.
  • [0037]
    In use, the container is filled with a material that is compressible during end use. The compressibility characteristic ensures that the material exhibits viscoelastic behavior and that, along with the structure, the spacer can accept compressive loads. Of course, the degree of compressibility will depend on the particular application for the surgical spacer. For example, if a spacer according to the present invention is used between adjacent spinous processes, the spacer would need to accept compressive loads typically experienced in the posterior region of the spine, for example, up to about 80 shore A. In other words, the spacer is preferably capable of resisting compressive motion (or loads) with a stiffness of about 40 to about 240 N/mm (newtons per millimeter). The material is preferably injectable, and may be compressible immediately or after a time, for example, after curing. For purposes of the invention, the compressibility characteristic is necessary during end use, i.e., after implantation. Materials that could be used include, for example, a plurality of beads (e.g., polymer beads) that in the aggregate are compressible, or materials that change state from exhibiting fluid properties to exhibiting properties of a solid or semi-solid. Examples of such state-changing materials include two-part curing polymers and adhesive, for example, platinum-catalyzed silicone, epoxy, polyurethane, etc.
  • [0038]
    As noted above, the structure provides support for and containment of the container when filled, as well as at least partial shape control of the spacer. The structure comprises, for example, a structural mesh comprising a plurality of fibers and/or wires 408. Within the structural mesh are shape-control fibers and/or wires 410. In one example, shape control is provided by wires of a shape-memory alloy (e.g., Nitinol). The shape-memory alloy wire(s) can be coupled to the structural mesh (inside or outside), or weaved into the mesh (i.e., integrated). Coupling can be achieved, for example, by stitching, twisting, or closing the wire on itself. Alternatively, shape control can be provided by other wires or fibers that do not “give” in a particular direction, for example, metal or metal alloys (e.g., tantalum, titanium or steel, and non-metals, for example, carbon fiber, PET, polyethylene, polypropalene, etc.). The shape-memory alloy can be passive (e.g., superelastic) or active (e.g., body-temperature activated). The use of metal, metal alloy or barium coated wires or fibers can also improve radiopacity for imaging. The remainder of the structure can take the form of, for example, a fabric jacket, as shown in FIG. 4. Although the shape-memory alloy wires make up only a portion of the structural mesh of FIG. 4, it will be understood that there could be more such wires, up to and including comprising the entirety of the mesh. The fabric jacket in this example contains and helps protect the container from bulging and damage from forces external to the container, while the shape-memory alloy provides shape control of the spacer in a center region 412. The fibers of the jacket comprise, for example, PET fabric, polypropylene fabric, polyethylene fabric and/or steel, titanium or other metal wire. Depending on the application, the structure may be permeable to a desired degree. For example, if bone or tissue growth is desired to attach to the structure, permeability to the tissue or bone of interest would be appropriate. As another example, permeability of the structure may be desired to allow the material used to fill the container to evacuate air or water, for example, from the container, in order to prevent bubbles from forming inside. Where a mesh is used, for example, the degree of permeability desired can be achieved by loosening or tightening the weave.
  • [0039]
    Although the structure is shown in a roughly H-shape in the example of FIG. 4, it will be understood that in practice, the structure can be made to be folded, unexpanded, or otherwise compacted. This is particularly true where, for example, the structure comprises a fabric or other easily folded material. A folded or unexpanded state facilitates implantation, allowing for a smaller surgical opening, and unfolding or expansion in situ upon filling of the container. Further, the structure can have a different final shape, depending on the shape-control material used. For example, the shape-memory wires in FIG. 4 may be in their inactive state, whereupon activation by body temperature causes contraction thereof, making the spacer of FIG. 4 “thinner” than shown in the center region.
  • [0040]
    One example of the construction of a structural mesh 700 for use as one example of a structure of the present invention will now be described with reference to FIG. 7. Two roughly cylindrical members 702 and 704 are sewn together around a periphery 706 of an opening along a side (not shown) in each. Each member in this example comprises a fabric mesh (e.g., fabric mesh 714) similar in composition to the fabric jacket of FIG. 4. Interwoven with the fabric are a plurality of shape-memory alloy wires both horizontally (e.g., wire 716) and vertically (e.g., wire 718). An opening 708 is created in one of the members for accepting the container, for example, by laser cut. In one example, a conduit described above would poke through opening 708. The ends of the cylindrical members (e.g., end 710) are then trimmed and sewn shut, as shown in broken lines (e.g., lines 712) in FIG. 7.
