Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20080027388 A1
Publication typeApplication
Application numberUS 11/764,744
Publication dateJan 31, 2008
Filing dateJun 18, 2007
Priority dateNov 19, 1999
Also published asCA2466271A1, EP1424959A1, EP1424959A4, US7235092, US9320626, US20020165600, WO2003022177A1
Publication number11764744, 764744, US 2008/0027388 A1, US 2008/027388 A1, US 20080027388 A1, US 20080027388A1, US 2008027388 A1, US 2008027388A1, US-A1-20080027388, US-A1-2008027388, US2008/0027388A1, US2008/027388A1, US20080027388 A1, US20080027388A1, US2008027388 A1, US2008027388A1
InventorsChristopher Banas, Steven Bailey, Christopher Boyle
Original AssigneeAdvanced Bio Prosthetic Surfaces, Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Guidewires and thin film catheter-sheaths and method of making same
US 20080027388 A1
Abstract
Guidewires and thin-film catheter-sheaths, fabricated using vacuum deposition techniques, which are monolayer or plural-layer members having ultra-thin wall thicknesses to provide very-low profile delivery assemblies for introduction and delivery of endoluminal devices.
Images(3)
Previous page
Next page
Claims(16)
1. A guidewire having a guidewire body, wherein the guidewire body comprises a thin-film of a biocompatible metal formed by a vacuum deposition technique.
2. The guidewire of claim 1, wherein the guidewire body further comprises a plurality of microperforations that impart at least one of longitudinal compliance and radial compliance.
3. The guidewire of claim 1, wherein the thin-film comprises a plurality of layers.
4. The guidewire of claim 3, wherein a radiopaque metal is used to form at least one of the layers.
5. The guidewire of claim 3, wherein the plurality of layers are concentric.
6. The guidewire of claim 1, wherein the guidewire body is generally tubular.
7. A catheter-sheath having a generally tubular body, wherein the body comprises a thin-film of a biocompatible metal formed by a vacuum deposition technique.
8. The catheter-sheath of claim 7, wherein the body further comprises a plurality of microperforations that impart at least one of longitudinal compliance and radial compliance.
9. The catheter-sheath of claim 7, wherein the thin-film comprises a plurality of layers.
10. The catheter-sheath of claim 9, wherein a radiopaque metal is used to form at least one of the layers.
11. The catheter-sheath of claim 9, wherein the plurality of layers are concentric.
12. An assembly for delivering a medical device via a patient's vascular system, the assembly comprising: (a) a medical device; (b) a guidewire having a guidewire body, the guidewire body comprising a first thin-film of a first biocompatible metal formed by a vacuum deposition technique; and (c) a catheter-sheath having generally tubular catheter-sheath body, the catheter-sheath body comprising a second thin-film of a second biocompatible metal formed by a vacuum deposition technique, the catheter-sheath body defining a catheter-sheath lumen; wherein the guidewire is positioned coaxially within the lumen of the catheter-sheath, and wherein the medical device is concentrically positioned within a distal portion of the catheter-sheath lumen and intermediate the catheter-sheath body and the guidewire body, thereby forming the assembly.
13. The assembly of claim 12, wherein the guidewire body is generally tubular.
14. The assembly of claim 12, wherein at least one of the guidewire body and the catheter-sheath body further comprises a plurality of microperforations that impart at least one of longitudinal compliance and radial compliance.
15. The assembly of claim 12, wherein the first and second biocompatible metals are similar.
16. The assembly of claim 12, wherein the medical device is selected from the group consisting of a stent, a graft, a stent-graft, a valve, a filter, an occluder, and a patch.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a Continuation of U.S. patent application Ser. No. 10/136,001 which was filed Apr. 29, 2002, which is a Continuation-In-Part of U.S. patent application Ser. No. 09/443,929 which was filed on Nov. 19, 1999, and which also claims the benefit of U.S. Provisional Patent Application No. 60/318,730 which was filed on Sep. 12, 2001, the disclosures of which is hereby incorporated by reference
  • BACKGROUND OF THE INVENTION
  • [0002]
    The present invention relates generally to the field of medical devices, and more particularly to guiding means such as a guidewire for advancing a catheter within a body lumen to perform a minimally invasive procedure such as percutaneous transluminal coronary angioplasty (PTCA). The present invention further pertains to catheters and sheaths for delivering and deploying an implantable device within a body lumen.
  • [0003]
    In a typical PTCA procedure a guiding catheter having a preformed distal tip is percutaneously introduced into the cardiovascular system of a patient by means of a conventional Seldinger technique and advanced proximally until the distal tip of the guiding catheter is seated in the ostium of a desired coronary artery. A guidewire is positioned within an inner lumen of a dilatation catheter and then both are advanced through the guiding catheter to the distal end thereof. The guidewire is first advanced out of the distal end of the guiding catheter into the patient's coronary vasculature until the distal end of the guidewire crosses a lesion to be dilated, then the dilatation catheter having an inflatable balloon on the distal portion thereof is advanced into the patient's coronary anatomy over the previously introduced guidewire until the balloon of the dilatation catheter is properly positioned across the lesion. Once in position across the lesion, the balloon is inflated one or more times to a predetermined size with radiopaque fluid to compress the arteriosclerotic plaque of the lesion against the inside of the artery wall and to otherwise expand the inner lumen of the artery. The balloon is then deflated so that blood flow resumes through the dilated artery and the dilatation catheter is removed.
  • [0004]
    In a conventional stent delivery procedure, a stent is delivered endoluminally on a delivery catheter, then expanded either by an angioplasty balloon or by removing a constraining sheath and permitting the stent to radially expand by its shape memory, superelastic or self-expanding properties. Conventional guidewires for angioplasty and stent-delivery procedures usually comprise an elongated core member with the distal portion of the core member having one or more tapered sections and a flexible body such as a helical coil disposed about the distal portion of the core member. A shapeable member, which may be the distal extremity of the core member or a separate shaping ribbon which is secured to the distal extremity of the core member extends through the flexible body and is secured to a rounded plug at the distal end of the flexible body. Torquing means are provided on the proximal end of the core member to rotate, and thereby steer, the guidewire while it is being advanced through a patient's vascular system.
  • [0005]
    Further details of guidewires can be found in U.S. Pat. No. 4,516,972 (Samson); U.S. Pat. No. 4,538,622 (Samson, et al.); U.S. Pat. No. 4,554,929 (Samson, et al.); 4,616,652 (Simpson); U.S. Pat. No. 4,748,986 (Morrison et al.); U.S. Pat. No. 5,135,503 (Abrams); U.S. Pat. No. 5,341,818 (Abrams et al.); and U.S. Pat. No. 5,411,476 (Abrams et al.) each of which is hereby incorporated herein in their entirety by reference thereto.
  • [0006]
    A major requirement for guidewires and other intraluminal guiding members, whether they be solid wire or tubular members, is that they have sufficient column strength to be pushed through a patient's vascular system or other body lumen without kinking. However, they must also be flexible enough to pass through tortuous passageways without damaging the blood vessel or other body lumen through which they are advanced. Efforts have been made to improve both the strength and flexibility of guidewires in order to make them more suitable for their intended uses, but these two properties tend to be diametrically opposed to one another in that an increase in one usually involves a decrease in the other.
