Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20080138456 A1
Publication typeApplication
Application numberUS 11/609,825
Publication dateJun 12, 2008
Filing dateDec 12, 2006
Priority dateDec 12, 2006
Also published asCN101202219A, CN101202219B, EP1933392A2, EP1933392A3, US7928015, US8168545, US20110111076
Publication number11609825, 609825, US 2008/0138456 A1, US 2008/138456 A1, US 20080138456 A1, US 20080138456A1, US 2008138456 A1, US 2008138456A1, US-A1-20080138456, US-A1-2008138456, US2008/0138456A1, US2008/138456A1, US20080138456 A1, US20080138456A1, US2008138456 A1, US2008138456A1
InventorsDavid K. Fork, Eric J. Shrader
Original AssigneePalo Alto Research Center Incorporated
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Solar Cell Fabrication Using Extruded Dopant-Bearing Materials
US 20080138456 A1
Abstract
Wafer-based solar cells are efficiently produced by extruding a dopant bearing material (dopant ink) onto one or more predetermined surface areas of a semiconductor wafer, and then thermally treating the wafer to cause diffusion of dopant from the dopant ink into the wafer to form corresponding doped regions. A multi-plenum extrusion head is used to simultaneously extrude interdigitated dopant ink structures having two different dopant types (e.g., n-type dopant ink and p-type dopant ink) in a self-registered arrangement on the wafer surface. The extrusion head is fabricated by laminating multiple sheets of micro-machined silicon that define one or more ink flow passages. A non-doping or lightly doped ink is co-extruded with heavy doped ink to serve as a spacer or barrier, and optionally forms a cap that entirely covers the heavy doped ink. A hybrid thermal treatment utilizes a gaseous dopant to simultaneously dope exposed portions of the wafer.
Images(20)
Previous page
Next page
Claims(28)
1. A method for fabricating a device on a semiconductor substrate, the method comprising:
extruding a first dopant bearing material on a surface of the semiconductor substrate such that the first dopant bearing material forms a first extruded structure on a first surface area of the semiconductor substrate, the first dopant bearing material including a first dopant of a first dopant type; and
heating the semiconductor substrate such that the first dopant diffuses through the first surface area into the semiconductor substrate, thereby forming a first doped region of the semiconductor substrate.
2. The method according to claim 1, further comprising removing residual portions of the first extrusion structure after said heating.
3. The method according to claim 1, further comprising:
depositing a passivation layer on the surface of the semiconductor substrate over the first doped region,
laser ablating portions of the passivation layer such that a plurality of contact openings are defined through the passivation layer to the surface area,
disposing a conductive contact structure in each of the contact openings, and
disposing at least one metal line structure onto an upper surface of the passivation layer such that said metal line structure contacts said first doped region by way of said conductive contact structure.
4. The method according to claim 1, further comprising:
depositing a passivation layer on the surface of the semiconductor substrate over the first doped region,
removing portions of the passivation layer such that a plurality of contact openings are defined through the passivation layer to the surface area,
depositing a conductive contact structure into each of the contact openings using a direct-write metallization apparatus, and
depositing at least one metal line structure onto an upper surface of the passivation layer such that said metal line structure contacts said first doped region by way of said conductive contact structure.
5. The method according to claim 1,
wherein said extruding further comprises forming a second extruded structure on a second surface area of the semiconductor substrate,
wherein said heating the semiconductor substrate further comprises diffusing said first dopant from said second extruded structure into a second doped region of the semiconductor substrate through the second surface area.
6. The method according to claim 5, wherein the first doped region is separated from the second doped region by a first undoped region of the semiconductor substrate.
7. The method according to claim 5, wherein said extruding comprises simultaneously extruding a third material such that the extruded third material forms a third extruded structure on a third surface area of the semiconductor substrate that is disposed between the first surface area and the second surface area.
8. The method according to claim 7, wherein extruding said third material comprises forming a continuous sheet such that said third extruded structure extends from a side edge of said first extruded structure to a side edge of said second extruded structure.
9. The method according to claim 8, wherein extruding said first dopant bearing material comprises compressing said first material between said third extruded structure and a fourth extruded structure comprising said third material.
10. The method according to claim 7, wherein the third material has a relatively light dopant content relative to the first dopant bearing material.
11. The method according to claim 1, wherein said heating comprises disposing said semiconductor substrate in an ambient including a gaseous phase dopant.
12. The method according to claim 7, wherein extruding said third material comprises forming a capping structure that entirely covers said first extruded structure.
13. The method according to claim 1,
wherein said extruding further comprises simultaneously extruding a second dopant bearing material such that the extruded second dopant bearing material forms a second extruded structure on a second surface area of the semiconductor substrate, the second dopant bearing material including a second dopant of a second dopant type,
wherein said heating the semiconductor substrate further comprises simultaneously causing said second dopant to diffuse through the second surface area into the semiconductor substrate, thereby forming a second doped region.
14. The method according to claim 13,
wherein the first doped region has a first, relatively heavy doping level,
wherein the second doped region has a second, relatively heavy doping level,
wherein the third region has one of a third, relatively light doping level or an intrinsic state.
15. The method according to claim 14, further comprising removing residual portions of at least one of the first extrusion structure and the second extrusion structure after said heating.
16. The method according to claim 13, further comprising:
depositing a passivation layer on the surface of the semiconductor substrate over the first and second doped regions,
laser ablating portions of the passivation layer such that a plurality of contact openings are defined through the passivation layer to each of the first and second surface areas,
depositing a conductive contact structure into each of the contact openings using a direct-write metallization apparatus, and
depositing metal line structures onto an upper surface of the passivation layer such that each metal line structure contacts a group of said contact structures that are disposed over a corresponding one of said first and second doped regions.
17. The method according to claim 13, wherein said extruding further comprises simultaneously extruding a third material such that the extruded third material forms a third extruded structure on a third surface area of the semiconductor substrate that is disposed between the first surface area and the second surface area.
18. The method according to claim 17, wherein extruding said third material comprises forming a continuous sheet such that said third extruded structure extends from a side edge of said first extruded structure to a side edge of said second extruded structure.
19. A system for fabricating a wafer-based semiconductor device on a substrate, the system comprising:
means for extruding a first dopant bearing material and a second dopant bearing material on a surface of the semiconductor substrate such that the first dopant bearing material forms a first extruded structure on a first surface area of the semiconductor substrate, and such that the second dopant bearing material forms a second extruded structure on a second surface area of the semiconductor substrate, wherein the first and second surface areas are separated by a third surface area, and wherein the first dopant bearing material includes a first dopant of a first dopant type, and the second dopant bearing material includes a second dopant of a second dopant type and
means for heating the semiconductor substrate such that the first dopant diffuses through the first surface area into the semiconductor substrate, thereby forming a first doped region, and such that the second dopant diffuses through the second surface area into the semiconductor substrate, thereby forming a second doped region.
20. The system of claim 19, further comprising means for removing residual portions of at least one of the first extrusion structure and the second extrusion structure after said heating.
21. The system according to claim 19, further comprising:
means for depositing a passivation layer on the surface of the semiconductor substrate over the first and second doped regions,
means for removing portions of the passivation layer such that a plurality of contact openings are defined through the passivation layer to each of the first and second surface areas,
means for disposing a conductive contact structure into each of the contact openings, and
means for disposing metal line structures onto an upper surface of the passivation layer such that each metal line structure contacts a group of said contact structures that are disposed over a corresponding one of said first and second doped regions.
22. The system according to claim 19, wherein said means for extruding comprises an extrusion head that includes a laminated structure comprising a plurality of micro-machined sheets comprising at least one of silicon, glass and polymer materials.
23. The system according to claim 22, wherein the extrusion head comprises a first sheet defining a plurality of nozzle channels, a second sheet defining a first plenum and a first plurality of feed channels operably disposed to pass said first dopant bearing material from the first plenum to a first plurality of the nozzle channels, and a third sheet defining a second plenum and a second plurality of feed channels operably disposed to pass said second dopant bearing material from the second plenum to a second plurality of the nozzle channels.
24. The system according to claim 23, wherein the first sheet is disposed between the second sheet and the third sheet.
25. The system according to claim 23, wherein the second sheet is disposed between the first sheet and the third sheet.
26. The system according to claim 23, further comprising means for passing a third material to a third plurality of the nozzle channels.
27. The system according to claim 26, wherein at least one of said nozzle channels of the third plurality is disposed between a first associated nozzle channel of the first plurality and a second associated nozzle channel of the second plurality.
28. The system according to claim 23, wherein at least one of said nozzle channels of the first plurality comprises tapered nozzle walls.
Description
    FIELD OF THE INVENTION
  • [0001]
    This invention relates to the production of semiconductor devices, and in particular to the low cost production of large-area devices, such as silicon wafer-based solar cells, and power semiconductor devices by utilizing extrusion methods to form doped regions in the semiconductor substrate of the semiconductor device.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Modern solar cells typically include a large-area, single layer p-n junction diode that is capable of generating electrical energy from solar light. These cells are typically made using silicon wafers that are doped to include one or more n-type doped regions, and one or more p-type doped regions. Such solar cells (also known as silicon wafer-based solar cells) are currently the dominant technology in the commercial production of solar cells, and are the main focus of the present invention.