  • [0041]
    FIG. 5 depicts an outer view of another example of a surgical spacer 500 in accordance with an aspect of the present invention. A container conduit 501 is shown pointing outward from an opening 503. As shown, the structure 502 delimits the final shape of the spacer, in this example, a rough H-shape. The structure comprises a mesh 504 of shape-memory alloy wire, that is soaked through with a dispersion polymer 506 (e.g., silicone). The dispersion polymer (after curing) acts as the container and is shown filled in FIG. 5. This is one example of the container and the structure being integral. Although the mesh of FIG. 5 is described as being all shape-memory alloy wire, it will be understood that, like FIG. 4, the shape-memory alloy could only form a part of the structure.
  • [0042]
    FIG. 6 is a cross-sectional view of another example of a surgical spacer 600 in accordance with the present invention. Surgical spacer 600 is similar to the spacer of FIG. 5, except that instead of being soaked in a dispersion polymer, a structural mesh 602 of a shape-memory alloy wire is coated with a dispersion polymer (e.g., silicone) 604 or other curable liquid appropriate for the container material, creating an outer container. The coating can be done in a conventional manner, for example, by dip molding on the outside of the mesh.
  • [0043]
    FIG. 8 depicts another example of a surgical spacer 800 with an integrated container and structure, in accordance with another aspect of the present invention. The container and structure in the example of FIG. 8 both comprise a single layer 802 of rubber that is thick enough for a given application to perform the functions of both the container and structure (including shape control). Such a rubber shell would be able to return to its original shape when unconstrained. In addition, spacer 800 preferably includes a conduit 804 (preferably, a one-way valve) for filling internal space 806. The material can be any of the filling materials described above, for example, silicone. Where the spacer is used, for example, to space adjacent spinous processes, the thickness of layer 802 is preferably in the range of about 0.2 mm to about 2.5 mm. A layer of rubber of that thickness will contain the material chosen, and, when filled, will sufficiently maintain the shape of the spacer for the intended use.
  • [0044]
    In an alternate aspect, the rubber shell of FIG. 8 can be augmented with internal, external, or integrated features to further control shape. Examples of such features include thread, wires (e.g., metal, including shape-memory alloys), cables, tethers, rings or a mesh.
  • [0045]
    FIG. 9 depicts one example of a structure for a surgical spacer including at least one substantially inflexible shaped member, in accordance with another aspect of the present invention. The substantially inflexible member(s) are used to achieve at least part of a preformed shape for a given application. Structure 900 comprises blades 902 and 904 that are substantially inflexible and are substantially straight. In one example, the blades comprise metal, such as, for example, a nickel-titanium alloy. The blades provide a specific shape for at least part of the surgical spacer. Coupling the blades is, for example, a structural mesh 906. The structure can be paired with any of the types of containers described herein. In addition, the structural mesh can take any of the forms described herein. For example, the structural mesh could take the form of a PET fabric mesh, with or without other shape-enhancing elements (e.g., shape-memory alloy fabric or wire). In one example, the mesh covers the blades. In another example, the mesh is coupled at a periphery of the blades.
  • [0046]
    As shown in the example of FIG. 12, a portion of a surgical spacer 1200 comprises a blade 1202 and structural mesh 1204. At the periphery 1206 of the blade, the mesh is coupled to the blade by stitching through a plurality of holes (e.g., hole 1208).
  • [0047]
    Similarly, FIG. 10 depicts another example of a structure 1000 including at least one substantially inflexible shaped member. In this example, there are two substantially inflexible shaped members 1002 and 1004, each being roughly U-shaped. In one example, the U-shaped members comprise metal blades, such as, for example, nickel-titanium allow blades. Coupling the blades is, for example, a structural mesh 1006 similar to that described above with respect to FIG. 9. In addition, as also noted above with respect to FIG. 9, the structure of FIG. 10 can be paired with any of the containers described herein.
  • [0048]
    FIG. 11 depicts still another example of a structure 1100 for a surgical spacer, in accordance with another aspect of the present invention. In this example, the structure comprises a supra-structure 1102 coupled to a main structure 1104. The main structure need not provide shape control, since that is provided by the supra-structure, however, it could also provide shape control. For example, the main structure could provide shape control in one or more directions, while the supra-structure provides shape control in one or more other directions. Of course, the supra-structure could provide shape control uniformly, e.g., if added to all surfaces. In one example, the main structure comprises a fabric mesh (e.g., PET fabric) with or without added shape memory control fibers or wires. In one example, shown inset in FIG. 11, supra-structure 1102 comprises a plurality of interlocking links 1106, the links comprising, for example, a shape-memory alloy. The links could provide resistance to expansion in one or more directions or uniformly, and/or could allow pliability, permitting deformation in one or more directions. The supra-structure can be loosely or rigidly coupled to the main structure, for example, via loops, hooks, stitches or frictional mechanisms. Of course, the supra-structure could instead be coupled to an inside 1108 of the main structure in another example. As with other embodiments herein, the shape-memory alloy can be passive (e.g., superelastic) or active (e.g., body-temperature activated).
