US20070281293A9 - Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays - Google Patents

Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays Download PDF

Info

Publication number
US20070281293A9
US20070281293A9 US10/447,129 US44712903A US2007281293A9 US 20070281293 A9 US20070281293 A9 US 20070281293A9 US 44712903 A US44712903 A US 44712903A US 2007281293 A9 US2007281293 A9 US 2007281293A9
Authority
US
United States
Prior art keywords
cross
linked
intramolecularly
hiv
reverse transcriptase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/447,129
Other versions
US20040137425A1 (en
US7351799B2 (en
Inventor
Barbara Upmeier
Dittmar Schlieper
Frederic Donie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics Operations Inc
Original Assignee
Roche Diagnostics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics Corp filed Critical Roche Diagnostics Corp
Publication of US20040137425A1 publication Critical patent/US20040137425A1/en
Assigned to ROCHE DIAGNOSTICS OPERATIONS, INC. reassignment ROCHE DIAGNOSTICS OPERATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROCHE DIAGNOSTICS CORPORATION
Publication of US20070281293A9 publication Critical patent/US20070281293A9/en
Priority to US11/968,806 priority Critical patent/US7547533B2/en
Application granted granted Critical
Publication of US7351799B2 publication Critical patent/US7351799B2/en
Priority to US12/464,376 priority patent/US20090220987A1/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5306Improving reaction conditions, e.g. reduction of non-specific binding, promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • G01N33/56988HIV or HTLV

