Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20080114207 A1
Publication typeApplication
Application numberUS 11/599,196
Publication dateMay 15, 2008
Filing dateNov 14, 2006
Priority dateNov 14, 2006
Also published asUS9055863, WO2008061106A1
Publication number11599196, 599196, US 2008/0114207 A1, US 2008/114207 A1, US 20080114207 A1, US 20080114207A1, US 2008114207 A1, US 2008114207A1, US-A1-20080114207, US-A1-2008114207, US2008/0114207A1, US2008/114207A1, US20080114207 A1, US20080114207A1, US2008114207 A1, US2008114207A1
InventorsRobert J. Krupa, William F. Laflash, Thomas V. Root, Aleksandra A. Levshina
Original AssigneeKrupa Robert J, Laflash William F, Root Thomas V, Levshina Aleksandra A
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Portable endoscope
US 20080114207 A1
Abstract
Provided herein are water-tight, portable endoscopes that include the light and power source incorporated into a sealed compartment (also referred to herein as sealed canister) within the endoscope handle. The description also features water-tight, endoscope handles that include the light and power source incorporated into a sealed canister within the handle. In some embodiments, the sealed compartment contains all of the electronic components of the endoscope.
Images(14)
Previous page
Next page
Claims(21)
1. An endoscope handle comprising:
a) an exterior and an interior;
b) a sealed compartment within the interior of the endoscope handle comprising a light emitting diode (LED), an LED power source, and a gas-permeable portion such that the sealed compartment is gas-permeable and liquid impermeable.
2. The endoscope handle of claim 1, wherein the gas-permeable portion comprises a gas-permeable membrane.
3. The endoscope handle of claim 2, wherein the gas-permeable membrane comprises polytetrafluoroethylene (PTFE).
4. The endoscope handle of claim 2, wherein the gas-permeable membrane is impermeable to liquid up to about 10 PSI.
5. The endoscope handle of claim 1, further comprising an elongated portion.
6. The endoscope handle of claim 5, wherein the elongated potion comprises a sealed interior and an exterior.
7. The endoscope handle of claim 1, further comprising a door wherein the door allows access to the sealed compartment from the exterior of the handle when the door is in an open position.
8. An endoscope handle comprising:
a) an exterior and an interior;
b) a valve, wherein the valve allows fluid communication between the exterior and the interior of the handle when the valve is open;
c) a sealed compartment comprising an light emitting diode (LED), an LED power source, and a gas-permeable portion such that the sealed compartment is gas-permeable and liquid impermeable; and
d) a magnetic power switch comprising a moveable magnetic source on the exterior of the handle and a magnetically activatable switch inside the sealed compartment.
9. The endoscope handle of claim 8, wherein the gas-permeable portion comprises a gas-permeable membrane.
10. The endoscope of claim 9, wherein the gas-permeable membrane comprises polytetrafluoroethylene (PTFE).
11. The endoscope handle of claim 9, wherein the gas-permeable membrane is impermeable to liquid up to about 10 PSI.
12. The endoscope handle of claim 8, further comprising an elongated portion.
13. The endoscope handle of claim 12, wherein the elongated potion comprises a sealed interior and an exterior.
14. The endoscope handle of claim 8, further comprising a door wherein the door allows access to the sealed compartment from the exterior of the handle when the door is in an open position.
15. An endoscope comprising:
a) a handle comprising
i) an exterior and an interior;
ii) a valve, wherein the valve allows fluid communication between the exterior and the interior of the handle when the valve is open;
iii) a sealed compartment comprising an light emitting diode (LED), an LED power source and a gas-permeable portion such that the sealed compartment is gas-permeable and liquid impermeable; and
b) a magnetic power switch comprising a moveable magnetic source on the exterior of the handle and a magnetically activatable switch inside the sealed compartment.
16. The endoscope of claim 15, wherein the gas-permeable portion comprises a gas-permeable membrane.
17. The endoscope of claim 16, wherein the gas-permeable membrane comprises polytetrafluoroethylene (PTFE).
18. The endoscope of claim 16, wherein the gas-permeable membrane is impermeable to liquid up to about 10 PSI.
19. The endoscope of claim 15, wherein the elongated potion comprises a sealed interior and an exterior.
20. The endoscope of claim 15, further comprising a door wherein the door allows access to the sealed compartment from the exterior of the handle when the door is in an open position.
21. An endoscope comprising:
a) a handle comprising an exterior and an interior and means for allowing fluid communication between the exterior and interior of the handle;
b) a sealed compartment comprising means for generating light and means for allowing gas to enter the sealed compartment and for excluding liquid from the sealed compartment; and
c) means for activating the light generating means.