  • [0049]
    Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the following claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2677369 *Mar 26, 1952May 4, 1954Fred L KnowlesApparatus for treatment of the spinal column
US3648691 *Feb 24, 1970Mar 14, 1972Univ Colorado State Res FoundMethod of applying vertebral appliance
US3867728 *Apr 5, 1973Feb 25, 1975Cutter LabProsthesis for spinal repair
US4011602 *Oct 6, 1975Mar 15, 1977Battelle Memorial InstitutePorous expandable device for attachment to bone tissue
US4257409 *Apr 9, 1979Mar 24, 1981Kazimierz BacalDevice for treatment of spinal curvature
US4567550 *Apr 27, 1984Jan 28, 1986Cibie ProjecteursAutomobile headlamp with inclined front glass
US4573454 *May 17, 1984Mar 4, 1986Hoffman Gregory ASpinal fixation apparatus
US4604995 *Mar 30, 1984Aug 12, 1986Stephens David CSpinal stabilizer
US4686970 *Dec 14, 1984Aug 18, 1987A. W. Showell (Surgicraft) LimitedDevices for spinal fixation
US4827918 *Aug 14, 1986May 9, 1989Sven OlerudFixing instrument for use in spinal surgery
US4863476 *Aug 28, 1987Sep 5, 1989Shepperd John A NSpinal implant
US4931055 *Jun 1, 1987Jun 5, 1990John BumpusDistraction rods
US4932969 *Dec 17, 1987Jun 12, 1990Sulzer Brothers LimitedJoint endoprosthesis
US5011484 *Oct 10, 1989Apr 30, 1991Breard Francis HSurgical implant for restricting the relative movement of vertebrae
US5047055 *Dec 21, 1990Sep 10, 1991Pfizer Hospital Products Group, Inc.Hydrogel intervertebral disc nucleus
US5098433 *Apr 12, 1989Mar 24, 1992Yosef FreedlandWinged compression bolt orthopedic fastener
US5201734 *May 14, 1991Apr 13, 1993Zimmer, Inc.Spinal locking sleeve assembly
US5306275 *Dec 31, 1992Apr 26, 1994Bryan Donald WLumbar spine fixation apparatus and method
US5390683 *Feb 21, 1992Feb 21, 1995Pisharodi; MadhavanSpinal implantation methods utilizing a middle expandable implant
US5395370 *Oct 16, 1992Mar 7, 1995Pina Vertriebs AgVertebral compression clamp for surgical repair to damage to the spine
US5415661 *Mar 24, 1993May 16, 1995University Of MiamiImplantable spinal assist device
US5437672 *Aug 26, 1994Aug 1, 1995Alleyne; NevilleSpinal cord protection device
US5496318 *Aug 18, 1993Mar 5, 1996Advanced Spine Fixation Systems, Inc.Interspinous segmental spine fixation device
US5518498 *Oct 7, 1993May 21, 1996Angiomed AgStent set
US5549679 *Mar 1, 1995Aug 27, 1996Kuslich; Stephen D.Expandable fabric implant for stabilizing the spinal motion segment
US5554191 *Jan 23, 1995Sep 10, 1996BiomatIntersomatic vertebral cage
US5609634 *Jun 30, 1993Mar 11, 1997Voydeville; GillesIntervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization
US5609635 *Jun 7, 1995Mar 11, 1997Michelson; Gary K.Lordotic interbody spinal fusion implants
US5628756 *Jul 29, 1996May 13, 1997Smith & Nephew Richards Inc.Knotted cable attachment apparatus formed of braided polymeric fibers
US5645597 *Dec 29, 1995Jul 8, 1997Krapiva; Pavel I.Disc replacement method and apparatus
US5645599 *Apr 22, 1996Jul 8, 1997FixanoInterspinal vertebral implant
US5665122 *Jan 31, 1995Sep 9, 1997Kambin; ParvizExpandable intervertebral cage and surgical method
US5707390 *Jun 5, 1995Jan 13, 1998General Surgical Innovations, Inc.Arthroscopic retractors
US5716416 *Sep 10, 1996Feb 10, 1998Lin; Chih-IArtificial intervertebral disk and method for implanting the same
US5810815 *Sep 20, 1996Sep 22, 1998Morales; Jose A.Surgical apparatus for use in the treatment of spinal deformities
US5860977 *Oct 27, 1997Jan 19, 1999Saint Francis Medical Technologies, LlcSpine distraction implant and method
US5928666 *Nov 10, 1997Jul 27, 1999Cygnus Inc.Crystalline form of estradiol and pharmaceutical formulations comprising same
US6022376 *Mar 16, 1998Feb 8, 2000Raymedica, Inc.Percutaneous prosthetic spinal disc nucleus and method of manufacture
