Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20080080248 A1
Publication typeApplication
Application numberUS 11/542,749
Publication dateApr 3, 2008
Filing dateOct 3, 2006
Priority dateOct 3, 2006
Also published asCN101159270A, CN101159270B, EP1909288A1, EP1909288B1, US8325530
Publication number11542749, 542749, US 2008/0080248 A1, US 2008/080248 A1, US 20080080248 A1, US 20080080248A1, US 2008080248 A1, US 2008080248A1, US-A1-20080080248, US-A1-2008080248, US2008/0080248A1, US2008/080248A1, US20080080248 A1, US20080080248A1, US2008080248 A1, US2008080248A1
InventorsHang-Ting Lue, Tzu-Hsuan Hsu, Erh-Kun Lai
Original AssigneeMacronix International Co., Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cell operation methods using gate-injection for floating gate nand flash memory
US 20080080248 A1
Abstract
A method of performing an operation on a flash memory cell device, used when a gate coupling ratio between a floating gate and a control gate of less than 0.4. A potential is required to be applied across the control gate. Electrons are either injected to the floating gate from the control gate or ejected from the floating gate to the control gate. The operation associated with the injection or the ejection is determined by the nature of a silicon channel provided in the device. Devices using a bulk-tied FinFET-like structure are particularly suited to this method. The method is also particularly suited for use on cells in a NAND array.
Images(8)
Previous page
Next page
Claims(7)
1. A method of performing an operation on a flash memory cell device, the device having a gate coupling ratio between a floating gate and a control gate of less than about 0.4, the method comprising:
(a) providing a potential across the control gate; and
(b) injecting electrons to the floating gate from the control gate or ejecting electrons from the floating gate to the control gate.
2. A method of performing an operation on a flash memory cell device, the device having a bulk-tied FinFET-like structured silicon channel, and having a gate coupling ratio between a floating gate and a control gate of less than about 0.4, the method comprising:
(a) providing a potential across the control gate; and
(b) injecting electrons to the floating gate from the control gate or ejecting electrons from the floating gate to the control gate.
3. The method of claim 2, wherein the silicon channel is an n-channel type, and step (b) further comprises:
(i) programming the cell by ejecting electrons from the floating gate to the control gate; and
(ii) erasing the cell by injecting electrons to the floating gate from the control gate.
4. The method of claim 2, wherein the silicon channel is a p-channel type, and step (b) further comprises:
(i) programming the cell by injecting electrons to the floating gate from the control gate; and
(ii) erasing the cell by ejecting electrons from the floating gate to the control gate.
5. A method of performing an operation on a flash memory cell device provided in a NAND flash memory array, the device having a bulk-tied FinFET-like structured silicon channel, and having a gate coupling ratio between a floating gate and a control gate of less than about 0.4, the method comprising:
(a) providing a potential across the control gate; and
(b) injecting electrons to the floating gate from the control gate or ejecting electrons from the floating gate to the control gate.
6. The method of claim 5, wherein the silicon channel is an n-channel type, and step (b) further comprises:
(i) programming the cell by ejecting electrons from the floating gate to the control gate; and
(ii) erasing the cell by injecting electrons to the floating gate from the control gate.
7. The method of claim 5, wherein the silicon channel is a p-channel type, and step (b) further comprises:
(i) programming the cell by injecting electrons to the floating gate from the control gate; and
(ii) erasing the cell by ejecting electrons from the floating gate to the control gate.
Description
BACKGROUND OF THE INVENTION

The use of floating gate technology in flash memory devices is well known. Typically, a Si channel of n or p type semiconductor is provided. The floating gate transistor is surrounded by oxide, enabling a charge stored on the gate to remain there. Program and erase operations take place by a process of channel injection. Electrons undergo Fowler-Nordheim (FN) tunneling and are transferred from the channel to the floating gate, and vice-versa, during operation.

