US20080166759A1 - Altered polypeptides with increased half-life - Google Patents

Altered polypeptides with increased half-life Download PDF

Info

Publication number
US20080166759A1
US20080166759A1 US11/830,537 US83053707A US2008166759A1 US 20080166759 A1 US20080166759 A1 US 20080166759A1 US 83053707 A US83053707 A US 83053707A US 2008166759 A1 US2008166759 A1 US 2008166759A1
Authority
US
United States
Prior art keywords
polypeptide
interest
variant
domain
fab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/830,537
Inventor
Leonard G. Presta
Bradley R. Snedecor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to US11/830,537 priority Critical patent/US20080166759A1/en
Publication of US20080166759A1 publication Critical patent/US20080166759A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2839Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
    • C07K16/2845Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily against integrin beta2-subunit-containing molecules, e.g. CD11, CD18
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'

Definitions

  • This invention relates to polypeptides that are mutated to contain a salvage receptor binding epitope. More particularly, this invention relates to polypeptides that are cleared through the kidney having an epitope from the Fc region of an IgG molecule, resulting in longer circulatory half-life.
  • Staphylococcal protein A-IgG complexes were found to clear more rapidly from the serum than uncomplexed IgG molecules. Dima et al., Eur. J. Immunol., 13: 605 (1983). To determine if residues near the Fc-SpA interface are involved in IgG clearance, Kim et al., Eur. J. Immuno., 24. 542-548 (1994) performed site-directed mutagenesis to change amino acid residues of a recombinant Fc-hinge fragment derived from the murine immunoglobulin G1 molecule and determine the effects of these mutations on the pharmacokinetics of the Fc-hinge fragment.
  • the site of the IgG1 molecule that controls the catabolic rate (the “catabolic site”) is located at the CH2-CH3 domain interface and overlaps with the Staphylococcal protein A binding site. See also WO 93/22332 published Nov. 11, 1993.
  • the concentration catabolism phenomenon is also studied in Zuckier et al., Cancer, 73: 794-799 (1994). IgG catabolism is also discussed by Masson, J. Autoimmunity, 6: 683-689 (1993).
  • WO 94/04689 discloses a protein with a cytotoxic domain, a ligand-binding domain and a peptide linking these two domains comprising an IgG constant region domain having the property of increasing the half-life of the protein in mammalian serum.
  • the invention provides a polypeptide variant of a polypeptide of interest which polypeptide of interest is cleared from the kidney and does not contain a Fc region of an IgG, which variant comprises a salvage receptor binding epitope of an Fc region of an IgG, and which variant has a longer in vivo half-life than the polypeptide of interest.
  • the invention provides nucleic acid encoding the polypeptide variant, a replicable vector comprising the nucleic acid, a host cell comprising the nucleic acid, and a method for producing a polypeptide variant comprising culturing the host cells in culture medium and recovering the polypeptide variant from the host cell culture.
  • the nucleic acid molecule may be labeled or unlabeled with a detectable moiety.
  • the invention supplies a polypeptide that is not an Fc, which polypeptide comprises one or more of the sequences (5′ to 3′): HQNLSDGK (SEQ ID NO: 1), HQNISDGK (SEQ ID NO: 2), or VISSHLGQ (SEQ ID NO: 31), and which polypeptide also comprises the sequence: PKNSSMISNTP (SEQ ID NO: 3).
  • the invention provides a method for preparing a polypeptide variant comprising altering a polypeptide of interest that is cleared from the kidney and does not contain an Fc region of an IgG so that it comprises a salvage receptor binding epitope of an Fc region of an IgG and has an increased in vivo half-life.
  • the invention supplies a method for preparing a polypeptide variant having an increased in vivo half-life comprising:
  • step (3) testing the altered polypeptide of step (2) for longer in vivo half-life than that of the polypeptide of interest;
  • polypeptide does not have a longer in vivo half-life, further altering the sequence of the polypeptide of interest to include the sequence and conformation of the identified binding epitope and testing for longer in vivo half-life until longer in vivo half-life is obtained.
  • the invention provides a method for treating an LFA-1-mediated disorder comprising administering to a mammal, preferably a patient, in need of such treatment an effective amount of the variant set forth above wherein the polypeptide is a Fab, a (Fab′) 2 , a diabody, a Fv fragment, a single-chain Fv fragment, or a receptor and acts as an LFA-1 antagonist. More preferably, this variant is a Fab or (Fab′) 2 of anti-LFA-1 [such as an anti-CD18 Fab or (Fab′) 2 ], with increased serum half-life as set forth herein.
  • the invention provides a method for detecting CD11a or CD18 in vitro or in vivo comprising contacting the anti-CD11a or CD18 antibody fragment variant herein with a sample, especially a serum sample, suspected of containing the CD11a or CD18 and detecting if binding has occurred.
  • the Fc region is to be located (transplanted) to a region of the polypeptide of interest that will not alter its conformation so that it loses biological activity and is to be located so that it will not interfere with the polypeptide's ability to bind with a ligand or antigen to maintain biological activity.
  • FIGS. 1A and 1B depict the serum pharmacokinetics of five Fab or (Fab′) 2 constructs in mice after single intravenous doses of 2 mg/kg.
  • the Fab v1B variant is designated by solid squares
  • the Fab control is indicated by solid diamonds
  • the Fab v2 variant is indicated by solid triangles
  • the Fab v1 variant is indicated by solid circles
  • the double-disulfide F(ab′) 2 is indicated by open circles.
  • the Fab control is designated as solid triangles
  • the variant Fab v2 is designated by open circles
  • the variant Fab v1 is designated by open squares
  • the variant Fab v1B is designated by solid circles
  • the double-disulfide F(ab′) 2 is designated by solid squares.
  • FIG. 2 depicts an alignment of the relevant portions of the consensus amino acid sequences of the human IgG1 CH1 domain (SEQ ID NO: 4), the human IgG2 CH1 domain (SEQ ID NO: 5), the human IgG3 CH1 domain (SEQ ID NO: 6), the human IgG4 CH1 domain (SEQ ID NO: 7), the human kappa CL domain (SEQ ID NO: 8), and the human lambda CL domain (SEQ ID NO: 9), in alignment with the Fab v1b variant derived from anti-CD18 antibody (SEQ ID NO: 10), which is described in Example 1.
  • amino acid residues and/or positions of interest and of most importance to the invention within the sequence of Fab v1b i.e., SEQ ID NOS: 3 and 1 are designated by underlining and asterisks, respectively.
  • polypeptide of interest refers to a polypeptide that has a biological activity, is cleared from the kidney, and does not contain a Fc region of an IgG.
  • An “Fc region of an IgG” refers to the Fc portion of an immunoglobulin of the isotype IgG, as is well known to those skilled in the art of antibody technology.
  • Examples of such polypeptides are peptides and proteins, whether from eukaryotic sources such as, e.g., yeast, avians, plants, insects, or mammals, or from bacterial sources such as, e.g., E. coli .
  • the polypeptide of interest may be isolated from natural sources or made synthetically or recombinantly.
  • the polypeptide of interest contains an Ig domain or Ig-like domain, e.g., an antigen-binding domain.
  • Clearance of polypeptides of interest from the kidney depends at least in part on the molecular weight of the polypeptide. Polypeptides of too large a molecular weight will not clear the kidneys of a mammal.
  • One example of a test to determine whether the polypeptide of interest (or variant) clears the kidney is a clinical study wherein the polypeptide of interest or variant is labeled with a detectable marker and administered to the same type of mammal that will be treated, using a treatment regimen the same as would be used in the actual treatment. Thereafter, a clinical sample of the urine of the mammal is taken and analyzed to determine if the label is detected therein. If the label is detected, the polypeptide of interest or variant has cleared the kidneys.
  • polypeptides clearing the kidney have a molecular weight in the range of about 5,000-10,000 daltons, although molecules with somewhat higher or lower molecular weights may also meet the criteria of this invention if they can pass the renal clearance test noted above.
  • the polypeptide of interest is biologically active if it has an in vivo effector or antigenic function or activity that is directly or indirectly caused or performed by the polypeptide (whether in its native or denatured conformation) or a fragment thereof.
  • Effector functions include receptor binding and any carrier binding activity, agonism or antagonism of the polypeptide of interest, especially transduction of a proliferative signal including replication, DNA regulatory function, modulation of the biological activity of various growth factors, receptor activation, deactivation, up- or down-regulation, cell growth or differentiation, and the like.
  • Biological activity includes possession of an epitope or antigenic site that is capable of cross-reacting with antibodies raised against the polypeptide of interest or mammalian equivalents thereof.
  • mammalian polypeptides of interest include molecules such as, e.g., renin, a growth hormone, including human growth hormone; bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; ⁇ 1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; thrombopoietin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor, and von Willebrands factor; anti-clotting factors such as Protein C; atrial naturietic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and -beta; enkephalinase; a serum albumin such as human serum
  • the preferred polypeptides of interest are mammalian polypeptides.
  • mammalian polypeptides include antibody fragments such as Fv, Fab, (Fab′) 2 , and an anti-HER-2 fragment without the IgGFc domain, t-PA, gp120, DNase, IGF-I, IGF-II brain IGF-I, growth hormone, relaxin chains, growth hormone releasing factor, insulin chains or pro-insulin, urokinase, immunotoxins, neurotrophins, and antigens.
  • the polypeptide is a Fab, a (Fab′) 2 , a diabody, a Fv fragment, a single-chain Fv fragment, or a receptor.
  • the polypeptide is an anti-IgE, anti-HER2, or anti-CD18 Fab or (Fab′) 2 , and most preferably is human or humanized.
  • polypeptide variant refers to an amino acid sequence variant of the polypeptide of interest, including variants with one or more amino acid substitutions, insertions, and/or deletions. Such variants are biologically active as defined above and necessarily have less than 100% sequence identity with the polypeptide of interest. In a preferred embodiment, the biologically active polypeptide variant has an amino acid sequence sharing at least about 70% amino acid sequence identity with the polypeptide of interest, preferably at least about 75%, more preferably at least about 80%, still more preferably at least about 85%, even more preferably at least about 90%, and most preferably at least about 95%.
  • “In vivo half life” means the half-life of the polypeptide of interest or polypeptide variant circulating in the blood of a given mammal.
  • the term “salvage receptor binding epitope” refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, and IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule.
  • FIG. 2 shows representative epitopes in underlining and the important residues in asterisks. The IgG1, IgG2, and IgG4 isotypes are preferred for determining the salvage receptor binding epitope.
  • PCR Polymerase chain reaction
  • sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified.
  • the 5′ terminal nucleotides of the two primers may coincide with the ends of the amplified material.
  • PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51: 263 (1987); Erlich, ed., PCR Technology , (Stockton Press, NY, 1989).
  • PCR is considered to be one, but not the only, example of a nucleic acid polymerase reaction method for amplifying a nucleic acid test sample comprising the use of a known nucleic acid as a primer and a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid.
  • Antibodies are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas.
  • “Native antibodies” and “native immunoglobulins” are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V H ) followed by a number of constant domains.
  • V H variable domain
  • Each light chain has a variable domain at one end (V L ) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain.
  • Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains (Clothia et al., J. Mol. Biol., 186: 651-663 [1985]; Novotny and Haber, Proc. Natl. Acad. Sci. USA, 82: 4592-4596 [1985]).
  • variable refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR).
  • CDRs complementarity-determining regions
  • FR framework
  • the variable domains of native heavy and light chains each comprise four FR regions, largely adopting a ⁇ -sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
  • the CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., supra).
  • the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab′) 2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
  • “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the V H -V L dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • the Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain.
  • Fab fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region.
  • Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group.
  • F(ab′) 2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
  • Single-chain Fv or “sFv” antibody fragments comprise the V H and V L domains of antibody, wherein these domains are present in a single polypeptide chain.
  • the Fv polypeptide further comprises a polypeptide linker between the V H and V L domains which enables the sFv to form the desired structure for antigen binding.
  • the “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (K) and lambda (A), based on the amino acid sequences of their constant domains.
  • Immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.
  • the heavy-chain constant domains that correspond to the different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • the subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.
  • antibody is used in the broadest sense and specifically covers single monoclonal antibodies (including agonist and antagonist antibodies), antibody compositions with polyepitopic specificity, bispecific antibodies, diabodies, and single-chain molecules, as well as antibody fragments (e.g., Fab, F(ab′) 2 , and Fv), so long as they exhibit the desired biological activity.
  • the term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins.
  • the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler and Milstein, Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567 [Cabilly et al.]).
  • the “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352: 624-628 (1991) and Marks et al., J. Mol. Biol., 222: 581-597 (1991), for example.
  • the monoclonal antibodies herein specifically include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (Cabilly et al., supra; Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851-6855 [1984]).
  • chimeric antibodies immunoglobulins in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in
  • “Humanized” forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′) 2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin.
  • humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity.
  • humanized antibodies may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence.
  • the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • the humanized antibody includes a Primatized T antibody wherein the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest.
  • Non-immunogenic in a human means that upon contacting the polypeptide of interest or polypeptide variant in a pharmaceutically acceptable carrier and in a therapeutically effective amount with the appropriate tissue of a human, no state of sensitivity or resistance to the polypeptide of interest or variant is demonstrable upon the second administration of the polypeptide of interest or variant after an appropriate latent period (e.g., 8 to 14 days).
  • an appropriate latent period e.g. 8 to 14 days.
  • diabodies refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (V H ) connected to a light-chain variable domain (V L ) on the same polypeptide chain (V H -V L ).
  • V H heavy-chain variable domain
  • V L light-chain variable domain
  • the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites.
  • Diabodies are described more fully in, for example, EP 404,097; WO 93111161; and Holliger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993).
  • LFA-1-mediated disorders refers to pathological states caused by cell adherence interactions involving the LFA-1 receptor on lymphocytes.