Description
    BACKGROUND
  • [0001]
    Endoscopes are commonly used to view a region inside a subject (e.g., a human, or animal), such as, for example, when performing a therapeutic or interventional medical procedure to view an interior area in the subject or to perform a medical or diagnostic procedure on an interior area of a subject. Typically, an endoscope has a manipulation portion (e.g., a handle) coupled to an elongated portion (e.g., a flexible elongated portion, a rigid elongated portion, a semi-rigid elongated portion). During use of the endoscope, the manipulation portion remains outside the subject while the elongated portion is at least partially disposed inside the subject. Generally, the elongated portion has one or more optical components (e.g., one or more lenses, fiber optics, video imager) to illuminate and view the region inside the subject, and the manipulation portion has one or more devices designed to control the optical components and the position of the elongated portion in the subject. In general, after each use in a medical procedure, the endoscope is cleaned to remove detritus, and subsequently disinfected and/or sterilized.
  • [0002]
    Regular use and cleaning of the endoscope can expose sensitive electronic components to liquids resulting in eventual failure of the device, yet frequent cleaning with liquid decontaminating agents is necessary. The cleaning process and diagnostic use expose the exterior of the endoscope to liquids that if allowed to contact the electronic components of the interior of the endoscope could cause the breakdown and/or malfunction of the electronic components. Routine use of the endoscope can result in permitting a cut, break, or other breach of the otherwise waterproof sheathing of the elongated portion of the endoscope permitting fluid to enter the interior of the elongated portion of the endoscope. Once inside, the fluid can migrate to and damage the electronic components of the endoscope.
  • [0003]
    Traditional light sources for endoscopic use are generally of two types: incandescent filament lamps and arc lamps. Both types of lamps are very inefficient in converting electrical power to light, and consequently produce large amounts of heat. The heat must be dissipated. Furthermore, these light sources typically reside outside of the endoscope itself. External light sources must be connected to the endoscope, thereby tethering the endoscope to the light source and limiting the portability and range of motion of the endoscope.
  • [0004]
    There have been numerous attempts to utilize low power (<1 W electrical power consumption, typically operating below 100 mW) LEDs coupled to fiber optic light guides as light sources for endoscopy, dentistry, and for remote illumination of objects. Most of these prior attempts employ numerous low power LEDs for remote illumination. Multiple LEDs have been necessary because the light output from a single, low power LED is very low and there is poor coupling of light emitted by the LED(s) into the optical fiber. In other examples, the LED light source is external to the endoscope and attached to the endoscope handle through a light guide post. This is problematic because there are very large light losses at the connection with the endoscope handle.
  • [0005]
    Thus, there is a need for a fully self-contained, portable endoscope that is not tethered to an external light and/or power source and that can withstand multiple uses and cleanings while maintaining the integrity of the liquid sensitive components of the endoscope.
  • SUMMARY OF THE INVENTION
  • [0006]
    The technology features an endoscope handle comprising a sealed compartment within the interior of the handle. In some embodiments, the sealed compartment comprises the electronic components of the endoscope. In some embodiments, the sealed compartment comprises a gas-permeable portion such that the sealed compartment is gas-permeable and liquid permeable.
  • [0007]
    As described herein, an endoscope handle is provided. In some embodiments, the endoscope handle comprises an exterior and an interior, a sealed compartment within the interior of the endoscope comprising an light emitting diode (LED), an LED power source, and a gas-permeable portion such that the sealed compartment is gas-permeable and liquid impermeable.
  • [0008]
    In some embodiments, the endoscope handle comprises an exterior and an interior, a valve, wherein the valve allows fluid communication between the exterior and the interior of the handle when the valve is open, a sealed compartment comprising an light emitting diode (LED), and an LED power source, wherein the sealed compartment is gas-permeable and liquid impermeable, and a magnetic power switch comprising a moveable magnetic source on the exterior of the handle and a magnetically activatable switch inside the sealed compartment.
  • [0009]
    Endoscopes are also provided. In some embodiments, the endoscope comprises the endoscope handle described herein and an elongated portion connected to the endoscope handle.
  • [0010]
    In some embodiments, the endoscope comprises a handle comprising an exterior and an interior and means for allowing fluid communication between the exterior and the interior of the handle. The endoscope further comprises a sealed compartment comprising means for generating light and means for allowing gas to enter the sealed compartment and for excluding liquid from entering the compartment. In some embodiments, the endoscope further comprises a means for activating the light generating means.