  • [0007]
    The prior art makes reference to the use of alloys such as NITINOL (nickel-titanium alloy) which have shape memory and/or superelastic or pseudoelastic characteristics in medical devices which are designed to be inserted into a patient's body. The shape memory characteristics allow the prior art devices to be deformed while in the martensite phase to facilitate their insertion into a body lumen or cavity and then be heated within the body to transform the metal to the austenite phase so that the device returns to its remembered shape or to exert a force on whatever prevents the device from returning to its zero strain configuration. Superelastic characteristics on the other hand generally allow the metal to be deformed and restrained in the deformed condition to facilitate the insertion of the medical device containing the metal into a patient's body, with such deformation causing the phase transformation, e.g. austenite to martensite. Once within the body lumen the restraint on the superelastic member can be removed, thereby reducing the stress therein so that the superelastic member can return to its original undeformed shape by the transformation back to the original austenite phase or so that the superelastic member can exert a force on whatever prevents the superelastic member from returning to its zero strain configuration. In other applications, the stress induced austenite to martensite transformation is utilized to minimize trauma while advancing a medical device such as a guidewire within a patient's body lumen.
  • [0008]
    Shape memory or superelastic alloys generally have at least two phases, a martensite phase, which has a relatively low strength and which is stable at relatively low temperatures and higher strains, and an austenite phase, which has a relatively high strength and which is stable at temperatures higher and strains lower than the martensite phase. Shape memory characteristics are imparted to the alloy by heating the metal at a temperature above body temperature, preferably between about 40° to about 60° C., while the metal is kept in a constrained shape and then cooled to ambient temperature. The cooling of the alloy to ambient temperature causes at least part of the austenite phase to transform to the martensite phase which is more stable at this temperature. The constrained shape of the metal during this heat treatment is the shape programmed when the alloy is reheated to these temperatures causing the transformation of the martensite phase to the austenite phase. The metal in the martensite phase may be plastically deformed to facilitate the entry thereof into a patient's body. The metal will remain in the pre-programmed shape even when cooled to a temperature below the transformation temperature back to the martensite phase, so it must be reformed into a more usable shape, if necessary. Subsequent heating of the deformed martensite phase to a temperature above the martensite to austenite transformation temperature causes the deformed martensite phase to transform to the austenite phase and during this phase transformation the metal reverts back to its remembered shape or to exert a force on whatever prevents the device from returning to its zero strain configuration.
  • [0009]
    When stress is applied to a specimen of a metal such as NITINOL® exhibiting superelastic characteristics at a temperature at or above which the transformation of martensite phase to the austenite phase is complete, the specimen deforms elastically until it reaches a particular stress level where the alloy then undergoes a stress-induced phase transformation from the austenite phase to the martensite phase. As the phase transformation proceeds, the alloy undergoes significant increases in strain but with little or no corresponding increases in stress. The strain increases while the stress remains essentially constant until the transformation of the austenite phase to the martensite phase is complete. Thereafter, further increase in stress is necessary to cause further deformation. The martensitic metal first yields elastically upon the application of additional stress and then plastically with permanent residual deformation.
  • [0010]
    If the load on the specimen is removed before any permanent deformation has occurred, the martensitic specimen will elastically recover and transform back to the austenite phase. The reduction in stress first causes a decrease in strain. As stress reduction reaches the level at which the martensite phase transforms back into the austenite phase, the stress level in the specimen will remain essentially constant (but substantially less than the constant stress level at which the austenite transforms to the martensite) until the transformation back to the austenite phase is complete, i.e., there is significant recovery in strain with only negligible corresponding stress reduction. After the transformation back to austenite is complete, further stress reduction results in elastic strain reduction. This ability to incur significant strain at relatively constant stress upon the application of a load and to recover from the deformation upon the removal of the load is commonly referred to as superelasticity or pseudoelasticity.
  • [0011]
    The prior art makes reference to the use of metal alloys having superelastic characteristics in medical devices which are intended to be inserted or otherwise used within a patient's body. See for example, U.S. Pat. No. 4,665,906 (Jervis) and U.S. Pat. No. 4,925,445 (Sakamoto et al). The Sakamoto et al. patent discloses the use of a nickel-titanium superelastic alloy in an intravascular guidewire which could be processed to develop relatively high yield strength levels. However, at the relatively high yield stress levels which cause the austenite-to-martensite phase transformation characteristic of the material, it did not have a very extensive stress-induced strain range in which the austenite transforms to martensite at relative constant stress. As a result, frequently as the guidewire was being advanced through a patient's tortuous vascular system, it would be stressed beyond the superelastic region, i.e. develop a permanent set or even kink which can result in tissue damage. This permanent deformation would generally require the removal of the guidewire and the replacement thereof with another. Products of the Jervis patent on the other hand had extensive strain ranges, i.e. 2 to 8% strain, but the relatively constant stress level at which the austenite transformed to martensite was very low, e.g. 50 ksi.
  • [0012]
    The prior methods of using the shape memory characteristics of these alloys in medical devices intended to be placed within a patient's body presented operational difficulties. For example, with shape memory alloys having a stable martensite temperature below body temperature, it was frequently difficult to maintain the temperature of the medical device containing such an alloy sufficiently below body temperature to prevent the transformation of the martensite phase to the austenite phase when the device was being inserted into a patient's body. With intravascular devices formed of shape memory alloys having martensite-to-austenite transformation temperatures well above body temperature, the devices could be introduced into a patient's body with little or no problem, but they had to be heated to the martensite-to-austenite transformation temperature which was frequently high enough to cause tissue damage and very high levels of pain.
  • [0013]
    What has been needed and heretofore unavailable is tubular body for intravascular devices, such as guidewires or catheter-sheaths, which have at least a portion thereof exhibiting superelastic and/or shape memory characteristics and which is fabricated by vacuum deposition techniques to provide precise control over the crystalline structure of the material used to fabricate the device.
  • BRIEF SUMMARY OF THE INVENTION
  • [0014]
    The present invention relates to a method of manufacturing a guidewire or a catheter-sheath, each having a body. The body of the inventive guidewire can be generally tubular and define a central lumen or, alternatively, can be solid. The body of the inventive catheter-sheath is generally tubular and defines a central lumen. The method of manufacturing the inventive guidewire or catheter-sheath comprises providing a substrate having a surface capable of accommodating metal deposition thereon and having a substrate geometry corresponding at least in part to a geometry desired for the body, depositing a thin-film of a biocompatible metal onto the substrate using a vacuum deposition technique, the thin-film forming the body, and removing the substrate from the body. The method optionally further comprises subjecting the body to post-deposition annealing.
  • [0015]
    The vacuum deposition technique can be any vacuum deposition technique such as ion beam-assisted evaporative deposition or sputter deposition (e.g., cylindrical magnetron sputter deposition). In a preferred embodiment, ion beam-assisted evaporative deposition is used and is conducted in the presence of an inert gas such as, for example, argon, xenon, nitrogen, and neon.