  • T cell inflammatory responses such as inflammatory skin diseases including psoriasis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); adult respiratory distress syndrome; dermatitis; meningitis; encephalitis; uveitic; allergic conditions such as eczema and asthma and other conditions involving infiltration of T cells and chronic inflammatory responses; skin hypersensitivity reactions (including poison ivy and poison oak); atherosclerosis; leukocyte adhesion deficiency; autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE), diabetes mellitus, multiple sclerosis, Reynaud's syndrome, autoimmune thyroiditis, experimental autoimmune encephalomyelitis, Sjorgen's syndrome, juvenile onset diabetes, and immune responses associated with delayed hypersensitivity
  • the preferred indications for antibodies to CD11a or CD11b are psoriasis, transplant rejection, asthma, wound repair, and pulmonary fibrosis; the preferred indications for antibodies to CD18 are hemorrhagic shock, meningitis; encephalitis; multiple sclerosis; asthma; and pulmonary oxygen toxicity; and the preferred indication for antibodies to CD20 is B-cell lymphoma.
  • Treatment refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in which the disorder is to be prevented.
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, sheep, pigs, cows, etc.
  • the mammal herein is human.
  • LFA-1 antagonist generally refers to an antibody directed against either CD11a or CD18 or both, but also includes soluble forms of ICAM-1 (e.g., the ICAM-1 extracellular domain), antibodies to ICAM-1, and fragments thereof, or other molecules capable of inhibiting the interaction of LFA-1 and ICAM-1.
  • anti-LFA-1 antibody or “anti-LFA-1 MAb” refers to an antibody directed against either CD11a or CD18 or both.
  • the anti-CD11a antibodies include, e.g., MHM24 (Hildreth et al., Eur. J. Immunol., 13: 202-208 [1983]), R3.1 (IgG1; Rothlein, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Conn.), 25-3 (or 25.3; an IgG1 available from Immunotech, France; see Olive et al., in Feldmann, ed., Human T cell Clones. A new Approach to Immune Regulation , Clifton, N.J., Humana, [1986] p.
  • anti-CD18 antibodies examples include MHM23 (Hildreth et al., supra), M18/2 (IgG2a; Sanches-Madrid et al., J. Exp. Med., 158: 586 [1983]), H52 (Fekete et al., J. Clin. Lab Immunol., 31: 145-149 [1990]), Mas191c (Vermot Desroches et al., supra), IOT18 (Vermot Desroches et al., supra), 60.3 (Taylor et al., Clin. Exp. Immunol., 71: 324-328 [1988]), and 60.1 (Campana et al., Eur. J. Immunol., 16: 537-542 [1986]).
  • LFA-1 antagonists including antibodies
  • WO 91/18011 published Nov. 28, 1991, WO 91/16928 published Nov. 14, 1991, WO 91/16927 published Nov. 14, 1991 Can. Pat. Appln. 2,008,368 published Jun. 13, 1991, WO 90/15076 published Dec. 13, 1990, WO 90/10652 published Sep. 20, 1990, EP 387,668 published Sep. 19, 1990, EP 379,904 published Aug. 1, 1990, EP 346,078 published Dec. 13, 1989, U.S. Pat. No. 5,071,964, U.S. Pat. No. 5,002,869, Australian Pat. Appln. 8815518 published Nov. 10, 1988, EP 289,949 published Nov. 9, 1988, and EP 303,692 published Feb. 22, 1989.
  • the current invention is concerned with incorporating a salvage receptor binding epitope of the Fc region of an IgG into a polypeptide of interest so as to increase its circulatory half-life, but so as not to lose its biological activity.
  • This can take place by any means, such as by mutation of the appropriate region in the polypeptide of interest to mimic the Fc region or by incorporating the epitope into a peptide tag that is then fused to the polypeptide of interest at either end or in the middle or by DNA or peptide synthesis.
  • a systematic method for preparing such a polypeptide variant having an increased in vivo half-life comprises several steps. The first involves identifying the sequence and conformation of a salvage receptor binding epitope on an Fc region of an IgG molecule. Once this epitope is identified, the sequence of the polypeptide of interest is modified to include the sequence and conformation of the identified binding epitope. After the sequence is mutated, the polypeptide variant is tested to see if it has a longer in vivo half-life than that of the original polypeptide, i.e., the polypeptide of interest. If the polypeptide variant does not have a longer in vivo half-life upon testing, its sequence is further altered to include the sequence and conformation of the identified binding epitope. The altered polypeptide is tested for longer in vivo half-life, and this process is continued until a molecule is obtained that exhibits a longer in vivo half-life.
  • the salvage receptor binding epitope being thus incorporated into the polypeptide of interest is any suitable such epitope as defined above, and its nature will depend, e.g., on the type of polypeptide being modified.
  • the transfer is made such that the biological activity of the polypeptide of interest is maintained, i.e., the transferred portion does not adversely affect the conformation of the polypeptide of interest or affect its binding to ligands that confers its biological activity.
  • the polypeptide of interest is an antibody
  • the salvage receptor binding epitope is not placed so as to interfere with an antigen-binding site of the antibody.
  • the polypeptide of interest contains an Ig domain or Ig-like domain and the salvage receptor binding epitope is placed so that it is located within this Ig domain or Ig-like domain.
  • the epitope constitutes a region wherein any one or more amino acid residues from one or two loops of the Fc domain are transferred to an analogous position of the Ig domain or Ig-like domain of the polypeptide of interest. Even more preferably, three or more residues from one or two loops of the Fc domain are transferred.
  • the epitope is taken from the CH2 domain of the Fc region (e.g., of an IgG) and transferred to the CH1, CH3, or V H region, or more than one such region, of an Ig or to a Ig-like domain.
  • the epitope is taken from the CH2 domain of the Fc region and transferred to the CL region or V L region, or both, of an Ig or to an Ig-like domain of the polypeptide of interest.
  • FIG. 2 illustrates the relevant consensus primary structures of various Igs, i.e., human IgG1 CH1 domain, human IgG2 CH1 domain, human IgG3 CH1 domain, human IgG4 CH1 domain, human kappa CL domain, and human lambda CL domain, as well as the specific sequence for Fab v1b, a preferred anti-CD18 Fab variant herein.
  • FIG. 2 indicates the residues of Fab v1b that are of interest and of most importance. In a preferred embodiment, the residues of importance are those with an asterisk in FIG.
  • the salvage receptor binding epitope comprises the sequence (5′ to 3′):
  • PKNSSMISNTP (SEQ ID NO: 3) and optionally further comprises a sequence selected from the group consisting of HQSLGTQ (SEQ ID NO: 11), HQNLSDGK (SEQ ID NO: 1), HQNISDGK (SEQ ID NO: 2), or VISSHLGQ (SEQ ID NO: 31), particularly where the polypeptide of interest is a Fab or (Fab′) 2 .
  • the salvage receptor binding epitope is a polypeptide that is not an Fc containing the sequence(s)(5′ to 3′): HQNLSDGK (SEQ ID NO: 1), HQNISDGK (SEQ ID NO: 2), or VISSHLGQ (SEQ ID NO: 31) and the sequence: PKNSSMISNTP (SEQ ID NO: 3).
  • This epitope is suitably fused to the polypeptide of interest, and in a preferred aspect is contained on a peptide that is fused to the polypeptide of interest.
  • polypeptides of interest suitable for this purpose include those which will have altered secondary or tertiary structure, with adverse consequences, if the sequence thereof is mutated, such as growth hormone or nerve growth factor.
  • the variants can be prepared by recombinant means.
  • nucleic acid encoding the variant is prepared, placed into a replicable vector and the vector is used to transfect or transform suitable host cells for expression.
  • the polypeptide variant is produced by culturing the host cells in a culture medium and recovering the polypeptide variant from the host cell culture. If the polypeptide variant is being secreted, it is recovered from the culture medium.
  • the polypeptide variant is prepared by altering a polypeptide of interest that is cleared from the kidney and does not contain an Fc region of an IgG so that it comprises a salvage receptor binding epitope of an Fc region of an IgG and has an increased in vivo half-life.
  • the altering step is preferably conducted by Kunkel, site-directed, cassette, or PCR mutagenesis.
  • Kunkel mutagenesis is described, e.g., by Kunkel, Proc. Natl. Acad. Sci. U.S.A., 82: 488-492 (1985).
  • polypeptide of interest or polypeptide variant production of the polypeptide of interest or polypeptide variant by culturing cells transformed with a vector containing the nucleic acid encoding the polypeptide of interest or polypeptide variant and recovering the polypeptide of interest or variant from the cell culture. It is further envisioned that the polypeptide of interest may be produced by homologous recombination, as provided for in WO 91/06667 published 16 May 1991.
  • this method involves transforming primary mammalian cells containing endogenous polypeptide (e.g., human cells if the desired polypeptide is human) with a construct (i.e., vector) comprising an amplifiable gene (such as dihydrofolate reductase [DHFR] or others discussed below) and at least one flanking region of a length of at least about 150 bp that is homologous with a DNA sequence at the locus of the coding region of the gene of the polypeptide of interest to provide amplification of the gene encoding the polypeptide of interest.
  • the amplifiable gene must be at a site that does not interfere with expression of the gene encoding the polypeptide of interest.
  • the transformation is conducted such that the construct becomes homologously integrated into the genome of the primary cells to define an amplifiable region.
  • Primary cells comprising the construct are then selected for by means of the amplifiable gene or other marker present in the construct.
  • the presence of the marker gene establishes the presence and integration of the construct into the host genome. No further selection of the primary cells need be made, since selection will be made in the second host.
  • the occurrence of the homologous recombination event can be determined by employing PCR and either sequencing the resulting amplified DNA sequences or determining the appropriate length of the PCR fragment when DNA from correct homologous integrants is present and expanding only those cells containing such fragments.
  • the selected cells may be amplified at this point by stressing the cells with the appropriate amplifying agent (such as methotrexate if the amplifiable gene is DHFR), so that multiple copies of the target gene are obtained.
  • the amplification step is not conducted until after the second transformation described below.
  • DNA portions of the genome are isolated from the selected primary cells.
  • Secondary mammalian expression host cells are then transformed with these genomic DNA portions and cloned, and clones are selected that contain the amplifiable region.
  • the amplifiable region is then amplified by means of an amplifying agent if not already amplified in the primary cells.
  • the secondary expression host cells now comprising multiple copies of the amplifiable region containing the polypeptide of interest are grown so as to express the gene and produce the polypeptide.
  • the DNA encoding the polypeptide of interest may be obtained from any cDNA library prepared from tissue believed to possess the mRNA encoding the polypeptide of interest and to express it at a detectable level.
  • the gene encoding the polypeptide of interest may also be obtained from a genomic library or by in vitro oligonucleotide synthesis, assuming the complete nucleotide or amino acid sequence is known.
  • probes are screened with probes designed to identify the gene of interest or the protein encoded by it.
  • suitable probes include monoclonal or polyclonal antibodies that recognize and specifically bind to the polypeptide of interest; oligonucleotides of about 20-80 bases in length that encode known or suspected portions of the cDNA encoding the polypeptide of interest from the same or different species; and/or complementary or homologous cDNAs or fragments thereof that encode the same or a similar gene.
  • Appropriate probes for screening genomic DNA libraries include, but are not limited to, oligonucleotides, cDNAs, or fragments thereof that encode the same or a similar gene, and/or homologous genomic DNAs or fragments thereof. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures as described in Chapters 10-12 of Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989).
  • a preferred method of practicing this invention is to use carefully selected oligonucleotide sequences to screen cDNA libraries from various tissues.
  • the oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized.
  • the actual nucleotide sequence(s) is usually based on conserved or highly homologous nucleotide sequences.
  • the oligonucleotides may be degenerate at one or more positions. The use of degenerate oligonucleotides may be of particular importance where a library is screened from a species in which preferential codon usage is not known. The oligonucleotide must be labeled such that it can be detected upon hybridization to DNA in the library being screened.
  • the preferred method of labeling is to use 32 P-labeled ATP with polynucleotide kinase, as is well known in the art, to radiolabel the oligonucleotide.
  • other methods may be used to label the oligonucleotide, including, but not limited to, biotinylation or enzyme labeling.
  • nucleic acid encoding the polypeptide of interest that encodes a full-length polypeptide.
  • the nucleic acid sequence includes the polypeptide of interest's signal sequence.
  • Nucleic acid having all the protein coding sequence is obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Section 7.79 of Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.
  • variants of the polypeptide of interest are suitably prepared by introducing appropriate nucleotide changes as set forth above for the Fc region into the DNA encoding the polypeptide of interest, or by in vitro synthesis of the desired polypeptide variant.
  • Such variants include, for example, deletions from, or insertions or substitutions of, residues within the amino acid sequence of the polypeptide of interest so that it contains the proper epitope and has a longer half-life in serum. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics.
  • the amino acid changes also may alter post-translational processes of the polypeptide of interest, such as changing the number or position of glycosylation sites.
  • the polypeptide of interest might be encoded by multi-exon genes.
  • the location of the mutation site and the nature of the mutation will be determined by the specific polypeptide of interest being modified.
  • an immunoglobulin or immunoglobulin-like domain will be initially modified by locating loops that are structurally similar to the two loops in IgG CH2 that contain the salvage receptor epitope.
  • the sites for mutation can be modified individually or in series, e.g., by (1) substituting first with conservative amino acid choices and then with more radical selections depending upon the results achieved, (2) deleting the target residue, or (3) inserting residues of the same or a different class adjacent to the located site, or combinations of options 1-3.
  • a useful method for identification of certain residues or regions of the polypeptide of interest that are preferred locations for mutagenesis is called “alanine scanning mutagenesis,” as described by Cunningham and Wells, Science, 244: 1081-1085 (1989).
  • a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the surrounding aqueous environment in or outside the cell.
  • Those domains demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at or for the sites of substitution.
  • the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to optimize the performance of a mutation at a given site, alanine scanning or random mutagenesis is conducted at the target codon or region and the variants produced are screened for increased circulatory half-life.