  • [0011]
    In some embodiments, the endoscope and endoscope handle include a light source, power source, light source drive electronics, and viewing optics within the handle of the endoscope. Everything needed for an examination can be contained within the endoscope. Thus, there is no need to connect the endoscope to an outside light and/or power source. In addition, as described herein, the electronics within the endoscope handle are in a separate compartment that is sealed from the rest of the endoscope handle. As a result, even if the endoscope shaft leaks (due to damage, cuts or tears in the waterproof sheathing) or if liquid otherwise enters the endoscope handle, the electronics, including the LED, are protected from the liquid.
  • [0012]
    As a result of the present invention, the entire interior of the endoscope (handle, shaft, and electronics compartment) can be pressurized, for example, when testing for leaks. The gas-permeable portion of the sealed compartment keeps liquid out of the sealed compartment while permitting gas to penetrate the sealed compartment. Therefore, when the interior of the endoscope is pressurized, the handle, elongated portion (also referred to herein as shaft), and the seal on the sealed compartment are tested for leaks simultaneously. In this manner, leaks in the electronics seals, such as the door to the sealed compartment, can also be detected.
  • [0013]
    Thus, the endoscope and endoscope handle described herein can be routinely and easily tested for leaks. For example, the endoscope can be tested after every use. By testing the endoscope and/or endoscope handle for leaks after every use, potential contamination and liquid intrusion can be detected early on before the endoscope is otherwise damaged by exposing the electronic components to liquid.
  • [0014]
    The various embodiments described herein can be complementary and can be combined or used in a manner understood by the skilled person in view of the teachings contained herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0015]
    FIG. 1 shows a top view of an endoscope.
  • [0016]
    FIG. 2 is view of the right side an embodiment of endoscope.
  • [0017]
    FIG. 3A is an end-on view of the front of an embodiment of endoscope.
  • [0018]
    FIG. 3B is an end-on view of the rear of an embodiment of endoscope.
  • [0019]
    FIG. 4 is a view of the left side of an embodiment of endoscope.
  • [0020]
    FIG. 5 is a bottom view of an embodiment of endoscope.
  • [0021]
    FIG. 6 shows a front elevation view of the right, bottom, and rear portions of an endoscope.
  • [0022]
    FIG. 7 shows a rear elevation view of the right, bottom, and front portions of an endoscope.
  • [0023]
    FIG. 8 shows a rear elevation view of the left, top, and rear portions of an endoscope.
  • [0024]
    FIG. 9 shows a front elevation view of the left, top, and front portions of an endoscope.
  • [0025]
    FIG. 10 shows the right and right bottom view of an endoscope.
  • [0026]
    FIG. 11 shows an embodiment of a sealed compartment.
  • [0027]
    FIG. 12A shows a front-end view of a sealed compartment with cut-away view “A” marked.
  • [0028]
    FIG. 12B shows the cut-away view “A” shown in FIG. 12A of the sealed compartment.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0029]
    In general, the invention relates to water-tight, portable endoscopes that include the light and power source incorporated into a sealed compartment (also referred to herein as sealed canister) within the endoscope handle. The invention also relates to water-tight, endoscope handles that include the light and power source incorporated into a sealed canister within the handle. In some embodiments, the sealed compartment contains all of the electronic components of the endoscope.
  • [0030]
    FIG. 1 is a top view showing an endoscope 12 and body of the endoscope handle 10. The body of the endoscope handle can be constructed from any material suitable for use in an endoscope handle that is or can be made waterproof. For example, the body of the endoscope handle can be constructed from plastic or metal or combinations thereof. In some embodiments, the body of the endoscope handle is aluminum.
  • [0031]
    As shown in FIG. 1, the endoscope handle can include an eyepiece 14, valve 16, power switch 22, and articulation lever 30. In some embodiments, a shaft 20, and a connector 18 are also employed. The valve 16 can be any suitable valve for sealing the interior of the handle from the exterior when the valve is closed and for allowing fluid communication between the exterior and interior of the handle. As used herein, fluid communication includes, for example, the entry and/or exit of gas. In some embodiments, the interior of the handle can be pressurized with bas when the value 16 is open. The valve 16 can also include a removable protective cap. The power switch 22 includes a suitable magnet or magnetic material and is configured to allow the user to move the switch such that the magnet or magnetic material is placed over a reed switch present in the interior of the endoscope handle, thereby tripping the reed switch and allowing power to flow from the power source to the light source. The power switch can be moved such that it is no longer placed over the reed switch, disengaging the reed switch and turning the endoscope OFF. In one embodiment, the power switch is attached asymmetrically on a post such that the power switch can be pivoted to place the magnet over the reed switch or to remove the magnet from the position over the reed switch.