  • [0003]
    A desirable solar cell geometry, commonly referred to as the interdigitated back contact (IBC) cell, consists of a semiconductor wafer, such as silicon, and alternating lines (interdigitated stripes) of p-type and n-type doping. This cell architecture has the advantage that all of the electrical contacts to the p and n regions can be made to one side of the wafer. When the wafers are connected together into a module, the wiring is all done from one side. Device structure and fabrication means for this device have been described previously in co-owned and co-pending U.S. patent application Ser. No. 11/336,714 entitled “Solar Cell Production Using Non-Contact Patterning and Direct-Write Metallization”, which is incorporated herein by reference in its entirety.
  • [0004]
    One method for forming the alternately doped line regions in an IBC solar cell is to dispose dopant bearing pastes of alternating dopant type on the wafer, and then to heat the wafer with the appropriate temperature profile to drive in the dopants. Solar cell doping and the patterning of doped regions is typically carried out with costly steps that may include the use of barrier deposition, barrier patterning, laser processing, damage removal, and gas phase furnace diffusion. One could also generate the desired interdigitated doped regions using screen printing techniques. However, a distinct disadvantage of screen printing is that two separate print operations would be needed to write the two dopant bearing materials, and the two prints would need to be exquisitely well registered. Moreover, screen printing requires contact with the wafer, which increases the risk of wafer damage (breakage), thus increasing overall production costs. In addition, the first screen printed layer needs to be dried before a second screen print step is applied.
  • [0005]
    One commonly used solar cell architecture utilizes the back surface of the cell wafer as a broad area metal pad, typically aluminum, to form a contact to the p-type side of the device. During the metal firing step, the aluminum interacts with the silicon to form a p+ doped layer. In some cases, the back surface is also doped with boron to produce a p+ layer. The role of this layer is to create a so-called back surface field which reduces the recombination of the photocurrent on the back metallization. The broad area metal layer is commonly applied either by screen printing or pad printing, both of which are contact printing methods, and therefore increase the risk of wafer breakage.
  • [0006]
    What is needed is a low cost method and system for producing doped regions in solar cell substrates that avoids the problems associated with contact printing methods. In particular, what is needed is a simpler and more reliable method for producing self-registered p-type and n-type doped regions in the production of IBC solar cells.
  • SUMMARY OF THE INVENTION
  • [0007]
    The present invention is directed to a low cost method and system for producing large-area semiconductors that includes extruding a dopant bearing material (dopant ink) onto one or more predetermined surface areas of a semiconductor substrate (e.g., a monocrystalline silicon wafer), and then heating (thermal processing) the semiconductor substrate such that the dopant disposed in the dopant ink diffuses into the substrate to form the desired doped region or regions. In comparison to conventional screen printing techniques, the extrusion of dopant material on the substrate provides superior control of the feature resolution of the doped regions. In addition, by extruding the dopant ink onto the substrate, the dopant ink can be reliably disposed over the desired substrate regions without contacting the substrate, thereby avoiding the wafer breakage problem associated with conventional contact printing methods. By providing superior feature resolution and reduced wafer breakage, the present invention reduces the overall manufacturing costs associated with the production of large area semiconductor devices when compared with conventional production methods.
  • [0008]
    In accordance with an embodiment of the present invention, a system for producing large area semiconductor devices includes forming desired doped regions in surface of a semiconductor substrate using the extrusion method described above, forming a passivation layer over the substrate surface, utilizing a laser ablation or other non-contact apparatus to form contact openings in the passivation layer, and then utilizing a direct-write metallization apparatus to deposit contact structures in the contact openings and to form metallization lines on the passivation layer. By utilizing each of these non-contact processing methods, the present invention facilitates the reliable production of solar cells with minimal wafer breakage. In one alternative embodiment, residual dopant ink may be removed from the substrate surface before forming the passivation layer.
  • [0009]
    In accordance with an aspect of the present invention, a system for production of IBC-type solar cells includes an extrusion head that is capable of simultaneously extruding interdigitated dopant ink structures having two different dopant types (e.g., n-type dopant ink and p-type dopant ink) in a self-registered arrangement on a substrate surface. The extrusion head includes multiple nozzles (outlet channels) that respectively communicate at their inlet opening to a selected dopant ink source, and that have respective outlet openings disposed in a self-registered arrangement over the substrate surface. In one embodiment, every other nozzle communicates with a p-type dopant ink source, and the remaining nozzles communicate with an n-type dopant ink source, whereby each p-type extruded structure is disposed between two n-type extruded structures. The system includes an x-y table or other mechanism for moving the substrate relative to the extrusion head during the extrusion process. By utilizing such an extrusion head, both the p-type and n-type dopant ink structures are disposed simultaneously on the substrate surface in a self-registered manner, thus avoiding the delay required to allow a first screen printed dopant ink to dry before depositing a second screen printed ink, and the need to accurately register the second screen printing operation.
  • [0010]
    In accordance with another embodiment of the present invention, the extrusion head is fabricated by laminating multiple sheets of micro-machined silicon, plastic or other non-ferrous materials. It is important to dispense the dopant ink without the introduction of harmful impurities, and transition metal impurities are in particular to be avoided. This requirement makes the use of ferrous metal-based fluidic systems undesirable. The bonding of micromachined silicon wafers is a well understood and reliable process. The extrusion head can be formed such that the two dopant inks are fed from opposite sides of the nozzle array, or the extrusion head can be formed using a “side shooter” arrangement in which both dopant inks are fed from the same side to the nozzle array.
  • [0011]
    In accordance with additional alternative embodiment, a third (e.g., relatively light doping or non-doping) ink is extruded together with the two relatively heavy dopant inks such that each adjacent pair of heavy dopant ink structures is separated by a lightly or non-doping ink structure. The non-doping ink may serve as a spacer between dopant ink structures and/or as barrier to prevent doping from the ambient. In an alternative embodiment in which it is desirable for device performance reasons, the heavily n-type and p-type doped structures are separated by lightly doped ink that generates a lightly doped semiconductor region between the two heavily doped regions.
  • [0012]
    In accordance with yet another embodiment, the narrow lines of heavily doped ink are embedded between wider lines of a second (e.g., non-doping) ink. The narrow lines are generated by forming the extrusion head such that selected nozzle channels converge adjacent to their associated outlet openings. In contrast, the nozzle channels for the non-doping ink diverge prior to reaching the head outlet, which further squeezes the narrow lines and forms a continuous sheet in which the narrow lines are disposed between wide non-doping structures. Full control of the line width is both a function of the extrusion head design as well as the relative flow rates of the materials.
  • [0013]
    According to another embodiment of the present invention, an extrusion head includes a single plenum that feeds several diverging nozzle channels that terminate before an end facet of the extrusion head, thereby generating a flow merging section that produces a uniform extruded sheet of dopant or metal paste. This extrusion head provides an alternative non-contact method for forming so-called back surface fields that reduce the recombination of the photocurrent on the back metallization, thereby reducing manufacturing costs by avoiding the wafer breakage associated with conventional screen printing or pad printing methods.
  • [0014]
    According to another embodiment of the present invention, a hybrid doping method uses a combination of solid source doping and gas phase doping. Dopant ink structures are extruded on a wafer in the manner described above, but non-doping structures are also formed on each side of the dopant ink structures, and gaps are intentionally formed such that selected surface areas are intentionally exposed between the extruded structures. A temperature anneal of the substrate is then performed in an ambient containing a gaseous phase dopant. The thermal processing in conjunction with the doping ambient results in both solid source doping in the covered regions, and ambient source doping in the exposed regions.
  • [0015]
    In accordance with another embodiment, extruded dopant ink structures are capped (entirely covered) by a co-extruded material. A known problem with the solid source doping is that while the dopants are diffusing, they diffuse out of the source and onto other parts of the wafer, creating an undesirable doping effect in the surrounding portions of the wafer. By capping the dopant ink structures, the dopant ink is prevented from contaminating other portions of the wafer. The capping structure is optionally removed after thermal treatment is completed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0016]
    These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings, where:
  • [0017]
    FIG. 1 is a simplified perspective view showing a wafer processing apparatus in accordance with a generalized embodiment of the present invention;
  • [0018]
    FIG. 2 is a block diagram showing a system for producing wafer-based solar cells using the wafer processing apparatus of FIG. 1 according to an embodiment of the present invention;
  • [0019]
    FIG. 3 is a simplified perspective view showing a multiple dopant ink extrusion apparatus of a wafer processing apparatus according to another embodiment of the present invention;
  • [0020]
    FIGS. 4(A) and 4(B) exploded and assembled perspective views, respectively, showing a portion of a multiple dopant ink extrusion head according to a specific embodiment of the present invention;
  • [0021]
    FIGS. 5(A), 5(B), 5(C), 5(D), 5(E), 5(F) and 5(G) are perspective views illustrating various process stages during the fabrication of an IBC solar cell device using the system of FIG. 2 and extrusion head of FIG. 4(B) according to another embodiment of the present invention;
  • [0022]
    FIG. 6 is an exploded perspective view showing a portion of a multiple dopant ink extrusion head according to another exemplary embodiment of the present invention;
  • [0023]
    FIG. 7 is a simplified perspective view showing a poly-extrusion head according to another exemplary embodiment of the present invention;
  • [0024]
    FIG. 8 is a cross-sectional end view showing an exemplary extruded structure formed by the poly-extrusion head of FIG. 7;
  • [0025]
    FIG. 9 is a simplified cross-sectional top view showing a poly-extrusion head according to another exemplary embodiment of the present invention;
  • [0026]
    FIG. 10 is a simplified cross-sectional top view showing a portion of an extrusion head for generating a wide sheet of dopant ink according to another exemplary embodiment of the present invention;
  • [0027]
    FIG. 11 is a simplified perspective view illustrating a hybrid doping method according to another embodiment of the present invention; and
  • [0028]
    FIG. 12 is a simplified cross-sectional side view showing a capped dopant ink structure according to yet another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • [0029]
    The present invention relates to an improvement in the production of large area semiconductor devices. The following description is presented to enable one of ordinary skill in the art to make and use the invention as provided in the context of a particular application and its requirements. As used herein, directional terms such as “upper”, “upwards”, “lower”, “downward”, “front”, “rear”, are intended to provide relative positions for purposes of description, and are not intended to designate an absolute frame of reference. In addition, the phrases “integrally connected” and “integrally molded” is used herein to describe the connective relationship between two portions of a single molded or machined structure, and are distinguished from the terms “connected” or “coupled” (without the modifier “integrally”), which indicates two separate structures that are joined by way of, for example, adhesive, fastener, clip, or movable joint. Various modifications to the preferred embodiment will be apparent to those with skill in the art, and the general principles defined herein may be applied to other embodiments. Therefore, the present invention is not intended to be limited to the particular embodiments shown and described, but is to be accorded the widest scope consistent with the principles and novel features herein disclosed.