  • Amino acid sequence deletions generally range from about 1 to 30 residues, more preferably about 1 to 10 residues, and typically are contiguous. Contiguous deletions ordinarily are made in even numbers of residues, but single or odd numbers of deletions are within the scope hereof. As an example, deletions may be introduced into regions of low homology among LFA-1 antibodies which share the most sequence identity to the amino acid sequence of the polypeptide of interest to modify the half-life of the polypeptide. Deletions from the polypeptide of interest in areas of substantial homology with one of the binding sites of other ligands will be more likely to modify the biological activity of the polypeptide of interest more significantly. The number of consecutive deletions will be selected so as to preserve the tertiary structure of the polypeptide of interest in the affected domain, e.g., beta-pleated sheet or alpha helix.
  • Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intra-sequence insertions of single or multiple amino acid residues.
  • Intra-sequence insertions i.e., insertions within the mature polypeptide sequence
  • Insertions are preferably made in even numbers of residues, but this is not required. Examples of insertions include insertions to the internal portion of the polypeptide of interest, as well as N- or C-terminal fusions with proteins or peptides containing the desired epitope that will result, upon fusion, in an increased half-life.
  • a third group of variants are amino acid substitution variants. These variants have at least one amino acid residue in the polypeptide molecule removed and a different residue inserted in its place.
  • the sites of greatest interest for substitutional mutagenesis include one or two loops in antibodies.
  • Other sites of interest are those in which particular residues of the polypeptide obtained from various species are identical among all animal species of the polypeptide of interest, this degree of conservation suggesting importance in achieving biological activity common to these molecules. These sites, especially those falling within a sequence of at least three other identically conserved sites, are substituted in a relatively conservative manner. Such conservative substitutions are shown in Table 1 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 1, or as further described below in reference to amino acid classes, are introduced and the products screened.
  • Substantial modifications in function of the polypeptide of interest are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
  • Naturally occurring residues are divided into groups based on common side-chain properties:
  • hydrophobic norleucine, met, ala, val, leu, ile
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites.
  • protease cleavage sites that are present in the molecule. These sites are identified by inspection of the encoded amino acid sequence, in the case of trypsin, e.g., for an arginyl or lysinyl residue. When protease cleavage sites are identified, they are rendered inactive to proteolytic cleavage by substituting the targeted residue with another residue, preferably a basic residue such as glutamine or a hydrophilic residue such as serine; by deleting the residue; or by inserting a prolyl residue immediately after the residue.
  • a basic residue such as glutamine or a hydrophilic residue such as serine
  • any methionyl residues other than the starting methionyl residue of the signal sequence, or any residue located within about three residues N- or C-terminal to each such methionyl residue, is substituted by another residue (preferably in accord with Table 1) or deleted.
  • another residue preferably in accord with Table 1
  • about 1-3 residues are inserted adjacent to such sites.
  • Any cysteine residues not involved in maintaining the proper conformation of the polypeptide of interest also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking.
  • nucleic acid molecules encoding amino acid sequence variants of the polypeptide of interest are prepared by a variety of methods known in the art. These methods include, but are not limited to, preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the polypeptide on which the variant herein is based (“polypeptide of interest”).
  • Oligonucleotide-mediated mutagenesis is a preferred method for preparing substitution, deletion, and insertion polypeptide variants herein. This technique is well known in the art as described by Adelman et al., DNA, 2: 183 (1983). Briefly, the DNA is altered by hybridizing an oligonucleotide encoding the desired mutation to a DNA template, where the template is the single-stranded form of a plasmid or bacteriophage containing the unaltered or native DNA sequence of the polypeptide to be varied. After hybridization, a DNA polymerase is used to synthesize an entire second complementary strand of the template that will thus incorporate the oligonucleotide primer, and will code for the selected alteration in the DNA.
  • oligonucleotides of at least 25 nucleotides in length are used.
  • An optimal oligonucleotide will have 12 to 15 nucleotides that are completely complementary to the template on either side of the nucleotide(s) coding for the mutation. This ensures that the oligonucleotide will hybridize properly to the single-stranded DNA template molecule.
  • the oligonucleotides are readily synthesized using techniques known in the art such as that described by Crea et al., Proc. Natl. Acad. Sci. USA, 75: 5765 (1978).
  • the DNA template can be generated by those vectors that are either derived from bacteriophage M13 vectors (the commercially available M13 mp 18 and M13mp19 vectors are suitable), or those vectors that contain a single-stranded phage origin of replication as described by Viera et al. Meth. Enzymol., 153: 3 (1987).
  • the DNA that is to be mutated may be inserted into one of these vectors to generate single-stranded template. Production of the single-stranded template is described in Sections 4.21-4.41 of Sambrook et al., supra.
  • single-stranded DNA template may be generated by denaturing double-stranded plasmid (or other) DNA using standard techniques.
  • the oligonucleotide is hybridized to the single-stranded template under suitable hybridization conditions.
  • a DNA polymerizing enzyme usually the Klenow fragment of DNA polymerase 1
  • Klenow fragment of DNA polymerase 1 is then added to synthesize the complementary strand of the template using the oligonucleotide as a primer for synthesis.
  • a heteroduplex molecule is thus formed such that one strand of DNA encodes the mutated form of the polypeptide, and the other strand (the original template) encodes the original, unaltered sequence of the polypeptide.
  • This heteroduplex molecule is then transformed into a suitable host cell, usually a prokaryote such as E. coli JM101.
  • the cells are grown, they are plated onto agarose plates and screened using the oligonucleotide primer radiolabeled with 32 P to identify the bacterial colonies that contain the mutated DNA.
  • the mutated region is then removed and placed in an appropriate vector for protein production, generally an expression vector of the type typically employed for transformation of an appropriate host.
  • the method described immediately above may be modified such that a homoduplex molecule is created wherein both strands of the plasmid contain the mutation(s).
  • the modifications are as follows:
  • the single-stranded oligonucleotide is annealed to the single-stranded template as described above.
  • a mixture of three deoxyribonucleotides, deoxyriboadenosine (dATP), deoxyriboguanosine (dGTP), and deoxyribothymidine (dTTP) is combined with a modified thio-deoxyribocytosine called dCTP-( ⁇ S) (which can be obtained from the Amersham Corporation). This mixture is added to the template-oligonucleotide complex.
  • this new strand of DNA will contain dCTP-( ⁇ S) instead of dCTP, which serves to protect it from restriction endonuclease digestion.
  • the template strand of the double-stranded heteroduplex is nicked with an appropriate restriction enzyme
  • the template strand can be digested with ExoIII nuclease or another appropriate nuclease past the region that contains the site(s) to be mutagenized.
  • the reaction is then stopped to leave a molecule that is only partially single-stranded.
  • a complete double-stranded DNA homoduplex is then formed using DNA polymerase in the presence of all four deoxyribonucleotide triphosphates, ATP, and DNA ligase.
  • This homoduplex molecule can then be transformed into a suitable host cell such as E. coli JM101, as described above.
  • DNA encoding polypeptide mutants with more than one amino acid to be substituted may be generated in one of several ways. If the amino acids are located close together in the polypeptide chains they may be mutated simultaneously using one oligonucleotide that codes for all of the desired amino acid substitutions. If, however, the amino acids are located some distance from each other (separated by more than about ten amino acids), it is more difficult to generate a single oligonucleotide that encodes all of the desired changes. Instead, one of two alternative methods may be employed.
  • a separate oligonucleotide is generated for each amino acid to be substituted.
  • the oligonucleotides are then annealed to the single-stranded template DNA simultaneously, and the second strand of DNA that is synthesized from the template will encode all of the desired amino acid substitutions.
  • the alternative method involves two or more rounds of mutagenesis to produce the desired mutant.
  • the first round is as described for the single mutants: wild-type DNA is used for the template, an oligonucleotide encoding the first desired amino acid substitution(s) is annealed to this template, and the heteroduplex DNA molecule is then generated.
  • the second round of mutagenesis utilizes the mutated DNA produced in the first round of mutagenesis as the template.
  • this template already contains one or more mutations.
  • the oligonucleotide encoding the additional desired amino acid substitution(s) is then annealed to this template, and the resulting strand of DNA now encodes mutations from both the first and second rounds of mutagenesis.
  • This resultant DNA can be used as a template in a third round of mutagenesis, and so on.
  • PCR mutagenesis is also suitable for making amino acid variants of this invention. While the following discussion refers to DNA, it is understood that the technique also finds application with RNA.
  • the PCR technique generally refers to the following procedure (see Erlich, supra, the chapter by R. Higuchi, p. 61-70): When small amounts of template DNA are used as starting material in a PCR, primers that differ slightly in sequence from the corresponding region in a template DNA can be used to generate relatively large quantities of a specific DNA fragment that differs from the template sequence only at the positions where the primers differ from the template.
  • one of the primers is designed to overlap the position of the mutation and to contain the mutation; the sequence of the other primer must be identical to a stretch of sequence of the opposite strand of the plasmid, but this sequence can be located anywhere along the plasmid DNA. It is preferred, however, that the sequence of the second primer is located within 200 nucleotides from that of the first, such that in the end the entire amplified region of DNA bounded by the primers can be easily sequenced.
  • PCR amplification using a primer pair like the one just described results in a population of DNA fragments that differ at the position of the mutation specified by the primer, and possibly at other positions, as template copying is somewhat error-prone.
  • template plasmid DNA (1 ⁇ g) is linearized by digestion with a restriction endonuclease that has a unique recognition site in the plasmid DNA outside of the region to be amplified.
  • 100 ng is added to a PCR mixture containing PCR buffer, which contains the four deoxynucleotide triphosphates and is included in the GeneAmp® kits (obtained from Perkin-Elmer Cetus, Norwalk, Conn. and Emeryville, Calif.), and 25 ⁇ mole of each oligonucleotide primer, to a final volume of 50 ⁇ L.
  • the reaction mixture is overlaid with 35 ⁇ L mineral oil.
  • Thermus aquaticus (Taq) DNA polymerase (5 units/ ⁇ L, purchased from Perkin-Elmer Cetus) is added below the mineral oil layer.
  • the reaction mixture is then inserted into a DNA Thermal Cycler (purchased from Perkin-Elmer Cetus) programmed as follows:
  • reaction vial is removed from the thermal cycler and the aqueous phase transferred to a new vial, extracted with phenol/chloroform (50:50 vol), and ethanol precipitated, and the DNA is recovered by standard procedures. This material is subsequently subjected to the appropriate treatments for insertion into a vector.
  • the starting material is the plasmid (or other vector) comprising the DNA to be mutated.
  • the codon(s) in the DNA to be mutated are identified.
  • a double-stranded oligonucleotide encoding the sequence of the DNA between the restriction sites but containing the desired mutation(s) is synthesized using standard procedures. The two strands are synthesized separately and then hybridized together using standard techniques.
  • This double-stranded oligonucleotide is referred to as the cassette.
  • This cassette is designed to have 3′ and 5′ ends that are compatible with the ends of the linearized plasmid, such that it can be directly ligated to the plasmid.
  • This plasmid now contains the mutated DNA sequence.
  • the nucleic acid e.g., cDNA or genomic DNA
  • the nucleic acid encoding the polypeptide variant is inserted into a replicable vector for further cloning (amplification of the DNA) or for expression.
  • Many vectors are available, and selection of the appropriate vector will depend on 1) whether it is to be used for DNA amplification or for DNA expression, 2) the size of the nucleic acid to be inserted into the vector, and 3) the host cell to be transformed with the vector.
  • Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the host cell with which it is compatible.
  • the vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • polypeptide variants of this invention may be produced not only directly, but also as a fusion with a heterologous polypeptide, preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature polypeptide variant.
  • the signal sequence may be a component of the vector, or it may be a part of the DNA that is inserted into the vector.
  • the heterologous signal sequence selected should be one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell.
  • the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group consisting of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II leaders.
  • a prokaryotic signal sequence selected, for example, from the group consisting of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II leaders.
  • yeast secretion the original or wild-type signal sequence may be substituted by, e.g., the yeast invertase leader, yeast alpha factor leader (including Saccharomyces and Kluyveromyces ⁇ -factor leaders, the latter described in U.S. Pat. No. 5,010,182 issued 23 Apr.
  • yeast acid phosphatase leader mouse salivary amylase leader, carboxypeptidase leader, yeast BAR1 leader, Humicola lanuginosa lipase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 Apr. 1990), or the signal described in WO 90/13646 published 15 Nov. 1990.
  • the original human signal sequence i.e., the polypeptide presequence that normally directs secretion of the native polypeptide of interest from which the variant of interest is derived from human cells in vivo
  • the original human signal sequence i.e., the polypeptide presequence that normally directs secretion of the native polypeptide of interest from which the variant of interest is derived from human cells in vivo
  • other mammalian signal sequences may be suitable, such as signal sequences from other animal polypeptides and signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders, for example, the herpes simplex gD signal.
  • the DNA for such precursor region is ligated in reading frame to DNA encoding the mature polypeptide variant.
  • Most expression vectors are “shuttle” vectors, i.e., they are capable of replication in at least one class of organisms but can be transfected into another organism for expression.
  • a vector is cloned in E. coli and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.
  • DNA may also be amplified by insertion into the host genome. This is readily accomplished using Bacillus species as hosts, for example, by including in the vector a DNA sequence that is complementary to a sequence found in Bacillus genomic DNA. Transfection of Bacillus with this vector results in homologous recombination with the genome and insertion of the DNA. However, the recovery of genomic DNA encoding the polypeptide variant is more complex than that of an exogenously replicated vector because restriction enzyme digestion is required to excise the DNA.
  • Selection genes should contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium.
  • Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
  • One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin (Southern et al., J. Molec. Appl. Genet., 1: 327 [1982]), mycophenolic acid (Mulligan et al., Science, 209: 1422 [1980]), or hygromycin (Sugden et al., Mol. Cell. Biol., 5: 410-413 [1985]).
  • the three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenotic acid), or hygromycin, respectively.
  • suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the nucleic acid, such as DHFR or thymidine kinase.
  • the mammalian cell transformants are placed under selection pressure that only the transformants are uniquely adapted to survive by virtue of having taken up the marker.
  • Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes the polypeptide variant.
  • Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells.
  • amplifiable genes include metallothionein-II and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc.
  • cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR.
  • Mtx methotrexate
  • An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77: 4216 (1980).