Definitions

  • the present invention concerns the use of intramolecularly, covalently cross-linked proteins, and in particular, the use of covalently cross-linked reverse transcriptase (RT) from HIV as immunological binding partners in immunoassays, and to immunological test procedures for detecting an analyte in a sample in which intramolecularly, covalently cross-linked proteins are used as binding partners. It also concerns intramolecularly, covalently cross-linked reverse transcriptase from HIV and a method for producing this reverse transcriptase.
  • RT covalently cross-linked reverse transcriptase
  • proteins as binding partners for the detection of analytes in immuno-diagnostic test procedures has been known for a long time.
  • the sample is incubated with one or more binding partners that are specific for the analyte.
  • the binding partner or binding partners bind(s) specifically to the analyte to be detected.
  • an antibody test for example, in the case of an HCV infection, the sample to be examined is, for example, contacted with an HCV antigen which specifically binds the anti-HCV antibody to be detected.
  • an antigen test for example, for detecting the tumour marker prostate-specific antigen (PSA)
  • PSA prostate-specific antigen
  • analyte is detected in all immunoassays.
  • This can, for example, be carried out by binding and subsequently detecting another binding partner provided with a detectable label which binds to the complex consisting of analyte and immunological binding partner.
  • the immunoassays are carried out in a heterogeneous or homogeneous test format.
  • the heterogeneous test formats are frequently carried out as sandwich or bridge tests.
  • Competitive methods are also well known in which either the analyte or the specific binding partner is displaced from the complex of analyte and specific binding partner by, for example, adding a labelled analyte analogue.
  • the reactants used as the specific immunological binding partners are present in a stable form and that they are not destroyed, for example, by unfavourable storage conditions.
  • This risk can occur in particular when the proteins used as specific binding partners are composed of several subunits.
  • the subunits can be held together covalently, for example, by means of disulfide bridges, or non-covalently, for example, by means of hydrogen bridges, opposite charges, and/or hydrophobic interactions.
  • the materials required for the immunological test may become unstable and denature under the storage conditions (for example, as a liquid reagent) in the working solutions prepared for the test or during the immunological reaction itself.
  • the tertiary and the quaternary structure of the protein may be changed in such a manner that the substance can no longer be used in the immunoassay.
  • the subunit components of the proteins used as a specific binding pair may separate under unfavourable conditions.
  • This dissociation of subunits may, for example, be caused by the reduction of disulfide bridges by common buffer additives such as DTT in the case of natural covalent bridges.
  • subunits provided with different labelling groups may re-associate due to the adjustment of the chemical equilibrium.
  • a protein composed of two subunits for use in an antibody test in a bridge test format is derivatized in order to be used as a universal solid phase and, on the other hand, the same protein is also used as a signal-generating component and for this purpose is coupled to a label (e.g., an enzyme, fluorescent label, or chemiluminescent label)
  • a label e.g., an enzyme, fluorescent label, or chemiluminescent label
  • Debyser and De Clercq (Protein Science 5, p. 278-286, 1996) describe the cross-linking of the two subunits of HIV-1 reverse transcriptase by means of dimethyl suberimidate which cross-links lysine side chains.
  • the purpose of the cross-linking is to examine the dimerization of the two RT subunits. Only the dimeric RT is enzymatically active.
  • the two subunits are covalently cross-linked in the presence of various inhibitors. RT molecules and multimers that are more or less strong cross-linked depending on the effectiveness of the inhibitor are formed after the chemical cross-linking reaction.
  • the effect of the cross-linking on immunologically relevant epitopes or the use of cross-linked molecules in immunoassays is unimportant.
  • intermolecularly cross-linked immunoglobulins in immunoassays is disclosed in EP-A-0 331 068. This means that several immunoglobulin molecules or fragments thereof are covalently linked together. The multimers of antibodies and fragments thereof are used as an interference-reducing reagent. The cross-linked immunoglobulins and fragments thereof are intended to eliminate interfering factors of human serum that are directed towards immunoglobulins.
  • cross-linked proteins described in the prior art which are composed of several subunits under natural conditions, are unsuitable or of only limited suitability for use as antigens or immunological binding partners since, in general, intermolecular multimers consisting of several protein molecules are formed. These multimers are of only limited use for immunoassays since they usually do not have a defined size. Hence the multimers have a random distribution of sizes, i.e., mono-, di-, tri-, tetramers, etc. are present together in one mixture.
  • the undefined cross-linking may mask the epitopes. Consequently a sample antibody to be detected may not be able to bind to the masked epitope of the antigen, and hence a false negative result is obtained.
  • Another problem with using multimers as immunological binding partners is the fact that there is an increased risk that interfering factors present in the sample may bind unspecifically to the multimeric proteins. Interfering factors such as rheumatoid factors often have several binding sites of low affinity. If multimeric proteins are then used as immunological binding partners, this may have the effect that especially the interfering factors find many targets, i.e., binding sites on the multimeric proteins. This may lead to false positive test results, and the overall specificity of the immunoassay is greatly reduced.
  • the object was to provide proteins with an improved stability which can be used in immunoassays as binding partners.
  • the proteins improved in this manner should have good epitope accessibility, and the specificity of the immunological test procedure in which the proteins are used should be maintained.
  • proteins that are almost exclusively intramolecularly cross-linked can be produced without loss of their immunological properties, and these proteins can be used in an advantageous manner in immunological test procedures as immunological binding partners.
  • the stability problems that occur when the proteins are not cross-linked are thus substantially avoided.
  • the invention concerns the use of intramolecularly, covalently cross-linked proteins as immunological binding partners in immunological test procedures.
  • FIG. 1 shows the analysis by gel permeation chromatography of the molecular weights of RT obtained after cross-linking.
  • proteins required for immunological test procedures that are familiar to a person skilled in the art can be used as the proteins.
  • All polypeptides can be used which could, as a result of their folding, i.e., their tertiary or quaternary structure, have a tendency to unfold, to denature, or to dissociate into various subunits under the conditions of an immunoassay.
  • immunoassay When such a structural change occurs, there is a risk that immunologically important epitopes are changed in such a manner that, for example, they are no longer specifically bound by antibodies. In the worst case, this means that an immunological test result is negative, i.e., it does not indicate the presence of the antibody to be detected because the proteins used as binding partners are denatured.
  • DNA or RNA polymerases particularly the reverse transcriptase from HIV, and especially preferably the reverse transcriptase from HIV-1 are preferably used.
  • the proteins can be from any desired source.
  • the proteins to be cross-linked can be isolated from their natural source such as an organism or virus.
  • the use of recombinant proteins produced by genetic engineering is preferred.
  • a recombinant purified RT is especially preferably used which is expressed by an expression clone as described, for example, in Müller et al., J. Biol. Chem. 264/24:13975-13978 (1989).
  • the cross-linking should not generate any immunologically relevant artefacts that could falsify the test result.
  • protein refers to all polypeptides which are composed of at least about 50 amino acids, preferably of at least 100 amino acids.
  • the term protein also includes modified proteins such as proteins that are linked with sugar residues, sialic acids, or lipid structures.
  • intramolecularly, covalently cross-linked refers to proteins whose polypeptide chain has been linked together by chemical modification in such a manner that it can no longer unfold, i.e., it can no longer lose its tertiary structure and thus the accessibility of important epitopes.
  • the intramolecular, covalent cross-linking maintains the tertiary as well as the quaternary structure. The modification prevents the various polypeptide chains from diffusing away from one another.
  • the linkage according to the invention only occurs between those subunits which also naturally form an intact protein molecule. This means that the size and the molecular weight of the intramolecularly, covalently cross-linked protein according to the invention is only slightly increased by the cross-linking chemical substance. Linkages within several protein molecules are virtually excluded so that oligomers or even polymers of the proteins form.
  • the cross-linked proteins can be provided with other modification groups before or after the cross-linking which, for example, are required for their application as labelled antigens or in order to bind the cross-linked proteins to a solid phase.
  • they can be linked with biotin, streptavidin, or with signal-generating labelling groups such as enzymes, fluorescent groups, or chemiluminescent groups.
  • signal-generating labelling groups such as enzymes, fluorescent groups, or chemiluminescent groups.
  • the almost exclusive intramolecular linkage of the proteins can, for example, be detected by means of SDS polyacrylamide gel electrophoresis (SDS-PAGE) with subsequent Coomassie blue staining, especially in the case of proteins having a quaternary structure.
  • SDS-PAGE SDS polyacrylamide gel electrophoresis
  • the protein cross-linking according to the invention it should not be possible to detect any molecular weights with the naked eye that are larger than that of the natural molecular weight of the protein in an SDS-PAGE gel. If, for example, a miniaturized commercial SDS-polyacrylamide gradient gel of 8 to 25% polyacrylamide (PHAST system from Pharmacia) is used, the amount of protein applied per lane is about 500 ng. With this amount of protein, molecular weights that are larger than that of the natural molecular weight cannot be detected in this system with the naked eye according to the invention.
  • the molecular weight of a band after cross-linking should not exceed the sum of the molecular weights of the subunits.
  • Protein bands on the gel which have a molecular weight corresponding to the sum of the molecular weights of the subunits may be regarded as a test for a successful intramolecular cross-linking of a protein having a quaternary structure.
  • SDS-PAGE can be used to establish the successful intramolecular cross-linking of a protein consisting of several subunits and the absence of multimers.