  • [0030]
    FIG. 1 is a simplified perspective view illustrating a wafer processing apparatus 100 for producing an integrated circuit (e.g., a solar cell) on a semiconductor substrate 101 in accordance with a generalized embodiment of the present invention. Wafer processing apparatus 100 generally includes an extrusion apparatus 110A for forming extruded structures 120-1 to 120-4 on substrate 101 during a first time period (Ti), and thermal processing (heating) apparatus 140 for heating substrate 101 during a second time period (T2) such that dopant diffuses from extruded structures 120-1 to 120-4 into substrate 101 to form doped regions 101-1 to 101-4, respectively. Subsequent processing of substrate 101 is described below.
  • [0031]
    Extrusion apparatus 110A includes an extrusion head (die) 130 that is operably coupled to a reservoir (dopant ink source) 111 containing a dopant ink 112. Extrusion has been utilized in a wide variety of applications, but is not believed to have been used in the production of large area semiconductor devices, and in particular in the formation of doped regions in a semiconductor substrate. Extrusion is a well-established manufacturing process that is typically used to create relatively long, narrow objects of a fixed cross-sectional profile. Similar to traditional extrusion processes, dopant ink 112 is pushed and/or drawn through outlet orifices 135-1 to 135-4, which are defined in extrusion head 130 using known techniques (e.g., using a suitable pump or auger), thereby generating multiple dopant ink beads 112-1 to 112-4. Outlet orifices 135-1 to 135-4 are formed in a selected shape (e.g., rectangular) such that beads 112-1 to 112-4 have the desired cross-sectional shape. A suitable mechanism (not shown) is utilized to move substrate 101 relative to output orifices 135-1 to 135-4 during the extrusion process, thereby depositing beads 112-1 to 112-4 on surface areas 102-1 to 102-4, respectively, thereby forming extruded structures 120-1 to 120-4 on substrate 101. In one embodiment, extruded structures 120-1 to 120-4 are separated by open (uncovered) regions of surface 102. For example, extruded structures 120-1 and 120-2 are separated by an open surface region 102-31.
  • [0032]
    In accordance with an embodiment, dopant ink 112 includes a paste-like vehicle material into which a desired n-type or p-type dopant is disbursed. For example, a suitable extrudable phosphorus dopant ink includes one or more of a variety of organometallic phosphorus compounds in which phosphorus containing substituent groups are present in compounds with carbon chains of varying lengths. These compounds must either be liquids at room temperature or completely soluble in the other solvents present in the formulation. The phosphorus dopant ink also includes dilute solutions of phosphoric acid. In addition, a fugitive organic vehicle is used that burns off or evaporates during processing. These vehicles are typically solutions of ethyl cellulose in high boiling solvents (b.p. 150-300 degrees C.) such as 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (trade name Texanol), terpineol, butyl carbitol and many others known to those skilled in the art. Finally, the phosphorus dopant ink may include Theological additives such as hydrogenated castor oil and plasticizers such as various phthalates (dimethyl phthalate, dibutyl phthalate, dioctyl phthalate, etc). Surfactants and wetting agents may be included as well. Other dopant inks in a paste form that may be suitable for extrusion are disclosed in “Paste Development for Low Cost High Efficiency Silicon Solar Cells,” Jalal Salami, FERRO Corporation, Electronic Material Systems, USA 16th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, Aug. 6-9, 2006, Denver, Colo.
  • [0033]
    At a subsequent time, i.e., after extruded structures 120-1 to 120-4 are formed on substrate 101, substrate 101 is heated using a thermal processing apparatus 140. In one embodiment, thermal processing apparatus 140 is an oven or kiln maintained at a temperature of 850 C. or higher. This heating process causes the dopant disposed in extruded structures 120-1 to 120-4 to diffuse into substrate 101 through surface areas 102-1 to 102-4, respectively, and to form doped regions 101-1 to 101-4, respectively. In one embodiment, extruded structures 120-1 to 120-4 are separated by a sufficient distance such that each doped region is separated from adjacent doped regions by a region of lightly doped or intrinsic (undoped) silicon. For example, doped regions 101-1 and 101-2 are separated by an intrinsic region 101-31, doped regions 101-2 and 101-3 are separated by an intrinsic region 101-32, and doped regions 101-3 and 101-4 are separated by an intrinsic region 101-33.
  • [0034]
    FIG. 2 depicts a system 200 for fabricating wafer-based solar cells using extrusion-based wafer processing apparatus 100 (FIG. 1) and other non-contact processing techniques in accordance with another embodiment of the present invention.
  • [0035]
    As indicated at the top of FIG. 2, the fabrication process utilizes wafer processing apparatus 100 to form one or more doped regions (e.g., elongated doped region 101-1) in a wafer (substrate) 101, and then substrate 101 is further treated to include a blanket passivation (electrically insulating) layer 215. In one embodiment, wafer processing apparatus 100 utilizes extrusion apparatus 110A (see FIG. 1) to form a doped region pattern similar to that described above with reference to FIG. 1. In another embodiment, wafer processing apparatus 100 utilizes the various techniques and structures described in the various specific embodiments set forth below. Once wafer processing is completed, passivation layer 215 is formed on upper surface 102 using known non-contact processing techniques. As referred to herein, the combined structure including substrate 101 and passivation layer 215 is generally as “wafer” or “device 201”, and at each stage of the processing cycle is referenced with an appended suffix indicating the device's current processing stage (e.g., after formation of passivation layer 215 and prior to the ablation process described below, device 201 is referenced as “device 201T1”, with the suffix “T1” indicating a relatively early point in the process cycle).
  • [0036]
    Device 201T1 is then subjected to various non-contact processes in order to produce a usable solar cell. First, a laser ablation apparatus 230 is utilized to define contact holes 217 through passivation layer 215 that expose corresponding portions of upper surface 102 of substrate 101 such that the contact holes are arranged in straight parallel rows over the doped diffusion regions. A suitable ablation process is described in additional detail in co-owned and co-pending U.S. patent application Ser. No. 11/562,383, filed Nov. 21, 2006, entitled “MULTIPLE STATION SCAN DISPLACEMENT INVARIANT LASER ABLATION APPARATUS”, which is incorporated herein by reference in its entirety. After contact holes 217 are defined through passivation layer 215, partially processed wafers 201T2 are passed to a direct-write metallization apparatus 250 that is utilized to deposit contact structures 218 into contact holes 217, and to form metal interconnect lines 219 on passivation layer 215 such that each metal interconnect line 219 connects the contact structures 218 disposed over an associated doped diffusion region. Additional details and alternative embodiments related to direct-write metallization device 250 are disclosed in co-owned U.S. patent application Ser. No. 11/336,714, cited above. Finally, metallized device 201T3 is passed from direct-write metallization apparatus 250 to an optional post-metallization processing apparatus 270 for subsequent processing to form the completed solar cell 201T4.
  • [0037]
    FIG. 3 is a simplified illustration showing the extrusion portion of a wafer processing apparatus 100B according to another embodiment of the present invention. Wafer processing apparatus 100B includes an extrusion apparatus 110B that supports an extrusion head 130B over a substrate 101B during the extrusion process. Wafer processing apparatus 100B differs from wafer processing apparatus 100 (described above) in that extrusion head 130B communicates with two dopant bearing material sources 111 and 114 containing two different dopant inks 112 and 115, and is capable of extruding dopant inks 112 and 115 such that they form extruded structures (lines) 120 in interdigitated arrangement onto semiconductor substrate 101B. In particular, as set forth in additional detail below, extrusion head 130B is formed such that dopant ink 112 is passed to a first set of outlet orifices 135 (e.g., outlet orifices 135-11 and 135-12), and dopant ink 115 is passed to a second, different set of outlet orifices 135 (e.g., orifice 135-21 and 135-22), where the first and second sets are alternately positioned along extrusion head 130B. With this arrangement, dopant ink 112 is deposited as extruded structures 120-11 and 120-12 and dopant ink 115 is deposited as extruded structures 120-21 and 120-22 in an interdigitated arrangement (i.e., such that extruded structure 120-21 is disposed between extruded structures 120-11 and 120-12).