  • the transformed cells are then exposed to increased levels of methotrexate. This leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding the polypeptide variant.
  • This amplification technique can be used with any otherwise suitable host, e.g., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060).
  • host cells transformed or co-transformed with DNA sequences encoding the polypeptide variant, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965,199.
  • APH aminoglycoside 3-phosphotransferase
  • a suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 (Stinchcomb et al., Nature, 282: 39 [1979]; Kingsman et al., Gene, 7: 141 [1979]; or Tschemper et al., Gene, 10: 157 [1980]).
  • the trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 (Jones, Genetics, 85: 12 [1977]).
  • the presence of the trp1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.
  • Leu2-deficient yeast strains (ATCC No. 20,622 or 38,626) are complemented by known plasmids bearing the Leu2 gene.
  • vectors derived from the 1.6 ⁇ m circular plasmid pKD1 can be used for transformation of Kluyveromyces yeasts. Bianchi et al., Curr. Genet., 12: 185 (1987). More recently, an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis . Van den Berg, Bio/Technology, 8: 135 (1990). Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed. Fleer et al., Bio/Technology, 9: 968-975 (1991).
  • Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the nucleic acid. Promoters are untranslated sequences located upstream (5′) to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequence, such as the nucleic acid sequence of the polypeptide variants herein, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature.
  • promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to the DNA encoding the polypeptide variant by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector.
  • the promoter of the polypeptide of interest and many heterologous promoters may be used to direct amplification and/or expression of the DNA.
  • heterologous promoters are preferred, as they generally permit greater transcription and higher yields of recombinantly produced polypeptide variant as compared to the promoter of the polypeptide of interest.
  • Promoters suitable for use with prokaryotic hosts include the ⁇ -lactamase and lactose promoter systems (Chang et al., Nature, 275: 615 [1978]; and Goeddel et al., Nature, 281: 544 [1979]), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8: 4057 [1980] and EP 36,776) and hybrid promoters such as the tac promoter (deBoer et al., Proc. Natl. Acad. Sci. USA, 80: 21-25 [1983]).
  • trp tryptophan
  • hybrid promoters such as the tac promoter (deBoer et al., Proc. Natl. Acad. Sci. USA, 80: 21-25 [1983]).
  • other known bacterial promoters are suitable.
  • Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3′ end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3′ end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
  • Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem., 255: 2073 [1980]) or other glycolytic enzymes (Hess et al., J. Adv.
  • enolase such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphogluco
  • yeast promoters which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.
  • Suitable vectors and promoters for use in yeast expression are further described in Hitzeman et al., EP 73,657.
  • Yeast enhancers also are advantageously used with yeast promoters.
  • Transcription of polypeptide variant from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 Jul. 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, and from the promoter normally associated with the polypeptide variant sequence, provided such promoters are compatible with the host cell systems.
  • viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 Jul. 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus
  • the early and late promoters of the SV40 virus are conveniently obtained as an 5V40 restriction fragment that also contains the SV40 viral origin of replication. Fiers et al., Nature, 273:113 (1978); Mulligan and Berg, Science, 209: 1422-1427 (1980); Pavlakis et al., Proc. Natl. Aced. Sci. USA, 78: 7398-7402 (1981).
  • the immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment. Greenaway et al., Gene, 18: 355-360 (1982).
  • a system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No.
  • Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent, having been found 5′ (Laimins et al., Proc. Natl. Acad. Sci. USA, 78: 993 [1981]) and 3′ (Lusky et al., Mol. Cell.
  • Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature, 297: 17-18 (1982) on enhancing elements for activation of eukaryotic promoters.
  • the enhancer may be spliced into the vector at a position 5′ or 3′ to the polypeptide-variant-encoding sequence, but is preferably located at a site 5′ from the promoter.
  • Expression vectors used in eukaryotic host cells will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the polypeptide variant.
  • Plasmids containing one or more of the above-listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and relegated in the form desired to generate the plasmids required.
  • the ligation mixtures are used to transform E. coli K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing et al., Nucleic Acids Res., 9: 309 (1981) or by the method of Maxam et al., Methods in Enzymology, 65: 499 (1980).
  • transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector.
  • Transient expression systems comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptide variants encoded by cloned DNAs, as well as for the rapid screening of such polypeptides for desired biological or physiological properties.
  • transient expression systems are particularly useful in the invention for purposes of identifying polypeptide variants that are biologically active.
  • a particularly useful plasmid for mammalian cell culture production of the polypeptide variant is pRK5 (EP 307,247) or pSV16B (WO 91/08291 published 13 Jun. 1991).
  • the pRK5 derivative pRK5B (Holmes et al., Science, 253: 1278-1280 [1991]) is particularly suitable herein for such expression.
  • Suitable host cells for cloning or expressing the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above.
  • Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia , e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella , e.g., Salmonella typhimurium, Serratia , e.g., Serratia marcescans , and Shigella , as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B.
  • E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), E. coli DH5 ⁇ , and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting.
  • Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations.
  • the host cell secretes minimal amounts of proteolytic enzymes.
  • strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA ⁇ ; E. coli W3110 strain 9E4, which has the complete genotype tonA ⁇ ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA ⁇ E15 ⁇ (argF-lac) 169 ⁇ degP ⁇ ompT kan′; E.
  • coli W3110 strain 37D6 which has the complete genotype tonA ptr3 phoA ⁇ E15 ⁇ (argF-lac) 169 ⁇ degP ⁇ ompT ⁇ rbs 7 ilvG kan′; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued 7 Aug. 1990.
  • in vitro methods of cloning e.g., PCR or other nucleic acid polymerase reactions, are suitable.
  • eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for polypeptide-variant-encoding vectors.
  • Saccharomyces cerevisiae or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms.
  • Schizosaccharomyces pombe Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985
  • Kluyveromyces hosts U.S. Pat. No.
  • K. lactis MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 737 [1983]
  • K. fragilis ATCC 12,424)
  • K. bulgaricus ATCC 16,045)
  • K. wickeramii ATCC 24,178
  • K. waltii ATCC 56,500
  • K. drosophilarum ATCC 36,906; Van den Berg et al., supra
  • K. thermotolerans K.
  • filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 Jan. 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem, Biophys. Res. Commun., 112: 284-289 [1983]; Tilburn et al., Gene, 26: 205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4: 475-479 [1985]).
  • filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 Jan. 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem
  • Suitable host cells for the production of the polypeptide variant are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified.
  • a variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts.
  • plant cells are transfected by incubation with certain strains of the bacterium Agrobacterium tumefaciens , which has been previously manipulated to contain the DNA.
  • A. tumefaciens the DNA encoding the polypeptide variant is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the DNA.
  • regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences. Depicker et al., J. Mol. Appl.
  • DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue.
  • tissue culture Tissue Culture
  • useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36: 59 [1977]); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/ ⁇ DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci.
  • mice sertoli cells TM4, Mather, Biol. Reprod., 23: 243-251 [1980]); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor cells (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci., 383: 44-68 [1982]); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
  • Host cells are transfected and preferably transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO 4 and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.
  • Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells.
  • the calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook et al., supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers.
  • Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23: 315 (1983) and WO 89/05859 published 29 Jun. 1989.
  • plants may be transfected using ultrasound treatment as described in WO 91/00358 published 10 Jan. 1991.
  • DNA into cells such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, etc., may also be used.
  • polycations e.g., polybrene, polyornithine, etc.
  • transforming mammalian cells see Keown et al., Methods in Enzymology, 185: 527-537 (1990) and Mansour et al., Nature, 336: 348-352 (1988).
  • Prokaryotic cells used to produce the polypeptide variant of this invention are cultured in suitable media as described generally in Sambrook et al., supra.
  • the mammalian host cells used to produce the polypeptide variant of this invention may be cultured in a variety of media.
  • Commercially available media such as Ham's F-10 (Sigma), F-12 (Sigma), Minimal Essential Medium ([MEM], Sigma), RPMI-1640 (Sigma), Dulbecco's Modified Eagle's Medium ([D-MEM], Sigma), and D-MEM/F-12 (Gibco BRL) are suitable for culturing the host cells.
  • any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, aprotinin, and/or epidermal growth factor [EGF]), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as GentamycinTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
  • the culture conditions such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • the host cells referred to in this disclosure encompass cells in in vitro culture as well as cells that are within a host animal.
  • Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, northern blotting to quantitate the transcription of mRNA (Thomas, Proc. Natl. Acad. Sci. USA, 77: 5201-5205 [1980]), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein.
  • Various labels may be employed, most commonly radioisotopes, particularly 32 P.
  • other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide.
  • the biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like.
  • antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.
  • the antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
  • Gene expression may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product.
  • immunohistochemical staining techniques a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like.
  • a particularly sensitive staining technique suitable for use in the present invention is described by Hsu et al., Am. J. Clin. Path., 75: 734-738 (1980).
  • Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a polypeptide variant as described further in Section 4 below.
  • the particulate debris either host cells or lysed fragments
  • the protein may be concentrated with a commercially available protein concentration filter, followed by separating the polypeptide variant from other impurities by one or more steps selected from immunoaffinity chromatography, ion-exchange column fractionation (e.g., on diethylaminoethyl (DEAE) or matrices containing carboxymethyl or sulfopropyl groups), chromatography on Blue-Sepharose, CM Blue-Sepharose, MONO-Q, MONO-S, lentil lectin-Sepharose, WGA-Sepharose, Con A-Sepharose, Ether Toyopearl, Butyl Toyopearl, Phenyl Toyopearl, or protein A Sepharose, SDS-PAGE chromatography, silica chromatography, chromato
  • Recombinant polypeptide variant produced in bacterial culture may usually be isolated by initial extraction from cell pellets, followed by one or more concentration, salting-out, aqueous ion-exchange, or size-exclusion chromatography steps. Additionally, the recombinant polypeptide variant may be purified by affinity chromatography. Finally, HPLC may be employed for final purification steps. Microbial cells employed in expression of nucleic acid encoding the polypeptide variant may be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or through the use of cell lysing agents.
  • a protease inhibitor such as methylsulfonylfluoride (PMSF) may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • PMSF methylsulfonylfluoride
  • supernatants from systems which secrete recombinant polypeptide variant into culture medium are first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
  • the concentrate may be applied to a suitable purification matrix.
  • a suitable affinity matrix may comprise a ligand for the protein, a lectin or antibody molecule bound to a suitable support.
  • an anion-exchange resin may be employed, for example, a matrix or substrate having pendant DEAE groups.
  • Suitable matrices include acrylamide, agarose, dextran, celluose, or other types commonly employed in protein purification.
  • a cation-exchange step may be employed.
  • Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are particularly preferred.
  • one or more RP-HPLC steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, may be employed to further purify a polypeptide variant composition.
  • hydrophobic RP-HPLC media e.g., silica gel having pendant methyl or other aliphatic groups.
  • Fermentation of yeast which produce the polypeptide variant as a secreted polypeptide greatly simplifies purification.
  • Secreted recombinant polypeptide variant resulting from a large-scale fermentation may be purified by methods analogous to those disclosed by Urdal et al., J. Chromatog., 296: 171 (1984).
  • This reference describes two sequential, RP-HPLC steps for purification of recombinant human IL-2 on a preparative HPLC column.
  • techniques such as affinity chromatography, may be utilized to purify the polypeptide variant.
  • Mammalian polypeptide variant synthesized in recombinant culture is characterized by the presence of non-human cell components, including proteins, in amounts and of a character which depend on the purification steps taken to recover the polypeptide variant from culture.
  • These components ordinarily will be from yeast, prokaryotic, or non-human higher eukaryotic origin and preferably are present in innocuous contaminant quantities, on the order of less than about 1% by weight.
  • Covalent modifications of polypeptide variants are included within the scope of this invention. They may be made by chemical synthesis or by enzymatic or chemical cleavage of the variant polypeptide, if applicable. Other types of covalent modifications of the polypeptide variant are introduced into the molecule by reacting targeted amino acid residues of the polypeptide variant with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.
  • Cysteinyl residues most commonly are reacted with ⁇ -haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, ⁇ -bromo- ⁇ -(5-imidozoyl)propionic acid, chloroacetyl phosphate, N-alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.
  • Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain.
  • Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1 M sodium cacodylate at pH 6.0.
  • Lysinyl and amino-terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues.
  • Other suitable reagents for derivatizing ⁇ -amino-containing residues include imidoesters such as methyl picolinimidate, pyridoxal phosphate, pyridoxal, chloroborohydride, trinitrobenzenesulfonic acid, O-methylisourea, 2,4-pentanedione, and transaminase-catalyzed reaction with glyoxylate.
  • Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pK a of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.
  • tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane.
  • aromatic diazonium compounds or tetranitromethane Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.
  • Tyrosyl residues are iodinated using 125 I or 131 I to prepare labeled proteins for use in radioimmunoassay, the chloramine T method described above being suitable.
  • Carboxyl side groups are selectively modified by reaction with carbodiimides (R—N ⁇ C ⁇ N—R′), where R and R′ are different alkyl groups, such as 1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide.
  • R and R′ are different alkyl groups, such as 1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide.
  • aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.
  • Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. These residues are deamidated under neutral or basic conditions. The deamidated form of these residues falls within the scope of this invention.
  • Another type of covalent modification of the polypeptide variant included within the scope of this invention comprises altering the original glycosylation pattern of the polypeptide variant.
  • altering is meant deleting one or more carbohydrate moieties found in the polypeptide variant, and/or adding one or more glycosylation sites that are not present in the polypeptide variant.
  • N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
  • the tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
  • O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
  • Addition of glycosylation sites to the polypeptide variant is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites).
  • the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original polypeptide variant (for O-linked glycosylation sites).
  • the polypeptide variant amino acid sequence is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the polypeptide variant at preselected bases such that codons are generated that will translate into the desired amino acids.
  • the DNA mutation s) may be made using methods described above.
  • Another means of increasing the number of carbohydrate moieties on the polypeptide variant is by chemical or enzymatic coupling of glycosides to the polypeptide variant. These procedures are advantageous in that they do not require production of the polypeptide variant in a host cell that has glycosylation capabilities for N- or O-linked glycosylation.