  • Another method for detecting the absence of multimers is by means of gel permeation chromatography, also referred to as gel exclusion chromatography, which can, for example, be carried out using a commercial HPLC apparatus.
  • Gel permeation chromatography also referred to as gel exclusion chromatography
  • Protein complexes which have a molecular weight corresponding to a multimer of the individual protein are eluted substantially earlier than proteins that are present singly. According to the invention, only a low percentage of such multimers should be present. If one measures the integral of a HPLC chromatogram, this means that no more than about 5% multimers should be present relative to the eluted peak (integral) of the protein according to the invention which is only cross-linked intramolecularly.
  • Immunological binding partners refers to all molecules which can specifically bind to other molecules under the conditions of an immunoassay.
  • immunological binding partners should be able to specifically bind the analyte or a substance bound to the analyte.
  • a classical constellation is the specific binding of an antibody to an antigen, for example, the binding of an anti-PSA antibody to PSA.
  • Antibodies and antigens are immunological binding partners.
  • intramolecularly, covalently cross-linked proteins are used as immunological binding partners in immunoassays.
  • Antigens are preferably used as immunological binding partners when it is intended to detect an antibody directed against these antigens.
  • the detection of anti-HIV RT antibodies by means of HIV reverse transcriptase that is cross-linked according to the invention is preferred and is described in a later section.
  • the invention also concerns an immunological test procedure for detecting an analyte in a sample.
  • the method is characterized in that an intramolecularly, covalently cross-linked protein is used as the immunological binding partner. It has turned out that intramolecularly, covalently cross-linked proteins, and in particular, those that are naturally composed of several subunits, are considerably more stable than uncrosslinked proteins under the conditions of an immunoassay.
  • the method is preferably an immunoassay for diagnosing HIV infections. If a patient has an HIV infection, this can be detected on the basis of antibodies that have been formed against certain antigens of the virus in a blood, serum or plasma sample. It is often also possible to detect the viral antigens of the HIV itself such as the p24 antigen of HIV-1. This requires the use of specific antibodies directed against the HIV antigen, in this case, against p24.
  • HIV antigens i.e., the p24 antigen of HIV-1 or HIV-1 subtype 0 and the corresponding p26 antigen of HIV-2
  • HIV antigens are detected by means of specific antibodies as well as antibodies directed against HIV and specifically against envelope proteins (env) of the pathogen such as gp160, gp120, and gp41 of HIV-1 and gp140, gp110, and gp36 of HIV-2.
  • HIV-1 reverse transcriptase produced recombinantly is used as an immunological binding partner which, however, is not intramolecularly covalently cross-linked.
  • intramolecularly, covalently cross-linked RT from HIV in particular RT from HIV-1, is preferably used in a COMBI-TEST to detect an HIV infection in a sample.
  • HIV-1 RT is intramolecularly, covalently cross-linked reverse transcriptase from HIV, an enzyme which is naturally present in two subunits.
  • the HIV-RT is present as a heterodimer under natural conditions.
  • HIV-1 RT is composed of 1 subunit of 51 kDa and one subunit of 66 kDa.
  • the recombinant form can, for example, be obtained from expression clones (for example, from Müller et al., J. Biol. Chem. 264/24, p. 13975-13978, 1989). Due to a degree of homology of about 60% and even of 100% in some sections at the amino acid level, the HIV-1 RT can in general also be used to detect antibodies directed against HIV-2 RT.
  • the term “HIV” includes HIV-1, HIV-2, and all subtypes and subgroups of the virus such as the HIV-1 subtype O. HIV-1 RT in an intramolecularly, covalently cross-linked form is preferred.
  • the intramolecularly, covalently cross-linked HIV RT is considerably more stable than the uncrosslinked form under the conditions of the immunoassay.
  • the RT according to the invention was considerably better than the uncrosslinked form and withstood temperature stress to which it is, for example, exposed on longer or improper storage or under assay conditions.
  • the intramolecularly, covalently cross-linked RT according to the invention is characterized in that the two subunits are covalently linked together, but there is no intermolecular cross-linking of several molecules. It can, for example, be demonstrated that no oligomers of several RT molecules are present by using gel exclusion chromatography or SDS-PAGE as already elucidated.
  • Homo- and heterobifunctional linkers are preferably used as cross-linking reagents.
  • the following are preferably used to intramolecularly cross-link the RT: MHS (3-maleimidobenzoyl-N-hydroxysuccinimide ester), EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), DSS (disuccinimidylsuberate), HSAB (N-hydroxysuccinimidyl-4-azidobenzoate), and sulfo-SANPAH (sulfosuccinimidyl-6(4′-amido-2′-nitrophenylamido)hexanoate).
  • cross-linking linker only results in an intramolecular cross-linking of the protein or of the two RT subunits but not a cross-linking between several RT molecules.
  • Another subject matter of the invention is a method for producing intramolecularly cross-linked HIV reverse transcriptase.
  • the method comprises the steps:
  • the preferred stoichiometry of RT to cross-linking reagent is about 1:1 to 1:20.
  • the ratios of the reactants are selected such that no oligomerization or only a negligible oligomerization occurs between several RT molecules.
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaCl, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH 2 PO 4 solution.
  • the mixture was adjusted to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 50 mM diethanolamine, pH 8.8, 25 mMNaCl.
  • the pH was then adjusted to pH 7.0 by adding a 1 M KH 2 PO 4 solution.
  • a stock solution of MHS (3-maleimidobenzoyl-N-hydroxysuccinimide ester) was prepared in DMSO (5 mg/ml).
  • a quantity of this solution corresponding to an initial stoichiometry of 1:8 (mol reverse transcriptase/mol MHS) was added to the mixture which was then incubated for a further 60 min at 25° C. while stirring.
  • the reaction was terminated by adding lysine to the reaction mixture at a final concentration of 10 mM and incubating for a further 30 min. Excess reactants were separated by dialysis against 10 mm potassium phosphate buffer, pH 6.0, 50 mM NaCl, 1 mM EDTA.
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaCl, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH 2 PO 4 solution.
  • the mixture was made up to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 10 mM potassium phosphate buffer, pH 7.0, 50 mM NaCl.
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaCl, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH 2 PO 4 solution.
  • the mixture was made up to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 10 mM potassium phosphate buffer, pH 8.0, 25 mM NaCl.
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaC1, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH 2 PO 4 solution.
  • the mixture was made up to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 10 mM potassium phosphate buffer, pH 8.0, 25 mM NaCl.
  • HSAB N-hydroxysuccinimidyl-4-azidobenzoate
  • DMSO dimethyl sulfoxide
  • the mixture was subsequently irradiated for 7 min with a UV lamp.
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaCl, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH 2 PO 4 solution.
  • the mixture was made up to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 10 mM potassium phosphate buffer, pH 8.0, 25 mM NaCl.
  • sulfo-SANPAH sulfosuccinimidyl-6(4′-amido-2′-nitrophenyl-amido)hexanoate
  • DMSO dimethyl sulfoxide
  • the mixture was subsequently irradiated for 7 min with a UV lamp.
  • the non-cross-linked control only has bands with molecular weights of 66 kD and 51 kD which correspond to the subunits of the reverse transcriptase.
  • Intramolecularly cross-linked reverse transcriptase exhibits bands with molecular weights of 110-120 kD, which demonstrates a successful cross-linking between subunits. Larger protein complexes are not detectable, i.e., an intramolecular linkage of several molecules of reverse transcriptase does not occur with the cross-linking method according to the invention.
  • the intramolecularly cross-linked reverse transcriptase elutes from the column with a retention time that corresponds to globular proteins having molecular weights of 100-130 kD (in this case 7.5 min). Larger protein complexes which would have a shorter retention time in the chromatogram are not detectable, i.e., the cross-linking method according to the invention does not result in an intermolecular cross-linking of several molecules of reverse transcriptase to form oligomeric or polymeric structures.
  • the chromatogram is shown in FIG. 1 .
  • Intramolecularly cross-linked HIV-1 reverse transcriptase (see example 1) was present in diethanolamine or potassium phosphate buffer.
  • the uncrosslinked RT was treated as a comparison with N-methylmaleimide and dialysed against diethanolamine. If necessary, the pH was adjusted to 8.6-8.8 in all RT mixtures by adding NaOH.
  • a stock of biotin-DDS biotinyl-diaminodioxaoctane-disuccinimidyl suberate
  • DMSO 6 mg/ml
  • An immunoassay was carried out on an ELECSYS® analyzer from Roche Diagnostics GmbH, Mannheim, to examine the stability of the HIV-1 reverse transcriptase.
  • a negative control which contained no anti-RT antibodies
  • a positive control which contained anti-RT antibodies
  • two HIV-positive human sera with anti-RT reactivity were measured.
  • 45 ⁇ l sample was incubated together with 55 ⁇ l Reagent 1 (biotinylated RT) and 55 ⁇ l Reagent 2 (ruthenium-labelled RT) for 9 min at 37° C.
  • streptavidin-coated magnetic beads were added, and the mixture was incubated for a further 9 min. Afterwards the beads were captured by a magnet, and the electrochemilumine-scence signal was quantified.
  • Reagent 1 biotinylated reverse transcriptase was incubated for 18 hours at 42° C. as described below before carrying out the test.
  • Reagent 1 which was prepared at the same time and stored at 4° C., served as a reference. All other reagents were freshly prepared for the experiments.
  • the evaluation was based on the dynamic range of the signal which means that one determines the quotients of the signal and the respective negative control. The larger the value for signal dynamics the greater is the differentiation between HIV antibody-positive and negative samples. Hence a large dynamic range of the signal is desirable.
  • the relation between the respective values was used to compare stressed RT and unstressed RT. The results are shown in Table 1. TABLE 1 Unstressed Stress 18 h 42° C.
  • the dynamic range of the signal in the immunoassay using RT cross-linked according to the invention was still at least 79% and preferably at least 90% compared to unstressed RT, whereas the dynamic range based on the negative control was at most about 30% and sometimes considerably less than 30% or even below 20% in the case of uncrosslinked RT.
  • the signal dropped to the level of negative sera, whereas the cross-linked RT according to the invention retains its immunological function. Hence the RT epitopes recognized by the sample antibody are substantially preserved despite the thermal stress. This means that the cross-linked RT according to the invention is considerably more stable than uncrosslinked RT.