US6048342 *Oct 27, 1998Apr 11, 2000St. Francis Medical Technologies, Inc.Spine distraction implant
US6190414 *Oct 31, 1996Feb 20, 2001Surgical Dynamics Inc.Apparatus for fusion of adjacent bone structures
US6214050 *May 11, 1999Apr 10, 2001Donald R. HueneExpandable implant for inter-bone stabilization and adapted to extrude osteogenic material, and a method of stabilizing bones while extruding osteogenic material
US6293949 *Mar 1, 2000Sep 25, 2001Sdgi Holdings, Inc.Superelastic spinal stabilization system and method
US6352537 *Sep 17, 1998Mar 5, 2002Electro-Biology, Inc.Method and apparatus for spinal fixation
US6364883 *Feb 23, 2001Apr 2, 2002Albert N. SantilliSpinous process clamp for spinal fusion and method of operation
US6375682 *Aug 6, 2001Apr 23, 2002Lewis W. FleischmannCollapsible, rotatable and expandable spinal hydraulic prosthetic device
US6402750 *Apr 4, 2000Jun 11, 2002Spinlabs, LlcDevices and methods for the treatment of spinal disorders
US6419704 *Oct 8, 1999Jul 16, 2002Bret FerreeArtificial intervertebral disc replacement methods and apparatus
US6440169 *Jan 27, 1999Aug 27, 2002DimsoInterspinous stabilizer to be fixed to spinous processes of two vertebrae
US6447543 *Jul 26, 2000Sep 10, 2002Sulzer Orthopedics Ltd.Basket-like container for implanting bone tissue
US6451019 *May 26, 2000Sep 17, 2002St. Francis Medical Technologies, Inc.Supplemental spine fixation device and method
US6520991 *Apr 9, 2001Feb 18, 2003Donald R. HueneExpandable implant for inter-vertebral stabilization, and a method of stabilizing vertebrae
US6554833 *Jul 16, 2001Apr 29, 2003Expanding Orthopedics, Inc.Expandable orthopedic device
US6582433 *Apr 9, 2001Jun 24, 2003St. Francis Medical Technologies, Inc.Spine fixation device and method
US6582467 *Oct 31, 2001Jun 24, 2003Vertelink CorporationExpandable fusion cage
US6626944 *Feb 19, 1999Sep 30, 2003Jean TaylorInterspinous prosthesis
US6685742 *Nov 12, 2002Feb 3, 2004Roger P. JacksonArticulated anterior expandable spinal fusion cage system
US6695842 *Oct 26, 2001Feb 24, 2004St. Francis Medical Technologies, Inc.Interspinous process distraction system and method with positionable wing and method
US6709435 *Mar 28, 2002Mar 23, 2004A-Spine Holding Group Corp.Three-hooked device for fixing spinal column
US6712853 *Dec 17, 2001Mar 30, 2004Spineology, Inc.Annulus-reinforcing band
US6723126 *Nov 1, 2002Apr 20, 2004Sdgi Holdings, Inc.Laterally expandable cage
US6730126 *Feb 12, 2003May 4, 2004Frank H. Boehm, Jr.Device and method for lumbar interbody fusion
US6733533 *Nov 19, 2002May 11, 2004Zimmer Technology, Inc.Artificial spinal disc
US6733534 *Jan 29, 2002May 11, 2004Sdgi Holdings, Inc.System and method for spine spacing
US6736818 *May 10, 2002May 18, 2004Synthes (U.S.A.)Radially expandable intramedullary nail
US6758863 *Dec 12, 2002Jul 6, 2004Sdgi Holdings, Inc.Vertically expanding intervertebral body fusion device
US6761720 *Oct 13, 2000Jul 13, 2004Spine NextIntervertebral implant
US6905512 *Jun 17, 2002Jun 14, 2005Phoenix Biomedical CorporationSystem for stabilizing the vertebral column including deployment instruments and variable expansion inserts therefore
US6981975 *Dec 24, 2003Jan 3, 2006Sdgi Holdings, Inc.Method for inserting a spinal fusion implant having deployable bone engaging projections
US7011685 *Jan 5, 2004Mar 14, 2006Impliant Ltd.Spinal prostheses
US7041136 *Apr 23, 2003May 9, 2006Facet Solutions, Inc.Facet joint replacement
US20020077701 *Dec 17, 2001Jun 20, 2002Kuslich Stephen D.Annulus-reinforcing band
US20030153915 *Feb 6, 2003Aug 14, 2003Showa Ika Kohgyo Co., Ltd.Vertebral body distance retainer
US20040073308 *May 16, 2003Apr 15, 2004Spineology, Inc.Expandable porous mesh bag device and methods of use for reduction, filling, fixation, and supporting of bone