To provide an efficient channel injection, the possibility of a gate injection (transfer of electrons between the control gate and floating gate via FN tunneling) must be reduced. This is accomplished by maximizing the gate coupling ratio. The gate coupling ratio (GCR) is defined as the ratio of floating gate potential to control gate potential. A GCR of 1 is optimal, but a GCR greater than 0.6 is sufficient for most flash memory devices.

This result is satisfactory for larger memory devices, but when these devices are scaled down, a high GCR becomes difficult to maintain. For NAND flash in particular, a GCR of less than 0.3 is predicted when the node is below 45 nm. The bottom tunnel oxide will not have a sufficiently large electric field to allow FN tunneling. Moreover, future flash memory devices will require FinFET-like structures to improve device short-channel characteristics. These structures have a naturally large channel to floating gate coupling capacitance, and thus a naturally low GCR.

Additionally, there is a problem of inter-floating gate coupling in traditional flash memory device arrays. Inter-floating gate coupling capacitance is comparable to the gate coupling capacitance of the channel and floating gate as the density of cells in the array becomes greater. This causes interference among the cells which deteriorates functionality of the flash memory device. Furthermore, electric field stress on the gate oxide affects reliability and endurance of the unit.

It is therefore desirable to operate the floating gate apparatus in such a way as to enable efficient FN tunneling to the floating gate, particularly when using a FinFET-like structure. It is also desirable to operate the floating gate apparatus in such a way as to increase reliability and endurance, and to reduce inter-cell interference as the devices are scaled down.

BRIEF SUMMARY OF THE INVENTION

A method of performing an operation on a flash memory cell device is provided when a gate coupling ratio between a floating gate and a control gate is less than 0.4. A potential is required to be applied across the control gate. Electrons are either injected to the floating gate from the control gate or ejected from the floating gate to the control gate. The operation associated with the injection or the ejection is determined by the nature of a silicon channel provided in the device.

For n-Channel cells, writing is accomplished by ejecting electrons from the floating gate to the control gate. Erasing is accomplished by injecting electrons to the floating gate from the control gate. For p-Channel cells, writing is accomplished by injecting electrons to the floating gate from the control gate. Erasing is accomplished by ejecting electrons from the floating gate to the control gate.

Devices having a bulk-tied FinFET-like structure are particularly suited to this method, as the structure creates a naturally low gate coupling ratio. This method is also particularly suited for use on cells in a NAND flash memory array since it allows scalability of the cells down to below 20 nm.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.

FIG. 1 shows typical cross-sectional views in the channel length direction of flash memory cells for use in one preferred embodiment of the present invention.

FIGS. 2A, 2B, 3A, and 3B show electron injection and electron ejection by ±FN tunneling in both n and p Channel cells in accordance with one preferred embodiment of the present invention.

FIG. 4 shows a cross-sectional view in the channel-width direction of a preferred flash memory cell for use in one preferred embodiment of the present invention.

FIGS. 5-6 show a cross-sectional view in the channel-length and width directions of two flash memory cells in NAND arrays for use in accordance with one preferred embodiment of the present invention.

FIGS. 7A-7C and 8A-8C show operations on cells in n-Channel and p-Channel NAND arrays for use in accordance with one preferred embodiment of the present invention.

FIGS. 9A and 9B show plots of threshold voltage (in volts) vs. time (in seconds, logarithmic scale).

FIG. 10 shows data for technology nodes of varying sizes indicating scalability down to less than 20 nm.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 shows typical cross-sectional views in the channel length direction of flash memory cells for use in embodiments of the present invention. The left diagram of FIG. 1 shows an n-Channel device. The structure contains a Si channel 18, with a p-well 24 a and n-doped source 20 a and drain 22 a. In preferred embodiments, a bulk-tied FinFET structure is used. The structure also contains a gate oxide 16, a charge-storage floating gate 14, an inter-poly, top-tunneling dielectric 12, and a control gate 10. The right side of FIG. 1 shows a p-Channel device, which is identical to the n-Channel device, except that the Si channel 18 contains an n-well 24 b, and p-doped source 20 b and drain 22 b.