  • [0032]
    The shaft 20 can be rigid or flexible. The shaft can be constructed from any suitable material used in the construction of endoscope shafts. The material can be waterproof or made to be waterproof. The shaft can be constructed as described, for example in U.S. Pat. No. 6,991,603 to Krupa et al. The shaft is connected to the handle (at the shaft connection opening 46 see FIG. 12B) via a suitable connector 18. The connector can include an O-ring, or other suitable material to create a water-tight seal around the shaft or light guide therein and the body of the handle. In some embodiments, a gasket is used to seal the joint between the shaft and the body of the handle.
  • [0033]
    FIG. 2 is view of the right side an embodiment of the present invention. In some embodiments, the shaft or elongated portion has an articulating distal end. The articulation of the distal end of the shaft can be controlled by the operator using the articulation control lever 30. In some embodiments, the distal end of the shaft can be articulated in two directions (e.g., up or down, “two-way articulation”). Methods for articulating the distal end of an endoscope shaft are described, for example, in US 2004/0059191 by Krupa, et al.
  • [0034]
    FIG. 3A shows the front end of an embodiment of the present invention. As shown in FIG. 3A, the lever 22 is in the ON position. When in the ON position (e.g., straight up, or directly over the front of the door 40), the magnet trips a reed switch located inside of the sealed compartment and power flows from the power source to the light source. When in the OFF position (e.g., straight down, or such that it is not directly over the door 40), the reed switch is not tripped by the magnet and no power flows from the power source to the light source. Other switches can be used, for example a sealed push button switch can be used.
  • [0035]
    Door 40 allows access to the LED power source. The LED light source can be powered by small batteries that will operate for a considerable length of time without the need for battery replacement or recharging, and without making the endoscope handle cumbersome or unwieldy. However, if necessary, the batteries can be accessed and replaced through the door 40. The door can include groves to allow easy opening and removal of the door without the need for specialized tools. In some embodiments, the door can be opened with a coin. In some embodiments, the seal between the door and the handle is water-tight. A water-tight seal can be made for example, using a suitable sealing material such as an O-ring or a gasket. In other embodiments, the door can be a threaded plug. Any sealing mechanism that prevents liquids such as cleaning solution or other liquids from entering the handle.
  • [0036]
    FIGS. 3B and 4-10 show alternate views of an endoscope provided herein.
  • [0037]
    FIG. 11 shows an embodiment of a sealed compartment. The sealed compartment can be made of any suitable material for constructing a water-tight compartment, including metal, plastic, and combinations thereof. In some embodiments the material is light weight. The sealed compartment can be constructed, for example, from aluminum. The sealed compartment can include the front face plate 66, including the door 40 and a port 46 (shaft connection port) for connecting the elongated portion to the endoscope handle.
  • [0038]
    A gas-permeable portion 42 allows gas into and out of the sealed compartment and is impermeable to liquids such as water or cleaning solutions. In some embodiments, the gas-permeable portion comprises a gas-permeable membrane. The gas-permeable membrane can be, for example, polytetrafluoroethylene. Suitable gas-permeable membranes can be obtained from W. L. Gore (on the World Wide Web at gore.com). Suitable gas-permeable membranes include Quick Pressure Equalization vents from W. L. Gore. In some embodiments, the gas-permeable membrane is impermeable to liquids up to a pressure of about 10 PSI. The gas-permeable membrane can be in any suitable size or shape to form a gas-permeable portion of the sealed canister sufficient to let gas in during, for example, pressurized leak testing. Suitable forms of the membrane include a tape-like membrane or a membrane in a housing that screws into the sealed compartment. In some embodiments, the gas-permeable portion comprises a low profile gas-permeable membrane.
  • [0039]
    A portion of the light guide 60 is also shown. Shaft connection port 46 is where the elongated portion is connected to the face plate 66 of the sealed compartment.
  • [0040]
    Shown in the cut-away view of FIG. 12B is the housing 50 for the sealed compartment, the door 40, and the light guide holder assembly 74. In some embodiments, the light guide holder is a solid piece made from a suitable material. The light guide holder is configured to hold the light guide in place against the light source. Suitable materials for the light guide holder include metals and plastics, so long as the material does not interfere with the ability of the light guide to gather and transmit light to the distal end of the shaft. In some embodiments, the light guide holder has hollowed out sections (76, 78) at the interface with the light source. In some embodiments, the hollowed out sections facilitate the alignment of the light guide with the light source.