US20040097931 *Oct 14, 2003May 20, 2004Steve MitchellInterspinous process and sacrum implant and method
US20040133204 *Jul 25, 2003Jul 8, 2004Davies John Bruce ClayfieldExpandable bone nails
US20040167625 *Jul 28, 2003Aug 26, 2004Disc-O-Tech Orthopedic Technologies Inc.Spacer filler
US20040193273 *Mar 31, 2003Sep 30, 2004Shih-Shing HuangVividly simulated prosthetic intervertebral disc
US20050010293 *May 20, 2004Jan 13, 2005Zucherman James F.Distractible interspinous process implant and method of implantation
US20050027364 *Aug 1, 2003Feb 3, 2005Kim Daniel H.Prosthetic intervertebral disc and methods for using the same
US20050049708 *Oct 15, 2004Mar 3, 2005Atkinson Robert E.Devices and methods for the treatment of spinal disorders
US20050055094 *Nov 5, 2003Mar 10, 2005Kuslich Stephen D.Semi-biological intervertebral disc replacement system
US20050055099 *Sep 9, 2003Mar 10, 2005Ku David N.Flexible spinal disc
US20050065609 *Nov 19, 2002Mar 24, 2005Douglas WardlawIntervertebral disc prosthesis
US20050113923 *Oct 4, 2004May 26, 2005David AckerProsthetic spinal disc nucleus
US20050165398 *Jan 24, 2005Jul 28, 2005Reiley Mark A.Percutaneous spine distraction implant systems and methods
US20050197702 *Feb 11, 2005Sep 8, 2005Coppes Justin K.Intervertebral disc implant
US20060004447 *Jun 30, 2004Jan 5, 2006Depuy Spine, Inc.Adjustable posterior spinal column positioner
US20060004455 *Jun 9, 2005Jan 5, 2006Alain LeonardMethods and apparatuses for bone restoration
US20060015181 *Jul 19, 2004Jan 19, 2006Biomet Merck France (50% Interest)Interspinous vertebral implant
US20060015182 *Feb 25, 2003Jan 19, 2006Tsou Paul MPatch material for intervertebral disc annulus defect repair
US20060084983 *Oct 20, 2004Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084985 *Dec 6, 2004Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084987 *Jan 10, 2005Apr 20, 2006Kim Daniel HSystems and methods for posterior dynamic stabilization of the spine
US20060084988 *Mar 10, 2005Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060085069 *Feb 4, 2005Apr 20, 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060089654 *Oct 25, 2005Apr 27, 2006Lins Robert EInterspinous distraction devices and associated methods of insertion
US20060089719 *Oct 21, 2004Apr 27, 2006Trieu Hai HIn situ formation of intervertebral disc implants
US20060106381 *Feb 4, 2005May 18, 2006Ferree Bret AMethods and apparatus for treating spinal stenosis
US20060106397 *Dec 2, 2005May 18, 2006Lins Robert EInterspinous distraction devices and associated methods of insertion
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7837711Jan 27, 2006Nov 23, 2010Warsaw Orthopedic, Inc.Artificial spinous process for the sacrum and methods of use
US7862591Nov 10, 2005Jan 4, 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7879104Nov 15, 2006Feb 1, 2011Warsaw Orthopedic, Inc.Spinal implant system
US7901432Mar 8, 2011Kyphon SarlMethod for lateral implantation of spinous process spacer
US7909853Mar 22, 2011Kyphon SarlInterspinous process implant including a binder and method of implantation
US7918877Apr 5, 2011Kyphon SarlLateral insertion method for spinous process spacer with deployable member
US7927354Feb 17, 2006Apr 19, 2011Kyphon SarlPercutaneous spinal implants and methods
US7931674Mar 17, 2006Apr 26, 2011Kyphon SarlInterspinous process implant having deployable wing and method of implantation
US7955356Jun 7, 2011Kyphon SarlLaterally insertable interspinous process implant
US7955392Jun 7, 2011Warsaw Orthopedic, Inc.Interspinous process devices and methods
US7959652Jun 14, 2011Kyphon SarlInterspinous process implant having deployable wings and method of implantation
US7988709Feb 17, 2006Aug 2, 2011Kyphon SarlPercutaneous spinal implants and methods
US7993342Aug 9, 2011Kyphon SarlPercutaneous spinal implants and methods