  • [0038]
    In practical use, extrusion apparatus 110B operates similar to an inkjet printing apparatus to provide for the translation of substrate 101B-T1 with respect to the extrusion head 130B (i.e., either by moving extrusion head 130B in the direction Y1 over stationary substrate 101B, or by moving substrate 101B in the direction Y2 under stationary extrusion head 130B). Dopant inks 112 and 115 are fed into extrusion head 130B under pressure. Both applied fluid pressure and relative head-wafer motion are controlled by an automated system to produce lines 120 of controlled dimensions.
  • [0039]
    In accordance with an aspect of the present invention, a pitch of the interdigitated dopant ink lines 120 is controlled by the spacing between adjacent outlet orifices 135 that is designed into extrusion head 130B. For example, an exposed surface area 102-31, which is disposed between a first surface region 102-11 covered by extruded structure 120-11 and a second surface region 102-21 covered by extruded structure 120-21, has a width that is determined by a spacing between adjacent edges of outlet orifices 135-11 and 135-21. Because extrusion head 130B can be fabricated with precision machining methods, such as lithographic etching and wafer bonding, very high precision, on the order of microns, is achievable for the spacing between adjacent extruded structures 120. This novel approach to writing registered lines of dissimilar dopant inks exceeds all state of the art screen print methods.
  • [0040]
    FIGS. 4(A) and 4(B) are exploded and assembled perspective views showing a portion of an extrusion head 130B-1 according to a specific embodiment of the present invention. Extrusion head 130B-1 includes a central sheet 310, upper and lower feedline sheets 320 and 330, and upper and lower capping sheets 340 and 350. Central sheet 310 is micromachined to include multiple parallel nozzle channels (e.g., nozzle channels 315-11, 315-12, 315-21 and 315-22), where each nozzle channel has a closed end and an opposing open end defined in side edge 317. Similarly, feedline sheets 320 and 330 are micromachined to include manifolds (plenums) and feed channels that are arranged to transfer dopant ink to corresponding nozzles of central sheet 310. For example, feedline sheet 320 includes a plenum 322 that extends in a direction perpendicular to the nozzle channels, and includes feed channels 325-11 and 325-12 that communicate with plenum 322 and extend over the closed ends of nozzle channels 315-11 and 315-12, respectively. Similarly, feedline sheet 330 includes a plenum 332 and feed channels 335-21 and 335-22 that extend over the closed ends of nozzle channels 315-21 and 315-12, respectively.
  • [0041]
    In accordance with an aspect of the present invention, extrusion head 130B-1 is produced using materials that do not introduce unwanted impurities, particularly impurities that would induce carrier recombination. Materials such as polytetrafluoroethylene (PTFE) and other chemically inert polymer materials or glass or silicon are preferred materials for constructing the extrusion head. It is important to dispense dopant ink 112 and 115 without the introduction of harmful impurities. Transition metal and other metal impurities are in particular to be avoided. These include gold, copper, iron etc. This makes the use of ferrous metal-based fluidic systems undesirable. In a preferred embodiment, sheet layers 310 to 350 are fabricated using micromachined silicon. As indicated in FIG. 4(B), sheet layers 310 to 350 are then stacked and bonded using known techniques to complete extrusion head 130B-1.
  • [0042]
    As indicated by the dashed lines in FIG. 4(B), during operation first dopant ink 112 is transmitted along plenum 322, and is forced through feed channels 322-11 and 322-12 into nozzle channels 315-11 and 315-12 (FIG. 4(A)), and thus exits through outlet orifices 135-11 and 135-12 as dopant ink beads 112-1 and 112-2. Similarly, dopant ink 115 is transmitted along plenum 332, and is forced through feed channels 332-21 and 332-22 into nozzle channels 315-21 and 315-22 (FIG. 4(A)), and thus exits through outlet orifices 135-21 and 135-22 as dopant ink beads 115-1 and 115-2.
  • [0043]
    FIGS. 5(A) to 5(G) illustrate various process steps for fabricating an IBC solar cell device using system 200 (FIG. 2) and extrusion head 130B-1 (FIGS. 4(A) and 4(B)).
  • [0044]
    FIG. 5(A) shows extruded structures 120-11, 120-21, 120-12 and 120-22 that are respectively formed by dopant ink beads 112-1, 115-1, 112-2 and 115-2 (see FIG. 4 (B)). Extruded structures 120-11, 120-21, 120-12 and 120-22 are respectively disposed on surface areas 102-11, 102-21, 102-12 and 102-22 of substrate 101-Bl such that adjacent pairs of extruded structures are respectively separated by corresponding exposed surface areas 102-31, 102-32 and 102-33. In one embodiment, extruded structures 120-11, 120-21, 120-12 and 120-22 are relatively narrow in comparison to exposed surface areas 102-31, 102-32 and 102-33. In this embodiment, dopant ink 112 includes a p-type dopant and dopant ink 115 includes an n-type dopant.
  • [0045]
    FIG. 5(B) shows substrate 101B-T2 during a subsequent heating process using thermal processing apparatus 140, whereby dopant from each of extruded structures 120-11, 120-21, 120-12 and 120-22 is diffused into substrate 101B-T2. Specifically, the p-type dopant contained in dopant ink 112 diffuses through surface areas 102-11 and 102-12 to form p-type (first) doped regions 101-11 and 101-12. Similarly, the n-type dopant contained in dopant ink 115 diffuses through surface areas 102-21 and 102-22 to form n-type (second) doped regions 101-11 and 101-12. Note that each p-type doped region (e.g., doped region 101-11) is separated from all other p-type doped regions (e.g., doped region 101-12) by at least one n-type doped region (e.g., doped region 101-21). In addition, each doped region (e.g., doped region 101-11) is separated from its adjacent neighboring doped regions (e.g., doped region 101-21) by an undoped (intrinsic) or lightly doped region of substrate 101B-T2 (e.g., region 101-31). As discussed above, this alternating arrangement of p-type doped regions and n-type doped regions is conducive to the fabrication of IBC type solar cells.
  • [0046]
    FIG. 5(C) depicts an optional process of removing residual dopant ink from surface areas 102-11, 102-21, 102-12 and 102-22 of substrate 101-T3 after the heating/diffusion process is completed. This ink removal step may be avoided by utilizing dopant inks having vehicles that burn off during the heating/diffusion process. Note that each of the doped diffusion regions 101-11, 101-21, 101-12 and 101-22 extends to surface areas 102-11, 102-21, 102-12 and 102-22.
  • [0047]
    FIG. 5(D) illustrates the subsequent formation of a passivation layer 215 on upper surface 102 of substrate 101-T3, thereby providing partially formed device 201-T1 (described above with reference to FIG. 2).
  • [0048]
    FIG. 5(E) illustrates a subsequent laser ablation process during which laser pulses LP are used to remove portions of passivation layer 215 such that contact openings 217 are defined that expose portions of surface 102 disposed over doped regions 101-11, 101-21, 101-12 and 101-22. For example, contact openings 217-41 and 217-42 extend through passivation layer 215 to corresponding portions of surface area 102-22, which as described above is disposed over doped region 101-22. Similarly, contact openings 217 are formed that extend through passivation layer 215 to surface areas disposed over doped regions 101-11, 101-21, and 101-12. The laser ablation process is performed using laser ablation apparatus 230, which is described above with reference to FIG. 2.
  • [0049]
    FIG. 5(F) depicts the sequential deposition of contact material M1 from direct-write metallization apparatus 250 (FIG. 2) into each opening 217 formed in passivation layer 215 such that contact structures 218 are formed directly on exposed portions of substrate 101. For example, contact structures 218-41 and 218-42 are inserted into contact openings 217-41 and 217-42, respectively, and contact portions of surface 102 that are disposed over doped region 101-22. Similarly, contact structures 218 are formed in each contact opening 217 disposed over doped regions 101-11, 101-12, and 101-21.
  • [0050]
    FIG. 5(G) illustrates a subsequent process of depositing metal material M2 in a manner that forms metal line structures 219-1 to 219-4 on an upper surface of passivation layer 214 such that each metal line structure contacts a group contact structures that are disposed over a corresponding one of doped regions 101-11, 101-12, 101-21 and 101-22. For example, metal line structure 219-4 contacts the upper end of contact structures 218-41 and 218-42, whereby an electrical connection is provided between doped region 101-22 and metal line structure 219-4 by way of contact structures 218-41 and 218-42. Similarly, each of metal line structures 219-1, 219-2 and 219-3 are electrically connected to doped regions 101-11, 101-21 and 101-12 by way of corresponding contact structures. The metal line formation process is also performed using direct-write metallization apparatus 250, which is described above with reference to FIG. 2.
  • [0051]
    With additional layers containing feed-thru holes and optional additional plenums, it is possible to provide a means for interdigitated dispense from one side of an extrusion head, and also optionally provide means for dispensing three or more materials in arbitrary or repeating patterns. Providing the inlets on one side of the extrusion head makes it possible to operate the extrusion head over a wider range of angles relative to the substrate, including the so-called “side shooting” mode in which the extruded material stream exits the extrusion head nearly parallel to the substrate.