The bottom gate oxide 16 is under relatively small electric field stress, typically less than about 7 MV/cm, during program and erase operations. This avoids any FN tunneling, which prevents much of the damage occurring in conventional flash memory devices, and allows a better DC performance. Additionally, the bottom oxide 16 and the tunneling oxide 12 are separate. This enhances reliability and endurance.

Referring to FIGS. 2A and 2B, the electron injection from the control gate 10 by −FN tunneling is illustrated. Referring to FIG. 2A, an erase is affected on the n-Channel device by applying a high threshold voltage to the control gate 10, for example, −16 V. For a GCR of 0.3, the potential of the floating gate 14 is −4.8 V. The electric field in the bottom oxide 16 is less than 8 MV/cm, but the electric field in the top oxide 12 is greater than 10 MV/cm, and therefore tunneling occurs from control gate 10 to the floating gate 14. FIG. 2B, showing a p-Channel device, is similar. However the device is performing a write operation rather than an erase, due to the nature of the Si channel 18. A GCR of less than about 0.4 is preferred for electron injection in both n-Channel and p-Channel devices.

Referring to FIGS. 3A and 3B, the electron ejection from the floating gate 14 by +FN tunneling is illustrated. Referring to FIG. 3A, a write operation is affected on the n-Channel device by applying a low threshold voltage to the control gate 10, for example, +16V. For a GCR of 0.3, the potential of the floating gate 14 will be +4.8 V. The electric field in the bottom oxide 16 is less than 8 MV/cm, but the electric field in the top oxide 12 is greater than 10 MV/cm, and therefore tunneling occurs from the floating gate 14 to the control gate 10. FIG. 3B, showing a p-Channel device, is similar. However the device is performing an erase operation rather than a write operation, due to the nature of the Si channel 18. A GCR of less than about 0.4 is preferred for electron ejection in both n-Channel and p-Channel devices.

FIG. 4 shows a cross-sectional view in the channel-width direction of a flash memory cell for use in one preferred embodiment of the present invention. A high density plasma (HDP) oxide 28 surrounds the channel 18, gate oxide 16, and floating gate 14. This oxide 28 isolates the cell from surrounding cells. The Si channel 18 is a FinFET structure. One method of obtaining a small GCR is to increase the area between the channel 18 and the floating gate 14, thereby increasing the coupling capacitance between the two. A typical FinFET structure naturally creates a large coupling area between the channel 18 and the floating gate 14, which makes it particularly suitable for use in accordance with a preferred embodiment of the present invention.

FIG. 5 shows a cross-sectional view in the channel-length direction of two flash memory cells in a NAND array for use in accordance with a preferred embodiment of the present invention. A well 24 runs along a bit line (not shown in FIG. 5) in the array. The cells share a junction 26. The distance between the first comer of the control gate 10 and the corresponding comer of control gate 10′ is 2F, where F is the width of the cell, also called a technology node.

FIG. 6 shows a cross-sectional view in the channel-width direction of two flash memory cells in a NAND array for use in accordance with a preferred embodiment of the present invention. The HDP oxide 28 isolates the channel fins 18 and 18′ from each other. The control gate 10 runs along a word line (not shown in FIG. 6) in the array. The cells share this gate 10. The distance between the first edge of the fin 18 and the corresponding edge of fin 18′ is 2F, where F is as defined for FIG. 5.

FIGS. 7A, 7B, and 7C show operations in an n-Channel NAND array in accordance with a preferred embodiment of the present invention. In FIG. 7A, the threshold voltage for cell A is lowered by applying, for example, 15 V along the adjoining word line and grounding the corresponding bit line. +FN tunneling occurs and cell A is programmed. Neighboring cells B, C, and D have program disturbances at acceptable levels. In FIG. 7B, the threshold voltage is increased to, for example, −18 V on all word lines. −FN tunneling occurs and programmed cells are erased. In FIG. 7C, cell A is read out by applying an appropriate potential to the corresponding word line, and applying a pass voltage to other word lines to allow a read through current.