US7998174Jun 16, 2006Aug 16, 2011Kyphon SarlPercutaneous spinal implants and methods
US8007521 *Aug 30, 2011Kyphon SarlPercutaneous spinal implants and methods
US8007537Jun 29, 2007Aug 30, 2011Kyphon SarlInterspinous process implants and methods of use
US8012207Sep 6, 2011Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US8029549Oct 30, 2007Oct 4, 2011Kyphon SarlPercutaneous spinal implants and methods
US8029567Feb 17, 2006Oct 4, 2011Kyphon SarlPercutaneous spinal implants and methods
US8034079Apr 12, 2005Oct 11, 2011Warsaw Orthopedic, Inc.Implants and methods for posterior dynamic stabilization of a spinal motion segment
US8034080Oct 11, 2011Kyphon SarlPercutaneous spinal implants and methods
US8038698Oct 19, 2005Oct 18, 2011Kphon SarlPercutaneous spinal implants and methods
US8043335Oct 25, 2011Kyphon SarlPercutaneous spinal implants and methods
US8043378May 26, 2009Oct 25, 2011Warsaw Orthopedic, Inc.Intercostal spacer device and method for use in correcting a spinal deformity
US8048117Sep 23, 2005Nov 1, 2011Kyphon SarlInterspinous process implant and method of implantation
US8048118Nov 1, 2011Warsaw Orthopedic, Inc.Adjustable interspinous process brace
US8048119Jul 20, 2006Nov 1, 2011Warsaw Orthopedic, Inc.Apparatus for insertion between anatomical structures and a procedure utilizing same
US8057513Feb 17, 2006Nov 15, 2011Kyphon SarlPercutaneous spinal implants and methods
US8066742Nov 29, 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8070778Mar 17, 2006Dec 6, 2011Kyphon SarlInterspinous process implant with slide-in distraction piece and method of implantation
US8083795Jan 18, 2006Dec 27, 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US8096994Mar 29, 2007Jan 17, 2012Kyphon SarlPercutaneous spinal implants and methods
US8096995Jan 17, 2012Kyphon SarlPercutaneous spinal implants and methods
US8097018Jan 17, 2012Kyphon SarlPercutaneous spinal implants and methods
US8100943Jun 16, 2006Jan 24, 2012Kyphon SarlPercutaneous spinal implants and methods
US8105357Apr 28, 2006Jan 31, 2012Warsaw Orthopedic, Inc.Interspinous process brace
US8105358Jul 30, 2008Jan 31, 2012Kyphon SarlMedical implants and methods
US8109972Feb 7, 2012Kyphon SarlInterspinous process implant having deployable wings and method of implantation
US8114131Nov 5, 2008Feb 14, 2012Kyphon SarlExtension limiting devices and methods of use for the spine
US8114132Jan 13, 2010Feb 14, 2012Kyphon SarlDynamic interspinous process device
US8114135Jan 16, 2009Feb 14, 2012Kyphon SarlAdjustable surgical cables and methods for treating spinal stenosis
US8114136Mar 18, 2008Feb 14, 2012Warsaw Orthopedic, Inc.Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US8118839Nov 7, 2007Feb 21, 2012Kyphon SarlInterspinous implant
US8118844 *Apr 24, 2006Feb 21, 2012Warsaw Orthopedic, Inc.Expandable device for insertion between anatomical structures and a procedure utilizing same
US8123782Sep 5, 2008Feb 28, 2012Vertiflex, Inc.Interspinous spacer
US8123807Dec 6, 2004Feb 28, 2012Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US8128662Oct 18, 2006Mar 6, 2012Vertiflex, Inc.Minimally invasive tooling for delivery of interspinous spacer
US8128663Jun 27, 2007Mar 6, 2012Kyphon SarlSpine distraction implant
US8128702Oct 25, 2007Mar 6, 2012Kyphon SarlInterspinous process implant having deployable wings and method of implantation
US8147516Oct 30, 2007Apr 3, 2012Kyphon SarlPercutaneous spinal implants and methods
US8147526Feb 26, 2010Apr 3, 2012Kyphon SarlInterspinous process spacer diagnostic parallel balloon catheter and methods of use
US8147548Mar 17, 2006Apr 3, 2012Kyphon SarlInterspinous process implant having a thread-shaped wing and method of implantation