  • [0041]
    The various junctions between the housing and other components of the sealed compartment are sealed with a material suitable to form a water-tight seal. Suitable seals include O-rings, gaskets, silicone seals, and adhesives such as silicone glue epoxy, room temperature vulcanizing (RTV) adhesives, and the like. In some embodiments, an O-ring 52 is used to form a seal between the door 40 and the housing 50. In some embodiments, an O-ring is used to form a seal between the light guide holder 74 and the housing 50. In some embodiments, a silicone seal 58 is used to form a seal between the light guide 60 and the tip of the ferrule 70. It is understood that any suitable sealing agent for forming a water-tight seal can be used to seal the various junctions between the components of the sealed container and the various components and the housing.
  • [0042]
    Suitable light guides include one or more optical fibers. Optical fibers can be formed from a transparent material or any material which allows light to pass through. Examples of materials that can be used to form the light guide include glass, plastic, and sapphire. In addition, the light guide can be formed form a plurality of fibers (e.g., fiber bundle). In some embodiments a flexible light guide is used. FIG. 12B shows one embodiment where the light guide exits the sealed compartment from the left side of the figure (in the direction of the rear of the endoscope handle). The light guide then is curved around the sealed compartment such that the light guide exits the endoscope handle through the shaft connection port 46 (in the direction of the front of the endoscope).
  • [0043]
    The power source 54 and the electronics required for the power source 64 are enclosed within the sealed container 80. The electronic components include, for example, the light source, a source of power for the light source and any circuitry to provide the correct voltage to the light source. In some embodiments, the light source is a high power LED. The high power, very small size, and high efficiency of these devices makes it possible to design an untethered endoscope; an endoscope without a light guide umbilical connecting the endoscope to an external light source. Suitable batteries and circuitry to provide the correct voltage to a LED, including a high power LED, are well known in the art. In addition, in some embodiments, a magnetically activatable reed switch is present within the sealed compartment, as described supra.
  • [0044]
    In some embodiments, the light guide is a fiber optic and is closely coupled to a single high power LED. Close coupling the light guide to the LED, e.g., without the use of additional optical components, couples a large amount of the light emitted by the LED directly into the fiber or fibers of the light guide. As a result, a greater amount of light from the LED can be transmitted to the distal end of the endoscope shaft which illuminates objects under investigation. Some embodiments of the present invention do not include auxiliary optics, such as lenses or mirrors, disposed between the light source and the light guide bundle, but instead rely on the small size of the LED's emitting region and the close placement (e.g., direct contact or close proximity) of the light guide to the emitting region. Because the LED itself is very efficient in converting electrical energy into light and the described optical interface is very efficient at coupling this light from the LED into the light guide fiber, this LED light source can be powered by small batteries without making the endoscope handle cumbersome or unwieldy. The lack of auxiliary optics between the light source and the light guide simplifies the mechanical design and volume of space within the handle needed for the light source.
  • EXAMPLE Leak Testing
  • [0045]
    After every procedure, the endoscope is tested to ensure that it is watertight. Testing is conducted prior to conducting high-level disinfection or sterilization.
  • [0046]
    The cap is first removed from valve 16 and a leak tester is attached to the valve. Suitable leak testers can be obtained, for example, from Surgical Repairs International (on the World Wide Web at srirepairs.com/products_leaktesters.asp). Using the leak tester, the interior of the endoscope is pressurized to about 140-180 mmHg as measured on the leak tester. The pressure measurement is observed for about 10 seconds to determine if the connection between the leak tester and the valve is loose. If the pressure drops, the connection between the endoscope and the leak tester may be loose. The attachment and pressurization procedure is repeated to verify.
  • [0047]
    If the pressure drops again, the endoscope may have a damaged seal and should not be immersed in any liquid. The endoscope should be repaired prior to using again or cleaning.
  • [0048]
    If the pressure does not drop the entire endoscope, while pressurized, is immersed in water. The endoscope is observed for 30 seconds. The distal end of the shaft is articulated up and down during this period; holes in the soft covering of the distal end of the shaft may not be evident in a relaxed position.
  • [0049]
    A steady stream of air bubbles indicates a leak in the endoscope. If a steady stream of bubbles is observed, the endoscope removed immediately from the water, while the endoscope is still pressurized. Air escaping the endoscope at the leak site will have prevented fluid invasion. If a leak is detected, the fiberscope should not be immersed in solution or used for patient procedures after the leak test.
  • [0050]
    Absence of a steady stream of air bubbles confirms that the endoscope is watertight. The endoscope is removed from the water and the leak tester is disconnected from the endoscope. The endoscope is then immersed in solution for cleaning and disinfection.