  • [0016]
    In one embodiment, a sacrificial layer is deposited onto the substrate prior to the deposition of the biocompatible metal. Alternatively, the substrate itself comprises a sacrificial material. Removal of the substrate is accomplished by any suitable method, such as etching the sacrificial material. In certain embodiments, the substrate geometry is generally cylindrical having a circular transverse cross-section or, alternatively, an elliptical transverse cross-section.
  • [0017]
    The biocompatible metal can be selected from the group consisting of elemental titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, nitinol, and stainless steel.
  • [0018]
    In one embodiment, the deposition process is repeated a plurality of times to form a plurality of successive layers of the deposited metal. In a preferred embodiment, the successive layers are concentric. In another embodiment, a radiopaque metal is used to form at least one of the layers.
  • [0019]
    The invention also relates to a guidewire having a body comprising a thin-film of a biocompatible metal formed by a vacuum deposition technique. In certain embodiments of the inventive guidewire, the thin-film comprises a plurality of layers. The invention further relates to a catheter-sheath having a generally tubular body, the body comprising a thin-film of a biocompatible metal formed by a vacuum deposition technique. In certain embodiments of the inventive catheter-sheath, the thin-film comprises a plurality of layers.
  • [0020]
    The invention also relates to an assembly for delivering a medical device via a patient's vascular system. The inventive assembly comprises (a) a medical device, (b) a guidewire having a guidewire body, the guidewire body comprising a first thin-film of a first biocompatible metal formed by a vacuum deposition technique, and (c) a catheter-sheath having generally tubular catheter-sheath body, the catheter-sheath body comprising a second thin-film of a second biocompatible metal formed by a vacuum deposition technique, the catheter-sheath body defining a catheter-sheath lumen. The assembly is formed by positioning the guidewire coaxially within the lumen of the catheter-sheath and concentrically positioning the medical device within the lumen of the catheter-sheath and intermediate between the catheter-sheath body and the guidewire body. The first and second biocompatible metals can be the same metal or different metals. In one embodiment at least one of the first thin-film and the second thin-film comprises a plurality of layers. In an alternative embodiment, the first thin-film and the second thin-film each comprise a plurality of layers. In a preferred embodiment, a radiopaque metal is used to form at least one of the layers. The medical device can be any medical device that can be delivered via a patient's vascular system, for example, a stent, a graft, a stent-graft, a valve, a filter, an occluder, and a patch.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0021]
    The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
  • [0022]
    FIG. 1 is a side-elevational cross-sectional view of a guidewire in accordance with the present invention.
  • [0023]
    FIG. 2 is a side-elevational cross-sectional view of a second embodiment of a guidewire in accordance with the present invention.
  • [0024]
    FIG. 3 is a side-elevational cross-sectional view of a thin-film catheter-sheath in accordance with the present invention.
  • [0025]
    FIG. 4 is a side-elevational cross-sectional view of a thin-film catheter-sheath positioned concentrically about an inventive guidewire.
  • [0026]
    FIGS. 5A-5C illustrate a further embodiment of the thin-film catheter-sheath and/or guidewire incorporating microperforations of various patterns in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0027]
    The present invention is directed to guidewires and to thin-film catheter-sheaths, wherein each of the guidewire and the thin-film catheter-sheath is fabricated by vacuum deposition techniques, similar to those employed in the microelectronics arts to fabricate semiconductors. Each of the guidewire and the catheter-sheath has a body which is preferably formed either as a single layer tubular member or as a laminated tubular member with plural layers, wherein the layers can be concentrically aligned.
  • [0028]
    The inventive guidewires and catheter-sheaths provide several advantages over the prior art. Specific examples of such advantages of the inventive metal catheter-sheaths and thin-film guidewires, include: (i) metal catheter-sheaths have the same metallic creep rate as the self-expanding devices that they constrain so they are less likely to deform and take a set during sterilization or during the shelf-life of the product; (ii) by controlling material properties and employing micro-perforations it is possible to impart radial, longitudinal or multi-directional compliance to the catheter-sheath or guidewire such that compliance and or flexibility is constant or varied over the length of the device; (iii) when vacuum deposition is employed in preference to conventional wrought processes and materials, the chemical content, microstructure, mechanical properties, etc., can be precisely controlled throughout the thickness of the film and along the entire length of the device, as opposed to the prior art which requires fusion of multiple sections to impart certain mechanical properties, microstructure, or chemical content; (iv) in addition to providing single layer thin-film devices, the present invention provides for fabricating multi-layer devices which exhibit improved strength, biocompatibility, corrosion resistance, fatigue resistance, radiopacity, trackability, pushability and interactions with other medical devices or anatomical structures; and (v) vacuum deposition processes lend themselves to fabricating thinner devices and devices with improved wall thickness uniformity.
  • [0029]
    The mechanical properties of metals depend significantly on their microstructure. The forming and shaping processes used to fabricate metal foils, wires and thin-walled seamless tubes involves heavy deformation of a bulk material, which results in a heavily strained and deformed grain structure. Even though annealing treatments may partially alleviate the grain deformation, it is typically impossible to revert to well-rounded grain structure and a large range of grain sizes is a common result. The end result of conventional forming and shaping processes, coupled with annealing, typically results in non-uniform grain structure and less favorable mechanical properties in smaller sized wrought metal products. It is possible, therefore, to produce high quality small sized metal products with a homogeneous crystalline structure for a variety of purposes, such as micromechanical devices and medical devices, using vacuum deposition technologies.
  • [0030]
    In vacuum deposition technologies, materials are formed directly in the desired geometry, e.g., planar, tubular, etc. The common principle of the vacuum deposition processes is to take a material in a minimally processed form (a source material), such as pellets or thick foils, and atomize the material. Atomization may be carried out using heat, as is the case in physical vapor deposition, or using the effect of collisional processes, as in the case of sputter deposition, for example. In some forms of deposition, a process such as laser ablation, which creates microparticles which typically comprise one or more atoms, may replace atomization. Using laser ablation, the number of atoms per particle may be in the thousands or more. The atoms or microparticles of the source material are then deposited on a substrate or mandrel to directly form the desired object. In other deposition methodologies, chemical reactions between ambient gas introduced into the vacuum chamber, i.e., the gas source, and the deposited atoms and/or particles are part of the deposition process. In this scenario, the deposited material includes compound species that are formed due to the reaction of the solid source and the gas source, such as in the case of chemical vapor deposition. In most cases, the deposited material is then either partially or completely removed from the substrate thereby releasing the desired product.
  • [0031]
    The rate of film growth is a significant parameter of vacuum deposition processes. In order to deposit materials that can be compared in functionality with wrought metal products, deposition rates in excess of 1 micrometers/hour are a must and indeed rates as high as 100 micrometers per hour are desirable. These are high deposition rates and it is known that at such rates the deposits always have a columnar structure. Depending on other deposition parameters, and most importantly on the substrate temperature, the columns may be amorphous or crystalline, but at such high deposition rates microcrystalline structure development can be expected at best. The difficulty is that the columns provide a mechanically weak structure in which crack propagation can occur uninhibited across the whole thickness of the deposit.