US8152837Dec 20, 2005Apr 10, 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US8157840Apr 17, 2012Kyphon SarlSpine distraction implant and method
US8157841Apr 17, 2012Kyphon SarlPercutaneous spinal implants and methods
US8157842Jun 12, 2009Apr 17, 2012Kyphon SarlInterspinous implant and methods of use
US8167890May 1, 2012Kyphon SarlPercutaneous spinal implants and methods
US8167944May 1, 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US8216277Jul 10, 2012Kyphon SarlSpine distraction implant and method
US8221458Oct 30, 2007Jul 17, 2012Kyphon SarlPercutaneous spinal implants and methods
US8221463Jul 17, 2012Kyphon SarlInterspinous process implants and methods of use
US8221465Jun 8, 2010Jul 17, 2012Warsaw Orthopedic, Inc.Multi-chamber expandable interspinous process spacer
US8226653Jul 24, 2012Warsaw Orthopedic, Inc.Spinous process stabilization devices and methods
US8252031Apr 28, 2006Aug 28, 2012Warsaw Orthopedic, Inc.Molding device for an expandable interspinous process implant
US8262698Mar 16, 2006Sep 11, 2012Warsaw Orthopedic, Inc.Expandable device for insertion between anatomical structures and a procedure utilizing same
US8273107Oct 25, 2007Sep 25, 2012Kyphon SarlInterspinous process implant having a thread-shaped wing and method of implantation
US8273108Jul 8, 2008Sep 25, 2012Vertiflex, Inc.Interspinous spacer
US8277488Jul 24, 2008Oct 2, 2012Vertiflex, Inc.Interspinous spacer
US8292922Apr 16, 2008Oct 23, 2012Vertiflex, Inc.Interspinous spacer
US8317831Jan 13, 2010Nov 27, 2012Kyphon SarlInterspinous process spacer diagnostic balloon catheter and methods of use
US8317832Nov 27, 2012Warsaw Orthopedic, Inc.Implants and methods for inter-spinous process dynamic stabilization of spinal motion segment
US8317864Nov 27, 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US8348977Jun 30, 2010Jan 8, 2013Warsaw Orthopedic, Inc.Artificial spinous process for the sacrum and methods of use
US8349013Jan 8, 2013Kyphon SarlSpine distraction implant
US8372117Feb 12, 2013Kyphon SarlMulti-level interspinous implants and methods of use
US8409282Apr 2, 2013Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US8425559Nov 7, 2006Apr 23, 2013Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US8425560Apr 23, 2013Farzad MassoudiSpinal implant device with fixation plates and lag screws and method of implanting
US8454659Jun 29, 2007Jun 4, 2013Kyphon SarlInterspinous process implants and methods of use
US8454693Feb 24, 2011Jun 4, 2013Kyphon SarlPercutaneous spinal implants and methods
US8496689Feb 23, 2011Jul 30, 2013Farzad MassoudiSpinal implant device with fusion cage and fixation plates and method of implanting
US8562650Mar 1, 2011Oct 22, 2013Warsaw Orthopedic, Inc.Percutaneous spinous process fusion plate assembly and method
US8568454Apr 27, 2007Oct 29, 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US8568455Oct 26, 2007Oct 29, 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US8568460Apr 27, 2007Oct 29, 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US8591546Dec 7, 2011Nov 26, 2013Warsaw Orthopedic, Inc.Interspinous process implant having a thread-shaped wing and method of implantation
US8591548Mar 31, 2011Nov 26, 2013Warsaw Orthopedic, Inc.Spinous process fusion plate assembly
US8591549Apr 8, 2011Nov 26, 2013Warsaw Orthopedic, Inc.Variable durometer lumbar-sacral implant
US8613747Dec 18, 2008Dec 24, 2013Vertiflex, Inc.Spacer insertion instrument
US8617211Mar 28, 2007Dec 31, 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US8628574Jul 27, 2010Jan 14, 2014Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US8641762Jan 9, 2012Feb 4, 2014Warsaw Orthopedic, Inc.Systems and methods for in situ assembly of an interspinous process distraction implant
US8679161Oct 30, 2007Mar 25, 2014Warsaw Orthopedic, Inc.Percutaneous spinal implants and methods
