Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20080004616 A1
Publication typeApplication
Application numberUS 11/899,633
Publication dateJan 3, 2008
Filing dateSep 6, 2007
Priority dateSep 9, 1997
Also published asDE69832391D1, DE69832391T2, DE69841834D1, EP1011492A1, EP1011492A4, EP1011492B1, EP1586279A2, EP1586279A3, EP1586279B1, EP1586280A2, EP1586280A3, EP1586280B1, US6267761, US6932810, US7270660, US20050101965, US20060020265, WO1999012487A1
Publication number11899633, 899633, US 2008/0004616 A1, US 2008/004616 A1, US 20080004616 A1, US 20080004616A1, US 2008004616 A1, US 2008004616A1, US-A1-20080004616, US-A1-2008004616, US2008/0004616A1, US2008/004616A1, US20080004616 A1, US20080004616A1, US2008004616 A1, US2008004616A1
InventorsRyan Patrick
Original AssigneePatrick Ryan T
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus and method for sealing and cutting tissue
US 20080004616 A1
Abstract
An axial elongate bipolar tissue sealer/cutter and method of use by a surgeon for electrosurgery on tissue has a handle. A chassis on the handle extends axially for axial movement. A tube may move axial relative to the chassis. An effector on a distal end of the chassis first contacts tissue with axial movement. The effector provides bipolar electrosurgery. A member extending from the distal end is opposite the patient end of the tube. A part on the member is transverse to the axis to conduct electrosurgery. First and second bipolar electrodes on the effector and part are electrically isolated. A generator for bipolar electrosurgery supplies the electrodes. An activator is movably supported on the handle connects to the tube and/or chassis to axially move the patient end and its effector relative to the part. Tissue and bodily fluid therebetween are sealed or cut through application of compression and bipolar electrosurgery between the first and second electrodes. The effector and the part have complimentary sealing or cutting surfaces for partial mating engagement upon axial movement toward one another. The effector and the part can be removably attached to the distal end or member, respectively. The partial mating complimentary surfaces may be normal or skewed relative to the axis and may be curvelinear, flat, parallel, circular, elliptical, triangular or have at least one conjugating rib and slot. A method of use has the steps of holding and manipulating the sealer/cutter, moving the chassis relative to the tube, positioning the effector and the port to contact tissue, along the axis coupling bipolar electrodes to the effector and part, electrically isolating the electrodes, selectively coupling the generator to the electrodes for supplying bipolar electrosurgery. Supporting the activator for moving axially relative to one another, the patient part and the effector so tissue therebetween is sealed or cut by applying compression and bipolar electrosurgery across the first and second electrodes are steps.
Images(8)
Previous page
Next page
Claims(11)
1-23. (canceled)
24. A bipolar electrosurgical apparatus for performing an electrosurgical procedure, the bipolar electrosurgical apparatus comprising:
a handle operatively connected to a tissue sealing member;
said tissue sealing member including a chassis carrying at least one tube for axial movement relative thereto and therealong, the chassis having a longitudinal axis defined therethrough and first and second end effectors attached thereto, at least one of said first and second end effectors responsive to the axial movement of the at least one tube and movable along said longitudinal axis relative to the other of said first and second end effectors from a first position for positioning tissue therebetween to a second position for grasping tissue between said first and second end effectors, wherein said first and second end effectors include complementing vessel sealing electrodes which contact one other, said electrodes configured such that the electrodes are capable of at least one of sealing and cutting tissue disposed therebetween upon activation of said electrodes; and
a sensor operatively connected to the electrosurgical apparatus and configured for measuring the impedance across the tissue held between said end effectors.
25. A bipolar instrument according to claim 24 wherein an activator is movably supported on the handle, the handle including at least one handle grip.
26. A bipolar instrument according to claim 24 wherein the chassis includes an inner tube and an outer tube.
27. A bipolar instrument according to claim 24 wherein the first and second end effectors include complementary vessel contacting surfaces which partially matingly engage upon movement of the end effectors from the first to second positions.
28. A bipolar instrument according to claim 27 wherein the complementary vessel contacting surfaces are curvilinear.
29. A bipolar instrument according to claim 27 wherein the complementary vessel contacting surfaces are substantially flat.
30. A bipolar instrument according to claim 27 wherein the complementary vessel contacting surfaces are triangular.
31. A bipolar instrument according to claim 27 wherein the complementary vessel contacting surfaces further include nibs.
32. A bipolar electrosurgical apparatus for performing an
32. A bipolar electrosurgical apparatus for performing an electrosurgical procedure, the bipolar electrosurgical apparatus comprising:
a handle operatively connected to a tissue sealing member;
said tissue sealing member including a chassis carrying at least one tube for axial movement relative thereto and therealong, the chassis having a longitudinal axis defined therethrough and first and second end effectors attached thereto, at least one of said first and second end effectors responsive to the axial movement of the at least one tube and movable along said longitudinal axis relative to the other of said first and second end effectors from a first position for positioning tissue therebetween to a second position for grasping tissue between said first and second end effectors, wherein said first and second end effectors include complementing vessel sealing electrodes which contact one other, said electrodes configured such that the electrodes are capable of at least one of sealing and cutting tissue disposed therebetween upon activation of said electrodes; and
an in-line force transducer providing feedback information on the applied force exerted by said end effectors.
Description
    1. FIELD OF THE INVENTION
  • [0001]
    This relates to an apparatus and method for cutting and sealing blood vessels or tissue using a bipolar linear travel device that compresses the tissue or vessel and then RF power is applied to seal the tissue and cut the tissue.
  • 2. BACKGROUND OF THE DISCLOSURE
  • [0002]
    In order to seal blood vessels during surgery, for the purpose of defunctionalizing the vessels or to halt or prevent bleeding, radiofrequency (RF) energy can be applied to the vessel structure instead of staples or clips. Traditionally, forceps are used to create a single seal per application with bipolar RF energy. Normally, forceps that have a hinge between the tines that press against either side of the vessel are clamped about tissue and power is applied. Problems are sometimes encountered with this technique because of the forceps bending or the lack of parallelism between the tines thus affecting how the tissue or vessel is compressed and sealed.
  • [0003]
    U.S. Pat. No. 5,585,896 has a percutaneous device for sealing openings in blood vessels. A balloon is inserted into the vessel and then inflated to force the vessel wall into a fixation collar.
  • [0004]
    U.S. Pat. No. 5,383,897 has a device for sealing punctures in blood vessels by conforming to the inner lumen of the vessel and placing barbs in the vessel for the purpose of sealing.
  • [0005]
    U.S. Pat. No. 5,391,183 has a device for sealing punctures in vessels by inserting hemostatic material into the puncture site and around the outside of the vessel, for the purpose of closing the puncture site.
  • [0006]
    U.S. Pat. No. 5,437,292 has a percutaneous device to seal arterial or venous puncture sites, whether accidental or intentional, which mixes fibrinogen and thrombin to form a gel around the puncture site to provide occlusion.
  • [0007]
    U.S. Pat. No. 5,411,520 has a device for percutaneously sealing blood vessels that slides down a holding catheter and enters the blood vessel with an anchor and collagen plug.
  • [0008]
    U.S. Pat. No. 5,415,657 has a device that approaches the puncture in the blood vessel, engages the outer surface and applies energy to provide hemostasis.
  • [0009]
    U.S. Pat. No. 5,429,616 has a device for sealing punctures in vessels by applying a fluid and then compressing the edges while it seals.
  • [0010]
    U.S. Pat. No. 5,441,517 has a system for sealing punctures in blood vessels by mechanically inserting a plug with an anchor to seal the puncture.
  • [0011]
    U.S. Pat. No. 5,425,739 discloses a stent placed inside the vessel to seal it or placed in such a way as to anastomose the vessel edges.
  • [0012]
    U.S. Pat. No. 5,354,271 discloses a sliding sheath for closing puncture sites that has two parts that expand radially outward and may use an accordion shape if a catheter.
  • [0013]
    U.S. Pat. No. 5,342,393 is a device that repairs punctures in vessels by clamping the tissue from both inside and outside of the vessel. Riveting is used to close the clamped sections and heat may be applied to separate the rivet from the delivery system. This device does apply heat energy but only to separate the rivet from the closure site.
  • [0014]
    U.S. Pat. No. 5,176,695 is a monopolar laparoscopic mechanical cutting device with a linear reciprocating blade that sharply cuts tissue residing in its slot. The present bipolar invention does not contain a sharp blade since it seals and cuts using RF energy.
  • [0015]
    U.S. Pat. No. 3,862,630 is a device wherein ultrasonic energy is used to close off blood vessels by mechanical vibration and frictional rubbing. Any heating of the tissue is a minimal and superficial byproduct of the mechanical vibration used to seal vessels.