  • [0051]
    The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3111230 *Aug 1, 1960Nov 19, 1963Commissariat Energie AtomiqueHead for remote manipulators
US3299731 *Apr 7, 1964Jan 24, 1967Gen Precision IncGimbal-type joystick
US3365975 *Dec 10, 1965Jan 30, 1968Army UsaJoy stick mechanism
US3394611 *Apr 25, 1966Jul 30, 1968Bell Telephone Labor IncOutput control device with adjustable self-returning null
US3938402 *Aug 14, 1974Feb 17, 1976Eastman Kodak CompanyManipulator
US3963438 *Jun 21, 1974Jun 15, 1976Banez Armin VMethod of sterilizing a fiberoptic proctoscope
US3986498 *Sep 8, 1975Oct 19, 1976Videodetics CorporationRemote ECG monitoring system
US4101197 *Jun 4, 1976Jul 18, 1978Plessey Handel Und Investments AgConnectors for coaxially coupling the end of a linear optical waveguide element for a receiving surface
US4212021 *May 22, 1979Jul 8, 1980Hitachi, Ltd.Light emitting devices
US4385344 *Aug 29, 1980May 24, 1983Dentsply Research & Development Corp.Visible light apparatus for curing photo-curable compositions
US4449518 *Apr 2, 1982May 22, 1984Olympus Optical Co., Ltd.Disinfection indicator for medical equipment
US4534208 *Nov 9, 1983Aug 13, 1985Motorola, Inc.Method and apparatus for testing a sealed container
US4617915 *Apr 23, 1985Oct 21, 1986Fuji Photo Optical Co., Ltd.Construction of manual control section of endoscope
US4739128 *Nov 10, 1986Apr 19, 1988American Telephone And Telegraph Company, At&T Bell LaboratoriesThumb-controlled, hand-held joystick
US4763100 *Aug 13, 1987Aug 9, 1988Wood Lawson AJoystick with additional degree of control
US4850716 *Nov 20, 1987Jul 25, 1989Minnesota Mining And Manufacturing CompanyRemotely detectable sterilization monitor
US4862872 *Apr 6, 1988Sep 5, 1989Olympus Optical Co., Ltd.Endoscope and endoscope washing apparatus
US4919113 *Jun 6, 1989Apr 24, 1990Kabushiki Kaisha ToshibaMethod of cleaning scope end of endoscope and endoscope with scope end cleaning mechanism
US4974607 *Apr 21, 1988Dec 4, 1990Satoru MiwaSystem for centralized management of medical data
US4998926 *Feb 28, 1990Mar 12, 1991Becton, Dickinson And CompanyParenteral fluid administration set
US5050449 *Mar 6, 1990Sep 24, 1991Societe EcaDevice for actuating in rotation a mechanism and control stick incorporating said device
US5217003 *Mar 18, 1991Jun 8, 1993Wilk Peter JAutomated surgical system and apparatus
US5238025 *Mar 4, 1992Aug 24, 1993Preston Richard WTwo valves and a common control therefor
US5290279 *May 17, 1993Mar 1, 1994Meditron Devices, Inc.Arthroscopic tool combining five functions in one
US5359993 *Dec 31, 1992Nov 1, 1994Symbiosis CorporationApparatus for counting the number of times a medical instrument has been used
US5368015 *Jun 7, 1993Nov 29, 1994Wilk; Peter J.Automated surgical system and apparatus
US5373317 *May 28, 1993Dec 13, 1994Welch Allyn, Inc.Control and display section for borescope or endoscope
US5408991 *Jul 29, 1993Apr 25, 1995Olympus Optical Co., Ltd.Endoscope system wherein cleaning solution flows at same speed in cleaning solution supply section and in all flow paths of internal conduits
US5497847 *Oct 27, 1994Mar 12, 1996Kabushiki Kaisha Komatsu SeisakushoSingle lever for controlling multiple functions
US5535141 *Jun 9, 1994Jul 9, 1996Sintra Holding AgAutoclave
US5586207 *Nov 29, 1993Dec 17, 1996Northern Telecom LimitedMethods and assemblies for packaging opto-electronic devices and for coupling optical fibers to the packaged devices
US5609561 *Dec 22, 1994Mar 11, 1997Olympus Optical Co., LtdElectronic type endoscope in which image pickup unit is dismounted to execute disinfection/sterilization processing
US5634711 *Sep 13, 1994Jun 3, 1997Kennedy; JohnPortable light emitting apparatus with a semiconductor emitter array
US5655411 *Oct 23, 1995Aug 12, 1997Schaeff, IncorporationDual axis carriage assembly for a control handle
US5680492 *Aug 1, 1995Oct 21, 1997Cogent Light Technologies, Inc.Singular fiber to bundle illumination with optical coupler