Abstract

The invention concerns the use of intramolecularly, covalently cross-linked proteins and covalently cross-linked reverse transcriptase from HIV as immunological binding partners in immunoassays. It also concerns immunological test procedures for detecting an analyte in a sample in which intramolecularly, covalently cross-linked proteins are used as binding partners, and it further concerns intramolecularly, covalently cross-linked reverse transcriptase from HIV and a method for producing this reverse transcriptase.

Description

    FIELD OF THE INVENTION
  • The present invention concerns the use of intramolecularly, covalently cross-linked proteins, and in particular, the use of covalently cross-linked reverse transcriptase (RT) from HIV as immunological binding partners in immunoassays, and to immunological test procedures for detecting an analyte in a sample in which intramolecularly, covalently cross-linked proteins are used as binding partners. It also concerns intramolecularly, covalently cross-linked reverse transcriptase from HIV and a method for producing this reverse transcriptase.
  • BACKGROUND OF THE INVENTION
  • The use of proteins as binding partners for the detection of analytes in immuno-diagnostic test procedures has been known for a long time. In all conventional immunoassays, the sample is incubated with one or more binding partners that are specific for the analyte. The binding partner or binding partners bind(s) specifically to the analyte to be detected. In the case of an antibody test, for example, in the case of an HCV infection, the sample to be examined is, for example, contacted with an HCV antigen which specifically binds the anti-HCV antibody to be detected. In an antigen test, for example, for detecting the tumour marker prostate-specific antigen (PSA), the sample is contacted with antibodies which specifically bind the PSA in the sample.
  • Subsequently the analyte is detected in all immunoassays. This can, for example, be carried out by binding and subsequently detecting another binding partner provided with a detectable label which binds to the complex consisting of analyte and immunological binding partner.
  • In general the immunoassays are carried out in a heterogeneous or homogeneous test format. The heterogeneous test formats are frequently carried out as sandwich or bridge tests. Competitive methods are also well known in which either the analyte or the specific binding partner is displaced from the complex of analyte and specific binding partner by, for example, adding a labelled analyte analogue.
  • In all immunological test methods, it is important that the reactants used as the specific immunological binding partners are present in a stable form and that they are not destroyed, for example, by unfavourable storage conditions. This risk can occur in particular when the proteins used as specific binding partners are composed of several subunits. The subunits can be held together covalently, for example, by means of disulfide bridges, or non-covalently, for example, by means of hydrogen bridges, opposite charges, and/or hydrophobic interactions.
  • In some cases, the materials required for the immunological test may become unstable and denature under the storage conditions (for example, as a liquid reagent) in the working solutions prepared for the test or during the immunological reaction itself. As a result, the tertiary and the quaternary structure of the protein may be changed in such a manner that the substance can no longer be used in the immunoassay.
  • The subunit components of the proteins used as a specific binding pair may separate under unfavourable conditions. This dissociation of subunits may, for example, be caused by the reduction of disulfide bridges by common buffer additives such as DTT in the case of natural covalent bridges.
  • However, the risk of dissociation is even higher in the case of non-covalently linked subunits of a protein which are held together by charges or hydrophobic interactions. The subunits of such proteins can be very easily dissociated even by common buffer additives such as salts, detergents, or unfavourable variations in pH and temperature. An individual and hence unprotected subunit is thus also susceptible to denaturation. This may lead to major changes in the tertiary structure of the protein or of the individual subunit. This also means that the immunological properties such as the accessibility of important epitopes is changed to such an extent that the protein used as a binding partner in the immunoassay is no longer recognized immunologically and is hence no longer specifically bound.
  • Another risk of subunit dissociation is that subunits provided with different labelling groups may re-associate due to the adjustment of the chemical equilibrium. If in a specific case, a protein composed of two subunits for use in an antibody test in a bridge test format is derivatized in order to be used as a universal solid phase and, on the other hand, the same protein is also used as a signal-generating component and for this purpose is coupled to a label (e.g., an enzyme, fluorescent label, or chemiluminescent label), the following may happen: a calibration curve which is initially generated with positive samples (samples which contain the analyte) becomes flatter as time progresses. The signals for negative samples (blank values) increase and increasingly approximate the values for the upper positive samples so that it is no longer possible to differentiate between analyte-free and analyte-containing samples.
  • A method for chemically modifying enzymes by reaction with quinones is described in German Patent Application DE 26 15 349. These modifications increase the stability which results in an improved enzyme activity. It is mentioned that the enzyme molecules can be cross-linked to one another, i.e., intermolecularly and also intramolecularly. In this case, the preservation of immunoreactive epitopes is irrelevant. The use of enzymes modified with quinones in immunodiagnostic methods is not described.
  • Debyser and De Clercq (Protein Science 5, p. 278-286, 1996) describe the cross-linking of the two subunits of HIV-1 reverse transcriptase by means of dimethyl suberimidate which cross-links lysine side chains. The purpose of the cross-linking is to examine the dimerization of the two RT subunits. Only the dimeric RT is enzymatically active. The two subunits are covalently cross-linked in the presence of various inhibitors. RT molecules and multimers that are more or less strong cross-linked depending on the effectiveness of the inhibitor are formed after the chemical cross-linking reaction. The effect of the cross-linking on immunologically relevant epitopes or the use of cross-linked molecules in immunoassays is unimportant.
  • The use of intermolecularly cross-linked immunoglobulins in immunoassays is disclosed in EP-A-0 331 068. This means that several immunoglobulin molecules or fragments thereof are covalently linked together. The multimers of antibodies and fragments thereof are used as an interference-reducing reagent. The cross-linked immunoglobulins and fragments thereof are intended to eliminate interfering factors of human serum that are directed towards immunoglobulins.
  • The cross-linked proteins described in the prior art, which are composed of several subunits under natural conditions, are unsuitable or of only limited suitability for use as antigens or immunological binding partners since, in general, intermolecular multimers consisting of several protein molecules are formed. These multimers are of only limited use for immunoassays since they usually do not have a defined size. Hence the multimers have a random distribution of sizes, i.e., mono-, di-, tri-, tetramers, etc. are present together in one mixture. The undefined cross-linking may mask the epitopes. Consequently a sample antibody to be detected may not be able to bind to the masked epitope of the antigen, and hence a false negative result is obtained.
  • Another problem with using multimers as immunological binding partners is the fact that there is an increased risk that interfering factors present in the sample may bind unspecifically to the multimeric proteins. Interfering factors such as rheumatoid factors often have several binding sites of low affinity. If multimeric proteins are then used as immunological binding partners, this may have the effect that especially the interfering factors find many targets, i.e., binding sites on the multimeric proteins. This may lead to false positive test results, and the overall specificity of the immunoassay is greatly reduced.
  • SUMMARY OF THE INVENTION
  • Hence the object was to provide proteins with an improved stability which can be used in immunoassays as binding partners. The proteins improved in this manner should have good epitope accessibility, and the specificity of the immunological test procedure in which the proteins are used should be maintained.
  • The object is achieved by the invention described in the independent claims. The dependent claims represent preferred embodiments.
  • It surprisingly turned out that proteins that are almost exclusively intramolecularly cross-linked can be produced without loss of their immunological properties, and these proteins can be used in an advantageous manner in immunological test procedures as immunological binding partners. The stability problems that occur when the proteins are not cross-linked are thus substantially avoided. Hence the invention concerns the use of intramolecularly, covalently cross-linked proteins as immunological binding partners in immunological test procedures.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 shows the analysis by gel permeation chromatography of the molecular weights of RT obtained after cross-linking.
  • DETAILED DESCRIPTION OF THE INVENTION
  • All proteins required for immunological test procedures that are familiar to a person skilled in the art can be used as the proteins. All polypeptides can be used which could, as a result of their folding, i.e., their tertiary or quaternary structure, have a tendency to unfold, to denature, or to dissociate into various subunits under the conditions of an immunoassay. When such a structural change occurs, there is a risk that immunologically important epitopes are changed in such a manner that, for example, they are no longer specifically bound by antibodies. In the worst case, this means that an immunological test result is negative, i.e., it does not indicate the presence of the antibody to be detected because the proteins used as binding partners are denatured. These disadvantages are substantially avoided by the use of intramolecularly, covalently cross-linked proteins according to the invention.
  • In particular, those intramolecularly, covalently cross-linked proteins are used which are naturally composed of several subunits. DNA or RNA polymerases, particularly the reverse transcriptase from HIV, and especially preferably the reverse transcriptase from HIV-1 are preferably used.
  • The proteins can be from any desired source. The proteins to be cross-linked can be isolated from their natural source such as an organism or virus. However, the use of recombinant proteins produced by genetic engineering is preferred. A recombinant purified RT is especially preferably used which is expressed by an expression clone as described, for example, in Müller et al., J. Biol. Chem. 264/24:13975-13978 (1989).