  • [0016]
    U.S. Pat. No. 2,011,169 is a surgical electrode with end jaws that are U-shaped and nest one inside the other. They are not insulated from each other and thus are monopolar. In the present invention the jaws are insulated and bipolar. The jaws of '169 are mounted on an endoscope. They do not fit together as in the present invention and are designed more for the purpose of removing bites out of tissue and coagulating at the same time.
  • [0017]
    All of the above devices are different from the disclosure herein for several reasons. These devices are made for wound puncture closure. This implies that a viable flow channel will remain within the lumen of the blood vessel after each device is applied. The device now disclosed remains external to the blood vessel where no puncture site would normally exist either before or after the procedure. The present device and method seals the blood vessel, and thus does not provide a pathway for blood as do the prior devices discussed. In most cases, after the sealing with the instant device and method, the vessel will still be intact, although with a seal across it. In addition, the mere clamping by the disclosed device does not seal the blood vessel. It is the application of RF energy that forms an autologous clamp causing a fusion of the intima to provide the seal.
  • [0018]
    Therefore to solve the difficulties of the prior devices a patient contacting instrument for holding and applying electrosurgical energy is shown and described. During surgical dissection, blood vessels are frequently encountered that need to be sealed and thus defunctionalized. To do this in a safe, reliable manner so the vessel is properly sealed and will not leak, a tool that applies energy to create an autologous clip is valuable and required. The device and method are briefly described. A long tube connects to one side of a bipolar power supply. The tube moves longitudinally, that is along its long axis to meet against and compress the vessel with an endpiece. The two pieces that meet on either side of the vessel could be flat, curved, triangular, angled, notched, or other shapes, as long as one fits the other. If the endpieces are of some shape other than flat, this increases the surface area that traverses the vessel creating a longer seal in the vessel without increasing the diameter of the end pieces. An applied pulse of RF power cuts the tissue after sealing. The device and method when tested on fresh vessels produced a burst pressure adequate to prove a solid seal.
  • [0019]
    Advantages of the current device and method are the parallel axial closure of the end pieces to provide a compact bipolar sealer and prevent shorting. An in-line force transducer could provide feedback information on the applied force used during surgery. The device is bipolar to assure added safety by confinement of RF current flow through the tissue between the bipolar electrodes at the end of the device.
  • SUMMARY OF THE INVENTION
  • [0020]
    An axially elongate bipolar tissue sealer or cutter for application of electrosurgical energy by a surgeon to the tissue and bodily fluids of a patient preferably has a handle for holding and manipulation by the surgeon. A chassis carried on the handle may extend axially relative to the handle and away from the surgeon. The chassis may be moveable to and from the handle along the axis. The chassis may have a handle end and a distal end. A tube could be carried for axial movement relative to or along the chassis. The tube is elongate relative to the chassis and has a surgeon end and a patient end disposed along its axis in the preferred embodiment.
  • [0021]
    An effector on the patient end most preferably is in position to first contact tissue upon movement axially away from the handle by the surgeon. The effector is preferably of a material for conducting electrosurgical energy. A member may be supported by the distal end of the chassis in position opposite the patient end of the tube. A part on the member at the distal end thereof is most preferably transversely located relative to the tube axis. The part may be made of a material for conducting electrosurgical energy and to act as an opposed end effector.
  • [0022]
    A first bipolar electrosurgical electrode can be electrically connected to the effector of the patient end. A second bipolar electrosurgical electrode could be electrically connected to the part or opposed end effector. The second bipolar electrosurgical electrode is electrically isolated from the first bipolar electrosurgical electrode. An electrosurgical generator may be electrically coupled to the first and second electrosurgical electrodes. The electrosurgical generator can be arranged for selectively supplying bipolar electrosurgical energy across the first and second bipolar electrosurgical electrodes.
  • [0023]
    A mechanical activator is most preferably movably supported on the handle for use by the surgeon. The activator most preferably connects to the tube for axially moving the patient end and its end effector thereof toward or away from the part or opposed end effector. The tissue and bodily fluid between the end effectors may be sealed or cut by application of axial compression and bipolar electrosurgical energy between the first and second electrosurgical electrodes.
  • [0024]
    The end effector and the part or opposed end effector preferably include partial mating complimentary sealing or cutting surfaces for partial mating engagement upon axial movement along the axis toward one another. The end effector and/or port can be removably attached to patient end and/or member. The complimentary surfaces may be partially mated and curvelinear for providing more tissue contacting area than flat surfaces would. Alternatively, the partial mating complimentary surfaces might be parallel but skewed to the axis to provide elongate contact with axial movement between the end effector and the port. The partial mating complimentary surfaces could be substantially flat. The partial mating complimentary surfaces may be circular. The partial mating complimentary surfaces might be elliptical. The partial mating complimentary surfaces could also be triangular. The partial mating complimentary surfaces may include at least one conjugating rib and slot. The partial mating complimentary surfaces could include one or more ribs and mating slots.
  • [0025]
    A method of using an elongate along an axis tissue sealer or cutter for application by a surgeon of bipolar electrosurgical energy to tissue and bodily fluids of a patient may seal or cut. The method may have the steps of holding and manipulating by a surgeon of a handle. Extending axially a chassis and/or a tube carried on the handle might be a step. The method can have the step of moving along the axis the chassis and/or the tube with the handle. Carrying the tube for axial movement relative to and along the chassis might be a step of the method. The method step may include positioning an effector on a patient end of the tube for first contact with tissue upon movement axially away from the handle by the surgeon. Using a supported member on a distal end of the chassis in position away from the patient end of the tube can be a step of the method. The method may have the step of having a part located transversely relative to the axis and on the member.
  • [0026]
    The method of using may be performed with a first bipolar electrosurgical electrode coupled to the end effector of the patient end and a second bipolar electrosurgical electrode coupled to the part. Electrically isolating the second bipolar electrosurgical electrode from the first bipolar electrosurgical electrode is another preferred step of the method of using. The method preferably has the step of selectively electrically coupling an electrosurgical generator to the first and second electrosurgical electrodes to supply bipolar electrosurgical RF energy from the electrosurgical generator to the firm and second bipolar electrosurgical electrodes. The method most preferably has the step of a surgeon using a mechanical activator that is movably supported on the handle. Moving axially with the activator the patient end and/or the opposed end effector so that tissue and bodily fluid therebetween may be sealed or cut between the end effector and the part through the application of compression and bipolar electrosurgical energy between the first and second electrosurgical electrodes is a preferred step.
  • [0027]
    The method may have the steps of applying the provided effector with the partially mating complimentary sealing or cutting surfaces, and partially mating engagement of the complimentary sealing or cutting surfaces upon axial movement toward one another along the axis. The method might use the step of removably attaching the part and/or end effector to the member and the chassis respectively. The method has the step of using partially mating the complimentary surfaces engagable along curvelinear paths for providing more tissue contacting area than between flat surfaces. The method has the step of using the partially mating the complimentary surfaces preferably parallel but along a plane skewed to the axis to provide elongate contact with axial movement between the end effector and the port.
  • [0028]
    The method may have the step of using the partially mating complimentary flat surfaces that are perhaps along the planes of the flat surfaces. The method could have the step of using partially mating complimentary circular surfaces that might be along the arcs of the circular surfaces. The method might have the step of using partially mating complimentary elliptical surfaces which are preferably along the curves of elapses. The method can have the step of using partially mating complimentary triangular surfaces along edges of the triangles. The method could have the step of using partially mating complimentary surfaces by engaging at least one conjugating rib with a slot. The method may have the step of using partially mating complimentary surfaces that may include one or more ribs and companion slots.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0029]
    FIG. 1 is a perspective view of an elongated tubular bipolar tissue sealer or cutter for application by a surgeon of electrosurgical energy to the tissue, the sealer or cutter slides along its axis with an internal, concentric sliding portion for axially bring together the end effectors.
  • [0030]
    FIG. 2 is a view in cross section as would be seen along lines 2-2 in FIG. 1.
  • [0031]
    FIG. 3 is a side view of a reusable elongate tubular bipolar tissue sealer or cutter as in FIG. 1 with one of the various end effectors having partially mating complimentary surfaces.
  • [0032]
    FIG. 4 is a side view of a disposable elongate tubular bipolar tissue sealer or cutter as in FIG. 1 with one of the various end effectors having partially mating complimentary surfaces.
  • [0033]
    FIG. 5 is an enlarged top view of the part and of the end effector with partially mating complimentary surfaces that nest with V shaped conjugating jaws.
  • [0034]
    FIG. 6 is an enlarged top view of the part and the end effector with partially mating complimentary surfaces that nest with rib and slot conjugating jaws.
  • [0035]
    FIG. 7 is an enlarged top view of the part and the end effector with partially mating complimentary surfaces that nest with a pedistaled male and a flush female wherein both are V shaped conjugating jaws.