US8740943Oct 20, 2009Jun 3, 2014Warsaw Orthopedic, Inc.Spine distraction implant and method
US8740948Dec 15, 2010Jun 3, 2014Vertiflex, Inc.Spinal spacer for cervical and other vertebra, and associated systems and methods
US8814908Jul 26, 2010Aug 26, 2014Warsaw Orthopedic, Inc.Injectable flexible interspinous process device system
US8821548Apr 27, 2007Sep 2, 2014Warsaw Orthopedic, Inc.Spine distraction implant and method
US8828017Jun 28, 2007Sep 9, 2014Warsaw Orthopedic, Inc.Spine distraction implant and method
US8840617Feb 2, 2012Sep 23, 2014Warsaw Orthopedic, Inc.Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US8840646May 10, 2007Sep 23, 2014Warsaw Orthopedic, Inc.Spinous process implants and methods
US8845726Jan 22, 2009Sep 30, 2014Vertiflex, Inc.Dilator
US8864828Jan 15, 2009Oct 21, 2014Vertiflex, Inc.Interspinous spacer
US8888816Mar 16, 2010Nov 18, 2014Warsaw Orthopedic, Inc.Distractible interspinous process implant and method of implantation
US8900271May 1, 2012Dec 2, 2014The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US8945183Mar 9, 2009Feb 3, 2015Vertiflex, Inc.Interspinous process spacer instrument system with deployment indicator
US9023084Dec 6, 2004May 5, 2015The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for stabilizing the motion or adjusting the position of the spine
US9039742Apr 9, 2012May 26, 2015The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US9084639Jun 26, 2013Jul 21, 2015Farzad MassoudiSpinal implant device with fusion cage and fixation plates and method of implanting
US9119680Feb 27, 2012Sep 1, 2015Vertiflex, Inc.Interspinous spacer
US9125692Feb 25, 2013Sep 8, 2015The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US9155570Sep 14, 2012Oct 13, 2015Vertiflex, Inc.Interspinous spacer
US9155572Mar 6, 2012Oct 13, 2015Vertiflex, Inc.Minimally invasive tooling for delivery of interspinous spacer
US9161783Sep 14, 2012Oct 20, 2015Vertiflex, Inc.Interspinous spacer
US9168072 *Jun 2, 2009Oct 27, 2015DePuy Synthes Products, Inc.Inflatable interspinous spacer
US9186186Apr 18, 2014Nov 17, 2015Vertiflex, Inc.Spinal spacer for cervical and other vertebra, and associated systems and methods
US9211146Feb 27, 2012Dec 15, 2015The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US9247968Mar 31, 2010Feb 2, 2016Lanx, Inc.Spinous process implants and associated methods
US9283005Feb 25, 2013Mar 15, 2016Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US9314279Oct 23, 2012Apr 19, 2016The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20070043361 *Jun 16, 2006Feb 22, 2007Malandain Hugues FPercutaneous spinal implants and methods
US20080051892 *Oct 30, 2007Feb 28, 2008Malandain Hugues FPercutaneous spinal implants and methods
US20100049251 *Mar 30, 2009Feb 25, 2010Kuslich Stephen DMethod and device for interspinous process fusion
US20110082504 *Jun 2, 2009Apr 7, 2011Synthes Usa, LlcInflatable interspinous spacer
WO2009121064A2 *Mar 30, 2009Oct 1, 2009Spineology, Inc.Method and device for interspinous process fusion
WO2009121064A3 *Mar 30, 2009Nov 19, 2009Spineology, Inc.Method and device for interspinous process fusion
Classifications
U.S. Classification623/17.12
International ClassificationA61F2/44
Cooperative ClassificationA61B2017/00557, A61F2002/4495, A61B17/7065, A61B17/7067, A61F2/441, A61F2/442
European ClassificationA61B17/70P4
Legal Events
DateCodeEventDescription
May 23, 2006ASAssignment
Owner name: SDGI HOLDINGS, INC., DELAWARE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANGE, ERIC C.;ANDERSON, KENT M.;BRUNEAU, AURELIEN;AND OTHERS;REEL/FRAME:017910/0468;SIGNING DATES FROM 20060424 TO 20060519
Dec 21, 2007ASAssignment
Owner name: WARSAW ORTHOPEDIC, INC., INDIANA
Free format text: MERGER;ASSIGNORS:SDGI HOLDINGS, INC.;SOFAMOR DANEK HOLDINGS, INC.;REEL/FRAME:020282/0321
Effective date: 20060428