US5732401 *Mar 29, 1996Mar 24, 1998Intellitecs International Ltd.Activity based cost tracking systems
US5830121 *Dec 4, 1996Nov 3, 1998Asahi Kogaku Kogyo Kabushiki KaishaEndoscopic apparatus having an endoscope and a peripheral device wherein total usage of the endoscope is quantified and recorded
US5846183 *Jul 7, 1997Dec 8, 1998Chilcoat; Robert T.Articulated endoscope with specific advantages for laryngoscopy
US5920054 *Oct 3, 1997Jul 6, 1999Medrad, Inc.Closed loop information path for medical fluid delivery systems
US5984875 *Aug 22, 1997Nov 16, 1999Innotek Pet Products, Inc.Ingestible animal temperature sensor
US6059718 *Jun 2, 1995May 9, 2000Olympus Optical Co., Ltd.Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6092722 *Jul 22, 1997Jul 25, 2000Richard Wolf GmbhMethod and device for the automatic identification of components of medical apparatus systems
US6092935 *Mar 2, 1999Jul 25, 2000Siemens AktiengesellschaftOptoelectronic transmitting and/or receiving module and method for its production
US6193510 *Jul 28, 1999Feb 27, 2001Efraim TsimermanMedical device with time-out feature
US6240312 *Oct 23, 1998May 29, 2001Robert R. AlfanoRemote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment
US6260994 *Aug 3, 1999Jul 17, 2001Fuji Photo Optical Co., Ltd.Battery-powered light source arrangement for endoscope
US6318887 *Aug 3, 1999Nov 20, 2001Fuji Photo Optical Co., Ltd.Battery-powered light source arrangement for endoscope
US6331156 *Jun 8, 2000Dec 18, 2001Richard Wolf GmbhElectronic endoscope
US6366206 *Jun 2, 2000Apr 2, 2002Ball Semiconductor, Inc.Method and apparatus for attaching tags to medical and non-medical devices
US6436032 *May 30, 2000Aug 20, 2002Olympus Optical Co., Ltd.Data filing system for endoscope
US6438302 *Jun 26, 2000Aug 20, 2002Asahi Kogaku Kogyo Kabushiki KaishaEndoscope system and illuminating device for the endoscope
US6452624 *Sep 2, 1998Sep 17, 2002Omnilabo N.V.Medical video endoscopy monitoring device
US6461295 *Feb 12, 2001Oct 8, 2002Masazumi TakadaSelf-propelled colonoscope and cleaning process thereof
US6485684 *Feb 7, 2000Nov 26, 2002Steris Inc.Fluid connection system for endoscope reprocessing with controlled leakage
US6679835 *Jun 26, 2001Jan 20, 2004Olympus CorporationEndoscope device
US6712756 *Aug 7, 2000Mar 30, 2004Olympus Optical Co., Ltd.Endoscope system having transponder for discriminating endoscope
US6712760 *Apr 9, 2001Mar 30, 2004Pentax CorporationTelevision device of portable endoscope
US6726620 *May 10, 2001Apr 27, 2004Olympus CorporationEndoscopic image filing system for managing cleaning information of endoscope with image information
US6776537 *Oct 24, 2001Aug 17, 2004Nippon Sheet Glass Co., Ltd.Light source-optical fiber coupler
US6793622 *Sep 4, 2002Sep 21, 2004Olympus Optical Co., Ltd.Electric bending endoscope
US6814932 *Feb 7, 2001Nov 9, 2004Steris Inc.Device support activation system
US6832849 *Dec 3, 2002Dec 21, 2004Ccs, Inc.Light radiation device, light source device, light radiation unit, and light connection mechanism
US6884392 *Nov 12, 2002Apr 26, 2005Minntech CorporationApparatus and method for steam reprocessing flexible endoscopes
US6918693 *Feb 19, 2003Jul 19, 2005Pentax CorporationLight source device for endoscope and assembly method for light source unit
US6921920 *Aug 31, 2001Jul 26, 2005Smith & Nephew, Inc.Solid-state light source
US6932599 *Aug 18, 2000Aug 23, 20053M Espe AgIrradiation unit
US20010033807 *Mar 8, 2001Oct 25, 2001Szu-Min LinSystem and method for sterilizing a lumen device
US20010041825 *May 10, 2001Nov 15, 2001Olympus Optical Co., LtdEndoscopic image filing system for managing cleaning information of endoscope with image information
US20010056224 *Jan 26, 2001Dec 27, 2001Martin RennerShaft for a flexible endoscope and flexible endoscope
US20020013510 *Jun 26, 2001Jan 31, 2002Olympus Optical Co., Ltd.Endoscope device
US20020120181 *Oct 24, 2001Aug 29, 2002Irion Klaus M.Endoscope with LED illumination