  • [0032]
    A special advantage of vacuum deposition technologies is that it is possible to deposit layered materials and thus films possessing exceptional qualities may be produced (c.f., H. Holleck, V. Schier: “Multilayer PVD coatings for wear protection”, Surface and Coatings Technology, Vol. 76-77 (1995) pp. 328-336). Layered materials, such as superstructures or multilayers, are commonly deposited to take advantage of some chemical, electronic, or optical property of the material as a coating; a common example is an antireflective coating on an optical lens.
  • [0033]
    It has not been recognized until relatively recently that multilayer coatings may have improved mechanical properties compared with similar coatings made of a single layer. The improved mechanical properties may be due to the ability of the interface between the layers to relieve stress. This stress relief occurs if the interface provides a slide plane, is plastic, or may delaminate locally. This property of multilayer films has been recognized in regard with their hardness but this recognition has not been translated to other mechanical properties that are significant for metal products that may be used in application where they replace conventional wrought metal parts.
  • [0034]
    The process according to the invention can be modified by interrupting film growth at various layers thereby resulting in discontinuous columns that prevent crack propagation across the entire film thickness. In this sense, it is not necessary that the structure comprise a multiplicity of chemically distinct layers, as is common in the case of thin film technology where multilayers are used. Such chemical differences may be useful and may contribute to improved properties of the materials.
  • [0035]
    In its simplest form, the process of fabricating the inventive multilayer devices comprises the steps of providing a substrate, depositing a first layer of material on the substrate, depositing a second layer of material on the first layer of material and optionally removing the layered material from the substrate. In more complex cases, the number of layers is more than two. There is no limitation regarding the number of layers and regarding the thickness of each layer.
  • [0036]
    As used in this application a “layer” is intended to mean a substantially uniform material limited by interfaces between it and adjacent other substantially homogeneous layers, substrate, or environment. The interface region between adjacent layers is an inhomogeneous region in which extensive thermodynamic parameters may change. Different layers are not necessarily characterized by different values of the extensive thermodynamic parameters but at the interface, there is a local change at least in some parameters. For example, the interface between two steel layers that are identical in composition and microstructure may be characterized by a high local concentration of grain boundaries due to an interruption of the film growth process. Thus, the interface between layers is not necessarily different in chemical composition if it is different in structure.
  • [0037]
    It is necessary to provide for good adhesion between the layers and this is usually achieved by providing for a relatively broad interface region rather than for an abrupt interface region. The width of the interface region may be defined as the range within which extensive thermodynamic parameters change. This range can depend on the interface area considered and it may mean the extent of interface microroughness. In other words, adhesion may be promoted by increased interface microroughness between adjacent layers.
  • [0038]
    By providing for a layered structure, the inventive materials comprise a controlled maximum size of grains and columns as extended defects in the direction of the film growth (perpendicular to the layers). This limit of the grain or defect size results in materials that have increased mechanical strength and particularly increased toughness compared to their non-laminated counterparts, both deposited and wrought materials. In addition, by limiting the extent to which defects and grain boundaries reach across the laminate, corrosion resistance is also improved.
  • [0039]
    Laminated materials will have additional advantages when chemical compositions of the layers are chosen to achieve special properties. For example, a radiopaque material such as Ta may form one layer of a structure while other layers are chosen to provide the material with necessary mechanical and other properties.
  • [0040]
    In accordance with a preferred embodiment the present invention, the preferred deposition methodologies include ion-beam assisted evaporative deposition and sputter deposition techniques. In ion beam-assisted evaporative deposition it is preferable to employ dual and simultaneous thermal electron beam evaporation with simultaneous ion bombardment of the material being deposited using an inert gas, such as argon, xenon, nitrogen or neon. Bombardment with inert gas ions during deposition serves to reduce void content by increasing the atomic packing density in the deposited material. The reduced void content in the deposited material allows the mechanical properties of that deposited material to be similar to bulk material properties. Deposition rates up to 20 nanometers per second (nm/sec) are achievable using ion beam-assisted evaporative deposition techniques.
  • [0041]
    Materials to make the inventive guidewires and thin-film catheter-sheaths are chosen for their biocompatibility, mechanical properties, i.e., tensile strength, yield strength, and their ease of deposition. Examples of such materials include, but are not limited to, elemental titanium, vanadium, aluminum, nickel, tantalum, zirconium, chromium, silver, gold, silicon, magnesium, niobium, scandium, platinum, cobalt, palladium, manganese, molybdenum and alloys thereof, such as zirconium-titanium-tantalum alloys, nitinol, and stainless steel.
  • [0042]
    The guidewires and thin-film catheter-sheaths of the invention are preferably fabricated of nickel-titanium alloys, and may be doped or laminated with radiopaque materials, such as tantalum (Ta) to enhance the radiopacity of the guidewire under fluoroscopy. In one embodiment, the inventive guidewires and thin-film catheter-sheaths preferably have shape memory or superelastic properties. By way of example, a method of forming the elongated shape memory or superelastic portion of the guidewire or thin-film catheter-sheath can include fabricating a generally tubular member by vacuum depositing nickel-titanium alloy onto a suitable cylindrical substrate, removing the deposited tubular member from the substrate, then heat treating the deposited material at a given temperature between about 450° to about 600° C., preferably about 475° to about 550° C., for between about 0.5 to about 60 minutes to generate superelastic properties. To impart a shape memory, either the entire material or a region or regions of the deposited material can be subjected to shaping stress equal to between about 5% to about 50%, preferably about 10% to about 30%, of the yield stress of the material (as measured at room temperature) during a heat treatment of about 450° to about 600° C. This thermomechanical processing pre-programs a shape memory for the pre-programmed shape to the material and provides relatively uniform residual stress in the material. It is preferable that the alloy composition and thermal treatment are selected to provide an austenite finish transformation temperature generally about −20° C. to about 40° C. and usually less than body temperature (approximately 37° C.). To obtain more consistent final properties, the material may be annealed after deposition. Although an exemplary method of forming the elongated shape memory or superelastic portion of the guidewire or thin-film catheter-sheath has been given, it is to be understood that the present invention is not limited to this particular method, or the given values.
  • [0043]
    In accordance with a method of the present invention, vacuum deposition methods as are known in the microelectronics and nano-fabrication arts are preferably employed. It is preferable to employ sputtering or ion beam-assisted evaporative deposition to deposit at least one metal film of a biocompatible metal onto a sacrificial substrate. The substrate has a geometry corresponding to the geometry desired for the guidewire and/or thin-film catheter-sheath, e.g., to create tubular body having a circular or elliptical transverse cross-sectional shape, at least one layer of a thin-film of a biocompatible metal is deposited onto the sacrificial substrate. When multiple layers are to be deposited, each layer may have varying properties along the length of the device by varying the local deposition conditions. For example, locally doping the target material with Ti in the case of nitinol deposition to raise the transition temperature, with Ta to increase radiopacity, or with a radioactive isotope to cause local radioactivity. After depositing at least one layer having a desired thickness, the substrate and the deposited thin-film of metal are removed from the deposition chamber and the sacrificial substrate is removed by means suitable for the selected substrate. For example, if a copper substrate is employed, it can be removed by chemical etching. Alternatively, a sacrificial layer of a material, such as carbon or aluminum, may be deposited on the external surface of the substrate prior to depositing the metal. After deposition has occurred, the sacrificial layer can be removed by any suitable process or means, such as, for example, melting, chemical means, ablation, or machining, to free the guidewire or catheter-sheath from the substrate. The entire guidewire or a selected region (or selected regions) of the guidewire may be subject to post-deposition annealing to alter the crystalline structure of the thin-film and effect changes in the material properties of the metal film, such as altering the transition temperature of the annealed regions.