  • the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine.
  • Removal of any carbohydrate moieties present on the polypeptide variant may be accomplished chemically or enzymatically.
  • Chemical deglycosylation requires exposure of the polypeptide variant to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide variant intact.
  • Chemical deglycosylation is described by Hakimuddin, et al., Arch. Biochem. Biophys., 259: 52 (1987) and by Edge et al., Anal. Biochem., 118: 131 (1981).
  • Enzymatic cleavage of carbohydrate moieties on polypeptide variants can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138: 350 (1987).
  • Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., J. Biol. Chem., 257: 3105 (1982). Tunicamycin blocks the formation of protein-N-glycoside linkages.
  • Another type of covalent modification of the polypeptide variant comprises linking the polypeptide variant to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
  • nonproteinaceous polymers e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes
  • anti-CD18 variants include anti-Mac1/anti-neutrophil as well as anti-LFA-1 applications.
  • the polypeptide variant acts as an antibody it may optionally be fused to a second polypeptide and the antibody or fusion thereof may be used to isolate and purify the protein to which it binds from a source such as a CD11 or CD18 antigen.
  • the invention provides a method for detecting CD11a or CD18 in vitro or in vivo comprising contacting the anti-CD11a or CD18 antibody fragment variant herein with a sample, especially a serum sample, suspected of containing the CD11a or CD18 and detecting if binding has occurred.
  • polypeptide variant herein is also suitably used in quantitative diagnostic assays as a standard or control against which samples containing unknown quantities of the polypeptide variant may be prepared.
  • Therapeutic formulations of the polypeptide variant for its particular indication are prepared for storage by mixing the polypeptide variant having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers ( Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., [1980]), in the form of lyophilized cake or aqueous solutions.
  • Acceptable carriers, excipients, or stabilizers are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counter-ions such as sodium; and/or non-ionic surfactants such as Tween, Pluronics, or polyethylene glycol (PEG).
  • buffers such as phosphate, citrate, and other organic acids
  • antioxidants including ascorbic acid
  • the polypeptide variant used in the method of this invention is formulated by mixing it at ambient temperature at the appropriate pH, and at the desired degree of purity, with physiologically acceptable carriers, i.e., carriers that are non-toxic to recipients at the dosages and concentrations employed.
  • physiologically acceptable carriers i.e., carriers that are non-toxic to recipients at the dosages and concentrations employed.
  • the pH of the formulation depends mainly on the particular use and the concentration of the variant, but preferably ranges anywhere from about 3 to about 8.
  • Formulation in a buffer at pH about 5-8 is one suitable embodiment.
  • the polypeptide variant for use herein is preferably sterile. Sterility is readily accomplished by sterile filtration through (0.2 micron) membranes.
  • the polypeptide variant ordinarily will be stored as an aqueous solution, although lyophilized formulations for reconstitution are acceptable.
  • the variant composition will be formulated, dosed, and administered in a fashion consistent with good medical practice.
  • Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners.
  • the “therapeutically effective amount” of polypeptide variant to be administered will be governed by such considerations, and, for an LFA-1 antagonist variant, is the minimum amount necessary to prevent, ameliorate, or treat the LFA-1-mediated disorder, including treating rheumatoid arthritis, reducing inflammatory responses, inducing tolerance of immunostimulants, preventing an immune response that would result in rejection of a graft by a host or vice-versa, or prolonging survival of a transplanted graft.
  • the amount of the variant is preferably below the amount that is toxic to the host or renders the host significantly more susceptible to infections.
  • the initial pharmaceutically effective amount of the LFA-1 antagonist variant administered parenterally per dose will be in the range of about 0.1 to 20 mg/kg of patient body weight per day, with the typical initial range of LFA-1 antagonist variant used being about 0.3 to 15 mg/kg/day.
  • LFA-1 antagonist variant are subject to a great deal of therapeutic discretion.
  • the key factor in selecting an appropriate dose and scheduling is the result obtained, as indicated above. For example, relatively higher doses may be needed initially for the treatment of ongoing and acute graft rejection, or at a later stage for the treatment of acute rejection, which is characterized by a sudden decline in graft function.
  • the subsequent dosing is less than 100% of initial dosing, it is calculated on the basis of daily dosing.
  • the subsequent dosing is less than about 50%, more preferably, less than about 25%, more preferably, less than about 10%, still more preferably, less than about 5%, and most preferably, less than about 2% of the initial dosing of LFA-1 antagonist variant.
  • the initial dosing is given as close to the first sign, diagnosis, appearance, or occurrence of the disorder as possible or during remissions of autoimmune disorders.
  • the initial dosing begins before exposure to antigen, as in the case with transplanted grafts.
  • the subsequent dosing is carried out for a longer period of time than the initial dosing, particularly for transplants, and that it be a continuous intermittent maintenance dose that need not be continuous for the life of the patient.
  • the preferred scheduling for the LFA-1 antagonist variant is that the initial dosing (i.e., administered before or at the time of the undesired immune response at a dose administered no less frequently than daily up to and including continuously by infusion) and the subsequent dosing is a dose administered periodically no more than about once a week.
  • the initial daily dosing is administered for at least about one week, preferably at least about 2 weeks, after the exposure to antigen, e.g., graft, or initiation of an acute immune response (as in autoimmune disorders), and the subsequent dosing is administered no more than once biweekly (preferably once biweekly) for at least about 5 weeks, preferably for at least about 10 weeks, after the initial dosing is terminated.
  • antigen e.g., graft, or initiation of an acute immune response (as in autoimmune disorders)
  • the subsequent dosing is administered no more than once biweekly (preferably once biweekly) for at least about 5 weeks, preferably for at least about 10 weeks, after the initial dosing is terminated.
  • initial dosing terminates from about 1 day to 4 weeks after transplantation has occurred, more preferably from about 1 week to 3 weeks, more preferably from about 2 weeks to 3 weeks, and commences from about 1 week before transplantation occurs up to about simultaneously with the transplantation.
  • the polypeptide variant is administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local immunosuppressive treatment, intralesional administration (including perfusing or otherwise contacting the graft with the antagonist before transplantation).
  • Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration.
  • the LFA-1 antagonist variant is suitably administered by pulse infusion, particularly with declining doses of the LFA-1 antagonist variant.
  • the dosing of such variant is given by injections, most preferably intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
  • the polypeptide variant herein need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question.
  • an LFA-1 antagonist variant may be given in conjunction with a glucocorticosteroid.
  • T cell receptor peptide therapy is suitably an adjunct therapy to prevent clinical signs of autoimmune encephalomyelitis.
  • the LFA-1 antagonist variant may be administered concurrently with or separate from an immunosuppressive agent as defined above, e.g., cyclosporin A, to modulate the immunosuppressant effect.
  • the effective amount of such other agents depends on the amount of LFA-1 antagonist variant present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.
  • autoimmune disorders described above are treated with LFA-1 antagonist variants in such a fashion as to induce immune tolerance to the self antigen under attack as a result of the disorder.
  • autoimmune disorders resemble host versus graft rejection and are treated with LFA-1 antagonist variants in analogous fashion.
  • the patient is already mounting an immune response to the target antigen, unlike the case with transplants prior to grafting.
  • transient immunosuppression is induced by T cell depletion using conventional therapy.
  • This is then followed by the administration of the LFA-1 antagonist variant in order to prevent rebound when the immunosuppressive inducing agent is withdrawn or when remission otherwise would abrogate.
  • the remission patient's condition is closely monitored for signs of flare, and immediately upon the initial functional or biochemical appearance of flare the initial dosing regimen is started and continued until the flare subsides.
  • the LFA-1 antagonist variant administration during this period constitutes the initial dose described elsewhere herein.
  • the initial dose will extend about from 1 week to 16 weeks. Thereafter, the lower dose maintenance regimen of LFA-1 antagonist variant is administered in substantially the same fashion as set forth herein for the amelioration of graft or host rejection, although in some instances it is desirable to extend the subsequent or sustaining dose for lengthier periods than with grafts.
  • the antigen is administered to the patient (optionally with IL-1 and/or gamma interferon) after the initial LFA-1 antagonist variant dose and the antagonist variant dose maintained thereafter in order to suppress the regeneration of an autoimmune response against the antigen while minimally immunosuppressing the patient's response to other antigens.
  • the patient optimally will be isolated, preferably in an aseptic environment such as is currently used in transplant practice, at the time of initial treatment with LFA-1 antagonist variant.
  • the patient should be free of any infection. It is not necessary to sustain these conditions during the maintenance dose, and in fact this is one of the advantages of this invention, i.e., that the patient is able to mount a substantially normal immune response to ambient antigens (other than the graft or self antigen) while being treated with the maintenance dosing.
  • the invention herein is particularly amenable to prolonging survival and increasing tolerance of transplanted grafts.
  • the transplants are optionally functionally monitored systematically during the critical postoperative period (the first three months) using any suitable procedure.
  • One such procedure is radionuclide intravenous angiography using 99Tcm-pertechnetate, as described by Thomsen et al., Acta Radiol., 29: 138-140 (1988).
  • the method herein is amenable to simultaneous, multiple organ perfusion and transplantation. Toledo-Pereyra and MacKenzie, Am. Surg., 46: 161-164 (1980).
  • the surface of the graft so as to provide positively or negatively charged groups, as by using a suitable amino acid or polymer or by attaching a physiologically acceptable source of charged functional groups.
  • a negatively charged surface is appropriate for blood vessels to diminish blood clotting.
  • An immunosuppressive agent particularly effective for these surface modifications is glutaraldehyde.
  • the graft is optionally contacted with a TGF- ⁇ composition as described in U.S. Pat. No. 5,135,915, the disclosure of which is incorporated by reference. Briefly, the contact suitably involves incubating or perfusing the graft with the composition or applying the composition to one or more surfaces of the graft.
  • the treatment generally takes place for at least one minute, and preferably from 1 minute to 72 hours, and more preferably from 2 minutes to 24 hours, depending on such factors as the concentration of TGF- ⁇ in the formulation, the graft to be treated, and the particular type of formulation.
  • the graft is simultaneously or separately perfused with LFA-1 antagonist variant. Perfusion is accomplished by any suitable procedure.
  • an organ can be perfused via a device that provides a constant pressure of perfusion having a pressure regulator and overflow situated between a pump and the organ, as described by DD 213,134 published Sep. 5, 1984.
  • the organ is placed in a hyperbaric chamber via a sealing door and perfusate is delivered to the chamber by a pump that draws the fluid from the reservoir while spent perfusate is returned to the reservoir by a valve, as described in EP 125,847 published Nov. 21, 1984.
  • the graft After the graft is treated, it is suitably stored for prolonged periods of time or is used immediately in the transplant procedure. Storage life can be enhanced as described above by using a blood substitute in the formulation (e.g., perfluorochemical emulsion), or by perfusing the graft with a formulation of a TGF- ⁇ containing chilled isotonic agent and anticoagulant followed by glycerol to allow for freezing of removed organs with no destruction of the cells, as described in JP 60061501 published Apr. 9, 1985.
  • a blood substitute in the formulation e.g., perfluorochemical emulsion
  • perfusing the graft with a formulation of a TGF- ⁇ containing chilled isotonic agent and anticoagulant followed by glycerol to allow for freezing of removed organs with no destruction of the cells, as described in JP 60061501 published Apr. 9, 1985.
  • the organs can be preserved with known perfusion fluids (containing TGF- ⁇ and/or LFA-1 antagonist as noted) while the organs are cooled to freezing temperatures, to preserve the organ semi-permanently without cell necrocytosis, as described by U.S. Pat. Nos. 4,462,215 and 4,494,385.
  • the graft Before transplantation, the graft is preferably washed free of the TGF- ⁇ composition, as by soaking it in a physiological saline solution or by other means appropriate for this purpose. It is not desirable to remove the LFA-1 antagonist variant prior to transplantation.
  • the host prior to transplantation, is optionally given one or more donor-specific blood transfusions to aid in graft survival.
  • An alternative procedure is to subject the host to total lymphoid irradiation prior to or after the transplantation operation. Any other pre-transplant procedures that would be beneficial to the particular transplant recipient can be performed as part of the method of this invention.
  • Immunoglobulins and certain variants thereof are known and many have been prepared in recombinant cell culture. For example, see U.S. Pat. No. 4,745,055; EP 256,654; EP 120,694; EP 125,023; EP 255,694; EP 266,663; WO 88/03559; Faulkner et al., Nature, 298: 286 (1982); Morrison, J. Immun., 123: 793 (1979); Koehler et al., Proc. Natl. Acad. Sci. USA, 77: 2197 (1980); Raso et al., Cancer Res., 41: 2073 (1981); Morrison et al., Ann. Rev.
  • immunoglobulin chains are also known. See, for example, U.S. Pat. No. 4,444,878; WO 88/03565; and EP 68,763 and references cited therein.
  • the immunoglobulin moiety in the polypeptide variants of the present invention may be obtained from IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA, IgE, IgD, or IgM, but preferably from IgG-1 or IgG-3.
  • Polyclonal antibodies are generally raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl 2 , or R 1 N ⁇ C ⁇ NR, where R and R 1 are different alkyl groups.
  • a protein that is immunogenic in the species to be immunized e.g., keyhole limpet hemocyanin, serum albumin, bovine thyrog
  • Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining 1 mg or 1 ⁇ g of the peptide or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites.
  • 1 mg or 1 ⁇ g of the peptide or conjugate for rabbits or mice, respectively
  • 3 volumes of Freund's complete adjuvant injecting the solution intradermally at multiple sites.
  • the animals are boosted with 1 ⁇ 5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites.
  • Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus.
  • the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent.
  • Conjugates also can be made in recombinant cell culture as protein fusions.
  • aggregating agents such as alum are suitably used to enhance the immune response.
  • Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts.
  • the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies.
  • the monoclonal antibodies may be made using the hybridoma method first described by Kohler and Milstein, Nature, 256: 495 (1975), or may be made by recombinant DNA methods (Cabilly et al., supra).