  • With the intramolecularly, covalently cross-linked proteins, it is important that the epitopes that are important for immunological recognition are not changed by the cross-linking or only so slightly that the other immunological binding partner in the test recognizes and specifically binds the cross-linked protein just as well as the uncrosslinked protein. Hence the cross-linking should not generate any immunologically relevant artefacts that could falsify the test result.
  • The “protein” refers to all polypeptides which are composed of at least about 50 amino acids, preferably of at least 100 amino acids. The term protein also includes modified proteins such as proteins that are linked with sugar residues, sialic acids, or lipid structures.
  • The term “intramolecularly, covalently cross-linked” refers to proteins whose polypeptide chain has been linked together by chemical modification in such a manner that it can no longer unfold, i.e., it can no longer lose its tertiary structure and thus the accessibility of important epitopes. In the case of a protein which is composed of several subunits, the intramolecular, covalent cross-linking maintains the tertiary as well as the quaternary structure. The modification prevents the various polypeptide chains from diffusing away from one another.
  • It is important that the covalent linkage only occurs within a protein molecule. In the case of proteins which are only composed of one polypeptide chain and thus of only one subunit under natural conditions, at least two sites within a polypeptide chain are linked. Hence no oligomers consisting of several proteins are formed by the intramolecular, covalent cross-linking. Such oligomers are also referred to in the following as polymers or multimers.
  • Hence the molecular weight of the intramolecularly, covalently cross-linked proteins is only increased if the chemical linker is covalently bound to the protein, and hence the total mass is slightly increased.
  • In the case of proteins which are composed of several subunits, the linkage according to the invention only occurs between those subunits which also naturally form an intact protein molecule. This means that the size and the molecular weight of the intramolecularly, covalently cross-linked protein according to the invention is only slightly increased by the cross-linking chemical substance. Linkages within several protein molecules are virtually excluded so that oligomers or even polymers of the proteins form.
  • According to the invention, the cross-linked proteins can be provided with other modification groups before or after the cross-linking which, for example, are required for their application as labelled antigens or in order to bind the cross-linked proteins to a solid phase. For example, they can be linked with biotin, streptavidin, or with signal-generating labelling groups such as enzymes, fluorescent groups, or chemiluminescent groups. Such modifications are familiar to a person skilled in the art. These modifications should not change the immunological properties of the intramolecularly cross-linked proteins according to the invention, or only to such an extent that a recognition by the specific binding partner in the immunoassay is still ensured.
  • The almost exclusive intramolecular linkage of the proteins can, for example, be detected by means of SDS polyacrylamide gel electrophoresis (SDS-PAGE) with subsequent Coomassie blue staining, especially in the case of proteins having a quaternary structure.
  • After the protein cross-linking according to the invention, it should not be possible to detect any molecular weights with the naked eye that are larger than that of the natural molecular weight of the protein in an SDS-PAGE gel. If, for example, a miniaturized commercial SDS-polyacrylamide gradient gel of 8 to 25% polyacrylamide (PHAST system from Pharmacia) is used, the amount of protein applied per lane is about 500 ng. With this amount of protein, molecular weights that are larger than that of the natural molecular weight cannot be detected in this system with the naked eye according to the invention. In the case of proteins which naturally have several subunits, i.e., several polypeptide chains, the molecular weight of a band after cross-linking should not exceed the sum of the molecular weights of the subunits. Protein bands on the gel which have a molecular weight corresponding to the sum of the molecular weights of the subunits may be regarded as a test for a successful intramolecular cross-linking of a protein having a quaternary structure. Hence SDS-PAGE can be used to establish the successful intramolecular cross-linking of a protein consisting of several subunits and the absence of multimers.
  • Another method for detecting the absence of multimers is by means of gel permeation chromatography, also referred to as gel exclusion chromatography, which can, for example, be carried out using a commercial HPLC apparatus. Protein complexes which have a molecular weight corresponding to a multimer of the individual protein are eluted substantially earlier than proteins that are present singly. According to the invention, only a low percentage of such multimers should be present. If one measures the integral of a HPLC chromatogram, this means that no more than about 5% multimers should be present relative to the eluted peak (integral) of the protein according to the invention which is only cross-linked intramolecularly.
  • “Immunological binding partners” refers to all molecules which can specifically bind to other molecules under the conditions of an immunoassay. In particular, immunological binding partners should be able to specifically bind the analyte or a substance bound to the analyte. A classical constellation is the specific binding of an antibody to an antigen, for example, the binding of an anti-PSA antibody to PSA. Antibodies and antigens are immunological binding partners. According to the invention, intramolecularly, covalently cross-linked proteins are used as immunological binding partners in immunoassays.
  • Antigens are preferably used as immunological binding partners when it is intended to detect an antibody directed against these antigens. In this case, the detection of anti-HIV RT antibodies by means of HIV reverse transcriptase that is cross-linked according to the invention is preferred and is described in a later section.
  • The invention also concerns an immunological test procedure for detecting an analyte in a sample. The method is characterized in that an intramolecularly, covalently cross-linked protein is used as the immunological binding partner. It has turned out that intramolecularly, covalently cross-linked proteins, and in particular, those that are naturally composed of several subunits, are considerably more stable than uncrosslinked proteins under the conditions of an immunoassay.
  • The various formats and embodiments of immunoassays as well as the various detection methods, such as by means of enzymatic reactions, fluorescent substances, or chemiluminescent substances, are familiar to a person skilled in the art and do not therefore need to be specially elucidated here. A heterogeneous test format is preferred according to the invention in which the solid phase is separated from the liquid phase after completion of the immunological reaction.
  • The method is preferably an immunoassay for diagnosing HIV infections. If a patient has an HIV infection, this can be detected on the basis of antibodies that have been formed against certain antigens of the virus in a blood, serum or plasma sample. It is often also possible to detect the viral antigens of the HIV itself such as the p24 antigen of HIV-1. This requires the use of specific antibodies directed against the HIV antigen, in this case, against p24.
  • The detection of an HIV infection in a sample is often carried out as a combined antigen and antibody detection test. Such tests are referred to as COMBI-TESTs. Such a COMBI-TEST is described in WO 98/40744. In this case, HIV antigens, i.e., the p24 antigen of HIV-1 or HIV-1 subtype 0 and the corresponding p26 antigen of HIV-2, are detected by means of specific antibodies as well as antibodies directed against HIV and specifically against envelope proteins (env) of the pathogen such as gp160, gp120, and gp41 of HIV-1 and gp140, gp110, and gp36 of HIV-2. In addition, antibodies against HIV-RT are also detected in the combitest according to WO 98/40744. For this purpose, HIV-1 reverse transcriptase produced recombinantly is used as an immunological binding partner which, however, is not intramolecularly covalently cross-linked.
  • According to the invention, intramolecularly, covalently cross-linked RT from HIV, in particular RT from HIV-1, is preferably used in a COMBI-TEST to detect an HIV infection in a sample.
  • Another subject matter of the invention is intramolecularly, covalently cross-linked reverse transcriptase from HIV, an enzyme which is naturally present in two subunits. The HIV-RT is present as a heterodimer under natural conditions. HIV-1 RT is composed of 1 subunit of 51 kDa and one subunit of 66 kDa. The recombinant form can, for example, be obtained from expression clones (for example, from Müller et al., J. Biol. Chem. 264/24, p. 13975-13978, 1989). Due to a degree of homology of about 60% and even of 100% in some sections at the amino acid level, the HIV-1 RT can in general also be used to detect antibodies directed against HIV-2 RT. The term “HIV” includes HIV-1, HIV-2, and all subtypes and subgroups of the virus such as the HIV-1 subtype O. HIV-1 RT in an intramolecularly, covalently cross-linked form is preferred.
  • It has surprisingly turned out that the intramolecularly, covalently cross-linked HIV RT is considerably more stable than the uncrosslinked form under the conditions of the immunoassay. The RT according to the invention was considerably better than the uncrosslinked form and withstood temperature stress to which it is, for example, exposed on longer or improper storage or under assay conditions. The intramolecularly, covalently cross-linked RT according to the invention is characterized in that the two subunits are covalently linked together, but there is no intermolecular cross-linking of several molecules. It can, for example, be demonstrated that no oligomers of several RT molecules are present by using gel exclusion chromatography or SDS-PAGE as already elucidated.
  • Homo- and heterobifunctional linkers are preferably used as cross-linking reagents. In particular, the following are preferably used to intramolecularly cross-link the RT: MHS (3-maleimidobenzoyl-N-hydroxysuccinimide ester), EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), DSS (disuccinimidylsuberate), HSAB (N-hydroxysuccinimidyl-4-azidobenzoate), and sulfo-SANPAH (sulfosuccinimidyl-6(4′-amido-2′-nitrophenylamido)hexanoate). As already elucidated, it is important that the chemical reaction of the cross-linking linker only results in an intramolecular cross-linking of the protein or of the two RT subunits but not a cross-linking between several RT molecules. In addition, it is important that no immunologically relevant epitopes are destroyed by the chemical reaction.
  • Another subject matter of the invention is a method for producing intramolecularly cross-linked HIV reverse transcriptase. The method comprises the steps:
      • providing RT in a dissolved form,
      • optionally reacting the RT with a blocking reagent for SH groups,