  • [0044]
    Turning now to the accompanying figures, FIGS. 1 and 2 depict two embodiments of the inventive guidewire 10. In FIG. 1 there is depicted a guidewire body 12 comprising a monolayer of material formed by a vacuum deposition technique, although conventional wrought processes may be employed for certain embodiments such as those where compliance is required. The generally tubular guidewire body 12 has a central guidewire lumen 14 and an outer diameter dl.
  • [0045]
    FIG. 2 depicts a guidewire 10 having a guidewire body 12 comprising a plurality of layers 12 a and 12 b formed by a vacuum deposition technique. The guidewire body 12 defines a central guidewire lumen 14. Those skilled in the art will understand that an inventive guidewire 10 having plural layers may be fabricated with at least two layers (12 a and 12 b) or any number of layers more than two. Additionally, each of the layers may be either continuous or discontinuous about the circumference or length of the tubular guidewire body 12. Variations in continuity or discontinuity of an individual layer can be imparted in order to impart differential material and performance properties to the guidewire 10. A guidewire 10 according to the present invention preferably has an outer diameter d1 between about 0.2 millimeters (mm) to about 0.75 millimeters (mm), with a wall thickness between about 0.1 micrometer to about 75 micrometers.
  • [0046]
    FIG. 3 illustrates an embodiment of the inventive thin-film catheter-sheath 20 comprising a tubular catheter-sheath body 22 defining a central catheter-sheath lumen 24. Like the guidewire 10, the thin-film catheter-sheath 20 is fabricated by vacuum deposition of a biocompatible metal, preferably a nickel-titanium alloy, although conventional wrought process may be employed for certain embodiments such as those where compliance is required. The tubular catheter-sheath body 22 can be a monolayer of deposited material, or can comprise a plurality of laminated layers (not shown). A thin-film catheter-sheath according to the present invention preferably has an inner diameter d2 between about 0.25 millimeters (mm) to about 6 millimeters (mm) to accommodate a wide range of self-expanding stents or other implantable and non-implantable medical devices such as filters, occlusion devices, valves, snare baskets, etc. Like the inventive guidewires, a thin-film catheter-sheath according to the present invention preferably has a wall thickness between about 0.1 micrometers to 75 micrometers.
  • [0047]
    Referring now to FIG. 4, there is depicted a medical device delivery assembly 30 comprising a guidewire body 12 defining central guidewire lumen 14, a thin-film catheter-sheath body 22 defining central catheter-sheath lumen 24 concentrically positioned coaxially about the guidewire body 12 and a stent 32 which is concentrically positioned within central catheter-sheath lumen 24 and intermediate between the thin-film catheter-sheath body 22 and the guidewire body 12 and constrained therein by the thin-film catheter-sheath 20. The medical device used with the delivery assembly can be any medical device that can be delivered via a patient's vascular system, for example, a stent (as shown in FIG. 4), a graft, a stent-graft, a valve, a filter, an occluder, and a patch.
  • [0048]
    Turning now to FIGS. 5A-5C, a guidewire and/or catheter-sheath in accordance with a further embodiment of the invention is illustrated. As shown in FIG. 5A, an embodiment of the inventive guidewire or catheter-sheath is depicted in which areas of a guidewire or catheter-sheath body has microperforations. Microperforations, such as those referred to as 100 in FIGS. 5A and 5B impart longitudinal compliance, whereas microperforations such as those referred to as 110 in FIGS. 5A and 5C impart radial compliance. With particular reference to FIG. 5B, microperforations in the form of diamond shaped slots 100 around the circumference of the guidewire or catheter-sheath are provided to increase the longitudinal compliance of the guidewire or catheter-sheath in tension and compression thereby providing flexibility to negotiate tight radii. FIG. 5C shows how microperforations in the form of longitudinal slots 110 provide for radial compliance. In order to achieve desired compliance characteristics along the length of the catheter-sheath or guidewire, the microperforation (slot) patterns can be used in conjunction with one another in alternating patterns and/or leaving unpatterned sections along the length of the guidewire. Those skilled in the art will recognize that there are a number of different geometric patterns that can be used to form the microperforations, other than those described here, that will provide desired compliance characteristics to the inventive guidewire or catheter-sheath discussed herein. Skilled artisans will also recognize that microperforations can be created by any suitable technique such as etching a metal film, or during a vacuum deposition process by either masking a substrate during deposition, or etching a substrate to provide the pattern which will form the microperforations once the deposition has occurred.
  • [0049]
    In accordance with a preferred embodiment the present invention, the preferred vacuum deposition technique is selected from the group consisting of ion-beam assisted evaporative deposition and sputtering techniques. In ion beam-assisted evaporative deposition it is preferable to employ dual and simultaneous thermal electron beam evaporation with simultaneous ion bombardment of the material being deposited using an inert gas, such as argon, xenon, nitrogen or neon. Bombardment with inert gas ions during deposition serves to reduce void content by increasing the atomic packing density in the deposited material. The reduced void content in the deposited material allows the mechanical properties of that deposited material to be similar to the bulk material properties. Deposition rates up to 20 nanometers per second (nm/sec) are achievable using ion beam-assisted evaporative deposition techniques.
  • [0050]
    As used in this application, the articles “a” and “an” refer to one or more than one (i.e., to at least one) of the grammatical objects of the article. By way of example, “an element” means one element or more than one element.
  • EXAMPLE 1
  • [0051]
    In accordance with the preferred embodiment of fabricating the inventive microporous metallic implantable device in which the device is fabricated from vacuum deposited nitinol tube, a cylindrical deoxygenated copper substrate is provided. The substrate is mechanically and/or electropolished to provide a substantially uniform surface topography for accommodating metal deposition thereupon. A cylindrical hollow cathode magnetron sputtering deposition device was employed, in which the cathode was on the outside and the substrate was positioned along the longitudinal axis of the cathode. A cylindrical target consisting either of a nickel-titanium alloy having an atomic ratio of nickel to titanium of about 50-50% and which can be adjusted by spot welding nickel or titanium wires to the target, or a nickel cylinder having a plurality of titanium strips spot welded to the inner surface of the nickel cylinder, or a titanium cylinder having a plurality of nickel strips spot welded to the inner surface of the titanium cylinder is provided. It is known in the sputter deposition arts to cool a target within the deposition chamber by maintaining a thermal contact between the target and a cooling jacket within the cathode. In accordance with the present invention, it has been found useful to reduce the thermal cooling by thermally insulating the target from the cooling jacket within the cathode while still providing electrical contact to it. By insulating the target from the cooling jacket, the target is allowed to become hot within the reaction chamber. Two methods of thermally isolating the cylindrical target from the cooling jacket of the cathode were employed. First, a plurality of wires having a diameter of 0.0381 mm were spot welded around the outer circumference of the target to provide an equivalent spacing between the target and the cathode cooling jacket. Second, a tubular ceramic insulating sleeve was interposed between the outer circumference of the target and the cathode cooling jacket. Further, because the Ni—Ti sputtering yields can be dependant on target temperature, methods which allow the target to become uniformly hot are preferred.