  • a mouse or other appropriate host animal such as a hamster
  • lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization.
  • lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice , pp. 59-103 [Academic Press, 1986]).
  • the hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred myeloma cels are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
  • preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Md. USA.
  • Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133: 3001 [1984]; Brodeur et al., Monoclonal Antibody Production Techniques and Applications , pp. 51-63 [Marcel Dekker, Inc., New York, 1987]).
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen.
  • the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunoabsorbent assay
  • the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107: 220 (1980).
  • the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, supra). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium.
  • the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • the monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
  • the hybridoma cells serve as a preferred source of such DNA.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348: 552-554 (1990), using the proper antigen such as CD11a, CD18, IgE, or HER-2 to select for a suitable antibody or antibody fragment.
  • Clackson et al., Nature, 352: 624-628 (1991) and Marks et al., J. Mol. Biol., 222: 581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries.
  • the DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (Cabilly et al., supra; Morrison, et al., Proc. Nat. Acad. Sci., 81: 6851 [1984]), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
  • Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents.
  • immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond.
  • suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
  • the variants herein derived from antibodies typically will be labeled with a detectable moiety.
  • the detectable moiety can be any one which is capable of producing, either directly or indirectly, a detectable signal.
  • the detectable moiety may be a radioisotope, such as 3 H, 14 C, 32 P, 35 S, or 125 I; a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; radioactive isotopic labels, such as, e.g., 125 I, 32 p, 14 C, or 3 H; or an enzyme, such as alkaline phosphatase, beta-galactosidase, or horseradish peroxidase.
  • any method known in the art for separately conjugating the polypeptide variant to the detectable moiety may be employed, including those methods described by Hunter et al., Nature, 144: 945 (1962); David et al., Biochemistry, 13: 1014 (1974); Pain et al., J. Immunol. Meth., 40: 219 (1981); and Nygren, J. Histochem. and Cytochem., 30: 407 (19B2).
  • a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain.
  • Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321: 522-525 [1986]; Riechmann et al., Nature, 332: 323-327 [1988]; Verhoeyen et al., Science, 239: 1534-1536 [1988]), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
  • rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
  • such “humanized” antibodies are chimeric antibodies (Cabilly et al., supra), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • variable domains both light and heavy
  • the choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity.
  • the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
  • the human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151: 2296 [1993]; Chothia and Lesk, J. Mol. Biol., 196: 901 [1987]).
  • Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
  • the same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89: 4285 [1992]; Presta et al., J. Immunol., 151: 2623 [1993]).
  • humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences.
  • Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
  • Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
  • FR residues can be selected and combined from the consensus and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.
  • the CDR residues are directly and most substantially involved In influencing antigen binding.
  • transgenic animals e.g., mice
  • transgenic animals e.g., mice
  • J H antibody heavy-chain joining region
  • Human antibodies can also be produced in phage-display libraries (Hoogenboom and Winter, J. Mol. Biol., 227: 381 [1991]; Marks et al., J. Mol. Biol., 222: 581 [1991]).
  • Bispecific antibodies are antibodies that have binding specificities for at least two different antigens.
  • Bispecific antibodies can be derived from full length antibodies or antibody fragments (e.g. F(ab′) 2 bispecific antibodies).
  • bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein and Cuello, Nature, 305: 537-539 [1983]). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10: 3655-3659 (1991).
  • antibody variable domains with the desired binding specificities are fused to immunoglobulin constant domain sequences.
  • the fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions.
  • DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain are inserted into separate expression vectors, and are co-transfected into a suitable host organism.
  • the bispecific antibodies are composed of a hybrid immunoglobulin heavy, chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690 published Mar. 3, 1994. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).
  • Bispecific antibodies include cross-linked or “heteroconjugate” antibodies.
  • one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin.
  • Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089).
  • Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
  • bispecific antibodies can be prepared using chemical linkage.
  • Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′) 2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation.
  • the Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives.
  • One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the BsAb.
  • the BsAbs produced can be used as agents for the selective immobilization of enzymes.
  • bispecific F(ab′) 2 heterodimers have been produced using leucine zippers.
  • the leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion.
  • the antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers.
  • the “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci .
  • the fragments comprise a heavy-chain variable domain (V H ) connected to a light-chain variable domain (V L ) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • sFv single-chain Fv
  • Variant antibodies are useful in diagnostic assays for an antigen of interest, e.g., its production in specific cells, tissues, or serum.
  • the variant antibodies are labeled in the same fashion as described above and/or are immobilized on an insoluble matrix.
  • an antibody composition that binds to the antigen is immobilized on an insoluble matrix, the test sample is contacted with the immobilized variant antibody composition to adsorb the antigen, and then the immobilized antigen is contacted with variant antibodies specific for the antigen, as determined by unique labels such as discrete fluorophores or the like. By determining the presence and/or amount of each unique label, the relative proportion and amount of the antigen can be determined.
  • the variant antibodies of this invention are also useful in passively immunizing patients.
  • the variant antibodies also are useful for the affinity purification of an antigen of interest from recombinant cell culture or natural sources.
  • Suitable diagnostic assays for an antigen and its variant antibodies are well known per se.
  • competitive, sandwich and steric inhibition immunoassay techniques are useful.
  • the competitive and sandwich methods employ a phase-separation step as an integral part of the method while steric inhibition assays are conducted in a single reaction mixture.
  • steric inhibition assays are conducted in a single reaction mixture.
  • the same procedures are used for the assay of the antigen and for substances that bind the antigen, although certain methods will be favored depending upon the molecular weight of the substance being assayed.
  • analyte irrespective of its status otherwise as an antigen or variant antibody
  • proteins that bind to the analyte are denominated binding partners, whether they be antibodies, cell-surface receptors, or antigens.
  • Analytical methods for the antigen or its variant antibodies all use one or more of the following reagents: labeled analyte analogue, immobilized analyte analogue, labeled binding partner, immobilized binding partner, and steric conjugates.
  • the labeled reagents also are known as “tracers.”
  • Immobilization of reagents is required for certain assay methods. Immobilization entails separating the binding partner from any analyte that remains free in solution. This conventionally is accomplished by either insolubilizing the binding partner or analyte analogue before the assay procedure, as by adsorption to a water-insoluble matrix or surface (Bennich et al., U.S. Pat. No. 3,720,760), by covalent coupling (for example, using glutaraldehyde cross-linking), or by insolubilizing the partner or analogue afterward, e.g., by immunoprecipitation.
  • ком ⁇ онент rely on the ability of a tracer analogue to compete with the test sample analyte for a limited number of binding sites on a common binding partner.
  • the binding partner generally is insolubilized before or after the competition and then the tracer and analyte bound to the binding partner are separated from the unbound tracer and analyte. This separation is accomplished by decanting (where the binding partner was preinsolubilized) or by centrifuging (where the binding partner was precipitated after the competitive reaction).
  • the amount of test sample analyte is inversely proportional to the amount of bound tracer as measured by the amount of marker substance.
  • Dose-response curves with known amounts of analyte are prepared and compared with the test results to quantitatively determine the amount of analyte present in the test sample. These assays are called ELISA systems when enzymes are used as the detectable markers.
  • a conjugate of an enzyme with the analyte is prepared and used such that when anti-analyte binds to the analyte the presence of the anti-analyte modifies the enzyme activity.
  • the antigen or its immunologically active fragments are conjugated with a bifunctional organic bridge to an enzyme such as peroxidase. Conjugates are selected for use with anti-polypeptide so that binding of the anti-polypeptide inhibits or potentiates the enzyme activity of the label. This method per se is widely practiced under the name of EMIT.
  • Steric conjugates are used in steric hindrance methods for homogeneous assay. These conjugates are synthesized by covalently linking a low-molecular-weight hapten to a small analyte so that antibody to hapten substantially is unable to bind the conjugate at the same time as anti-analyte. Under this assay procedure the analyte present in the test sample will bind anti-analyte, thereby allowing anti-hapten to bind the conjugate, resulting in a change in the character of the conjugate hapten, e.g., a change in fluorescence when the hapten is a fluorophore.
  • Sandwich assays particularly are useful for the determination of polypeptide variants or polypeptide variant antibodies.
  • an immobilized binding partner is used to adsorb test sample analyte, the test sample is removed as by washing, the bound analyte is used to adsorb labeled binding partner, and bound material is then separated from residual tracer. The amount of bound tracer is directly proportional to test sample analyte.
  • sandwich assays the test sample is not separated before adding the labeled binding partner.
  • a sequential sandwich assay using a monoclonal antibody as one antibody and a polyclonal antibody as the other is useful in testing samples for antigen activity.
  • the template plasmid, pH52, used for constructing the Fabs (hereafter referred to as Fab) employed in this example was derived from the plasmid p80475 described by Cunningham et al., Science 243: 1330-1336 (1989). Two BamHI sites flanking the F1 origin were removed from pB0475 and DNA coding for anti-CD18 Fab H52, version OZ (Eigenbrot et al., Proteins, 18: 49-62 [1994]1) was substituted for DNA coding for human growth hormone using the EcoRV and SphI sites.
  • pH52 contains DNA coding for anti-CD18 Fab H52 (version OZ), the STII signal peptides of the light and heavy chain, the alkaline phosphatase promoter region, an M13 helper phage region, and ampicillin-resistance.
  • Fab variants were constructed by Kunkel mutagenesis (Kunkel, Proc. Natl. Acad. Sci. U.S.A., 82: 488-492 [1985]) of pH52 using the following oligonucleotides:
  • oligo V1A (SEQ ID NO: 12) 5′GTGCACCGTGCCTCACCAGAGCTTGGGCAC3′ changes Ser195-Sen196 to His195-Gln196 oligo V1B (SEQ ID NO: 13) 5′TGGCACCCTCCCCTAAGAACTCGAGCATGATCAGC- AACACACCGGCCCTGGGC3′ (SEQ ID NO: 14) changes Ser127-Ser-Lys-Ser-Thr-Ser-Gly-Gly-Thr- Ala-Ala139 (SEQ ID NO: 15) to Ser127-Pro-Lys-Asn-Ser-Ser-Met-Ile-Sen-Asn-Thr- Pro-Ala139 oligo V1C (SEQ ID NO: 16) 5′TGGCACCCTCCAAATCGAGCATCACAGCGGCCCT3′ (SEQ ID NO: 17) changes Ser127-Ser-Lys-Ser-Thr-Ser-Gly-Gly-Thr137 (SEQ ID
  • Amino acid residue numbers are according to the numbering system described in Kabat et al., supra, NIH Publ. No. 91-3242, Vol. I, pages 647-669 (1991).
  • Fab v1 incorporated oligos V1A and V1C; Fab v1b incorporated oligos V1A and V1B; Fab v2 incorporated oligo V2.
  • Plasmids coding for Fab v1, Fab v1b, and Fab v2 were selected and the DNA sequences checked using dideoxynucleotide sequencing (SequenaseTM protocol, United States Biochemical).
  • F(ab′) 2 constructs were made by inserting DNA coding for the IgG1 hinge region followed by a ‘leucine zipper’ at the C-terminus of the H52 heavy constant domain. The inserted amino acid sequence was: CPPCPAPELLGGRMKQLEDKVEELLSKNYHLENEVARLKKLVGER (SEQ ID NO: 22).
  • Fab v1b Another set of Fab versions is based on Fab v1b, i.e., the variant which showed longer half life, using the following oligonucleotides:
  • oligo V1D (SEQ ID NO: 23) 5′TCGAGCATGATCTCTAGAACACCGGCCC3′ changes Asn136 to Arg136 oligo V1E (SEQ ID NO: 24) 5′GCCTCACCAGAACCTAGGCACCAAGACCTACATCTG3′ changes Ser197 to Asn197 and Gln203 to Lys203 oligo V1F (SEQ ID NO: 25) 5′GCCTCACCAGAACTTAAGCGACGGAAAGACCTACATCTGC3′ (SEQ ID NO: 26) changes Gln196-Ser-Leu-Gly-Thr-Gln-Thr204 (SEQ ID NO: 27) to Gln196-Asn-Leu-Ser-Asp-Gly-Lys-Thr204 oligo V1G (SEQ ID NO: 28) 5′GCCTCACCAGAATATTACAGATGGCAAGACCTACATCTGC3′ (SEQ ID NO: 29) changes Gln196-Ser-Leu-
  • plasmid DNA was transformed into E. coli .
  • the transformants were then plated on Luria Broth (LB) plates containing 5 ⁇ g/mL carbenicillin and incubated at 37° C. overnight.
  • LB Luria Broth
  • a single colony was inoculated into 5 mL [LB+5 ⁇ g/mL carbenicillin] and grown for 6-7 hours at 37° C.
  • the 5-mL culture was then added to 500 mL AP5 minimal media in a 2-L baffled flask and grown for 16 hours at 37° C.
  • AP5 minimal media is made as follows: Per 1 liter is added 1.5 g glucose (SigmaTM G-7021), 2.2 g casamino acids technical (DifcoTM 0231-01-0), 0.3 g yeast extract certified (DifcoTM 0127-01-7), 0.19 g MgSO 4 anhydrous or 0.394 g MgSO 4 .7H 2 O (SigmaTM M2773), 1.07 g ammonium chloride (SigmaTM A9434), 0.075 g KCl (SigmaTM P5405), 4.09 g NaCl (SigmaTM S3014), 120.0 mL of 1 M triethanolamine pH 7.4, qs to 1.0 L Super-QTM Water, as well as 1 M triethanolamine pH 7.4 consisting of 133.21 mL triethanolamine, Liquid (SigmaTM T1377) and 950 mL Super-QTM Water, pH to 7.4 with HCl (MallinckrodtTM 2612), qs to 1.0 L Super-QTM Water.
  • the cells were spun in a 1-L centrifuge bottle at 3000 rpm for 30 minutes, the supernatant was decanted and the pelleted cells were frozen for 1 hour.
  • the pellet was resuspended in 10 mL of cold TE buffer (10 mM TRIS, 1 mM EDTA, pH 7.6) with 100/L 0.1 M benzamidine (Sigma) added.