  • [0036]
    FIG. 8 is an enlarged top view of the part and the end effector with partially mating complimentary surfaces that nest with a pedistaled male and a flush female wherein both are U shaped conjugating jaws.
  • [0037]
    FIG. 9 is an enlarged top view of the part and end effector with partially mating complimentary surfaces that nest with a terraced male and a recessed female shaped to fit as conjugating jaws.
  • [0038]
    FIG. 10 is an enlarged top view of the part and the end effector with partially mating complimentary surfaces that nest with a pair of upstanding ribs and a conjugating pair of kerfs as the jaws.
  • [0039]
    FIG. 11 is an enlarged top view of the part and the end effector with partially mating complimentary surfaces that nest with a single upstanding rib and corrugating kerf as the jaws.
  • [0040]
    FIG. 12 is an enlarged top view of the part and the end effector with partially mating complimentary surfaces that nest with a pair of upstanding ribs and conjugating kerfs wherein there one rib and one kerf is on the end effector across from its companion kerf and rib on the part as the jaws.
  • [0041]
    FIG. 13 illustrates the conjugating jaws of FIG. 5 with a vessel the therebetween prior to sealing.
  • [0042]
    FIG. 14 illustrates the conjugated jaws of FIG. 5 with a vessel therebetween during sealing.
  • [0043]
    FIG. 15 is a partial enlarged view of the end effector and the part of FIG. 1 viewed from above with an open vessel camped therebetween during the process of sealing.
  • [0044]
    FIG. 16 is a perspective illustration of a sealed vessel.
  • [0045]
    FIG. 17 shows voltage, current, impedance, power, and energy captured during sealing of a splenic artery.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0046]
    FIG. 1 is a perspective view of an elongate tubular bipolar tissue sealer or cutter 10 for application by a surgeon of electrosurgical energy to tissue. A handle 11, for holding and manipulation by the surgeon, is on a proximal end 12 of the elongate bipolar tissue sealer or cutter 10. The handle 11 has both first and second handle grips 13 and 14, respectively. A chassis 15, carried on the handle 11 by mechanical connection with the first handle grip 13, extends axially along axis “A” relative to the handle 11 and away from the surgeon a distance adequate to reach the patient's operative site. The chassis 15 is comprised of at least two parts. The first is an outer tube 16 which extends from the handle 11 along the axis “A.” The outer tube 16 is fixed on the chassis 15. The second part is a member or chassis extension 17 extending from a patient end 18 of the outer tube 16, also along the axis “A.” An inner tube 19 is moveable to and from the handle 11 in the preferred embodiment. The inner tube 19 is guided along the axis “A.” The inner tube 19 connects to the second handle grip 14 for surgeon access. A distal end 20 is on the inner tube 19 and faces the operative site. The elongate tubular sealer or cutter 10 thus in part slides along its axis “A” with inner tube 19 which is an internal, concentric slider to axially bring together end effectors 21 and 22. Inner tube 19 is telescopically carried, in the preferred embodiment, on the chassis 15 for axial movement relative to and therealong. The inner tube 19 has relative to the chassis 15, a surgeon end 23 and the distal end 20 which are disposed along the axis “A” thereof as shown in FIGS. 1 and 3. FIG. 2 is a view of the inner and outer tubes 19 and 16 in cross section as would be seen along lines 2-2 in FIG. 1. The preferred outer and inner tubes 16 and 19 are metallic and thus should be insulated from each other and from the user by a coating 19′ as seen in FIG. 2.
  • [0047]
    End effector 21 on the distal end 20 is in position to contact tissue upon movement axially away from the handle 11 by the surgeon's manipulation of second handle grip 14. FIG. 3 is a side view of the reusable elongate tubular structure of FIG. 1 with both of the various end effectors 21 and 22 shown from the side. The effector 21 and 22 are made of materials for conducting electosurgical energy such as metal, conductive polymer or ceramic. The end effector 22 has member 24 supported by the chassis extension 17 normal thereto in position opposite the patient end 20 of the inner tube 19. A part 25 on the member 24 thereof is transversely located relative to the axis “A” in FIG. 1. The end effectors 21 and 22 are thus opposed for engagement upon relative axial displacement of the inner tube 19 and/or chassis 15. FIG. 4 is a side view of a disposable elongate tubular structure of FIG. 1 with one of the various end effectors 21 and 22 shown from the side in FIG. 3. As shown in FIG. 3 the chassis extension 17, member 24, and part 25 are made for conducting electrosurgical energy. Of course, insulation can be added as needed to direct the bipolar electrosurgery to the space between the end effectors 21 and 22.
  • [0048]
    A first bipolar electrosurgical electrode 26 for contact with the patient's tissue or bodily fluids is electrically coupled to the effector 22 beyond the patient end 18. A second bipolar electrosurgical electrode 27 is electrically coupled to the effectors 21 and 22 for contact with the patient's tissue or bodily fluids. The second bipolar electrosurgical electrode 27 is electrically isolated from the first bipolar electrosurgical electrode 26 but is in position to deliver bipolar electrosurgical energy across tissue held therebetween. An electrosurgical generator 28, in FIG. 3, is electrically coupled to the first and second electrosurgical electrodes 26 and 27 through terminals 29 and 30, respectively. The electrosurgical generator 28 can be arranged for selectively supplying bipolar electrosurgical energy to the first and second bipolar electrosurgical electrodes 26 and 27. Selective application of electrosurgical energy is in response to the surgeons control and/or a sensor 31 in the electrosurgical generator 28. Sensor 31 may measure impedance across the tissue between the electrodes 26 and 27.
  • [0049]
    A mechanical activator 32, in FIG. 3, is preferably movably supported on the handle 11 for use by the surgeon. The mechanical activator 32 connects to the inner tube 19 for anally moving the end effector 21 thereof toward or away from the end effector 22 in the preferred embodiment. The tissue and bodily fluid therebetween may be sealed or cut between the end effectors 21 and 22 through the combined application of compression and bipolar elecrosurgical energy between the first and second electrosurgical electrodes 26 and 27.
  • [0050]
    The end effectors 21 and 22 include complimentary sealing or cutting surfaces 33 and 34 for partial mating engagement upon their axial movement toward one another along the axis “A.” FIG. 13 illustrates end effectors 21 and 22 or the conjugating jaws of FIG. 5 with a vessel therebetween prior to sealing. Similarly, FIG. 14 illustrates end effectors 21 and 22 or the conjugating jaws of FIG. 5 with a vessel therebetween during sealing. The end effectors 21 and 22 could be removably attached to the member 24 and/or the inner tube 19, respectively. FIG. 15 is a partial enlarged view of the end effectors 21 and 22 of FIG. 1 viewed from the side with an open vessel clamped therebetween during the method or process of sealing. The partial mating complimentary surfaces 33 and 34 in FIG. 8 are curvelinear for providing more tissue contacting area than flat surfaces of the same width would. In FIG. 8 the end effectors 21 and 22 have conjugating complimentary surfaces 33 and 34 that nest configured with a pedistaled male part 49 and a mating U shaped female part 50 for the jaws. FIG. 9 is an enlarged top view of end effectors 21 and 22 shot conjugating surfaces that nest with a male part 35 terraced and a female part 36 shaped to fit as jaws. FIG. 10 is an enlarged top view of end effectors 21 and 22 showing conjugating surfaces that nest with a pair of upstanding ribs 38 and a complimentary pair of kerfs 37 as the jaws. FIG. 11 is an enlarged top view of the end effectors 21 and 22 showing conjugating surfaces that nest with a single upstanding rib 39 and a complimentary kerf 40 as the jaws. FIG. 12 is an enlarged top view of end effectors 21 and 22 showing conjugating surfaces that nest with a pair of upstanding opposite ribs 41 and complimentary opposed kerfs 42 wherein therein one rib 41 is on each of the end effectors 21 and 22 across from its complimentary kerf 42 on the opposite end effectors either 21 or 22.
  • [0051]
    Any complimentary mating curvelinear jaws even “S” shaped or those shown in FIG. 1 could be arranged to provide more surface area for contact than the flat surfaces defined by the cords thereacross. FIG. 5 is an enlarged top view end effectors 21 and 22 showing conjugating surfaces 33 and 34 that nest with V shaped complimentary jaws 43 and 44. FIG. 6 is an enlarged top view of end effectors 21 and 22 showing conjugating surfaces 33 and 34 that nest with a rib 45 and a channel 46 as complimentary jaws. FIG. 7 is an enlarged top view of end effectors 22 and 23 showing conjugating surfaces 33 and 34 that nest with a male part pedistaled 47 and V shaped female part 48 as complimentary jaws.