FIGS. 8A, 8B, and 8C show operations in a p-Channel NAND array in accordance with a preferred embodiment of the present invention. In FIG. 8A, the threshold voltage for cell A is increased by applying, for example, −18 V along the adjoining word line and grounding the corresponding bit line. −FN tunneling occurs and cell A is programmed. Neighboring cells B, C, and D have program disturbances at acceptable levels. In FIG. 8B, the threshold voltage is lowered to, for example, +15 V on all word lines. +FN tunneling occurs and programmed cells are erased. In FIG. 8C, cell A is read out by applying an appropriate potential to the corresponding word line, and applying a pass voltage to other word lines to allow a read through current.

FIGS. 9A and 9B are plots of threshold voltage (in volts) vs. time (in seconds, logarithmic scale). The plot in FIG. 9A shows the drop in threshold voltage associated with +FN tunneling from the floating gate. The GCR is fixed at 0.3, the bottom oxide thickness (O1) is set to 7 nm, and the tunneling oxide thickness (O2) is set to 10 nm. Three different potentials were applied to the control gate. The results demonstrate that a large memory window can be obtained using a medium range voltage. The plot in FIG. 9B shows the increase in threshold voltage associated with −FN tunneling from the control gate. The simulation sets the same GCR, O1, and O2 parameters as in FIG. 9A, and applies the same potentials across the control gate.

FIG. 10 shows a table and plot of coupling ratio vs. technology node size (in nm). The simulation was conducted with decreasing node size down to about 20 nm. αG is the GCR. αB is the coupling ratio between the floating gate and the channel. αWL-WL is the interference coupling ratio between cells on the same word line. αBL-BL is the interference coupling ratio between cells on the same bit line. The remaining process parameters in the left-hand column of the table are defined and labeled in FIGS. 5 and 6.

The data from FIG. 10 shows that a floating gate device utilizing gate-injection methods as described above has scalability down to a technology node size of less than about 20 nm. The gate coupling ratio can be maintained at about 0.3. Additionally, the interference coupling ratios from adjacent cells can be limited to below 0.1, eliminating much of the deterioration on cell function.