  • [0052]
    FIG. 6 is an exploded perspective view showing a portion of an extrusion head 130B-2 according to an exemplary embodiment of the present invention that utilizes six layers containing feed-thru holes to facilitate the formation of interdigitated extruded structures from one side of extrusion head 130B-2. Extrusion head 130B-2 includes a lower sheet 410, a first feedline sheet 420, a first feed-thru sheet 430, a second feedline sheet 440, an upper feed-thru sheet 450, and a lower capping sheet 460. Lower sheet 410 includes multiple parallel nozzle channels 415-11, 415-12, 415-21 and 415-22 formed in the manner described above with reference to FIG. 4(A). First feedline sheet 420 includes a first plenum 422 and feed channels 425-11 and 425-12 that are aligned with corresponding nozzles 415-11 and 415-12 of first sheet 410. In addition, feedline sheet 420 includes feed holes 425-21 and 425-22 that are aligned with corresponding nozzles 415-21 and 415-22 of first sheet 410. First feed-thru sheet 430 includes first and second feed holes 435-21 and 435-22 that are respectively aligned with feed holes 435-21 and 435-22 of first feedline sheet 420, and a third feed hole 437 that is aligned with plenum 422. Second feedline sheet 440 includes a second plenum 442 and feed channels 445-21 and 445-22 that are respectively aligned with first and second feed holes 435-21 and 435-22 of first feed-thru sheet 430. Upper feed-thru sheet 450 includes a first feed hole 457 that is aligned with feed hole 447 of sheet 440, and a second feed hole 459 that is aligned with plenum 442 of sheet 440.
  • [0053]
    As indicated by the dashed lines in FIG. 6, during operation first dopant ink 112 is transmitted through feed holes 457, 447 and 437 to plenum 422, and exits plenum 422 through feed channels 425-11 and 425-12 into nozzle channels 415-11 and 415-12, and then exits from nozzle channels 415-11 and 415-12 as dopant ink beads 112-1 and 112-2. Similarly, second dopant ink 114 is transmitted through feed hole 459 to plenum 442. A first portion of dopant ink 114 and exits plenum 442 through feed channel 445-21 and feed holes 435-21 and 425-21 into nozzle channel 415-21, and then exits from nozzle channel 415-21 as dopant ink bead 114-1. A second portion of dopant ink 114 and exits plenum 442 through feed channel 445-22 and feed holes 435-22 and 425-22 into nozzle channel 415-22, and then exits from nozzle channel 415-22 as dopant ink bead 114-2. Dopant ink beads 112-1, 112-2, 114-1 and 114-2 form extrusion structures similar to those shown in FIG. 5 (A).
  • [0054]
    In another variation of the present invention, at least one type of dopant ink is dispensed together with a non-doping ink. This non-doping ink may serve as a spacer between dopant ink structures and/or as barrier to prevent doping from the ambient. It may be desirable for device performance reasons to have stripes of heavily n-type and p-type doped material separated by intrinsic or lightly doped semiconductor. This is achievable by providing a poly-extrusion head that simultaneously delivers three types of ink, each one bearing a different composition of dopant, or no dopant at all.
  • [0055]
    FIG. 7 is a simplified perspective view showing a poly-extrusion head 130C-1 according to another embodiment of the present invention. The nozzle channel layer of poly-extrusion head 130C-1 is depicted in dashed lines for illustrative purposes, but feed channels, feed holes and plenums, which are formed in the manner described above, are omitted from the figure for clarity. Similar to previously described embodiments, dopant ink 112 is dispensed from nozzles 515-11 and 515-12, and dopant ink 115 is dispensed from nozzles 515-21 and 515-22. However, in this example a non-doping ink 117 is dispensed from nozzles 515-31 to 515-35 that are respectively disposed between adjacent pairs of nozzles 515-11, 515-12, 515-21 and 515-22. For example, nozzle 515-32 is disposed between nozzles 515-11 and 515-21. In a practical device for solar cell doping, the pitch of the dopant sources may vary from 100 microns to several millimeters. For typical wafer sizes, this implies a quantity of nozzles on the order of 100 to 1000, far more than illustrated by the exemplary embodiments described herein. By virtue of the manifold configuration, as illustrated in FIG. 8, extruded structures 120-31 to 120-35 are respectively formed by beads 117-1 to 117-5 such that non-doping material is disposed on each side of each dopant bearing extrusion structure 120-11, 120-21, 120-12 and 120-22.
  • [0056]
    In accordance with another aspect of poly-extrusion head 130C-1, the various nozzles merge the flow of ink into a continuous sheet of interleaved materials, which is depicted in FIG. 8. That is, extrusion structures formed from non-doping material extend between the side edges of each adjacent pair of doped extrusion structures (e.g., non-doping structure 120-32 extends between corresponding side edges of (first) extruded structure 120-11 and (second) extruded structure 120-21). To achieve this convergence, the nozzles are formed using tapered fingers 512, which are shown in FIG. 7. The taper of the nozzle outlet orifices is designed such that the material is extruded with laminar flow and minimal mixing. In this embodiment, the relative widths of the ink flows are substantially equal. In other embodiments it is desirable to produce very narrow doped extruded structures embedded between relatively wide lines of non-doping material.
  • [0057]
    FIG. 9 is a simplified cross-sectional top view showing a poly-extrusion head 130C-2 according to another embodiment of the present invention. The nozzle channel layer of poly-extrusion head 130C-2 is depicted in cross-section for illustrative purposes (other features are omitted for clarity). Poly-extrusion head 130C-2 is characterized by converging nozzles 615-11, 615-12, 615-21 and 615-22 having tapered nozzle walls that create the useful embedding of compressed, relatively narrow dopant bearing beads 112-1, 112-2, 115-1 and 115-2 interleaved between wider beads 117-1 to 117-5 of a non-doping or lightly doped material. Note that the end of converging nozzles 615-11, 615-12, 615-21 and 615-22 are set back from head end facet 619 by a distance C. The resulting internal space within extrusion head 130C-2 between the end of the individual nozzles and head end facet 619 provides for the further compressing and narrowing of the dopant bearing material prior to leaving extrusion head 130C-1, and subsequent deposition on a substrate. Full control of the line width is both a function of the extrusion head design as well as the relative flow rates of the materials.
  • [0058]
    An application in which extrusion head 130C-2 is particularly useful is the writing of lines of heavily doped semiconductor fingers on to a surface of a solar cell. These semiconductor fingers serve to provide a low resistance path for carriers from the surface of the cell to the gridlines of the cell. Inclusion of these fingers improves cell performance in several ways including enabling a lightly doped emitter layer without a large resistive loss penalty, improving the blue photo-response of the cell, reducing the contact resistance, and allowing gridlines to be spaced farther apart, thereby decreasing light shadowing.
  • [0059]
    In current practice, the incorporation of semiconductor fingers into the emitter of a solar cell requires additional process steps, and therefore, added cost. Typically, the cells are first processed in a phosphorous diffusion reactor to produce a lightly doped emitter as with conventional cells, and then three steps are added: (1) laser writing of trenches in the silicon (2) a damage etch and (3) an additional phosphorous diffusion step. In a useful improvement on this process, the light and heavy doping sources are applied simultaneously in a single extrusion operation, thereby eliminating the three additional process steps. In a preferred method embodiment, the relatively narrow lines are a heavily doping ink, and the relatively wider lines are a lightly doping ink. Semiconductor fingers may be applied to one or to both sides of the semiconductor wafer. If both sides are patterned, the thermal treatment to drive in the dopant may be performed in a single step.
  • [0060]
    FIG. 10 illustrates another extrusion head 130D-1 that includes a single plenum 722 feeding several nozzle channels 715-1 to 715-5 that diverge and terminate before end facet 719 in the manner described above with reference to FIG. 9, thereby generating a flow merging section that produces a uniform extruded sheet of dopant or metal paste. The ink enters into and spreads throughout plenum 722, at which point in encounters separated nozzle channels 715-1 to 715-5. Nozzle channels 715-1 to 715-5 add flow impedance, which ensures that even if the ink is fed into the plenum from a single point, the flows through each channel are substantially equal. This head can be used for example to write on a broad area of the solar cell with metal or dopant in a non-contact fashion, thereby avoiding wafer breakage that is risked using conventional screen printing techniques. It can also be used to write lines of intermediate width, such as the bus bar metallization illustrated above. In an alternative embodiment, two structures similar to that illustrated in FIG. 10 are mounted in a stacked arrangement with a separation layer therebetween, and two or more material layers (e.g., a dopant ink and a metal paste line) are simultaneously respectively extruded from the two structures in a vertical stacked arrangement.
  • [0061]
    FIG. 11 depicts a hybrid doping method according to another embodiment of the present invention that uses a combination of solid source doping (i.e., doping using a dopant ink) and gas phase doping. In the example depicted in FIG. 11, dopant ink structures 120-1 to 120-4 are formed on substrate 101D in the manner described above, and non-doping structures are formed on each side of an associated doping structure 120-1 to 120-4 (e.g., non-doping structures 120-31 and 120-32 are formed on opposite sides of doping structure 120-1). In addition, selected surface areas 102-31 to 102-35 are intentionally exposed between the extruded structures. For example, a gap between non-doping structures 120-32 and 120-33 provides exposed upper surface area 102-22. In this embodiment, a temperature anneal of substrate 101D is performed in a phosphorous (n-type doping) ambient 145, and p-type dopant ink structures 120-1 to 120-4 (e.g., a boron bearing paste) are used. The thermal processing in conjunction with doping ambient 145 will result in both solid source doping in regions 101-11 to 101-14 and ambient source doping in regions 101-21 to 101-25 of substrate 101D. It is a further aspect of this invention that dopant ink structures 120-1 to 120-4 may be co-extruded together with the non-doping material (e.g., non-doping structures 120-31 to 120-33). In a specific embodiment, after the extrusion process, substrate 101D will have exposed regions (e.g., exposed surface area 102-22), dopant blocking regions (e.g., the surface areas under non-doping structures 120-31 to 120-33), and dopant ink covered regions (e.g., the surface areas under extruded structures 120-11 to 120-14). After thermal processing in a dopant ambient, the processed wafer will have three distinct regions with different doping levels.