  • [0052]
    The partial mating complimentary surfaces 33 and 34 might be parallel but skewed to axis “A” as in FIG. 15 to provide elongate contact with axial movement between the inner tube 19 and chassis 15 thus keeping the size of the laparoscopic portal through which the end effectors 21 and 22 must pass to a minimum transverse dimension. The partial mating complimentary surfaces 33 and 34 could be substantially flat as in FIGS. 3 and 4. The partial mating complimentary surfaces 33 and 34 may be circular sections such as appear in FIGS. 1 and 8. The partial mating complimentary surfaces 33 and 34 might be elliptical and thus similar to FIGS. 1 and 8 with the curvatures being a part of an ellipse instead of a circle. Because of the perspective showing in FIG. 1, the observable differences in such an illustration between a circle and an ellipse can not be perceived. The partial mating complimentary surfaces 33 and 34 could also be triangular as in FIGS. 5, 7, 13 and 14. The partial mating complimentary surfaces 33 and 34 may include at least one conjugating rib and slot as in FIGS. 6 and 11. The partial mating complimentary surfaces 33 and 34 could include several ribs as in FIGS. 10 and 12.
  • [0053]
    A method of applying the elongate tubular bipolar tissue sealer or cutter 10 along an axis “A” includes use by a surgeon to deliver bipolar electrosurgical energy to the tissue and bodily fluids of a patient. The method has the steps of holding and manipulating the handle 11 by the surgeon. Extending axially inner tube 19 and/or the chassis 15 carried on the handle 11 away from the surgeon is a step. The method can have the step moving the inner tube 19 relative to the chassis 15 along the axis “A.” Carrying inner tube 19 for axial movement relative to and along the chassis 15 is a step of the preferred method. The method step includes positioning end effector 22 on the patient end 18 to fit contact tissue upon movement axially of the inner tube 19 by the surgeon. Using a supported member 24 the chassis 15 is a step of the method. The method may have the step of using a part 25 located transversely relative to the axis “A” and on the member 24.
  • [0054]
    The method of using has a first bipolar electrosurgical electrode 26 coupled to the end effector 22 extending from the patient end 18 and a second bipolar electrosurgical electrode 27 coupled to the end effector 21. Electrically isolating the second bipolar electrosurgical electrode 27 from the first bipolar electrosurgical electrode 26 is another preferred method step for using. The method preferably has the step of selectively coupling electrically an electrosurgical generator 28 to the first and second electrosurgical electrodes to supply bipolar electrosurgical energy from the electrosurgical generator to the first and second bipolar electrosurgical electrodes 26 and 27. The method most preferably has the step of a surgeon using a mechanical activator 32 movably supported on the handle 11. Moving axially with the mechanical activator 32 the inner tube 19 and the end effector 21 thereof toward or away from the end effector 22 so that tissue and bodily fluid therebetween may be sealed or cut between the end effectors 21 and 22 the application of compression and bipolar electrosurgical energy between the first and second electrosurgical electrodes 26 and 27 is a preferred step.
  • [0055]
    The method may have the steps of applying the provided end effectors with partially complimentary sealing or cutting surfaces 33 and 34, and partially mating engagement of the complimentary sealing or cutting surfaces 33 and 34 upon axial movement toward one another along the axis “A.” FIG. 16 is a perspective illustration of a sealed vessel 51 as a consequence of performing the method to form seal 52. The method might use the step of choosing to removably attach the end effectors 26 and 27, inner tube 19 and the chassis 15, respectively. The method has the step of using partially mating the complimentary surfaces 33 and 34 engagable along curvelinear paths for providing more tissue contacting area than between flat surfaces. The method has the step of using the partially mating the complimentary surfaces 33 and 34 preferably parallel along a plane skewed to the axis “A” to provide elongate contact with axial movement between the inner tube 19 and chassis 15.
  • [0056]
    The method has the step of using the partially mating complimentary flat surfaces 33 and 34 that are perhaps along the planes of the flat surfaces. The method has the step of using the partially mating complimentary circular surfaces 33 and 34 that might be along the arcs of the circular surfaces. The method has the step of using the partially mating complimentary elliptical surfaces 33 and 34 which are preferably along the curves of the ellipses. The method has the step of using the partially mating complimentary triangular surfaces 33 and 34 that can be along edges of the triangles. The method has the step of using the partially mating complimentary surfaces 33 and 34 by engaging at least one conjugating rib and slot. The method has the step of using the partially mating complimentary surfaces 33 and 34 that include one or more ribs.
  • [0057]
    As a result of laboratory testing of a model of the bipolar tissue sealer or cutter results have shown excellent performance in sealing a range of vessels of various sizes. The bipolar tissue sealer or cutter with linear travel was tested on freshly excised porcine splenic arteries ranging from 1.8 to 3.3 mm. A single activation of power (14 W, 500 kHz) was used on each vessel firmly clamped between the end effector bipolar electrodes. FIG. 17 shows the voltage, current impedance, power, and energy during activation on a 2.6 mm porcine splenic artery with the bipolar device shown in FIG. 15. The voltage ranges from 18-23 volts the impedance rises at 14 sec. At this point, the vessel is sealed and the power is manually switched off. The impedance curve shows an initial decrease as the vessel is heated with radiofrequency energy, down to about 20 ohms. The rapid increase to about 200 ohms signals that the vessel is desiccated and sealing process is over.
  • [0058]
    Data, shown in the graphs of FIG. 17, display the voltage, current, impedance, power and energy during the activation of 17 sec. achieved with an elongated tubular bipolar tissue sealer or cutter as shown in FIG. 15. Activation times ranged from 12-28 sec. Energy applied ranged from 170-400 joules. Contact impedance ranged from 20-80 ohms, depending on vessel size and shape of end effectors. If the end effectors of FIG. 5 were used, the contact impedance would decrease due to the larger contact area with the vessel. Vessel size affects impedance as well.
  • [0059]
    The vessels were closely examined after each sealing and found to have no charring. In 2 out of 13 trials, the vessel was adherent to one of the end effectors. Histological analysis showed that the vessel walls were completely welded with the integrity of the intima, adventitia, and media completely lost. The proteins were melted and a semi-translucent weld resulted. Adjacent to the weld site, the vessel wall was relatively normal.
  • [0060]
    The preferred elongate tubular bipolar tissue sealer or cutter 10 for application of electrosurgical energy to tissue by a surgeon as covered in the claims that follow has structure that slides along its axis “A” with an internal, concentric sliding portion. The inner or inside sliding tube 19 is attached to the proximal end effector 21 and the external fixed tube or chassis 15 connects to the distal end effector 22 in the preferred embodiment. The two end effectors 21 and 22 are matched so that the distal end effector 22 fits snugly against the proximal end effector 21. These end effectors 21 and 22 can be any of a number of conjugating shaped pairs including triangular, spherical, rectangular, with or without a notch. The notch is not just for alignment but also may define a sharp edge to sever the tissue or vessel by application of a pulse of high-power RF to the clamped site of tissue in between the end effectors 21 and 22. In the preferred embodiment, the handle 11 is squeezed so the inner tube 19 slides away the user and the chassis 15 is fix in relation to the inner tube 19 as the end effectors 21 and 22 act on the tissue therebetween. Of course it can be reversed so the chassis 15 moves and the inner tube 19 is fixed.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1813902 *Jan 18, 1928Jul 14, 1931Liebel Flarsheim CoElectrosurgical apparatus