  • the resuspended pellet was agitated on ice for 1 hour, spun at 18,000 rpm for 15 minutes, and the supernatant decanted and held on ice.
  • the supernatant was then passed over a Protein G-SepharoseTM Fast Flow (Pharmacia) column [0.5 mL bed volume] previously equilibrated by passing 10 mL TE buffer through the column.
  • the column was then washed with 10 mL TE buffer, and the Fab eluted with 2.5 mL 100 mM acetic acid, pH 2.8, into a tube containing 0.5 mL TRIS, pH 8.0.
  • the eluant was concentrated in a Centricon-30TM (Amicon) centrifuge to 0.5 mL, 2 mL phosphate-buffered saline was added to concentrated eluant, and the resulting mixture was re-concentrated to 0.5 mL. SDS-PAGE gels were run to ascertain that protein had been produced.
  • SDS polyacrylamide gel electrophoresis SDS-PAGE
  • HPLC high performance liquid chromatography
  • Reverse-phase chromatography was carried out on a reverse-phase PLRP-STM 4.6 ⁇ 50 mm column, 8-mm particle size (Polymer Laboratories, Shropshire, UK), maintained at 50° C.
  • the proteins were eluted using an increasing linear gradient from 31% B to 41% B.
  • Buffer A contained 0.1% trifluoroacetic acid in deionized water
  • Buffer B contained 0.1% trifluoroacetic acid in HPLC-grade acetonitrile.
  • the flow rate was maintained at 2 mL/min, and the protein profile was monitored at 214 nm.
  • the anti-CD11/CD18 Fab antibody fragment and the different Fab variants were isolated using the same extraction and purification scheme.
  • Frozen cell pellets (100 g) were re-suspended at room temperature in 120 mM MES buffer, pH 6.0, containing 5 mM EDTA (5 ml of buffer per g of cell pellet) and completely disrupted by three passages through a microfluidizer (Microfluidics Corporation, Newton, Mass.). The homogenate was adjusted to 0.25% (v/v) polyethyleneimine (PEI) and the solid debris was removed by centrifugation (7280 ⁇ g, 30 min, 4° C.).
  • PEI polyethyleneimine
  • the supernatant containing the antibody fragment was diluted to a conductivity of 2.5 millisiemens with purified water, filtered through a 0.22 micron filter (Suporcap-50TM, Gelman Sciences, Ann Arbor, Mich.), and then loaded onto a 1.6 ⁇ 9.5 cm Bakerbond ABX column (J. T. Baker, Phillipsburg, N.J.) equilibrated in 50 mM MES/5 mM disodium EDTA, pH 6.0 (Buffer A). The effluent was UV monitored at 280 nm. After loading, the column was washed with Buffer A until the UV trace returned to baseline.
  • Antibody fragments were eluted with a 20-column-volume gradient from 0 to 100 mM ammonium sulfate in buffer A. Fractions were analyzed on a cation-exchange column as described in the Analytical Methods section above and pooled accordingly.
  • SPHP SP Senharose High Performance
  • the ABX pool was diluted with water for Injection (WFI) to a conductivity of less than 4 mS and loaded onto a SPHP 1.6 ⁇ 9.2 cm column (Pharmacia-Biotech Inc., Piscataway, N.J.), equilibrated with 25 mM MOPS buffer, pH 6.9. Separation was achieved by a 20-column-volume linear gradient from 0 to 200 mM sodium acetate in 25 mM MOPS buffer, pH 6.9. Fractions were analyzed by CSX HPLC and SDS-PAGE as described in the Analytical Methods section above and pooled accordingly.
  • WFI Water for Injection
  • the SPHP pools containing the antibody fragments were concentrated to 5 mg/mL using Amicon stir cells and YM10 membrane filters (Amicon, Inc. Beverly, Mass.).
  • the purified and concentrated antibody samples were buffer-exchanged into phosphate buffer saline (PBS) by gel permeation chromatography on a SephadexTM G25 (Pharmacia Biotech Inc. Piscataway, N.J.) column.
  • PBS phosphate buffer saline
  • Endotoxin determinations were performed with the Limulus amoebocyte lysate test (Associates of Cape Cod Inc., Woods Hole, Mass.). Samples containing less than 2 endotoxin units (Eu) per mg of protein were used in the pharmacokinetic studies.
  • the F(ab′) 2 fragment was initially purified by ABX chromatography as a leucine zipper (Fab′) 2 variant [zipper-F(ab′) 2 ].
  • This construct was engineered by adding a leucine zipper domain after the hinge region of the H52 heavy chain, After purification, the leucine zipper domain was cleaved by pepsin digestion after which the F(ab′) 2 was purified by SPHP and Phenyl ToyopearlTM chromatography as described below
  • the ABX-purified Zipper-F(ab′) 2 was treated with pepsin to remove the leucine zipper portion of the molecule to yield the F(ab′) antibody fragment.
  • the ABX purified sample was concentrated on Amicon stir cells to 5 mg/mL and then diluted 1:3.5 with 100 mM sodium citrate buffer, pH 3.5.
  • pepsin (1 mg/mL) dissolved in 100 mM sodium citrate buffer, pH 3.5 was added at a pepsin-to-protein ratio of 1:12. After 4 hours at room temperature, the mixture's pH was raised to pH 6.4 with 10% NaOH.
  • Phenyl ToyopearlTM Chromatography of SPHP-purified F(ab′) 2 Antibody Fragment The SPHP-purified F(ab′) 2 pool was made 1.5 M in ammonium sulfate by adding solid ammonium sulfate. The conditioned pool was then loaded onto a Phenyl ToyopearlTM 650M (Tosohaas, Montgomeryville, Pa.) 1.6 ⁇ 10 cm column equilibrated with 1.5 M ammonium sulfate, 50 mM sodium acetate, pH 5.4 (Buffer A).
  • Formulation of the purified F(ab′) 2 antibody fragment was performed as described above for the Fab antibody fragment variants. After endotoxin determinations, samples containing less than 2 Eu per mg of protein were used in the pharmacokinetic studies set forth below.
  • mice The objective of this single-dose pharmacokinetic study of five humanized huH52 anti-CD18 antibody fragments (constructs) in mice was to determine if non-specific clearance of antibody fragments is affected by alterations to amino acids in the constant domain. Serum samples were collected from male CD1 mice over a 24-hour period and human anti-CD18 serum concentrations were measured by ELISA.
  • the anti-CD18 antibody fragments investigated were derived from E.-coli-produced recombinant humanized monoclonal Fab antibody fragments as described above.
  • the Fab fragment and the construct in which two Fab′ subunits were joined together by two disulfide bonds were investigated.
  • three new versions of the original Fab were constructed by altering amino acids in the constant domain. See the Study Design table below for further description of the constructs.
  • the construct antigen-binding sites are directed against the CD18 subunit of the CD11/CD18 glycoprotein complex on the surface of leukocytes. These antibody fragments are chimpanzee and human-specific; therefore, the serum pharmacokinetic information obtained in mice provides a description of the non-specific clearance of the fragments.
  • mice received an intravenous bolus dose of 2 mg/kg via the tail vein. Blood samples were collected at 5 and 30 minutes, 1, 2, 4, 8, 12, 16, 20, and 24 hours post-dose. Serum was harvested and concentrations of the antibody fragments were determined in a MAC-1 capture ELISA as follows:
  • 96-Well microtiter plates were coated overnight with murine anti-CD18 monoclonal antibody. After overnight incubation at 4° C., plates were washed three times with ELISA wash buffer and blocked for 1 hour with ELISA diluent.
  • ELISA wash buffer is phosphate-buffered saline (PBS)/0.05% PolysorbateTM 20.
  • This buffer is prepared per liter as 50 mL 20 ⁇ PBS/1.0% PolysorbateTM 20 (a mixture obtained by dissolving 160 g NaCl, 4.0 g KCl, 22.6 g Na 2 HPO 4 , and 4.0 g KH 2 PO 4 in glass-distilled or deionized water, adding 10.0 mL PolysorbateTM 20 [SigmaTM P 1379 or equivalent], qs to 1000 mL, and sterile filtering using a 0.22 ⁇ m or smaller filter), and qs to 1.0 L of distilled or deionized water, stored at ambient temperature. The expiration period is 2 weeks from the date of preparation.
  • the ELISA diluent was PBS/0.5% BSA/0.05% PolysorbateTM 20/0.01% ThimerosalTM/1 mM CaCl 2 /1 mM MgCl 2 .
  • This diluent was prepared per liter as 5.0 g bovine serum albumin (ArmourTM N0068 or equivalent), 50 mL 20 ⁇ PBS/1.0% PolysorbateTM 20/0.2% ThimerosalTM (a mixture obtained by dissolving 160 g NaCl, 4.0 g KCl, 22.6 g Na 2 HPO 4 , and 4.0 g KH 2 PO 4 in glass-distilled or deionized water, and adding 10.0 mL PolysorbateTM 20 [Sigma P-1379 or equivalent] and 2.0 g ThimerosalTM [SigmaTM-5125 or equivalent], qs to 1000 mL), 0.1% (v/v)1 M CaCl 2 (GenentechTM A3165), 0.1% (v/v) 1 M MgCl 2 (GenentechTM
  • Soluble MAC1 (CD11b/CD18 as described by Berman et al., J. Cell. Biochem., 52: 183-195 [1993]) was then captured out of a concentrate of media, conditioned by CHO cells expressing the truncated CD11b/CD18 heterodimer. After a 2-hour incubation period, the plates were washed six times with ELISA wash buffer and 100 ⁇ L of the mouse serum sample being tested or the standard containing the homologous recombinant human anti-CD18 Fab were added.
  • mouse serum samples were first diluted 1/10 in ELISA diluent and then a further 1 ⁇ 4 into sample diluent; 100 ⁇ L was taken from this initial 1/40 dilution.
  • Sample diluent is 10% Swiss Webster Mouse serum in ELISA diluent.
  • the absorbance of the well contents was measured at 492 nm minus 405 nm background absorbance using an automatic plate reader from SLT, Labinstruments. Data were reduced by using a four-parameter, curve-fitting program based on an algorithm for least-squares estimation of non-linear parameters.
  • Serum concentration versus time data were analyzed utilizing a non-linear curve-fitting program and subsequent pharmacokinetics parameters were estimated. D'Argenio and Schumitzky, ADAPT II User's Guide , Biomedical Simulations Resource, University of Southern California, Los Angeles, Release 2, 1990.
  • a two-compartment model was used to characterize the serum concentration versus time data for the five groups. See Table 2 for primary model parameters and calculated pharmacokinetic parameters. The two-compartment model fit is superimposed on the data and shown in FIGS. 1A and 1B . A data listing is provided in Table 3. The volume of the central compartment approximated the plasma volume for all groups.
  • K e is the rate constant associated with the elimination of material from the central compartment.
  • c K cp is the rate constant associated with the transfer of material from the central to a peripheral compartment.
  • d K pc is the rate constant associated with the transfer of material from the peripheral to the central compartment.
  • e Weight-normalized serum clearance.
  • f t 1/2 ⁇ and t 1/2 ⁇ are the initial and terminal half-lives associated with each exponential phase.
  • h Maximum observed concentrations.
  • i Zero-time concentration estimated from the disposition function as ⁇ A i . j Dose-normalized area under the serum concentration versus time curve. k Permanence time.
  • FIGS. 1A and 1B show the data in FIGS. 1A and 1B , where FIG. 1A shows the pharmacokinetics of all five constructs over a time period of 0 to 5 hours, and FIG. 1B shows the pharmacokinetics of all five constructs over a time period of 0 to 25 hours.
  • the initial (or ⁇ -phase) half-lives varied as did the terminal (1-phase) half-lives.
  • the Fab v1 B variant had a clearance of 80 mL/hr/kg, which is about three-fold higher than that of the double-disulfide (Fab′) 2 .
  • the Fab v1, Fab, and Fab v2 had approximately 3-fold greater clearance over the Fab v1B and about 6-fold greater clearance over the double-disulfide (Fab′) 2 (173, 189, and 190 mL/hr/kg, respectively).
  • the effective molecular weight of the original Fab was 49 kD, and its clearance was 189 mL/hr/kg.
  • the Fab versions 1, 1B, and 2 all have molecular weights similar to that of the original Fab, yet version 1B was cleared from the serum 2-fold more slowly. Thus, alterations of the amino acid sequence in the Fab constant domain affect clearance.
  • the effect seen on beta-phase half-life shows that with the two least-successful variants 1 and 2, there was a detectable effect that was not sufficient to increase significantly overall permanence time.

Abstract

Polypeptides that are cleared from the kidney and do not contain in their original form a Fc region of an IgG are altered so as to comprise a salvage receptor binding epitope of an Fc region of an IgG and thereby have increased circulatory half-life.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to polypeptides that are mutated to contain a salvage receptor binding epitope. More particularly, this invention relates to polypeptides that are cleared through the kidney having an epitope from the Fc region of an IgG molecule, resulting in longer circulatory half-life.
  • 2. Description of Related Literature
  • It was proposed in 1964 that a specific receptor exists in rapid equilibrium with the intravascular space that protects IgG molecules from degradation. Brambell et al., Nature, 203: 1352-1355 (1964). See also Brambell, The Lancet, 1087-1093 (1965). The kidney has been shown to be the major site of catabolism of immunoglobulin fragments, according for approximately 90% of their endogenous catabolism. Wochner et al., J. Exp. Med., 126: 207 (1967). The existence of a receptor implies that the Ig molecule has specific sequences, or conformational determinants, that must bind to such a receptor. Since the Fc region of IgG produced by proteolysis has the same in vivo half-life as the intact IgG molecule and Fab fragments are rapidly degraded (Spiegelberg and Wiegle, J. Exp. Med., 121: 323-338 [1965]; Waldmann and Ghetie, “Catabolism of Immunoglobulins,” Progress in Immunol., 1: 1187-1191 [Academic Press, New York: 1971]; Spiegelberg, in Advances in Immunology, Vol. 19, F. J. Dixon and H. G. Kinkel, eds. [Academic Press, NY: 1974], pp. 259-294; and reviewed by Zuckier et al., Semin. Nucl. Med., 19: 166-186 [1989]), it was believed that the relevant sequences of mouse IgG2b were in the CH2 or CH3 domain and that deletion of one or the other domain would give rise to rapid degradation. In fact, the CH2 domain fragment of human IgG produced by trypsin digestion of the Fc fragment persisted in the circulation of rabbits for as long as the Fc fragment or IgG molecule; in contrast, the CH3 domain (pFc′) fragment of human IgG also produced by trypsin digestion of the Fc fragment was rapidly eliminated, indicating that the catabolic site of IgG is located in the CH2 domain. Ellerson et al., J. Immunol., 116: 510 (1976); Yasmeen et al., J. Immunol., 116: 518 (1976). Other studies have shown that sequences in the CH3 domain are important in determining the different intravascular half-lives of IgG2bT and IgG2ah antibodies in the mouse. Pollock et al., Eur. J. Immunol., 20: 2021-2027 (1990).