  • [0052]
    The deposition chamber was evacuated to a pressure less than or about 2-5×10−7 Torr and pre-cleaning of the substrate is conducted under vacuum. During the deposition, substrate temperature is preferably maintained within the range of 300 and 700 degrees Centigrade. It is preferable to apply a negative bias voltage between 0 and −1000 volts to the substrate, and preferably between −50 and −150 volts, which is sufficient to cause energetic species arriving at the surface of the substrate. During deposition, the gas pressure is maintained between 0.1 and 40 mTorr but preferably between 1 and 20 mTorr. Sputtering preferably occurs in the presence of an Argon atmosphere. The argon gas must be of high purity and special pumps may be employed to reduce oxygen partial pressure. Deposition times will vary depending upon the desired thickness of the deposited tubular film. After deposition, the plurality of microperforations are formed in the tube by removing regions of the deposited film by etching, such as chemical etching, ablation, such as by excimer laser or by electric discharge machining (EDM), or the like. After the plurality of microperforations are formed, the formed microporous film is removed from the copper substrate by exposing the substrate and film to a nitric acid bath for a period of time sufficient to remove or dissolve the copper substrate.
  • [0053]
    It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4503569 *Mar 3, 1983Mar 12, 1985Dotter Charles TTransluminally placed expandable graft prosthesis
US4510182 *Apr 26, 1984Apr 9, 1985Ruhrchemie AktiengesellschaftMethod for the production of homogeneous coatings of two or more metals and/or metal compounds
US4516972 *Aug 12, 1983May 14, 1985Advanced Cardiovascular Systems, Inc.Guiding catheter and method of manufacture
US4538622 *Nov 10, 1983Sep 3, 1985Advanced Cardiovascular Systems, Inc.Guide wire for catheters
US4616652 *Oct 19, 1983Oct 14, 1986Advanced Cardiovascular Systems, Inc.Dilatation catheter positioning apparatus
US4665906 *May 21, 1986May 19, 1987Raychem CorporationMedical devices incorporating sim alloy elements
US4748986 *Jan 29, 1987Jun 7, 1988Advanced Cardiovascular Systems, Inc.Floppy guide wire with opaque tip
US4751099 *Dec 24, 1986Jun 14, 1988National Aerospace Laboratories of Science and Technology AgencyMethod of producing a functionally gradient material
US4846834 *Mar 16, 1988Jul 11, 1989Clemson UniversityMethod for promoting tissue adhesion to soft tissue implants
US4925455 *Mar 17, 1989May 15, 1990Mobil Oil CorporationProcess for the etherification of linear and branched olefins
US5049251 *Jun 7, 1989Sep 17, 1991Fujitsu LimitedSputtering method for fabricating thin film
US5052404 *Aug 17, 1990Oct 1, 1991The Microspring Company, Inc.Torque transmitter
US5061914 *Jun 27, 1989Oct 29, 1991Tini Alloy CompanyShape-memory alloy micro-actuator
US5084151 *Feb 14, 1990Jan 28, 1992Sorin Biomedica S.P.A.Method and apparatus for forming prosthetic device having a biocompatible carbon film thereon
US5133845 *Feb 14, 1990Jul 28, 1992Sorin Biomedica, S.P.A.Method for making prosthesis of polymeric material coated with biocompatible carbon
US5135503 *May 16, 1990Aug 4, 1992Advanced Cardiovascular Systems, Inc.Shaping ribbon for guiding members
US5158750 *Aug 27, 1991Oct 27, 1992Praxair S.T. Technology, Inc.Boron nitride crucible
US5229845 *Jun 26, 1990Jul 20, 1993Sumitomo Electric Industries, Ltd.Electroconductive thin film of organic charge transfer complexes of bisethylenedithiatetrathiafulvalene
US5242710 *May 6, 1992Sep 7, 1993Lanxide Technology Company, LpMethods for making self-supporting composite bodies and articles produced thereby
US5277933 *Dec 23, 1991Jan 11, 1994Lanxide Technology Company, LpMethod for forming a self-supporting body using vapor-phase parent metals and solid oxidants
US5329514 *Jul 27, 1992Jul 12, 1994Canon Kabushiki KaishaInformation processing apparatus, and electrode substrate and information recording medium used in the apparatus
US5341818 *Dec 22, 1992Aug 30, 1994Advanced Cardiovascular Systems, Inc.Guidewire with superelastic distal portion
US5368035 *Sep 17, 1992Nov 29, 1994Boston Scientific CorporationUltrasound imaging guidewire
US5387247 *Jan 3, 1990Feb 7, 1995Sorin Biomedia S.P.A.Prosthetic device having a biocompatible carbon film thereon and a method of and apparatus for forming such device
US5411476 *Jun 2, 1993May 2, 1995Advanced Cardiovascular Systems, Inc.Superelastic guiding member
US5421955 *Mar 17, 1994Jun 6, 1995Advanced Cardiovascular Systems, Inc.Expandable stents and method for making same
US5514154 *Jul 28, 1994May 7, 1996Advanced Cardiovascular Systems, Inc.Expandable stents
US5540820 *Jun 15, 1993Jul 30, 1996Hitachi, Ltd.Thin film forming method
US5545210 *Sep 22, 1994Aug 13, 1996Advanced Coronary Technology, Inc.Method of implanting a permanent shape memory alloy stent
US5569295 *May 31, 1995Oct 29, 1996Advanced Cardiovascular Systems, Inc.Expandable stents and method for making same
US5593442 *Jun 5, 1995Jan 14, 1997Localmed, Inc.Radially expansible and articulated vessel scaffold
US5603721 *Nov 13, 1995Feb 18, 1997Advanced Cardiovascular Systems, Inc.Expandable stents and method for making same
US5605714 *Jun 7, 1995Feb 25, 1997Southwest Research InstituteTreatments to reduce thrombogeneticity in heart valves made from titanium and its alloys
US5607445 *Jun 16, 1993Mar 4, 1997American Biomed, Inc.Stent for supporting a blood vessel
US5607463 *Mar 30, 1993Mar 4, 1997Medtronic, Inc.Intravascular medical device
US5609629 *Jun 7, 1995Mar 11, 1997Med Institute, Inc.Coated implantable medical device
US5628788 *Nov 7, 1995May 13, 1997Corvita CorporationSelf-expanding endoluminal stent-graft
US5630840 *Jun 7, 1995May 20, 1997Schneider (Usa) IncClad composite stent