      • dialysing the mixture against aqueous buffer,
      • reacting the activated RT with one of the cross-linking reagents MHS (3-maleimidobenzoyl-N-hydroxysuccinimide ester), EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), DSS (disuccinimidylsuberate), HSAB (N-hydroxysuccinimidyl-4-azidobenzoate), and sulfo-SANPAH (sulfosuccinimidyl-6(4′-amido-2′-nitrophenylamido)hexanoate),
      • optionally stopping the reaction,
      • separating the excess reactants from the reaction product by dialysis, and
      • optionally exposing the dialysed reaction product to UV light.
  • The preferred stoichiometry of RT to cross-linking reagent is about 1:1 to 1:20. The ratios of the reactants are selected such that no oligomerization or only a negligible oligomerization occurs between several RT molecules.
  • The invention is further elucidated by the following examples.
  • EXAMPLES Example 1 Intramolecular Cross-linking of HIV-1 Reverse Transcriptase
  • a) Cross-linking with MHS
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaCl, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH2PO4 solution.
  • The mixture was adjusted to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 50 mM diethanolamine, pH 8.8, 25 mMNaCl.
  • The pH was then adjusted to pH 7.0 by adding a 1 M KH2PO4 solution. A stock solution of MHS (3-maleimidobenzoyl-N-hydroxysuccinimide ester) was prepared in DMSO (5 mg/ml). A quantity of this solution corresponding to an initial stoichiometry of 1:8 (mol reverse transcriptase/mol MHS) was added to the mixture which was then incubated for a further 60 min at 25° C. while stirring. The reaction was terminated by adding lysine to the reaction mixture at a final concentration of 10 mM and incubating for a further 30 min. Excess reactants were separated by dialysis against 10 mm potassium phosphate buffer, pH 6.0, 50 mM NaCl, 1 mM EDTA.
  • After dialysis the pH was adjusted to 7.4 by adding an aliquot of a 1 M K2HPO4 solution. The mixture was incubated for a further 4 h at 25° C. while stirring, before adding cysteine to a final concentration of 2 mM. After a further 30 min incubation, the reaction was terminated by adding NMM (final concentration 5 mM). The mixture was dialysed against 50 mM diethanolamine, pH 8.8, 25 mM NaCl.
  • b) Cross-linking with EDC
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaCl, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH2PO4 solution.
  • The mixture was made up to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 10 mM potassium phosphate buffer, pH 7.0, 50 mM NaCl.
  • A stock solution of EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) was prepared in DMSO (2 mg/ml). A quantity of this solution corresponding to an initial stoichiometry of 1:10 (mol reverse transcriptase/mol EDC) was added to the mixture, which was then incubated for a further 60 min at 25° C. while stirring. Excess reactants were separated by dialysis against 25 mM potassium phosphate buffer, pH 7.0, 50 mM NaCl.
  • c) Cross-linking with DSS
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaCl, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH2PO4 solution.
  • The mixture was made up to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 10 mM potassium phosphate buffer, pH 8.0, 25 mM NaCl.
  • A stock solution of DSS (disuccinimidyl suberate) was prepared in DMSO (2 mg/ml). A quantity of this solution corresponding to an initial stoichiometry of 1:10 (mol reverse transcriptase/mol DSS) was added to the mixture, which was then incubated for a further 60 min at 25° C. while stirring. Excess reactants were separated by dialysis against 25 mM potassium phosphate buffer, pH 7.0, 50 mM NaCl.
  • d) Cross-linking with HSAB
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaC1, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH2PO4 solution.
  • The mixture was made up to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 10 mM potassium phosphate buffer, pH 8.0, 25 mM NaCl.
  • A stock solution of HSAB (N-hydroxysuccinimidyl-4-azidobenzoate) was prepared in DMSO (2 mg/ml). A quantity of this solution corresponding to an initial stoichiometry of 1:5 (mol reverse transcriptase/mol HSAB) was added to the mixture, which was then incubated for a further 60 min at 25° C. while stirring. Excess reactants were separated by dialysis against 25 mM potassium phosphate buffer, pH 7.0, 50 mM NaCl.
  • The mixture was subsequently irradiated for 7 min with a UV lamp.
  • e) Cross-linking with Sulfo-SANPAH
  • HIV-1 reverse transcriptase (10 mg/ml) was dissolved in 50 mM diethanolamine, pH 8.8, 25 mM NaCl, 1 mM DTT, and 1 mM EDTA. The pH was adjusted to 6.4 by adding a 1 M KH2PO4 solution.
  • The mixture was made up to 5 mM NMM by adding an appropriate aliquot of a 1 M solution of NMM (N-methylmaleinimide) in DMSO and subsequently incubated for 60 min at 25° C. while stirring. It was subsequently dialysed against 10 mM potassium phosphate buffer, pH 8.0, 25 mM NaCl.
  • A stock solution of sulfo-SANPAH (sulfosuccinimidyl-6(4′-amido-2′-nitrophenyl-amido)hexanoate) was prepared in DMSO (4 mg/ml). A quantity of this solution corresponding to an initial stoichiometry of 1:5 (mol reverse transcriptase/mol sulfo-SANPAH) was added to the mixture, which was then incubated for a further 60 min at 25° C. while stirring. Excess reactants were separated by dialysis against 25 mM potassium phosphate buffer, pH 7.0, 50 mM NaCl.
  • The mixture was subsequently irradiated for 7 min with a UV lamp.
  • Example 2 Detection of the Exclusive Intramolecular Cross-linking of HIV-1 Reverse Transcriptase
  • a) SDS Gel Electrophoresis
  • Aliquots of the intramolecularly cross-linked HIV-1 reverse transcriptase were analysed by polyacrylamide gel electrophoresis in the presence of SDS on a PHAST gel apparatus (Pharmacia) according to a standard protocol of the manufacturer.
  • The non-cross-linked control only has bands with molecular weights of 66 kD and 51 kD which correspond to the subunits of the reverse transcriptase. Intramolecularly cross-linked reverse transcriptase exhibits bands with molecular weights of 110-120 kD, which demonstrates a successful cross-linking between subunits. Larger protein complexes are not detectable, i.e., an intramolecular linkage of several molecules of reverse transcriptase does not occur with the cross-linking method according to the invention.
  • b) Analytical Gel Permeation Chromatography
  • An aliquot of the intramolecularly cross-linked HIV-1 reverse transcriptase was analysed by gel permeation chromatography on a TSK 3000 column (Toso Haas) using a commercial HPLC apparatus according to a standard protocol of the manufacturer.
  • The intramolecularly cross-linked reverse transcriptase elutes from the column with a retention time that corresponds to globular proteins having molecular weights of 100-130 kD (in this case 7.5 min). Larger protein complexes which would have a shorter retention time in the chromatogram are not detectable, i.e., the cross-linking method according to the invention does not result in an intermolecular cross-linking of several molecules of reverse transcriptase to form oligomeric or polymeric structures. The chromatogram is shown in FIG. 1.
  • Example 3 Derivatization of Intramolecularly Cross-linked HIV-1 Reverse Transcriptase with a Biotin Label
  • Intramolecularly cross-linked HIV-1 reverse transcriptase (see example 1) was present in diethanolamine or potassium phosphate buffer. The uncrosslinked RT was treated as a comparison with N-methylmaleimide and dialysed against diethanolamine. If necessary, the pH was adjusted to 8.6-8.8 in all RT mixtures by adding NaOH. A stock of biotin-DDS (biotinyl-diaminodioxaoctane-disuccinimidyl suberate) was prepared in DMSO (6 mg/ml). A quantity of this solution corresponding to an initial stoichiometry of 1:4 (mol reverse transcriptase/mol biotin-DDS) was added to the mixture, which was then incubated for a further 60 min at 25° C. while stirring. The reaction was terminated by adding lysine to the reaction mixture to a final concentration of 10 mM and incubating for a further 30 min. Excess reactants were separated by dialysis against 50 mM diethanolamine, pH 8.8, 25 mM NaCl.
  • Example 4 Stability Check in a Function Test
  • An immunoassay was carried out on an ELECSYS® analyzer from Roche Diagnostics GmbH, Mannheim, to examine the stability of the HIV-1 reverse transcriptase. In addition to a negative control (NC) which contained no anti-RT antibodies and a positive control (PC) which contained anti-RT antibodies, two HIV-positive human sera with anti-RT reactivity were measured. 45 μl sample was incubated together with 55 μl Reagent 1 (biotinylated RT) and 55 μl Reagent 2 (ruthenium-labelled RT) for 9 min at 37° C. Subsequently streptavidin-coated magnetic beads were added, and the mixture was incubated for a further 9 min. Afterwards the beads were captured by a magnet, and the electrochemilumine-scence signal was quantified.
  • In order to compare the stability of biotinylated reverse transcriptase in the cross-linked form according to the invention and in an uncrosslinked form, Reagent 1 (biotinylated RT) was incubated for 18 hours at 42° C. as described below before carrying out the test.
  • Reagent 1, which was prepared at the same time and stored at 4° C., served as a reference. All other reagents were freshly prepared for the experiments.
  • The evaluation was based on the dynamic range of the signal which means that one determines the quotients of the signal and the respective negative control. The larger the value for signal dynamics the greater is the differentiation between HIV antibody-positive and negative samples. Hence a large dynamic range of the signal is desirable. The relation between the respective values was used to compare stressed RT and unstressed RT. The results are shown in Table 1.
    TABLE 1
    Unstressed Stress 18 h 42° C. Comparison
    Signal Signal stressed/unstressed
    dynamic dynamic Signal dynamic
    Samples Counts range Counts range Counts range
    Recombinant HIV-1-RT-Bi(DDS),
    non-cross-linked
    Negative control 1763 1.0 1049 1.0 60% 100%
    Positive control 16848 9.6 1480 1.4 9% 15%
    HIV serum
    1 6209 3.5 1054 1.0 17% 29%
    HIV serum
    2 5162 2.9 917 0.9 18% 30%
    HIV serum 3 5832 3.3 1150 1.1 20% 33%
    HIV serum 4 111444 63.2 6267 6.0 6% 9%
    Recombinant HIV-1-RT (MHS)- Bi(DDS),
    cross-linked according to the invention
    Negative control 1304 1.0 1206 1.0 92% 100%
    Positive control 73335 56.2 77611 64.4 106% 114%
    HIV serum 5 8476 6.5 7092 5.9 84% 90%
    HIV serum 6 14504 11.1 10615 8.8 73% 79%
    HIV serum 7 69459 53.3 59347 49.2 85% 92%
    HIV serum 8 168674 129.4 168304 139.6 100% 108%
  • Even after stress for several hours at an elevated temperature, the dynamic range of the signal in the immunoassay using RT cross-linked according to the invention was still at least 79% and preferably at least 90% compared to unstressed RT, whereas the dynamic range based on the negative control was at most about 30% and sometimes considerably less than 30% or even below 20% in the case of uncrosslinked RT. When using uncrosslinked RT, the signal dropped to the level of negative sera, whereas the cross-linked RT according to the invention retains its immunological function. Hence the RT epitopes recognized by the sample antibody are substantially preserved despite the thermal stress. This means that the cross-linked RT according to the invention is considerably more stable than uncrosslinked RT.