US2279753 *Mar 25, 1940Apr 14, 1942Knapp Monarch CoSwitch
US3720896 *May 18, 1971Mar 13, 1973Siemens AgHandle for high frequency electrodes
US3863339 *May 23, 1973Feb 4, 1975Stanley Tools LtdRetractable blade knife
US4375218 *May 26, 1981Mar 1, 1983Digeronimo Ernest MForceps, scalpel and blood coagulating surgical instrument
US4655215 *Mar 15, 1985Apr 7, 1987Harold PikeHand control for electrosurgical electrodes
US4754892 *Jan 21, 1987Jul 5, 1988Retief Charles TClosure for a container
US4846171 *May 16, 1988Jul 11, 1989Gv Medical, Inc.Laser catheter adjustable control apparatus
US5035695 *Mar 9, 1990Jul 30, 1991Jaroy Weber, Jr.Extendable electrocautery surgery apparatus and method
US5047046 *Jul 13, 1988Sep 10, 1991Bodoia Rodger DSurgical forceps
US5085659 *Nov 21, 1990Feb 4, 1992Everest Medical CorporationBiopsy device with bipolar coagulation capability
US5250063 *Jan 24, 1992Oct 5, 1993Leonard BloomSurgical scalpel with retractable guard
US5314445 *Feb 13, 1992May 24, 1994Heidmueller ElkeSurgical instrument
US5326806 *Dec 23, 1992Jul 5, 1994General Electric CompanyReinforced flame-retardant polyester resin compositions
US5336220 *Oct 9, 1992Aug 9, 1994Symbiosis CorporationTubing for endoscopic electrosurgical suction-irrigation instrument
US5344424 *Mar 12, 1993Sep 6, 1994Roberts Philip LSelectively retractable, disposable surgical knife
US5425690 *Apr 20, 1994Jun 20, 1995Chang; SreterWrist exerciser
US5431672 *May 9, 1994Jul 11, 1995Becton, Dickinson And CompanySurgical scalpel with retractable blade
US5496312 *Oct 7, 1993Mar 5, 1996Valleylab Inc.Impedance and temperature generator control
US5558671 *Sep 23, 1994Sep 24, 1996Yates; David C.Impedance feedback monitor for electrosurgical instrument
US5620453 *Jan 13, 1995Apr 15, 1997Nallakrishnan; RaviSurgical knife with retractable blade and depth of cut control
US5624452 *Apr 7, 1995Apr 29, 1997Ethicon Endo-Surgery, Inc.Hemostatic surgical cutting or stapling instrument
US5638003 *May 23, 1995Jun 10, 1997Underwriters Laboratories, Inc.Method and apparatus for testing surface breakdown of dielectric materials caused by electrical tracking
US5722421 *Sep 15, 1995Mar 3, 1998Symbiosis CorporationClevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument
US5725536 *Feb 20, 1996Mar 10, 1998Richard-Allen Medical Industries, Inc.Articulated surgical instrument with improved articulation control mechanism
US5797941 *Feb 24, 1997Aug 25, 1998Ethicon Endo-Surgery, Inc.Surgical instrument with expandable cutting element
US5827323 *Oct 4, 1996Oct 27, 1998Charles H. KliemanSurgical instrument for endoscopic and general surgery
US5827548 *Jan 14, 1997Oct 27, 1998Lisco, Inc.Golf ball injection mold
US5882567 *Feb 16, 1996Mar 16, 1999Acushnet CompanyMethod of making a golf ball having multiple layers
US5908432 *Mar 27, 1998Jun 1, 1999Pan; Huai C.Scalpel with retractable blade
US5960544 *Apr 3, 1996Oct 5, 1999Beyers; Greg L.Double-ended dual mechanism retractable blade utility knife
US5964758 *Sep 18, 1997Oct 12, 1999Dresden; ScottLaparoscopic electrosurgical instrument
US6074386 *Aug 6, 1997Jun 13, 2000Gyrus Medical LimitedElectrosurgical instrument and an electrosurgical electrode assembly
US6302424 *Dec 9, 1999Oct 16, 2001Holland Hitch CompanyForce-sensing fifth wheel
US6358268 *Mar 6, 2000Mar 19, 2002Robert B. HuntSurgical instrument
US6391035 *Mar 24, 2000May 21, 2002Timothy ApplebyHemostatic clip removal instrument
US6458125 *Jun 30, 2000Oct 1, 2002I. C. Medical, Inc.Electro-surgical unit pencil apparatus and method therefor
US6514252 *Jul 19, 2001Feb 4, 2003Perfect Surgical Techniques, Inc.Bipolar surgical instruments having focused electrical fields
US6558385 *Sep 22, 2000May 6, 2003Tissuelink Medical, Inc.Fluid-assisted medical device
US6562037 *Feb 12, 1998May 13, 2003Boris E. PatonBonding of soft biological tissues by passing high frequency electric current therethrough
US6616658 *Nov 8, 2001Sep 9, 2003Leonard InesonElectrosurgical pencil
US6616661 *Sep 28, 2001Sep 9, 2003Ethicon, Inc.Surgical device for clamping, ligating, and severing tissue
US6676660 *Jan 23, 2002Jan 13, 2004Ethicon Endo-Surgery, Inc.Feedback light apparatus and method for use with an electrosurgical instrument
US6679882 *Nov 17, 2000Jan 20, 2004Lina Medical ApsElectrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
US6689131 *Mar 8, 2001Feb 10, 2004Tissuelink Medical, Inc.Electrosurgical device having a tissue reduction sensor
US6692445 *Jul 16, 2001Feb 17, 2004Scimed Life Systems, Inc.Biopsy sampler
US6736813 *Jun 20, 2001May 18, 2004Olympus Optical Co., Ltd.High-frequency treatment tool
US6743230 *Jul 18, 2002Jun 1, 2004Aesculap Ag & Co. KgBipolar grasping instrument
US6757977 *Jan 25, 2002Jul 6, 2004Jai Surgicals LimitedDisposable surgical safety scalpel
US6773409 *Sep 19, 2001Aug 10, 2004Surgrx LlcSurgical system for applying ultrasonic energy to tissue
US6775575 *Feb 26, 2002Aug 10, 2004D. Bommi BommannanSystem and method for reducing post-surgical complications
US6796981 *Feb 11, 2002Sep 28, 2004Sherwood Services AgVessel sealing system
US6808525 *Aug 21, 2002Oct 26, 2004Gyrus Medical, Inc.Bipolar electrosurgical hook probe for cutting and coagulating tissue
US6934134 *Mar 3, 2003Aug 23, 2005Omron CorporationDirect current load breaking contact point constitution and switching mechanism therewith
US6936061 *Dec 21, 2001Aug 30, 2005Olympus CorporationSurgical operation instrument
US6994709 *Aug 29, 2002Feb 7, 2006Olympus CorporationTreatment device for tissue from living tissues
US7033356 *Sep 8, 2003Apr 25, 2006Gyrus Medical, Inc.Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
US7041102 *May 22, 2003May 9, 2006Surgrx, Inc.Electrosurgical working end with replaceable cartridges
US7044948 *Dec 4, 2003May 16, 2006Sherwood Services AgCircuit for controlling arc energy from an electrosurgical generator
US7070597 *Aug 19, 2003Jul 4, 2006Surgrx, Inc.Electrosurgical working end for controlled energy delivery
US7083619 *Jul 19, 2002Aug 1, 2006Surgrx, Inc.Electrosurgical instrument and method of use
US7087054 *Sep 30, 2003Aug 8, 2006Surgrx, Inc.Electrosurgical instrument and method of use
US7090689 *Apr 17, 2002Aug 15, 2006Olympus CorporationSurgical instrument
US7156842 *Oct 6, 2004Jan 2, 2007Sherwood Services AgElectrosurgical pencil with improved controls
US7241288 *Apr 1, 2004Jul 10, 2007Marcus BraunSurgical instrument
US7314471 *Dec 31, 2003Jan 1, 2008Trevor John MiltonDisposable scalpel with retractable blade
US7329256 *Dec 23, 2005Feb 12, 2008Sherwood Services AgVessel sealing instrument
US7329257 *Sep 3, 2003Feb 12, 2008Olympus Optical Co., Ltd.Medical treatment instrument
US7342754 *Mar 2, 2004Mar 11, 2008Eaton CorporationBypass circuit to prevent arcing in a switching device
US7344268 *Jul 7, 2003Mar 18, 2008Xenonics, Inc.Long-range, handheld illumination system
US7367976 *Nov 15, 2004May 6, 2008Sherwood Services AgBipolar forceps having monopolar extension
US20040078035 *Sep 3, 2003Apr 22, 2004Olympus Optical Co., Ltd.Medical treatment instrument
US20050096645 *Oct 31, 2003May 5, 2005Parris WellmanMultitool surgical device
US20050113826 *Sep 2, 2004May 26, 2005Johnson Kristin D.Vessel sealing instrument with electrical cutting mechanism
US20050149017 *Nov 18, 2004Jul 7, 2005Dycus Sean T.Movable handle for vessel sealer
US20050187547 *Feb 25, 2005Aug 25, 2005Yoshihiko SugiHigh frequency treatment device having a pair of jaws with electrodes
US20050197659 *Feb 23, 2005Sep 8, 2005Bahney Timothy J.Vessel sealing system using capacitive RF dielectric heating
US20050203504 *Jan 27, 2005Sep 15, 2005Wham Robert H.Method and system for controlling output of RF medical generator
US20050240179 *May 5, 2005Oct 27, 2005Buysse Steven PLaparoscopic bipolar electrosurgical instrument
US20060052778 *Jul 19, 2005Mar 9, 2006Chapman Troy JIncorporating rapid cooling in tissue fusion heating processes