  • [0062]
    A known problem with the solid dopant source approach is that while the dopants are diffusing, they diffuse out of the source and onto other parts of the wafer, creating an undesirable doping effect in the surrounding portions of the wafer. In accordance with another embodiment of the present invention depicted in FIG. 12, a capping layer 120E is formed over each dopant ink extruded structure 120-1 to prevent it from contaminating other portions of the wafer. Capping structure 120E entirely covers extruded structure 120-1 in that it covers both the sides and upper surface of structure 120-1. Dopant structure 120-1 and capping structure 120E are necessarily aligned to one another due to the co-extrusion process, which is described in co-owned U.S. patent application Ser. No. 11/282,882, filed Nov. 17, 2005, entitled “Extrusion/Dispensing Systems and Methods”, which is incorporated herein by reference in its entirety. In a specific embodiment of this invention, the extrusion head utilizes a combination of vertical and horizontal co-extrusion, which is described in Ser. No. 11/282,882 (cited above), to produce a composite bead of material in which the sides of the solid source that are not adjacent to the wafer are capped by a capping structure.
  • [0063]
    It is a further desirable feature that the ends of the line of solid dopant source are capped by the capping structure. It is an aspect of this invention that the flows of materials which form the doping source and the capping structure are varied. This variation in flow enables for example the production of a co-extruded line in which ends of the line are capped.
  • [0064]
    Although the present invention has been described with respect to certain specific embodiments, it will be clear to those skilled in the art that the inventive features of the present invention are applicable to other embodiments as well, all of which are intended to fall within the scope of the present invention. For example, the extruded structures disclosed in FIGS. 8 and 9 may comprise only one dopant ink (e.g., n-type) instead of two different dopant inks. In another example, the dopant paste, when fired could also create a passivation layer or antireflection coating. In another example, a single direct write printing step could fill the contact openings in the dielectric and form conducting lines on the device. In another example, a glass frit fire through method could be used eliminating a separate process step to open contact openings in the dielectric.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3032008 *May 7, 1956May 1, 1962Polaroid CorpApparatus for manufacturing photographic films
US3602193 *Apr 10, 1969Aug 31, 1971John R AdamsApparatus for preparing coatings with extrusions
US4018367 *Mar 2, 1976Apr 19, 1977Fedco Inc.Manifold dispensing apparatus having releasable subassembly
US4021267 *Sep 8, 1975May 3, 1977United Technologies CorporationHigh efficiency converter of solar energy to electricity
US4045246 *Aug 11, 1975Aug 30, 1977Mobil Tyco Solar Energy CorporationSolar cells with concentrators
US4084985 *Apr 25, 1977Apr 18, 1978The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod for producing solar energy panels by automation
US4086485 *May 26, 1976Apr 25, 1978Massachusetts Institute Of TechnologySolar-radiation collection apparatus with tracking circuitry
US4095997 *Oct 7, 1976Jun 20, 1978Griffiths Kenneth FCombined solar cell and hot air collector apparatus
US4104091 *May 20, 1977Aug 1, 1978The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationApplication of semiconductor diffusants to solar cells by screen printing
US4141231 *Jul 28, 1976Feb 27, 1979Maschinenfabrik Peter Zimmer AktiengesellschaftMachine for applying patterns to a substrate
US4148301 *Sep 26, 1977Apr 10, 1979Cluff C BrentWater-borne rotating solar collecting and storage systems
US4205216 *Sep 26, 1978May 27, 1980Western Electric Company, Inc.Laser welding system and method
US4221468 *Feb 26, 1979Sep 9, 1980Macken John AMulti-cavity laser mirror
US4223202 *Dec 14, 1978Sep 16, 1980United Technologies CorporationApparatus and method for welding boat subassemblies utilizing laser radiation
US4224081 *Nov 26, 1975Sep 23, 1980Sharp Kabushiki KaishaSolar cell sealed by glass laminations
US4331703 *Dec 13, 1979May 25, 1982Solarex CorporationMethod of forming solar cell having contacts and antireflective coating
US4337758 *May 4, 1979Jul 6, 1982Meinel Aden BSolar energy collector and converter
US4521457 *Sep 21, 1982Jun 4, 1985Xerox CorporationSimultaneous formation and deposition of multiple ribbon-like streams
US4533814 *Jan 31, 1983Aug 6, 1985United Kingdom Atomic Energy AuthorityLaser pipe welder/cutter
US4589191 *Oct 16, 1984May 20, 1986Unisearch LimitedManufacture of high efficiency solar cells
US4602120 *Nov 25, 1983Jul 22, 1986Atlantic Richfield CompanySolar cell manufacture
US4609037 *Oct 9, 1985Sep 2, 1986Tencor InstrumentsApparatus for heating and cooling articles
US4683348 *Apr 23, 1986Jul 28, 1987The Marconi Company LimitedSolar cell arrays
US4746370 *Apr 29, 1987May 24, 1988Ga Technologies Inc.Photothermophotovoltaic converter
US4796038 *Mar 28, 1988Jan 3, 1989Ateq CorporationLaser pattern generation apparatus
US4841946 *Oct 27, 1986Jun 27, 1989Marks Alvin MSolar collector, transmitter and heater
US4847349 *Jun 30, 1986Jul 11, 1989Mitsui Toatsu Chemicals, Inc.Polyimide and high-temperature adhesive of polyimide from meta substituted phenoxy diamines
US4849028 *Oct 11, 1988Jul 18, 1989Hughes Aircraft CompanySolar cell with integrated interconnect device and process for fabrication thereof
US4855884 *Dec 2, 1987Aug 8, 1989Morpheus Lights, Inc.Variable beamwidth stage light
US4896015 *Jul 29, 1988Jan 23, 1990Refractive Laser Research & Development Program, Ltd.Laser delivery system
US4938994 *Nov 23, 1987Jul 3, 1990Epicor Technology, Inc.Method and apparatus for patch coating printed circuit boards
US4947825 *Sep 11, 1989Aug 14, 1990Rockwell International CorporationSolar concentrator - radiator assembly
US4952026 *May 22, 1989Aug 28, 1990Corning IncorporatedIntegral optical element and method
US4996405 *Apr 17, 1990Feb 26, 1991CablecoInductive heated portable hot plate
US5000988 *Jan 12, 1988Mar 19, 1991Matsushita Electric Industrial Co., Ltd.Method of applying a coating of viscous materials
US5004319 *Dec 29, 1988Apr 2, 1991The United States Of America As Represented By The Department Of EnergyCrystal diffraction lens with variable focal length
US5011565 *May 17, 1990Apr 30, 1991Mobil Solar Energy CorporationDotted contact solar cell and method of making same
US5089055 *Dec 12, 1989Feb 18, 1992Takashi NakamuraSurvivable solar power-generating systems for use with spacecraft
US5151377 *Mar 7, 1991Sep 29, 1992Mobil Solar Energy CorporationMethod for forming contacts
US5180441 *Jun 14, 1991Jan 19, 1993General Dynamics Corporation/Space Systems DivisionSolar concentrator array
US5216543 *Mar 4, 1987Jun 1, 1993Minnesota Mining And Manufacturing CompanyApparatus and method for patterning a film
US5344496 *Nov 16, 1992Sep 6, 1994General Dynamics Corporation, Space Systems DivisionLightweight solar concentrator cell array
US5389159 *Aug 30, 1993Feb 14, 1995Canon Kabushiki KaishaSolar cell module and method for producing the same
US5501743 *Aug 11, 1994Mar 26, 1996Cherney; MatthewFiber optic power-generating system
US5529054 *Jun 20, 1994Jun 25, 1996Shoen; Neil C.Solar energy concentrator and collector system and associated method
US5536313 *Sep 1, 1994Jul 16, 1996Matsushita Electric Industrial Co., Ltd.Intermittent coating apparatus
US5540216 *Nov 21, 1994Jul 30, 1996Rasmusson; James K.Apparatus and method for concentrating radiant energy emanated by a moving energy source
US5543333 *Sep 30, 1994Aug 6, 1996Siemens Solar GmbhMethod for manufacturing a solar cell having combined metallization
US5552820 *May 22, 1995Sep 3, 1996Xerox CorporationFly's eye optics for a raster output scanner in an electrophotographic printer
US5559677 *Feb 14, 1995Sep 24, 1996Motorola, Inc.Method of forming a device by selectively thermal spraying a metallic conductive material thereon
US5733608 *Jan 11, 1996Mar 31, 1998Minnesota Mining And Manufacturing CompanyMethod and apparatus for applying thin fluid coating stripes
US5751436 *Dec 23, 1996May 12, 1998Rocky Mountain Instrument CompanyMethod and apparatus for cylindrical coordinate laser engraving
US5916461 *Apr 23, 1997Jun 29, 1999Technolines, LlcSystem and method for processing surfaces by a laser