Claims (11)

1. A method for detecting an analyte in a sample comprising the steps of:
a. combining the sample with an intramolecularly, covalently cross-linked protein that specifically binds with the analyte or with a substance bound to the analyte to form a complex,
b. adding to the combination formed in step (a) a binding partner provided with a label that combines with the complex formed in step (a) to produce a detectable signal, and
c. determining the signal produced in step (b) as a measure of the analyte in the sample.
2. The method of claim 1 wherein the protein comprises multiple subunits.
3. The method of claim 2 wherein the protein is selected from the group consisting of DNA and RNA polymerases.
4. The method of claim 3 wherein the protein is an HIV reverse transcriptase.
5. The method of claim 1 wherein the analyte is an HIV antibody and the cross-linked protein is an HIV reverse transcriptase.
6. A reagent comprising intramolecularly, covalently cross-linked HIV reverse transcriptase molecules comprising two subunits, characterized in that the reverse transcriptase subunits are covalently cross-linked intramolecularly and that intermolecular cross-linkage between reverse transcriptase subunits is absent.
7. A method for producing an intramolecularly, covalently cross-linked binding partner for an analyte comprising the steps of:
a. providing an aqueous mixture comprising a non-cross-linked binding partner in a dissolved form that specifically binds with the analyte or with a substance bound to the analyte,
b. dialyzing the non-cross-linked binding partner from step (a) against an aqueous buffer,
c. reacting the dialyzed, non-cross-linked binding partner from step (b) with a cross-linking reagent selected from the group consisting of 3-maleimidobenzoyl-N-hydroxysuccinimide ester, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, disuccinimidylsuberate, N-hydroxysuccinimidyl-4-azido-benzoate, and sulfosuccinimidyl-6(4′-amido-2′-nitrophenyl-amido)hexanoate to produce an intramolecularly, covalently cross-linked binding partner, and
d. separating unreacted cross-linking reagent from step (c) from the intramolecularly, covalently cross-linked binding partner.
8. The method of claim 7 wherein the cross-linked binding partner comprises multiple subunits.
9. The method of claim 8 wherein the cross-linked binding partner is selected from the group consisting of DNA and RNA polymerases.
10. The method of claim 9 wherein the cross-linked binding partner is an HIV reverse transcriptase.
11. The method of claim 7 wherein the analyte is an HIV antibody and the cross-linked binding partner is an HIV reverse transcriptase.
US10/447,129 2000-11-30 2003-05-28 Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays Expired - Lifetime US7351799B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/968,806 US7547533B2 (en) 2000-11-30 2008-01-03 Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays
US12/464,376 US20090220987A1 (en) 2000-11-30 2009-05-12 Use of Intramolecularly, Covalently Cross-Linked Proteins As Binding Partners In Immunoassays