US20020188173 *May 30, 2002Dec 12, 2002Asahi Kogaku Kogyo Kabushiki KaishaElectronic endoscope system
US20030109837 *Mar 13, 1998Jun 12, 2003Mcbride-Sakal MarciaBrush to clear occluded stents
US20030141507 *Jan 28, 2002Jul 31, 2003Krames Michael R.LED efficiency using photonic crystal structure
US20030156430 *Feb 19, 2003Aug 21, 2003Pentax CorporationLight source device for endoscope and assembly method for light source unit
US20030231843 *Jun 13, 2002Dec 18, 2003Colombo Joseph G.Fiber optic light compressor for a curing instrument
US20030235800 *Jun 24, 2002Dec 25, 2003Qadar Steven AbdelLED curing light
US20040004846 *Jul 3, 2002Jan 8, 2004Steen Mark E.Light source for ophthalmic use
US20040024290 *Mar 18, 2003Feb 5, 2004Root Thomas V.Reusable instruments and related systems and methods
US20040041031 *Mar 18, 2003Mar 4, 2004Root Thomas V.Reusable instruments and related systems and methods
US20040049172 *Mar 18, 2003Mar 11, 2004Root Thomas V.Reusable instruments and related systems and methods
US20040052679 *Mar 18, 2003Mar 18, 2004Root Thomas V.Reusable instruments and related systems and methods
US20040059191 *Jun 17, 2003Mar 25, 2004Robert KrupaMechanical steering mechanism for borescopes, endoscopes, catheters, guide tubes, and working tools
US20040225190 *Apr 23, 2004Nov 11, 2004Olympus CorporationCapsule endoscope and a capsule endoscope system
US20040246744 *Mar 26, 2004Dec 9, 2004Krupa Robert J.Compact, high-efficiency, high-power solid state light source using a single solid state light-emitting device
US20050075539 *Oct 6, 2004Apr 7, 2005Dieter SchulzElectronic endoscope
USD330020 *Sep 24, 1990Oct 6, 1992 Joy stick
USD333601 *Oct 16, 1990Mar 2, 1993Electro-Matic Staplers, Inc.Electric staple gun tacker
USD358471 *Mar 11, 1993May 16, 1995Welch Allyn, Inc.Combined control handle and viewing screen for an endoscope
USD466773 *Jan 28, 2002Dec 10, 2002Jui-Yuan LinStaple gun
JP2002112953A * Title not available
JP2003169777A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8033704Dec 11, 2006Oct 11, 2011Optim, Inc.Compact, high efficiency, high power solid state light source using a solid state light-emitting device
US8152715Sep 14, 2007Apr 10, 2012Optim, IncorporatedEndoscope with internal light source and power supply
US8876713 *Sep 4, 2008Nov 4, 2014Clear Surgical LimitedRetractor with integrated light source
US9022628Oct 16, 2008May 5, 2015Optim, Inc.Compact, high efficiency, high power solid state light source using a single solid state light-emitting device
US9339262Sep 29, 2014May 17, 2016Clear Surgical LimitedRetractor with integrated light source
US20070086205 *Dec 11, 2006Apr 19, 2007Optim, Inc.Compact, high efficiency, high power solid state light source using a solid state light-emitting device
US20080214896 *Jan 10, 2008Sep 4, 2008Krupa Robert JEndoscope with detachable elongation portion
US20090040783 *Oct 16, 2008Feb 12, 2009Optim, Inc.Compact, high efficiency, high power solid state light source using a single solid state light-emitting device
US20090076328 *Sep 14, 2007Mar 19, 2009Root Thomas VEndoscope with internal light source and power supply
US20100317928 *Sep 4, 2008Dec 16, 2010Ayrshire And Arran Health BoardRetractor with integrated light source
Classifications
U.S. Classification600/178, 600/160, 600/131
International ClassificationA61B1/06
Cooperative ClassificationA61B1/0684, A61B1/00142, A61B1/00068
European ClassificationA61B1/00E2B, A61B1/00J, A61B1/06
Legal Events
DateCodeEventDescription
Feb 14, 2007ASAssignment
Owner name: OPTIM, INC., MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRUPA, ROBERT J.;LAFLASH, WILLIAM F.;ROOT, THOMAS V.;ANDOTHERS;REEL/FRAME:018889/0331
Effective date: 20070105
Aug 27, 2015ASAssignment
Owner name: OPTIM LLC, MASSACHUSETTS
Free format text: MERGER;ASSIGNOR:XSDF INC.;REEL/FRAME:036439/0018
Effective date: 20100531
Owner name: XSDF INC., MASSACHUSETTS
Free format text: MERGER;ASSIGNOR:OPTIM INCORPORATED;REEL/FRAME:036436/0021
Effective date: 20100531