US6011307 *Aug 12, 1997Jan 4, 2000Micron Technology, Inc.Anisotropic conductive interconnect material for electronic devices, method of use and resulting product
US6020554 *Mar 19, 1999Feb 1, 2000Photovoltaics International, LlcTracking solar energy conversion unit adapted for field assembly
US6032997 *Apr 16, 1998Mar 7, 2000Excimer Laser SystemsVacuum chuck
US6091017 *Aug 23, 1999Jul 18, 2000Composite Optics IncorporatedSolar concentrator array
US6183186 *Aug 29, 1997Feb 6, 2001Daitron, Inc.Wafer handling system and method
US6203621 *May 24, 1999Mar 20, 2001Trw Inc.Vacuum chuck for holding thin sheet material
US6232217 *Jun 5, 2000May 15, 2001Chartered Semiconductor Manufacturing Ltd.Post treatment of via opening by N-containing plasma or H-containing plasma for elimination of fluorine species in the FSG near the surfaces of the via opening
US6274508 *Mar 16, 1999Aug 14, 2001Alien Technology CorporationApparatuses and methods used in forming assemblies
US6278054 *May 19, 1999Aug 21, 2001Tecstar Power Systems, Inc.Solar cell having an integral monolithically grown bypass diode
US6351098 *Sep 28, 2000Feb 26, 2002Kabushiki Kaisha Toyoda Jidoshokki SeisakushoCharging receptacle
US6354791 *Apr 11, 1997Mar 12, 2002Applied Materials, Inc.Water lift mechanism with electrostatic pickup and method for transferring a workpiece
US6379521 *Dec 30, 1998Apr 30, 2002Canon Kabushiki KaishaMethod of producing zinc oxide film, method of producing photovoltaic element, and method of producing semiconductor element substrate
US6407329 *Nov 16, 2000Jun 18, 2002Bridgestone CorporationBackside covering member for solar battery, sealing film and solar battery
US6413113 *Jul 14, 1999Jul 2, 2002Aehr Test SystemsKinematic coupling
US6420266 *Nov 2, 1999Jul 16, 2002Alien Technology CorporationMethods for creating elements of predetermined shape and apparatuses using these elements
US6527964 *Nov 2, 1999Mar 4, 2003Alien Technology CorporationMethods and apparatuses for improved flow in performing fluidic self assembly
US6531653 *Sep 11, 2001Mar 11, 2003The Boeing CompanyLow cost high solar flux photovoltaic concentrator receiver
US6568863 *Mar 8, 2001May 27, 2003Seiko Epson CorporationPlatform and optical module, method of manufacture thereof, and optical transmission device
US6590235 *Feb 2, 2001Jul 8, 2003Lumileds Lighting, U.S., LlcHigh stability optical encapsulation and packaging for light-emitting diodes in the green, blue, and near UV range
US6597510 *Nov 2, 2001Jul 22, 2003Corning IncorporatedMethods and apparatus for making optical devices including microlens arrays
US6743478 *Sep 1, 2000Jun 1, 2004Metso Paper, Inc.Curtain coater and method for curtain coating
US6924493 *Aug 17, 2000Aug 2, 2005The Regents Of The University Of CaliforniaIon beam lithography system
US7002675 *Jul 10, 2003Feb 21, 2006Synetics Solutions, Inc.Method and apparatus for locating/sizing contaminants on a polished planar surface of a dielectric or semiconductor material
US7045794 *May 10, 2005May 16, 2006Novelx, Inc.Stacked lens structure and method of use thereof for preventing electrical breakdown
US7388147 *Apr 10, 2003Jun 17, 2008Sunpower CorporationMetal contact structure for solar cell and method of manufacture
US7394016 *Oct 11, 2005Jul 1, 2008Solyndra, Inc.Bifacial elongated solar cell devices with internal reflectors
US20010008230 *Apr 24, 1998Jul 19, 2001David M. KeicherEnergy-beam-driven rapid fabrication system
US20020056473 *Nov 16, 2001May 16, 2002Mohan ChandraMaking and connecting bus bars on solar cells
US20030015820 *Jun 14, 2002Jan 23, 2003Hidekazu YamazakiMethod of producing of cellulose ester film
US20030095175 *Nov 16, 2001May 22, 2003Applied Materials, Inc.Laser beam pattern generator having rotating scanner compensator and method
US20030129810 *Jul 22, 2002Jul 10, 2003Barth Kurt L.Apparatus and processes for the mass production of photovoltaic modules
US20040031517 *Aug 13, 2002Feb 19, 2004Bareis Bernard F.Concentrating solar energy receiver
US20040048001 *May 27, 2003Mar 11, 2004Hiroshi KiguchiPattern formation method and substrate manufacturing apparatus
US20040070855 *Oct 11, 2002Apr 15, 2004Light Prescriptions Innovators, Llc, A Delaware Limited Liability CompanyCompact folded-optics illumination lens
US20040084077 *Jul 18, 2003May 6, 2004Eric AylaianSolar collector having an array of photovoltaic cells oriented to receive reflected light
US20040151014 *Jan 20, 2004Aug 5, 2004Speakman Stuart PhilipMethod of forming an electronic device
US20050000566 *May 6, 2004Jan 6, 2005Niels PosthumaGermanium solar cell and method for the production thereof
US20050029236 *Aug 5, 2003Feb 10, 2005Richard GambinoSystem and method for manufacturing embedded conformal electronics
US20050034751 *Jul 9, 2004Feb 17, 2005William GrossSolar concentrator array with individually adjustable elements
US20050046977 *Sep 14, 2004Mar 3, 2005Eli ShifmanSolar energy utilization unit and solar energy utilization system
US20050081908 *Mar 18, 2004Apr 21, 2005Stewart Roger G.Method and apparatus for generation of electrical power from solar energy
US20050133084 *Oct 8, 2004Jun 23, 2005Toshio JogeSilicon solar cell and production method thereof
US20060046269 *Sep 2, 2004Mar 2, 2006Thompson Allen CMethods and devices for processing chemical arrays
US20060076105 *Oct 7, 2005Apr 13, 2006Fujitsu LimitedMethod of cutting laminate, apparatus for manufacturing laminate, method of manufacturing laminate, and laminate
US20080047605 *Mar 8, 2007Feb 28, 2008Regents Of The University Of CaliforniaMulti-junction solar cells with a homogenizer system and coupled non-imaging light concentrator
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7765949Aug 3, 2010Palo Alto Research Center IncorporatedExtrusion/dispensing systems and methods
US7780812Nov 1, 2006Aug 24, 2010Palo Alto Research Center IncorporatedExtrusion head with planarized edge surface
US7799371Nov 17, 2005Sep 21, 2010Palo Alto Research Center IncorporatedExtruding/dispensing multiple materials to form high-aspect ratio extruded structures
US7807544Sep 14, 2009Oct 5, 2010Palo Alto Research Center IncorporatedSolar cell fabrication using extrusion mask
US7851693May 5, 2006Dec 14, 2010Palo Alto Research Center IncorporatedPassively cooled solar concentrating photovoltaic device
US7855335Apr 26, 2006Dec 21, 2010Palo Alto Research Center IncorporatedBeam integration for concentrating solar collector
US7906722Apr 19, 2005Mar 15, 2011Palo Alto Research Center IncorporatedConcentrating solar collector with solid optical element
US7922471Nov 1, 2006Apr 12, 2011Palo Alto Research Center IncorporatedExtruded structure with equilibrium shape
US7928015Dec 12, 2006Apr 19, 2011Palo Alto Research Center IncorporatedSolar cell fabrication using extruded dopant-bearing materials
US7951696Sep 30, 2008May 31, 2011Honeywell International Inc.Methods for simultaneously forming N-type and P-type doped regions using non-contact printing processes
US7954449Jun 7, 2011Palo Alto Research Center IncorporatedWiring-free, plumbing-free, cooled, vacuum chuck
US7999175Aug 16, 2011Palo Alto Research Center IncorporatedInterdigitated back contact silicon solar cells with laser ablated grooves
US8053867Aug 20, 2008Nov 8, 2011Honeywell International Inc.Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants
US8080181May 13, 2008Dec 20, 2011Solarworld Innovations GmbhCoextrusion ink chemistry for improved feature definition
US8080729Nov 24, 2008Dec 20, 2011Palo Alto Research Center IncorporatedMelt planarization of solar cell bus bars
US8117983Nov 7, 2008Feb 21, 2012Solarworld Innovations GmbhDirectional extruded bead control
US8226391Nov 7, 2008Jul 24, 2012Solarworld Innovations GmbhMicro-extrusion printhead nozzle with tapered cross-section
US8322025Nov 1, 2006Dec 4, 2012Solarworld Innovations GmbhApparatus for forming a plurality of high-aspect ratio gridline structures
US8324089Jul 20, 2010Dec 4, 2012Honeywell International Inc.Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions
US8399283Jun 1, 2009Mar 19, 2013Solarworld Innovations GmbhBifacial cell with extruded gridline metallization
US8426724 *Apr 23, 2013Palo Alto Research Center IncorporatedInterdigitated back contact silicon solar cells with separating grooves
US8518170Dec 29, 2008Aug 27, 2013Honeywell International Inc.Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks
US8557689Nov 22, 2010Oct 15, 2013Solarworld Innovations GmbhExtruded structure with equilibrium shape
US8586129Sep 1, 2010Nov 19, 2013Solarworld Innovations GmbhSolar cell with structured gridline endpoints and vertices