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10059720A DE10059720A1 (en) 2000-11-30 2000-11-30 Use of intramolecularly covalently cross-linked proteins as binding partners in immunoassays
DE10059720.3 2000-11-30
PCT/EP2001/013780 WO2002044731A2 (en) 2000-11-30 2001-11-27 Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays
WOPCT/EP01/13780 2001-11-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/013780 Continuation WO2002044731A2 (en) 2000-11-30 2001-11-27 Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/968,806 Division US7547533B2 (en) 2000-11-30 2008-01-03 Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays

Publications (3)

Publication Number Publication Date
US20040137425A1 US20040137425A1 (en) 2004-07-15
US20070281293A9 true US20070281293A9 (en) 2007-12-06
US7351799B2 US7351799B2 (en) 2008-04-01

Family

ID=7665406

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/447,129 Expired - Lifetime US7351799B2 (en) 2000-11-30 2003-05-28 Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays
US11/968,806 Expired - Lifetime US7547533B2 (en) 2000-11-30 2008-01-03 Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays
US12/464,376 Abandoned US20090220987A1 (en) 2000-11-30 2009-05-12 Use of Intramolecularly, Covalently Cross-Linked Proteins As Binding Partners In Immunoassays

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/968,806 Expired - Lifetime US7547533B2 (en) 2000-11-30 2008-01-03 Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays
US12/464,376 Abandoned US20090220987A1 (en) 2000-11-30 2009-05-12 Use of Intramolecularly, Covalently Cross-Linked Proteins As Binding Partners In Immunoassays

Country Status (18)

Country Link
US (3) US7351799B2 (en)
EP (1) EP1340087B1 (en)
JP (1) JP3759594B2 (en)
KR (1) KR20040016824A (en)
CN (2) CN101509918A (en)
AU (1) AU2002221898A1 (en)
BR (1) BR0115752A (en)
CA (1) CA2427687C (en)
DE (1) DE10059720A1 (en)
ES (1) ES2387478T3 (en)
IL (1) IL156135A0 (en)
MX (1) MXPA03004773A (en)
NO (1) NO20032428L (en)
NZ (1) NZ525704A (en)
PL (1) PL361141A1 (en)
RU (1) RU2003119156A (en)
WO (1) WO2002044731A2 (en)
ZA (1) ZA200304175B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0400122D0 (en) * 2004-01-06 2004-02-11 Badrilla Ltd Method of quantifying binding
EP2249661B1 (en) * 2008-01-22 2018-05-16 Multimerics APS Products and methods to prevent infection
US11756650B2 (en) * 2015-11-09 2023-09-12 The University Of British Columbia Systems and methods for predicting misfolded protein epitopes by collective coordinate biasing
CN109851668B (en) * 2018-12-26 2022-12-23 广东菲鹏生物有限公司 SAA protein immunogen, preparation method thereof and anti-human serum amyloid A polyclonal antibody

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258501A (en) * 1988-11-25 1993-11-02 Slobodan Barbaric Stabilization of glycoproteins
US7037894B2 (en) * 1999-10-15 2006-05-02 Avatar Medical, Llc Stabilized proteins

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1034957B (en) * 1975-04-09 1979-10-10 Snam Progetti PROCEDURE FOR CHEMICAL MODIFICATION OF PROTEIN SUBSTANCES MEANS SUITABLE FOR THE PURPOSE AND PROCEDURE FOR PREPARING THEM
US4600531A (en) * 1984-06-27 1986-07-15 University Of Iowa Research Foundation Production of alpha-alpha cross-linked hemoglobins in high yield
US4914040A (en) 1988-03-03 1990-04-03 Boehringer Mannheim Gmbh Reagent and method for determination of a polyvalent substance using an immunoaggregate
AU4661797A (en) * 1996-10-21 1998-05-15 Baxter International Inc. Therapeutic use of hemoglobin to treat head injury
WO1998040744A1 (en) 1997-03-10 1998-09-17 Roche Diagnostics Gmbh Method for simultaneous detection of hiv antigens and hiv antibodies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258501A (en) * 1988-11-25 1993-11-02 Slobodan Barbaric Stabilization of glycoproteins
US7037894B2 (en) * 1999-10-15 2006-05-02 Avatar Medical, Llc Stabilized proteins

Also Published As

Publication number Publication date
US20040137425A1 (en) 2004-07-15
CN100529758C (en) 2009-08-19
JP2004514908A (en) 2004-05-20
ES2387478T3 (en) 2012-09-24
CA2427687A1 (en) 2003-05-01
DE10059720A1 (en) 2002-06-06
WO2002044731A3 (en) 2003-02-13
KR20040016824A (en) 2004-02-25
AU2002221898A1 (en) 2002-06-11
BR0115752A (en) 2003-12-30
EP1340087A2 (en) 2003-09-03
US20090220987A1 (en) 2009-09-03
IL156135A0 (en) 2003-12-23
NO20032428D0 (en) 2003-05-28
EP1340087B1 (en) 2012-05-30
US7547533B2 (en) 2009-06-16
CN1478202A (en) 2004-02-25
WO2002044731A2 (en) 2002-06-06
US7351799B2 (en) 2008-04-01
NO20032428L (en) 2003-05-28
NZ525704A (en) 2004-11-26
US20080138795A1 (en) 2008-06-12
CA2427687C (en) 2009-11-17
CN101509918A (en) 2009-08-19
ZA200304175B (en) 2004-08-25
JP3759594B2 (en) 2006-03-29
MXPA03004773A (en) 2003-09-10
RU2003119156A (en) 2004-12-27
PL361141A1 (en) 2004-09-20

Similar Documents

Publication Publication Date Title
AU594651B2 (en) Immunoassays for protein analytes, particularly HB A1c, involving sample denaturation
US6114180A (en) Synthetic calibrators for use in immunoassays, comprising the analytes or partial sequences thereof which are conjugated to inert carrier molecules
IE66921B1 (en) Synthetic antigens for the detection of aids-related disease
JPS58203919A (en) Manufacture of immunogloblin half molecule and crossbred antibody
US7547533B2 (en) Use of intramolecularly, covalently cross-linked proteins as binding partners in immunoassays
JP2002296281A (en) Improved homogeneous immunoassay
EP0095089B1 (en) Improved homogeneous binding assay method and reagent system, test kit and test device therefor
EP0962774B1 (en) Detection of antibodies to FIV using ENV/GAG polypeptides
JPH05295000A (en) Covalent hybrid antibody, preparation of the same and homogeneous immunoassay using the same
AU707172B2 (en) Immunoenzymatic conjugate, preparation method therefor and uses thereof
AU639687B2 (en) Immunoassay for antibodies to hiv
EP0338045B1 (en) Solid-phase non-separation enzyme assay
EP1878805B1 (en) Synthetic antigen for the detection of antibodies immunoreactive with HIV virus
US5441869A (en) Method for the determination of fibrin
CA2420768C (en) Conjugates of defined stoichiometry
US20020028924A1 (en) Method and composition for the diagnosis of equine infectious anemia virus disease by using the recombinant capsid protein virus (p26)
CA2037466A1 (en) Detection of anti-hiv antibodies
Pfahler et al. A Biotin‐Avidin Amplified Enzyme Immunoassay for Detection and Quantitation of Orthopox Virus Camel Antibodies in Dromedaries
Ujhelyi et al. Effect of pepsin treatment on the HIV envelope and core antigens
EP1245956A1 (en) Conjugates of defined stoichiometry
NO895007L (en) SIMULTANEZYM IMMUNO ANALYSIS FOR ANTIGEN AND / OR ANTIBODY DETECTION IN HUMAN.

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS CORPORATION;REEL/FRAME:015201/0368

Effective date: 20040101

Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC.,INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS CORPORATION;REEL/FRAME:015201/0368

Effective date: 20040101

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12