US20060074417 *Oct 3, 2005Apr 6, 2006Cunningham James SSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US20060079888 *Nov 29, 2005Apr 13, 2006Mulier Peter M JDevice and method for ablating tissue
US20060079890 *Sep 22, 2005Apr 13, 2006Paul GuerraBilateral foot jaws
US20060116675 *May 15, 2003Jun 1, 2006Tissuelink Medical, Inc.Fluid-assisted medical devices, systems and methods
US20070016182 *Mar 3, 2004Jan 18, 2007Tissuelink Medical, IncFluid-assisted medical devices, systems and methods
US20070016187 *Jul 13, 2005Jan 18, 2007Craig WeinbergSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US20070060919 *Oct 25, 2006Mar 15, 2007Megadyne Medical Products, Inc.Methods, systems, and devices for performing electrosurgical procedures
US20080009860 *Jul 7, 2006Jan 10, 2008Sherwood Services AgSystem and method for controlling electrode gap during tissue sealing
US20080015575 *Jul 14, 2006Jan 17, 2008Sherwood Services AgVessel sealing instrument with pre-heated electrodes
US20080021450 *Jul 18, 2006Jan 24, 2008Sherwood Services AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US20080033428 *Aug 4, 2006Feb 7, 2008Sherwood Services AgSystem and method for disabling handswitching on an electrosurgical instrument
US20080039835 *Sep 5, 2007Feb 14, 2008Johnson Kristin DVessel sealing instrument with electrical cutting mechanism
US20080045947 *Aug 21, 2007Feb 21, 2008Johnson Kristin DVessel sealing instrument with electrical cutting mechanism
US20080058802 *Aug 29, 2006Mar 6, 2008Sherwood Services AgVessel sealing instrument with multiple electrode configurations
US20080082100 *May 25, 2007Apr 3, 2008Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
USD263020 *Jan 22, 1980Feb 16, 1982 Retractable knife
USD564662 *Oct 13, 2004Mar 18, 2008Sherwood Services AgHourglass-shaped knife for electrosurgical forceps
USH1745 *Sep 29, 1995Aug 4, 1998Paraschac; Joseph F.Electrosurgical clamping device with insulation limited bipolar electrode
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7655007Feb 2, 2010Covidien AgMethod of fusing biomaterials with radiofrequency energy
US7686804Mar 30, 2010Covidien AgVessel sealer and divider with rotating sealer and cutter
US7686827Oct 21, 2005Mar 30, 2010Covidien AgMagnetic closure mechanism for hemostat
US7708735Jul 19, 2005May 4, 2010Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US7722607Nov 8, 2006May 25, 2010Covidien AgIn-line vessel sealer and divider
US7731717Aug 8, 2006Jun 8, 2010Covidien AgSystem and method for controlling RF output during tissue sealing
US7744615Jun 29, 2010Covidien AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US7753909Apr 29, 2004Jul 13, 2010Covidien AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US7766910Aug 3, 2010Tyco Healthcare Group LpVessel sealer and divider for large tissue structures
US7771425Feb 6, 2006Aug 10, 2010Covidien AgVessel sealer and divider having a variable jaw clamping mechanism
US7776036Mar 13, 2003Aug 17, 2010Covidien AgBipolar concentric electrode assembly for soft tissue fusion
US7776037Aug 17, 2010Covidien AgSystem and method for controlling electrode gap during tissue sealing
US7789878Sep 7, 2010Covidien AgIn-line vessel sealer and divider
US7799028Sep 26, 2008Sep 21, 2010Covidien AgArticulating bipolar electrosurgical instrument
US7811283Oct 8, 2004Oct 12, 2010Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7819872Sep 29, 2006Oct 26, 2010Covidien AgFlexible endoscopic catheter with ligasure
US7828798Nov 9, 2010Covidien AgLaparoscopic bipolar electrosurgical instrument
US7837685Jul 13, 2005Nov 23, 2010Covidien AgSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US7846158Dec 7, 2010Covidien AgApparatus and method for electrode thermosurgery
US7846161Dec 7, 2010Covidien AgInsulating boot for electrosurgical forceps
US7857812Dec 18, 2006Dec 28, 2010Covidien AgVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7877852Feb 1, 2011Tyco Healthcare Group LpMethod of manufacturing an end effector assembly for sealing tissue
US7877853Sep 19, 2008Feb 1, 2011Tyco Healthcare Group LpMethod of manufacturing end effector assembly for sealing tissue
US7879035Feb 1, 2011Covidien AgInsulating boot for electrosurgical forceps
US7887535Feb 15, 2011Covidien AgVessel sealing wave jaw
US7887536Aug 19, 2009Feb 15, 2011Covidien AgVessel sealing instrument
US7896878Mar 12, 2009Mar 1, 2011Coviden AgVessel sealing instrument
US7909823Jan 17, 2006Mar 22, 2011Covidien AgOpen vessel sealing instrument
US7922718Oct 12, 2006Apr 12, 2011Covidien AgOpen vessel sealing instrument with cutting mechanism
US7922953Apr 12, 2011Covidien AgMethod for manufacturing an end effector assembly
US7931649Apr 26, 2011Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US7935052Feb 14, 2007May 3, 2011Covidien AgForceps with spring loaded end effector assembly
US7947041May 24, 2011Covidien AgVessel sealing instrument
US7951149May 31, 2011Tyco Healthcare Group LpAblative material for use with tissue treatment device
US7951150May 31, 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US7955332Jun 7, 2011Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US7963965Jun 21, 2011Covidien AgBipolar electrosurgical instrument for sealing vessels
US8016827Oct 9, 2008Sep 13, 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US8034052Nov 1, 2010Oct 11, 2011Covidien AgApparatus and method for electrode thermosurgery
US8070746Dec 6, 2011Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US8123743Jul 29, 2008Feb 28, 2012Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US8128624May 30, 2006Mar 6, 2012Covidien AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US8142473Mar 27, 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US8147489Feb 17, 2011Apr 3, 2012Covidien AgOpen vessel sealing instrument
US8162940Sep 5, 2007Apr 24, 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US8162973Aug 15, 2008Apr 24, 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8192433Aug 21, 2007Jun 5, 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US8197479Dec 10, 2008Jun 12, 2012Tyco Healthcare Group LpVessel sealer and divider
US8197633Mar 15, 2011Jun 12, 2012Covidien AgMethod for manufacturing an end effector assembly
US8211105May 7, 2007Jul 3, 2012Covidien AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US8221416Jul 17, 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with thermoplastic clevis
US8235992Aug 7, 2012Tyco Healthcare Group LpInsulating boot with mechanical reinforcement for electrosurgical forceps
US8235993Sep 24, 2008Aug 7, 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with exohinged structure
US8236025Aug 7, 2012Tyco Healthcare Group LpSilicone insulated electrosurgical forceps
US8241282Sep 5, 2008Aug 14, 2012Tyco Healthcare Group LpVessel sealing cutting assemblies
US8241283Sep 17, 2008Aug 14, 2012Tyco Healthcare Group LpDual durometer insulating boot for electrosurgical forceps
US8241284Aug 14, 2012Covidien AgVessel sealer and divider with non-conductive stop members
US8251996Sep 23, 2008Aug 28, 2012Tyco Healthcare Group LpInsulating sheath for electrosurgical forceps
US8257352Sep 4, 2012Covidien AgBipolar forceps having monopolar extension
US8257387Aug 15, 2008Sep 4, 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8267935Apr 4, 2007Sep 18, 2012Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US8267936Sep 18, 2012Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US8277447Nov 18, 2009Oct 2, 2012Covidien AgSingle action tissue sealer
US8298228Sep 16, 2008Oct 30, 2012Coviden AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US8298232Oct 30, 2012Tyco Healthcare Group LpEndoscopic vessel sealer and divider for large tissue structures
US8303582Nov 6, 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8303586Nov 6, 2012Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US8317787Aug 28, 2008Nov 27, 2012Covidien LpTissue fusion jaw angle improvement
US8333765Dec 18, 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US8348948Jul 29, 2010Jan 8, 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US8361071Aug 28, 2008Jan 29, 2013Covidien AgVessel sealing forceps with disposable electrodes
US8361072Nov 19, 2010Jan 29, 2013Covidien AgInsulating boot for electrosurgical forceps
US8366709Dec 27, 2011Feb 5, 2013Covidien AgArticulating bipolar electrosurgical instrument