US5647858 *Jun 6, 1995Jul 15, 1997Smith & Nephew, Inc.Zirconium oxide and zirconium nitride coated catheters
US5649951 *Jun 6, 1995Jul 22, 1997Smith & Nephew Richards, Inc.Zirconium oxide and zirconium nitride coated stents
US5656036 *Sep 12, 1994Aug 12, 1997Expandable Grafts PartnershipApparatus for occluding vessels
US5723219 *Dec 19, 1995Mar 3, 1998Talison ResearchPlasma deposited film networks
US5725573 *Apr 10, 1996Mar 10, 1998Southwest Research InstituteMedical implants made of metal alloys bearing cohesive diamond like carbon coatings
US5728158 *Jan 14, 1997Mar 17, 1998Advanced Cardiovascular Systems, Inc.Expandable stents
US5735896 *Apr 6, 1995Apr 7, 1998BiotronikBiocompatible prosthesis
US5744515 *Oct 11, 1996Apr 28, 1998Bsi CorporationMethod and implantable article for promoting endothelialization
US5765418 *Dec 6, 1995Jun 16, 1998Medtronic, Inc.Method for making an implantable medical device from a refractory metal
US5772864 *Feb 23, 1996Jun 30, 1998Meadox Medicals, Inc.Method for manufacturing implantable medical devices
US5776161 *Oct 16, 1995Jul 7, 1998Instent, Inc.Medical stents, apparatus and method for making same
US5780807 *Jan 15, 1997Jul 14, 1998Advanced Cardiovascular Systems, Inc.Method and apparatus for direct laser cutting of metal stents
US5782908 *Nov 14, 1996Jul 21, 1998Medtronic, Inc.Biocompatible medical article and method
US5782910 *Jun 6, 1996Jul 21, 1998Smith & Nephew, Inc.Cardiovascular implants of enhanced biocompatibility
US5788558 *Nov 13, 1995Aug 4, 1998Localmed, Inc.Apparatus and method for polishing lumenal prostheses
US5798042 *Jun 14, 1996Aug 25, 1998Regents Of The University Of CaliforniaMicrofabricated filter with specially constructed channel walls, and containment well and capsule constructed with such filters
US5811151 *May 31, 1996Sep 22, 1998Medtronic, Inc.Method of modifying the surface of a medical device
US5855600 *Aug 1, 1997Jan 5, 1999Inflow Dynamics Inc.Flexible implantable stent with composite design
US5855802 *May 30, 1996Jan 5, 1999International Business Machines CorporationMethod and apparatus for forming a tubular article having a perforated annular wall
US5855955 *Mar 11, 1997Jan 5, 1999Lanxide Technology Company L.P.Method for making self-supporting composite bodies
US5858556 *Jan 21, 1997Jan 12, 1999Uti CorporationMultilayer composite tubular structure and method of making
US5868782 *Dec 24, 1996Feb 9, 1999Global Therapeutics, Inc.Radially expandable axially non-contracting surgical stent
US5873904 *Feb 24, 1997Feb 23, 1999Cook IncorporatedSilver implantable medical device
US5876432 *Mar 28, 1995Mar 2, 1999Gore Enterprise Holdings, Inc.Self-expandable helical intravascular stent and stent-graft
US5879370 *May 28, 1997Mar 9, 1999Fischell; Robert E.Stent having a multiplicity of undulating longitudinals
US5886113 *Apr 28, 1997Mar 23, 1999Taiwan Synthetic Rubber CorporationProcess for preparing an elastomeric copolymer composition of mono-vinyl aromatic hydrocarbons and conjugated dienes
US5888577 *Jun 30, 1997Mar 30, 1999Procath CorporationMethod for forming an electrophysiology catheter
US5891507 *Jul 28, 1997Apr 6, 1999Iowa-India Investments Company LimitedProcess for coating a surface of a metallic stent
US5895406 *Dec 20, 1996Apr 20, 1999Cordis CorporationAxially flexible stent
US5899935 *Aug 4, 1997May 4, 1999Schneider (Usa) Inc.Balloon expandable braided stent with restraint
US5907893 *Jan 31, 1997Jun 1, 1999Medtronic, Inc.Methods for the manufacture of radially expansible stents
US5913896 *Jul 3, 1997Jun 22, 1999Medtronic, Inc.Interwoven dual sinusoidal helix stent
US5919225 *Jul 14, 1997Jul 6, 1999Gore Enterprise Holdings, Inc.Procedures for introducing stents and stent-grafts
US5925063 *Sep 26, 1997Jul 20, 1999Khosravi; FarhadCoiled sheet valve, filter or occlusive device and methods of use
US5932299 *Apr 22, 1997Aug 3, 1999Katoot; Mohammad W.Method for modifying the surface of an object
US5938682 *Sep 22, 1997Aug 17, 1999Cordis CorporationAxially flexible stent
US5938697 *Mar 4, 1998Aug 17, 1999Scimed Life Systems, Inc.Stent having variable properties
US5945153 *Jul 29, 1997Aug 31, 1999Southwest Research InstituteNon-irritating antimicrobial coating for medical implants and a process for preparing same
US5951881 *Jul 22, 1996Sep 14, 1999President And Fellows Of Harvard CollegeFabrication of small-scale cylindrical articles
US5955588 *Sep 22, 1998Sep 21, 1999Innerdyne, Inc.Non-thrombogenic coating composition and methods for using same
US6004279 *Jan 16, 1996Dec 21, 1999Boston Scientific CorporationMedical guidewire
US6013855 *Dec 26, 1996Jan 11, 2000United States SurgicalGrafting of biocompatible hydrophilic polymers onto inorganic and metal surfaces
US6015429 *Mar 12, 1996Jan 18, 2000Gore Enterprise Holdings, Inc.Procedures for introducing stents and stent-grafts
US6019737 *Mar 31, 1998Feb 1, 2000Terumo Kabushiki KaishaGuide wire
US6019784 *Apr 3, 1997Feb 1, 2000Electroformed Stents, Inc.Process for making electroformed stents
US6022370 *Sep 25, 1997Feb 8, 2000Numed, Inc.Expandable stent
US6027526 *Oct 3, 1997Feb 22, 2000Advanced Cardiovascular Systems, Inc.Stent having varied amounts of structural strength along its length
US6033433 *Apr 25, 1997Mar 7, 2000Scimed Life Systems, Inc.Stent configurations including spirals
US6042597 *Oct 23, 1998Mar 28, 2000Scimed Life Systems, Inc.Helical stent design
US6056776 *Aug 17, 1998May 2, 2000Advanced Cardiovascular System, Inc.Expandable stents and method for making same
US6059808 *Apr 10, 1997May 9, 2000Laboratoires Nycomed SaImplantable device and delivery system to reestablish or maintain a bodily canal
US6066167 *May 26, 1998May 23, 2000Advanced Cardiovascular Systems, Inc.Expandable stents
US6066168 *Apr 6, 1998May 23, 2000Advanced Cardiovascular Systems, Inc.Expandable stents and method for making same