US8629294Aug 25, 2011Jan 14, 2014Honeywell International Inc.Borate esters, boron-comprising dopants, and methods of fabricating boron-comprising dopants
US8692110Oct 15, 2010Apr 8, 2014Palo Alto Research Center IncorporatedMelt planarization of solar cell bus bars
US8704086Sep 1, 2010Apr 22, 2014Solarworld Innovations GmbhSolar cell with structured gridline endpoints vertices
US8790957 *Dec 17, 2010Jul 29, 2014Sunpower CorporationMethod of fabricating a back-contact solar cell and device thereof
US8846431 *May 6, 2014Sep 30, 2014Palo Alto Research Center IncorporatedN-type silicon solar cell with contact/protection structures
US8875653Feb 10, 2012Nov 4, 2014Palo Alto Research Center IncorporatedMicro-extrusion printhead with offset orifices for generating gridlines on non-square substrates
US8960120Dec 9, 2008Feb 24, 2015Palo Alto Research Center IncorporatedMicro-extrusion printhead with nozzle valves
US8962424 *Mar 3, 2011Feb 24, 2015Palo Alto Research Center IncorporatedN-type silicon solar cell with contact/protection structures
US8975170Oct 24, 2011Mar 10, 2015Honeywell International Inc.Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions
US9054237 *Nov 24, 2010Jun 9, 2015Palo Alto Research Center IncorporatedInterdigitated back contact silicon solar cells fabrication using diffusion barriers
US9102084Jun 18, 2010Aug 11, 2015Solarworld Innovations GmbhSolar cell with high aspect ratio gridlines supported between co-extruded support structures
US9120190Nov 30, 2011Sep 1, 2015Palo Alto Research Center IncorporatedCo-extruded microchannel heat pipes
US9150966Nov 14, 2008Oct 6, 2015Palo Alto Research Center IncorporatedSolar cell metallization using inline electroless plating
US20060231133 *Apr 19, 2005Oct 19, 2006Palo Alto Research Center IncorporatedConcentrating solar collector with solid optical element
US20070107773 *May 3, 2006May 17, 2007Palo Alto Research Center IncorporatedBifacial cell with extruded gridline metallization
US20070108229 *Nov 17, 2005May 17, 2007Palo Alto Research Center IncorporatedExtrusion/dispensing systems and methods
US20070169806 *Jan 20, 2006Jul 26, 2007Palo Alto Research Center IncorporatedSolar cell production using non-contact patterning and direct-write metallization
US20070251568 *Apr 26, 2006Nov 1, 2007Palo Alto Research Center IncorporatedBeam Integration For Concentrating Solar Collector
US20070256724 *May 5, 2006Nov 8, 2007Palo Alto Research Center IncorporatedPassively Cooled Solar Concentrating Photovoltaic Device
US20070256726 *May 5, 2006Nov 8, 2007Palo Alto Research Center IncorporatedLaminated Solar Concentrating Photovoltaic Device
US20080099952 *Nov 1, 2006May 1, 2008Palo Alto Research Center IncorporatedExtrusion Head With Planarized Edge Surface
US20080099953 *Nov 1, 2006May 1, 2008Palo Alto Research Center IncorporatedExtruded Structure With Equilibrium Shape
US20080102558 *Nov 1, 2006May 1, 2008Palo Alto Research Center IncorporatedClosely Spaced, High-Aspect Extruded Gridlines
US20080116182 *Nov 21, 2006May 22, 2008Palo Alto Research Center IncorporatedMultiple Station Scan Displacement Invariant Laser Ablation Apparatus
US20080116183 *Nov 21, 2006May 22, 2008Palo Alto Research Center IncorporatedLight Scanning Mechanism For Scan Displacement Invariant Laser Ablation Apparatus
US20080138999 *Dec 12, 2006Jun 12, 2008Palo Alto Research Center IncorporatedSolar Cell Fabrication Using Extrusion Mask
US20080277885 *May 8, 2007Nov 13, 2008Palo Alto Research Center IncorporatedWiring-Free, Plumbing-Free, Cooled, Vacuum Chuck
US20090239332 *Jun 1, 2009Sep 24, 2009Palo Alto Research Center IncorporatedBifacial Cell With Extruded Gridline Metallization
US20090314344 *Dec 24, 2009Palo Alto Research Center IncorporatedSolar Cell Production Using Non-Contact Patterning And Direct-Write Metallization
US20100059109 *Mar 11, 2010Palo Alto Research Center IncorporatedInterdigitated Back Contact Silicon Solar Cells With Laser Ablated Grooves
US20100081264 *Apr 1, 2010Honeywell International Inc.Methods for simultaneously forming n-type and p-type doped regions using non-contact printing processes
US20100124619 *Nov 14, 2008May 20, 2010Palo Alto Research Center IncorporatedSolar cell metallization using inline electroless plating
US20100130014 *Nov 26, 2008May 27, 2010Palo Alto Research Center IncorporatedTexturing multicrystalline silicon
US20100139754 *Dec 9, 2008Jun 10, 2010Palo Alto Research Center IncorporatedSolar Cell With Co-Planar Backside Metallization
US20100139756 *Dec 10, 2008Jun 10, 2010Palo Alto Research Center IncorporatedSimultaneously Writing Bus Bars And Gridlines For Solar Cell
US20100206302 *May 27, 2009Aug 19, 2010Palo Alto Research Center IncorporatedRotational Trough Reflector Array For Solar-Electricity Generation
US20100206356 *Feb 18, 2009Aug 19, 2010Palo Alto Research Center IncorporatedRotational Trough Reflector Array For Solar-Electricity Generation
US20100206357 *Aug 19, 2010Palo Alto Research Center IncorporatedTwo-Part Solar Energy Collection System With Replaceable Solar Collector Component
US20100206379 *Aug 19, 2010Palo Alto Research Center IncorporatedRotational Trough Reflector Array With Solid Optical Element For Solar-Electricity Generation
US20100221375 *May 10, 2010Sep 2, 2010Palo Alto Research Center IncorporatedExtrusion/Dispensing Systems And Methods
US20100221435 *May 13, 2010Sep 2, 2010Palo Alto Research Center IncorporatedMicro-Extrusion System With Airjet Assisted Bead Deflection
US20100319761 *Sep 1, 2010Dec 23, 2010Palo Alto Research Center IncorporatedSolar Cell With Structured Gridline Endpoints Vertices
US20110023961 *Oct 15, 2010Feb 3, 2011Palo Alto Research Center IncorporatedMelt Planarization Of Solar Cell Bus Bars
US20110070676 *Mar 24, 2011Palo Alto Research Center IncorporatedInterdigitated Back Contact Silicon Solar Cells Fabrication Using Diffusion Barriers
US20110070681 *Nov 24, 2010Mar 24, 2011Palo Alto Research Center IncorporatedInterdigitated Back Contact Silicon Solar Cells With Separating Grooves
US20110083728 *Oct 14, 2009Apr 14, 2011Palo Alto Research Center IncorporatedDisordered Nanowire Solar Cell
US20110100419 *May 5, 2011Palo Alto Research Center IncorporatedLinear Concentrating Solar Collector With Decentered Trough-Type Relectors
US20110214719 *Dec 17, 2010Sep 8, 2011Bo LiMethod of fabricating a back-contact solar cell and device thereof
US20120222735 *Mar 3, 2011Sep 6, 2012Palo Alto Research Center IncorporatedN-Type Silicon Solar Cell With Contact/Protection Structures
US20140162445 *Feb 14, 2014Jun 12, 2014Nanogram CorporationSilicon substrates with doped surface contacts formed from doped silicon based inks and corresponding processes
US20140238484 *May 6, 2014Aug 28, 2014Palo Alto Research Center IncorporatedN-type silicon solar cell with contact/protection structures
EP2056352A2Aug 7, 2008May 6, 2009Palo Alto Research Center IncorporatedCo-extruded compositions for high aspect ratio structures
EP2161757A2Sep 2, 2009Mar 10, 2010Palo Alto Research Center IncorporatedInterdigitated Back Contact Silicon Solar Cells with Laser Ablated Grooves
EP2196316A1Nov 25, 2009Jun 16, 2010Palo Alto Research Center IncorporatedMicro-extrusion printhead with nozzle valves
EP2626208A1Feb 11, 2013Aug 14, 2013Palo Alto Research Center IncorporatedMicro-extrusion printhead with offset orifices for generating gridlines on non-square substrates
EP2626915A2Feb 8, 2013Aug 14, 2013Palo Alto Research Center IncorporatedMethod for generating gridlines on non-square substrates
Classifications
U.S. Classification425/113, 438/759, 257/E21.24
International ClassificationH01L21/31
Cooperative ClassificationY02E10/547, H01L31/18, H01L21/228, H01L31/188, H01L21/2254, H01L31/022425
European ClassificationH01L31/18, H01L21/228, H01L21/225A4, H01L31/18H2, H01L31/0224B2
Legal Events
DateCodeEventDescription
Dec 12, 2006ASAssignment
Owner name: PALO ALTO RESEARCH CENTER INCORPORATED, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FORK, DAVID K.;SHRADER, ERIC J.;REEL/FRAME:018621/0940;SIGNING DATES FROM 20061208 TO 20061211
Owner name: PALO ALTO RESEARCH CENTER INCORPORATED, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FORK, DAVID K.;SHRADER, ERIC J.;SIGNING DATES FROM 20061208 TO 20061211;REEL/FRAME:018621/0940
Jun 22, 2011ASAssignment
Owner name: SOLARWORLD INNOVATIONS GMBH, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PALO ALTO RESEARCH CENTER INCORPORATED;REEL/FRAME:026502/0517
Effective date: 20110506
Oct 14, 2014FPAYFee payment
Year of fee payment: 4