US8382754Feb 26, 2013Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US8388647Mar 5, 2013Covidien LpApparatus for tissue sealing
US8394095Jan 12, 2011Mar 12, 2013Covidien AgInsulating boot for electrosurgical forceps
US8394096Mar 12, 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US8425504Apr 23, 2013Covidien LpRadiofrequency fusion of cardiac tissue
US8454602Jun 4, 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8469956Jul 21, 2008Jun 25, 2013Covidien LpVariable resistor jaw
US8469957Oct 7, 2008Jun 25, 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8486107 *Oct 20, 2008Jul 16, 2013Covidien LpMethod of sealing tissue using radiofrequency energy
US8496656Jan 16, 2009Jul 30, 2013Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US8523898Aug 10, 2012Sep 3, 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US8535312Sep 25, 2008Sep 17, 2013Covidien LpApparatus, system and method for performing an electrosurgical procedure
US8540711Jul 11, 2007Sep 24, 2013Covidien AgVessel sealer and divider
US8551091Mar 30, 2011Oct 8, 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US8568444Mar 7, 2012Oct 29, 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US8591506Oct 16, 2012Nov 26, 2013Covidien AgVessel sealing system
US8597296Aug 31, 2012Dec 3, 2013Covidien AgBipolar forceps having monopolar extension
US8597297Aug 29, 2006Dec 3, 2013Covidien AgVessel sealing instrument with multiple electrode configurations
US8623017Jul 23, 2009Jan 7, 2014Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US8623276Feb 9, 2009Jan 7, 2014Covidien LpMethod and system for sterilizing an electrosurgical instrument
US8636761Oct 9, 2008Jan 28, 2014Covidien LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US8641713Sep 15, 2010Feb 4, 2014Covidien AgFlexible endoscopic catheter with ligasure
US8647341Oct 27, 2006Feb 11, 2014Covidien AgVessel sealer and divider for use with small trocars and cannulas
US8647343Jun 23, 2010Feb 11, 2014Covidien LpSurgical forceps for sealing and dividing tissue
US8668689Apr 19, 2010Mar 11, 2014Covidien AgIn-line vessel sealer and divider
US8679114Apr 23, 2010Mar 25, 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US8696667Aug 9, 2012Apr 15, 2014Covidien LpDual durometer insulating boot for electrosurgical forceps
US8734443Sep 19, 2008May 27, 2014Covidien LpVessel sealer and divider for large tissue structures
US8740901Jan 20, 2010Jun 3, 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US8764748Jan 28, 2009Jul 1, 2014Covidien LpEnd effector assembly for electrosurgical device and method for making the same
US8784417Aug 28, 2008Jul 22, 2014Covidien LpTissue fusion jaw angle improvement
US8795274Aug 28, 2008Aug 5, 2014Covidien LpTissue fusion jaw angle improvement
US8852228Feb 8, 2012Oct 7, 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8858554Jun 4, 2013Oct 14, 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8882766Jan 24, 2006Nov 11, 2014Covidien AgMethod and system for controlling delivery of energy to divide tissue
US8898888Jan 26, 2012Dec 2, 2014Covidien LpSystem for manufacturing electrosurgical seal plates
US8906018Oct 18, 2010Dec 9, 2014Covidien LpSurgical forceps
US8939973Nov 27, 2013Jan 27, 2015Covidien AgSingle action tissue sealer
US8945125Sep 10, 2010Feb 3, 2015Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US8945126Nov 27, 2013Feb 3, 2015Covidien AgSingle action tissue sealer
US8945127Jan 23, 2014Feb 3, 2015Covidien AgSingle action tissue sealer
US8968314Sep 25, 2008Mar 3, 2015Covidien LpApparatus, system and method for performing an electrosurgical procedure
US9023043Sep 23, 2008May 5, 2015Covidien LpInsulating mechanically-interfaced boot and jaws for electrosurgical forceps
US9028493Mar 8, 2012May 12, 2015Covidien LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9095347Sep 18, 2008Aug 4, 2015Covidien AgElectrically conductive/insulative over shoe for tissue fusion
US9107672Jul 19, 2006Aug 18, 2015Covidien AgVessel sealing forceps with disposable electrodes
US9113898Sep 9, 2011Aug 25, 2015Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US9113903Oct 29, 2012Aug 25, 2015Covidien LpEndoscopic vessel sealer and divider for large tissue structures
US9113905Jun 20, 2013Aug 25, 2015Covidien LpVariable resistor jaw
US9113940Feb 22, 2012Aug 25, 2015Covidien LpTrigger lockout and kickback mechanism for surgical instruments
US9149323Jan 25, 2010Oct 6, 2015Covidien AgMethod of fusing biomaterials with radiofrequency energy
US9198711 *Mar 22, 2012Dec 1, 2015Covidien LpElectrosurgical system for communicating information embedded in an audio tone
US9198717Feb 2, 2015Dec 1, 2015Covidien AgSingle action tissue sealer
US9247988Jul 21, 2015Feb 2, 2016Covidien LpVariable resistor jaw
US9265552Dec 2, 2014Feb 23, 2016Covidien LpMethod of manufacturing electrosurgical seal plates
US9345535Oct 14, 2014May 24, 2016Covidien LpApparatus, system and method for performing an electrosurgical procedure
US9370393Feb 10, 2014Jun 21, 2016Covidien LpSurgical forceps for sealing and dividing tissue
US9375254Sep 25, 2008Jun 28, 2016Covidien LpSeal and separate algorithm
US9375270Nov 5, 2013Jun 28, 2016Covidien AgVessel sealing system
US9375271Nov 5, 2013Jun 28, 2016Covidien AgVessel sealing system
US20040115296 *Apr 5, 2002Jun 17, 2004Duffin Terry M.Retractable overmolded insert retention apparatus
US20040162557 *Apr 6, 2001Aug 19, 2004Tetzlaff Philip M.Vessel sealing instrument
US20050021025 *Apr 6, 2001Jan 27, 2005Buysse Steven P.Electrosurgical instruments which reduces collateral damage to adjacent tissue
US20050021027 *May 14, 2004Jan 27, 2005Chelsea ShieldsTissue sealer with non-conductive variable stop members and method of sealing tissue
US20050101952 *Aug 17, 2004May 12, 2005Lands Michael J.Vessel sealing wave jaw
US20050137592 *Nov 24, 2004Jun 23, 2005Nguyen Lap P.Vessel sealing instrument
US20050154387 *Oct 8, 2004Jul 14, 2005Moses Michael C.Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US20060064086 *Sep 13, 2005Mar 23, 2006Darren OdomBipolar forceps with multiple electrode array end effector assembly
US20060074417 *Oct 3, 2005Apr 6, 2006Cunningham James SSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US20060079933 *Sep 21, 2005Apr 13, 2006Dylan HushkaLatching mechanism for forceps
US20060129146 *Feb 6, 2006Jun 15, 2006Sherwood Services AgVessel sealer and divider having a variable jaw clamping mechanism
US20060167450 *Jan 10, 2006Jul 27, 2006Johnson Kristin DVessel sealer and divider with rotating sealer and cutter
US20060173452 *Jun 3, 2003Aug 3, 2006Buysse Steven PLaparoscopic bipolar electrosurgical instrument
US20060190035 *Apr 19, 2006Aug 24, 2006Sherwood Services AgLatching mechanism for forceps
US20060217709 *May 30, 2006Sep 28, 2006Sherwood Services AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US20060259036 *Jul 19, 2006Nov 16, 2006Tetzlaff Philip MVessel sealing forceps with disposable electrodes
US20060264922 *Jul 24, 2006Nov 23, 2006Sartor Joe DMolded insulating hinge for bipolar instruments
US20060264931 *Apr 29, 2004Nov 23, 2006Chapman Troy JElectrosurgical instrument which reduces thermal damage to adjacent tissue
US20070016187 *Jul 13, 2005Jan 18, 2007Craig WeinbergSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US20070043352 *Aug 19, 2005Feb 22, 2007Garrison David MSingle action tissue sealer
US20070062017 *Sep 11, 2006Mar 22, 2007Dycus Sean TVessel sealer and divider and method of manufacturing same
US20070078458 *Sep 29, 2006Apr 5, 2007Dumbauld Patrick LInsulating boot for electrosurgical forceps
US20070078459 *Sep 29, 2006Apr 5, 2007Sherwood Services AgFlexible endoscopic catheter with ligasure
US20070088356 *Oct 12, 2006Apr 19, 2007Moses Michael COpen vessel sealing instrument with cutting mechanism
US20070106295 *Nov 8, 2006May 10, 2007Garrison David MInsulating boot for electrosurgical forceps
US20070106297 *Nov 8, 2006May 10, 2007Dumbauld Patrick LIn-line vessel sealer and divider
US20070118111 *Nov 22, 2005May 24, 2007Sherwood Services AgElectrosurgical forceps with energy based tissue division
US20070118115 *Nov 22, 2005May 24, 2007Sherwood Services AgBipolar electrosurgical sealing instrument having an improved tissue gripping device
US20070142834 *Feb 14, 2007Jun 21, 2007Sherwood Services AgForceps with spring loaded end effector assembly