It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US6040216 *Feb 5, 1998Mar 21, 2000Mosel Vitelic, Inc.Method (and device) for producing tunnel silicon oxynitride layer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7512016 *May 16, 2008Mar 31, 2009Macronix International Co., Ltd.Method of programming and erasing a p-channel be-SONOS NAND flash memory
US7811889 *Aug 8, 2007Oct 12, 2010Freescale Semiconductor, Inc.FinFET memory cell having a floating gate and method therefor
US7839696Feb 4, 2009Nov 23, 2010Macronix International Co., Ltd.Method of programming and erasing a p-channel BE-SONOS NAND flash memory
US7847338 *Oct 23, 2008Dec 7, 2010Yuniarto WidjajaSemiconductor memory having both volatile and non-volatile functionality and method of operating
US7888751 *Apr 14, 2009Feb 15, 2011Sony CorporationSemiconductor device having a fin field effect transistor
US8077536Jul 31, 2009Dec 13, 2011Zeno Semiconductor, Inc.Method of operating semiconductor memory device with floating body transistor using silicon controlled rectifier principle
US8130547Jun 9, 2010Mar 6, 2012Zeno Semiconductor, Inc.Method of maintaining the state of semiconductor memory having electrically floating body transistor
US8130548Jun 9, 2010Mar 6, 2012Zeno Semiconductor, Inc.Semiconductor memory having electrically floating body transistor
US8159868Aug 21, 2009Apr 17, 2012Zeno Semiconductor, Inc.Semiconductor memory having both volatile and non-volatile functionality including resistance change material and method of operating
US8159878Oct 29, 2010Apr 17, 2012Zeno Semiconductor, Inc.Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8174886Sep 26, 2011May 8, 2012Zeno Semiconductor, Inc.Semiconductor memory having electrically floating body transistor
US8194451Sep 2, 2009Jun 5, 2012Zeno Semiconductor, Inc.Memory cells, memory cell arrays, methods of using and methods of making
US8194471Sep 26, 2011Jun 5, 2012Zeno Semiconductor, Inc.Semiconductor memory device having an electrically floating body transistor
US8208302Sep 26, 2011Jun 26, 2012Zeno Semiconductor, Inc.Method of maintaining the state of semiconductor memory having electrically floating body transistor
US8243499May 26, 2011Aug 14, 2012Zeno Semiconductor, Inc.Semiconductor memory having both volatile and non-volatile functionality including resistance change material and method of operating
US8264875Oct 4, 2010Sep 11, 2012Zeno Semiconducor, Inc.Semiconductor memory device having an electrically floating body transistor
US8264876Sep 26, 2011Sep 11, 2012Zeno Semiconductor, Inc.Semiconductor memory device having an electrically floating body transistor
US8294193Oct 29, 2010Oct 23, 2012Zeno Semiconductor, Inc.Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8391066Sep 13, 2011Mar 5, 2013Zeno Semiconductor, Inc.Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8472249Sep 27, 2011Jun 25, 2013Zeno Semiconductor, Inc.Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8514622Oct 4, 2010Aug 20, 2013Zeno Semiconductor, Inc.Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US8514623May 22, 2012Aug 20, 2013Zeno Semiconductor, Inc.Method of maintaining the state of semiconductor memory having electrically floating body transistor
US8531881May 2, 2012Sep 10, 2013Zeno Semiconductor, Inc.Memory cells, memory cell arrays, methods of using and methods of making
US8547756Oct 4, 2010Oct 1, 2013Zeno Semiconductor, Inc.Semiconductor memory device having an electrically floating body transistor
US8559257Sep 26, 2011Oct 15, 2013Zeno Semiconductor, Inc.Method of operating semiconductor memory device with floating body transistor using silicon controlled rectifier principle
US8570803Feb 4, 2013Oct 29, 2013Zeno Semiconductor, Inc.Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8582359Nov 15, 2011Nov 12, 2013Zeno Semiconductor, Inc.Dual-port semiconductor memory and first-in first-out (FIFO) memory having electrically floating body transistor
US8654583Jul 9, 2013Feb 18, 2014Zeno Semiconductor, Inc.Memory cells, memory cell arrays, methods of using and methods of making
US8711622Jul 12, 2013Apr 29, 2014Zeno Semiconductor, Inc.Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US8767458Oct 6, 2013Jul 1, 2014Zeno Semiconductor, Inc.Dual-port semiconductor memory and first in first out (FIFO) memory having electrically floating body transistor
Classifications
U.S. Classification365/185.18, 257/314, 257/E21.209, 257/E27.103, 257/E29.304, 257/E21.422
International ClassificationH01L29/76, G11C11/34, G11C16/04
Cooperative ClassificationH01L29/7851, G11C16/0416, H01L27/115, G11C16/10, H01L29/7883, H01L29/66795, H01L21/28273, H01L29/66825
European ClassificationH01L29/66M6T6F17, G11C16/04F1, G11C16/10, H01L27/115, H01L29/788B4, H01L21/28F
Legal Events
DateCodeEventDescription
Dec 19, 2006ASAssignment
Owner name: MACRONIX INTERNATIONAL CO., LTD., TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUE, HANG-TING;HSU, TZU-HSUAN;LAI, ERH-KUN;REEL/FRAME:018651/0598
Effective date: 20061123
Sep 20, 2005ASAssignment
Owner name: ALSTOM (SWITZERLAND)LTD., SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORIN, JEAN XAVIER;BEAL, CORINNE;REEL/FRAME:016558/0554
Effective date: 20050906