US6066169 *Jun 2, 1998May 23, 2000Ave ConnaughtExpandable stent having articulated connecting rods
US6071305 *Nov 24, 1997Jun 6, 2000Alza CorporationDirectional drug delivery stent and method of use
US6086773 *May 22, 1998Jul 11, 2000Bmc Industries, Inc.Method and apparatus for etching-manufacture of cylindrical elements
US6096175 *Jul 17, 1998Aug 1, 2000Micro Therapeutics, Inc.Thin film stent
US6099499 *Apr 28, 1998Aug 8, 2000Medtronic, Inc.Device for in vivo radiation delivery and method for delivery
US6106642 *Jun 2, 1998Aug 22, 2000Boston Scientific LimitedProcess for the improved ductility of nitinol
US6176821 *Jul 21, 1998Jan 23, 2001Radiance Medical Systems, Inc.Radiation delivery balloon catheter
US6203505 *Jun 5, 1998Mar 20, 2001Advanced Cardiovascular Systems, Inc.Guidewires having a vapor deposited primer coat
US6241690 *May 26, 1998Jun 5, 2001Advanced Cardiovascular Systems, Inc.Guidewire having exchangeable inner member
US6280539 *Feb 7, 2000Aug 28, 2001Advance Cardiovascular Systems, Inc.Superelastic guiding member
US20010003146 *Jan 29, 2001Jun 7, 2001Advanced Cardiovascular Systems, Inc.Guidewires having a vapor deposited primer coat
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7854760May 16, 2005Dec 21, 2010Boston Scientific Scimed, Inc.Medical devices including metallic films
US7901447 *Mar 8, 2011Boston Scientific Scimed, Inc.Medical devices including a metallic film and at least one filament
US8152841Apr 23, 2010Apr 10, 2012Boston Scientific Scimed, Inc.Medical devices including metallic films
US8591568Dec 29, 2004Nov 26, 2013Boston Scientific Scimed, Inc.Medical devices including metallic films and methods for making same
US8632580Dec 29, 2004Jan 21, 2014Boston Scientific Scimed, Inc.Flexible medical devices including metallic films
US8864815Feb 22, 2011Oct 21, 2014Boston Scientific Scimed, Inc.Medical devices including metallic film and at least one filament
US8992592Dec 29, 2004Mar 31, 2015Boston Scientific Scimed, Inc.Medical devices including metallic films
US8998973Dec 29, 2004Apr 7, 2015Boston Scientific Scimed, Inc.Medical devices including metallic films
US20050197689 *Dec 29, 2004Sep 8, 2005Masoud MolaeiMedical devices including metallic films and methods for making same
US20060142838 *Dec 29, 2004Jun 29, 2006Masoud MolaeiMedical devices including metallic films and methods for loading and deploying same
US20060142842 *Dec 29, 2004Jun 29, 2006Masoud MolaeiMedical devices including metallic films and methods for making same
US20060142845 *Dec 29, 2004Jun 29, 2006Masoud MolaeiMedical devices including metallic films and methods for making same
US20060259131 *May 16, 2005Nov 16, 2006Masoud MolaeiMedical devices including metallic films and methods for making same
US20100204784 *Apr 23, 2010Aug 12, 2010Boston Scientific Scimed, Inc.Medical devices including metallic films
US20110144740 *Jun 16, 2011Boston Scientific Scimed, Inc.Medical Devices Including Metallic Film and at Least One Filament
Classifications
U.S. Classification604/164.13, 623/1.11, 604/523
International ClassificationA61F2/06, A61F2/90, A61F2/84, A61M25/01, A61M25/00, A61M25/09
Cooperative ClassificationA61M2205/0244, A61M2025/0915, A61M2025/09133, A61M2025/09108, A61M2025/0681, A61M2025/006, A61M2025/0042, A61M25/09, A61M25/0013, A61F2210/0076, A61F2002/91558, A61F2002/91541, A61F2002/91525, A61F2/95, A61F2/915, A61F2/91
European ClassificationA61F2/915, A61F2/91, A61F2/95, A61M25/00G4, A61M25/09
Legal Events
DateCodeEventDescription
Oct 17, 2007ASAssignment
Owner name: ADVANCED BIO PROSTHETIC SURFACES, LTD., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BANAS, CHRISTOPHER E.;BAILEY, STEVEN R.;BOYLE, CHRISTOPHER T.;REEL/FRAME:019988/0693;SIGNING DATES FROM 20020506 TO 20020528
Owner name: ADVANCED BIO PROSTHETIC SURFACES, LTD., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BANAS, CHRISTOPHER E.;BAILEY, STEVEN R.;BOYLE, CHRISTOPHER T.;SIGNING DATES FROM 20020506 TO 20020528;REEL/FRAME:019988/0693
Aug 18, 2015ASAssignment
Owner name: SPI DALLAS INVESTMENTS, LP, TEXAS
Free format text: SECURITY INTEREST;ASSIGNORS:PALMAZ SCIENTIFIC INC.;ADVANCED BIO PROSTHETIC SURFACES, LTD.;ABPS VENTURE ONE, LTD.;REEL/FRAME:036384/0818
Effective date: 20150722
Aug 24, 2015ASAssignment
Owner name: SPI DALLAS INVESTMENTS, LP, TEXAS
Free format text: SECURITY INTEREST;ASSIGNORS:PALMAZ SCIENTIFIC INC.;ADVANCED BIO PROSTHETIC SURFACES, LTD.;ABPS VENTURE ONE, LTD.;REEL/FRAME:036434/0813
Effective date: 20150722
Owner name: LENNOX CAPITAL PARTNERS, LP, TEXAS
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF ASSIGNEE PREVIOUSLY RECORDED AT REEL: 036384 FRAME: 0818. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNORS:PALMAZ SCIENTIFIC INC.;ADVANCED BIO PROSTHETIC SURFACES, LTD.;ABPS VENTURE ONE, LTD.;REEL/FRAME:036465/0091
Effective date: 20150722
Feb 15, 2016ASAssignment
Owner name: PALMAZ, JULIO, CALIFORNIA
Free format text: SECURITY INTEREST;ASSIGNORS:PALMAZ SCIENTIFIC INC.;ADVANCED BIO PROSTHETIC SURFACES, LTD.;ABPS VENTURE ONE, LTD.;REEL/FRAME:037820/0400
Effective date: 20150917
Feb 16, 2016ASAssignment
Owner name: OAK COURT PARTNERS, LTD., NEVADA
Free format text: SECURITY INTEREST;ASSIGNORS:PALMAZ SCIENTIFIC INC.;ADVANCED BIO PROSTHETIC SURFACES, LTD.;ABPS VENTURE ONE, LTD.;REEL/FRAME:037827/0568
Effective date: 20150917
Owner name: OAK COURT PARTNERS, LTD., NEVADA
Free format text: SECURITY INTEREST;ASSIGNORS:PALMAZ SCIENTIFIC INC.;ADVANCED BIO PROSTHETIC SURFACES, LTD.;ABPS VENTURE ONE, LTD.;REEL/FRAME:037836/0646
Effective date: 20150917
Feb 17, 2016ASAssignment
Owner name: OAK COURT PARTNERS, LTD., TEXAS
Free format text: SECURITY INTEREST;ASSIGNORS:PALMAZ SCIENTIFIC INC.;ADVANCED BIO PROSTHETIC SURFACES, LTD.;ABPS VENTURE ONE, LTD.;REEL/FRAME:037839/0278
Effective date: 20151230