US20070156139 *Mar 13, 2003Jul 5, 2007Schechter David ABipolar concentric electrode assembly for soft tissue fusion
US20070173811 *Jan 24, 2006Jul 26, 2007Sherwood Services AgMethod and system for controlling delivery of energy to divide tissue
US20070173814 *Nov 9, 2006Jul 26, 2007David HixsonVessel sealer and divider for large tissue structures
US20070179499 *Jun 13, 2003Aug 2, 2007Garrison David MVessel sealer and divider for use with small trocars and cannulas
US20070203485 *Mar 27, 2007Aug 30, 2007Keppel David SElectrosurgical electrode having a non-conductive porous ceramic coating
US20070213706 *May 7, 2007Sep 13, 2007Sherwood Services AgBipolar forceps having monopolar extension
US20070213708 *May 7, 2007Sep 13, 2007Sherwood Services AgBipolar forceps having monopolar extension
US20070255279 *May 7, 2007Nov 1, 2007Buysse Steven PElectrosurgical instrument which reduces collateral damage to adjacent tissue
US20070260238 *May 5, 2006Nov 8, 2007Sherwood Services AgCombined energy level button
US20070260241 *May 4, 2006Nov 8, 2007Sherwood Services AgOpen vessel sealing forceps disposable handswitch
US20070265616 *May 10, 2006Nov 15, 2007Sherwood Services AgVessel sealing instrument with optimized power density
US20080009860 *Jul 7, 2006Jan 10, 2008Sherwood Services AgSystem and method for controlling electrode gap during tissue sealing
US20080015575 *Jul 14, 2006Jan 17, 2008Sherwood Services AgVessel sealing instrument with pre-heated electrodes
US20080021450 *Jul 18, 2006Jan 24, 2008Sherwood Services AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US20080039835 *Sep 5, 2007Feb 14, 2008Johnson Kristin DVessel sealing instrument with electrical cutting mechanism
US20080039836 *Aug 8, 2006Feb 14, 2008Sherwood Services AgSystem and method for controlling RF output during tissue sealing
US20080045947 *Aug 21, 2007Feb 21, 2008Johnson Kristin DVessel sealing instrument with electrical cutting mechanism
US20080058802 *Aug 29, 2006Mar 6, 2008Sherwood Services AgVessel sealing instrument with multiple electrode configurations
US20080082100 *May 25, 2007Apr 3, 2008Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US20080091189 *Oct 17, 2006Apr 17, 2008Tyco Healthcare Group LpAblative material for use with tissue treatment device
US20080114356 *Jan 16, 2008May 15, 2008Johnson Kristin DVessel Sealing Instrument
US20080142726 *Oct 27, 2006Jun 19, 2008Keith RelleenMulti-directional mechanical scanning in an ion implanter
US20080195093 *Feb 14, 2007Aug 14, 2008Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US20080215051 *Mar 27, 2008Sep 4, 2008Buysse Steven PLaparoscopic Bipolar Electrosurgical Instrument
US20080249527 *Apr 4, 2007Oct 9, 2008Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US20080312653 *Jul 29, 2008Dec 18, 2008Arts Gene HMechanism for Dividing Tissue in a Hemostat-Style Instrument
US20090012520 *Sep 19, 2008Jan 8, 2009Tyco Healthcare Group LpVessel Sealer and Divider for Large Tissue Structures
US20090018535 *Sep 26, 2008Jan 15, 2009Schechter David AArticulating bipolar electrosurgical instrument
US20090062794 *Sep 16, 2008Mar 5, 2009Buysse Steven PElectrosurgical Instrument Which Reduces Collateral Damage to Adjacent Tissue
US20090088738 *Sep 17, 2008Apr 2, 2009Tyco Healthcare Group LpDual Durometer Insulating Boot for Electrosurgical Forceps
US20090088739 *Sep 23, 2008Apr 2, 2009Tyco Healthcare Group LpInsulating Mechanically-Interfaced Adhesive for Electrosurgical Forceps
US20090088740 *Sep 23, 2008Apr 2, 2009Tyco Healthcare Group LpInsulating Boot with Mechanical Reinforcement for Electrosurgical Forceps
US20090088741 *Sep 23, 2008Apr 2, 2009Tyco Healthcare Group LpSilicone Insulated Electrosurgical Forceps
US20090088744 *Sep 12, 2008Apr 2, 2009Tyco Healthcare Group LpInsulating Boot for Electrosurgical Forceps With Thermoplastic Clevis
US20090088745 *Sep 22, 2008Apr 2, 2009Tyco Healthcare Group LpTapered Insulating Boot for Electrosurgical Forceps
US20090088746 *Sep 23, 2008Apr 2, 2009Tyco Healthcare Group LpInsulating Mechanically-Interfaced Boot and Jaws for Electrosurgical Forceps
US20090088747 *Sep 23, 2008Apr 2, 2009Tyco Healthcare Group LpInsulating Sheath for Electrosurgical Forceps
US20090088749 *Sep 24, 2008Apr 2, 2009Tyco Heathcare Group LpInsulating Boot for Electrosurgical Forceps with Exohinged Structure
US20090088750 *Sep 24, 2008Apr 2, 2009Tyco Healthcare Group LpInsulating Boot with Silicone Overmold for Electrosurgical Forceps
US20090112206 *Jan 6, 2009Apr 30, 2009Dumbauld Patrick LBipolar Forceps Having Monopolar Extension
US20090131934 *Jan 26, 2009May 21, 2009Covidion AgElectrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue
US20090149853 *Jan 16, 2009Jun 11, 2009Chelsea ShieldsTissue Sealer with Non-Conductive Variable Stop Members and Method of Sealing Tissue
US20090149854 *Feb 10, 2009Jun 11, 2009Sherwood Services AgSpring Loaded Reciprocating Tissue Cutting Mechanism in a Forceps-Style Electrosurgical Instrument
US20090187188 *Jul 23, 2009Sherwood Services AgCombined energy level button
US20090198233 *Jan 28, 2009Aug 6, 2009Tyco Healthcare Group LpEnd Effector Assembly for Electrosurgical Device and Method for Making the Same
US20090209957 *Feb 9, 2009Aug 20, 2009Tyco Healthcare Group LpMethod and System for Sterilizing an Electrosurgical Instrument
US20090306660 *Dec 10, 2009Johnson Kristin DVessel Sealing Instrument
US20100042100 *Aug 19, 2009Feb 18, 2010Tetzlaff Philip MVessel Sealing Instrument
US20100042140 *Aug 15, 2008Feb 18, 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US20100042142 *Aug 15, 2008Feb 18, 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US20100049187 *Aug 21, 2008Feb 25, 2010Carlton John DElectrosurgical Instrument Including a Sensor
US20100057081 *Mar 4, 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057082 *Mar 4, 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057083 *Aug 28, 2008Mar 4, 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100063500 *Sep 5, 2008Mar 11, 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100069953 *Sep 16, 2008Mar 18, 2010Tyco Healthcare Group LpMethod of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument
US20100076427 *Sep 25, 2008Mar 25, 2010Tyco Healthcare Group LpSeal and Separate Algorithm
US20100076430 *Mar 25, 2010Tyco Healthcare Group LpElectrosurgical Instrument Having a Thumb Lever and Related System and Method of Use
US20100076431 *Sep 25, 2008Mar 25, 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100076432 *Mar 25, 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100087816 *Oct 7, 2008Apr 8, 2010Roy Jeffrey MApparatus, system, and method for performing an electrosurgical procedure
US20100087818 *Apr 8, 2010Tyco Healthcare Group LpMethod of Transferring Rotational Motion in an Articulating Surgical Instrument
US20100100122 *Oct 20, 2008Apr 22, 2010Tyco Healthcare Group LpMethod of Sealing Tissue Using Radiofrequency Energy
US20100130977 *Nov 18, 2009May 27, 2010Covidien AgSingle Action Tissue Sealer
US20100145334 *Dec 10, 2008Jun 10, 2010Tyco Healthcare Group LpVessel Sealer and Divider
US20100204697 *Aug 12, 2010Dumbauld Patrick LIn-Line Vessel Sealer and Divider
US20100331839 *Sep 10, 2010Dec 30, 2010Schechter David ACompressible Jaw Configuration with Bipolar RF Output Electrodes for Soft Tissue Fusion
US20110004209 *Sep 7, 2010Jan 6, 2011Kate LawesBipolar Forceps having Monopolar Extension
US20110018164 *Oct 6, 2010Jan 27, 2011Sartor Joe DMolded Insulating Hinge for Bipolar Instruments
US20110071523 *Mar 24, 2011Tyco Healthcare Group LpVessel Sealer with Self-Aligning Jaws
US20110098689 *Oct 28, 2009Apr 28, 2011Tyco Healthcare Group LpApparatus for Tissue Sealing
US20110238067 *Sep 29, 2011Moses Michael COpen vessel sealing instrument with cutting mechanism
US20130253501 *Mar 22, 2012Sep 26, 2013Tyco Healthcare Group LpElectrosurgical System
USD649249Nov 22, 2011Tyco Healthcare Group LpEnd effectors of an elongated dissecting and dividing instrument
USD680220Apr 16, 2013Coviden IPSlider handle for laparoscopic device
USRE44834Dec 7, 2012Apr 8, 2014Covidien AgInsulating boot for electrosurgical forceps
Classifications
U.S. Classification606/38
International ClassificationA61B18/14
Cooperative ClassificationA61B2018/0063, A61B2018/00601, A61B18/1442, A61B2018/145, A61B2018/00875, A61B2018/00702
European ClassificationA61B18/14F