  • The catabolic rates of IgG variants that do not bind the high-affinity Fc receptor FcRI or C1q are indistinguishable from the rate of clearance of the parent wild-type antibody, indicating that the catabolic site is distinct from the sites involved in FcRI or C1q binding. Wawrzynczak et al., Molec. Immunol., 29: 221 (1992). Also, removal of carbohydrate residues from the IgG molecule or Fc fragment has either a minor role in or no effect on the in vivo half-life, and the extent of this effect depends on the isotype of the IgG molecule. Nose and Wigzell, Proc. Natl. Acad. Sci. USA, 80: 6632 (1983); Tao and Morrison, J. Immunol., 143: 2595 (1989); Wawrzynczak et al., Mol. Immunol., 29: 213 (1992).
  • Staphylococcal protein A-IgG complexes were found to clear more rapidly from the serum than uncomplexed IgG molecules. Dima et al., Eur. J. Immunol., 13: 605 (1983). To determine if residues near the Fc-SpA interface are involved in IgG clearance, Kim et al., Eur. J. Immuno., 24. 542-548 (1994) performed site-directed mutagenesis to change amino acid residues of a recombinant Fc-hinge fragment derived from the murine immunoglobulin G1 molecule and determine the effects of these mutations on the pharmacokinetics of the Fc-hinge fragment. The authors showed that the site of the IgG1 molecule that controls the catabolic rate (the “catabolic site”) is located at the CH2-CH3 domain interface and overlaps with the Staphylococcal protein A binding site. See also WO 93/22332 published Nov. 11, 1993. The concentration catabolism phenomenon is also studied in Zuckier et al., Cancer, 73: 794-799 (1994). IgG catabolism is also discussed by Masson, J. Autoimmunity, 6: 683-689 (1993).
  • WO 94/04689 discloses a protein with a cytotoxic domain, a ligand-binding domain and a peptide linking these two domains comprising an IgG constant region domain having the property of increasing the half-life of the protein in mammalian serum.
  • A stereo drawing of a human Fc fragment and its complex with fragment B of Protein A from Staphylococcus aureus is provided by Deisenhofer, Biochemistry, 20: 2364 (1981).
  • It has been shown that clearance is greatly reduced when the effective molecular size exceeds 70 kDa, the glomerular filtration cutoff size. Knauf et al., “Relationship of Effective Molecular Size to Systemic Clearance in Rats of Recombinant Interleukin-2 Chemically Modified with Water-soluble Polymers,” J. Biochem., 263: 15064-15070 (1988).
  • SUMMARY OF THE INVENTION
  • Accordingly, in one embodiment the invention provides a polypeptide variant of a polypeptide of interest which polypeptide of interest is cleared from the kidney and does not contain a Fc region of an IgG, which variant comprises a salvage receptor binding epitope of an Fc region of an IgG, and which variant has a longer in vivo half-life than the polypeptide of interest.
  • In another aspect, the invention provides nucleic acid encoding the polypeptide variant, a replicable vector comprising the nucleic acid, a host cell comprising the nucleic acid, and a method for producing a polypeptide variant comprising culturing the host cells in culture medium and recovering the polypeptide variant from the host cell culture. The nucleic acid molecule may be labeled or unlabeled with a detectable moiety.
  • In a further aspect, the invention supplies a polypeptide that is not an Fc, which polypeptide comprises one or more of the sequences (5′ to 3′): HQNLSDGK (SEQ ID NO: 1), HQNISDGK (SEQ ID NO: 2), or VISSHLGQ (SEQ ID NO: 31), and which polypeptide also comprises the sequence: PKNSSMISNTP (SEQ ID NO: 3).
  • In a still further aspect, the invention provides a method for preparing a polypeptide variant comprising altering a polypeptide of interest that is cleared from the kidney and does not contain an Fc region of an IgG so that it comprises a salvage receptor binding epitope of an Fc region of an IgG and has an increased in vivo half-life.
  • In a still additional embodiment, the invention supplies a method for preparing a polypeptide variant having an increased in vivo half-life comprising:
  • (1) identifying the sequence and conformation of a salvage receptor binding epitope on an Fc region of an IgG molecule;
  • (2) altering the sequence of a polypeptide of interest that is cleared from the kidney and does not contain an Fc region to include the sequence and conformation of the identified binding epitope;
  • (3) testing the altered polypeptide of step (2) for longer in vivo half-life than that of the polypeptide of interest; and
  • (4) if the polypeptide does not have a longer in vivo half-life, further altering the sequence of the polypeptide of interest to include the sequence and conformation of the identified binding epitope and testing for longer in vivo half-life until longer in vivo half-life is obtained.
  • In a still further aspect, the invention provides a method for treating an LFA-1-mediated disorder comprising administering to a mammal, preferably a patient, in need of such treatment an effective amount of the variant set forth above wherein the polypeptide is a Fab, a (Fab′)2, a diabody, a Fv fragment, a single-chain Fv fragment, or a receptor and acts as an LFA-1 antagonist. More preferably, this variant is a Fab or (Fab′)2 of anti-LFA-1 [such as an anti-CD18 Fab or (Fab′)2], with increased serum half-life as set forth herein.
  • In another embodiment, the invention provides a method for detecting CD11a or CD18 in vitro or in vivo comprising contacting the anti-CD11a or CD18 antibody fragment variant herein with a sample, especially a serum sample, suspected of containing the CD11a or CD18 and detecting if binding has occurred.
  • The Fc region is to be located (transplanted) to a region of the polypeptide of interest that will not alter its conformation so that it loses biological activity and is to be located so that it will not interfere with the polypeptide's ability to bind with a ligand or antigen to maintain biological activity.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B depict the serum pharmacokinetics of five Fab or (Fab′)2 constructs in mice after single intravenous doses of 2 mg/kg. In FIG. 1A, the Fab v1B variant is designated by solid squares, the Fab control is indicated by solid diamonds, the Fab v2 variant is indicated by solid triangles, the Fab v1 variant is indicated by solid circles, and the double-disulfide F(ab′)2 is indicated by open circles. In FIG. 1B, the Fab control is designated as solid triangles, the variant Fab v2 is designated by open circles; the variant Fab v1 is designated by open squares; the variant Fab v1B is designated by solid circles; and the double-disulfide F(ab′)2 is designated by solid squares. The molecules are more fully described in the tables herein FIG. 2 depicts an alignment of the relevant portions of the consensus amino acid sequences of the human IgG1 CH1 domain (SEQ ID NO: 4), the human IgG2 CH1 domain (SEQ ID NO: 5), the human IgG3 CH1 domain (SEQ ID NO: 6), the human IgG4 CH1 domain (SEQ ID NO: 7), the human kappa CL domain (SEQ ID NO: 8), and the human lambda CL domain (SEQ ID NO: 9), in alignment with the Fab v1b variant derived from anti-CD18 antibody (SEQ ID NO: 10), which is described in Example 1. In this figure, amino acid residues and/or positions of interest and of most importance to the invention within the sequence of Fab v1b (i.e., SEQ ID NOS: 3 and 1) are designated by underlining and asterisks, respectively.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Definitions
  • As used herein, “polypeptide of interest” refers to a polypeptide that has a biological activity, is cleared from the kidney, and does not contain a Fc region of an IgG. An “Fc region of an IgG” refers to the Fc portion of an immunoglobulin of the isotype IgG, as is well known to those skilled in the art of antibody technology. Examples of such polypeptides are peptides and proteins, whether from eukaryotic sources such as, e.g., yeast, avians, plants, insects, or mammals, or from bacterial sources such as, e.g., E. coli. The polypeptide of interest may be isolated from natural sources or made synthetically or recombinantly. In a preferred embodiment, the polypeptide of interest contains an Ig domain or Ig-like domain, e.g., an antigen-binding domain.
  • Clearance of polypeptides of interest from the kidney depends at least in part on the molecular weight of the polypeptide. Polypeptides of too large a molecular weight will not clear the kidneys of a mammal. One example of a test to determine whether the polypeptide of interest (or variant) clears the kidney is a clinical study wherein the polypeptide of interest or variant is labeled with a detectable marker and administered to the same type of mammal that will be treated, using a treatment regimen the same as would be used in the actual treatment. Thereafter, a clinical sample of the urine of the mammal is taken and analyzed to determine if the label is detected therein. If the label is detected, the polypeptide of interest or variant has cleared the kidneys.
  • As a general rule, polypeptides clearing the kidney have a molecular weight in the range of about 5,000-10,000 daltons, although molecules with somewhat higher or lower molecular weights may also meet the criteria of this invention if they can pass the renal clearance test noted above.
  • The polypeptide of interest is biologically active if it has an in vivo effector or antigenic function or activity that is directly or indirectly caused or performed by the polypeptide (whether in its native or denatured conformation) or a fragment thereof. Effector functions include receptor binding and any carrier binding activity, agonism or antagonism of the polypeptide of interest, especially transduction of a proliferative signal including replication, DNA regulatory function, modulation of the biological activity of various growth factors, receptor activation, deactivation, up- or down-regulation, cell growth or differentiation, and the like. Biological activity includes possession of an epitope or antigenic site that is capable of cross-reacting with antibodies raised against the polypeptide of interest or mammalian equivalents thereof.
  • Examples of mammalian polypeptides of interest include molecules such as, e.g., renin, a growth hormone, including human growth hormone; bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; α1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; thrombopoietin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor, and von Willebrands factor; anti-clotting factors such as Protein C; atrial naturietic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and -beta; enkephalinase; a serum albumin such as human serum albumin; mullerian-inhibiting substance; relaxin A-chain; relaxin B-chain; prorelaxin; mouse gonadotropin-associated peptide; a microbial protein, such as beta-lactamase; DNase; inhibin; activin; vascular endothelial growth factor (VEGF); receptors for hormones or growth factors; integrin; protein A or D; rheumatoid factors; a neurotrophic factor such as brain-derived neurotrophic factor (BDNF), neurotrophin-3, -4, -5, or -6 (NT-3, NT-4, NT-5, or NT-6), or a nerve growth factor such as NGF-β; cardiotrophins (cardiac hypertrophy factor) such as cardiotrophin-1 (CT-1); platelet-derived growth factor (PDGF); fibroblast growth factor such as aFGF and bFGF; epidermal growth factor (EGF); transforming growth factor (TGF) such as TGF-alpha and TGF-beta, including TGF-β1, TGF-β2, TGF-β3, TGF-β4, or TGF-β85; insulin-like growth factor-I and -II (IGF-I and IGF-II); des(1-3)-IGF-I (brain IGF-II), insulin-like growth factor binding proteins; CD proteins such as CD-3, CD-4, CD-8, and CD-19; erythropoietin; osteoinductive factors; immunotoxins; a bone morphogenetic protein (BMP); an interferon such as interferon-alpha, -beta, and -gamma; colony stimulating factors (CSFs), e.g., M-CSF, GM-CSF, and G-CSF; interieukins (ILs), e.g., IL-1 to IL-10; an anti-HER-2 antibody without a native Fc region of an IgG; superoxide dismutase; T-cell receptors; surface membrane proteins; decay accelerating factor; viral antigen such as, for example, a portion of the AIDS envelope; transport proteins; homing receptors; addressins; regulatory proteins; antibodies without a native Fc region of an IgG; and fragments of any of the above-listed polypeptides.
  • The preferred polypeptides of interest are mammalian polypeptides. Examples of such mammalian polypeptides include antibody fragments such as Fv, Fab, (Fab′)2, and an anti-HER-2 fragment without the IgGFc domain, t-PA, gp120, DNase, IGF-I, IGF-II brain IGF-I, growth hormone, relaxin chains, growth hormone releasing factor, insulin chains or pro-insulin, urokinase, immunotoxins, neurotrophins, and antigens. More preferably, the polypeptide is a Fab, a (Fab′)2, a diabody, a Fv fragment, a single-chain Fv fragment, or a receptor. Even more preferably, the polypeptide is an anti-IgE, anti-HER2, or anti-CD18 Fab or (Fab′)2, and most preferably is human or humanized.
  • As used herein, “polypeptide variant” refers to an amino acid sequence variant of the polypeptide of interest, including variants with one or more amino acid substitutions, insertions, and/or deletions. Such variants are biologically active as defined above and necessarily have less than 100% sequence identity with the polypeptide of interest. In a preferred embodiment, the biologically active polypeptide variant has an amino acid sequence sharing at least about 70% amino acid sequence identity with the polypeptide of interest, preferably at least about 75%, more preferably at least about 80%, still more preferably at least about 85%, even more preferably at least about 90%, and most preferably at least about 95%.
  • “In vivo half life” means the half-life of the polypeptide of interest or polypeptide variant circulating in the blood of a given mammal.
  • As used herein, the term “salvage receptor binding epitope” refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, and IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule. As an example, FIG. 2 shows representative epitopes in underlining and the important residues in asterisks. The IgG1, IgG2, and IgG4 isotypes are preferred for determining the salvage receptor binding epitope.
  • “Polymerase chain reaction” or “PCR” refers to a procedure or technique in which minute amounts of a specific piece of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Pat. No. 4,683,195 issued 28 Jul. 1987. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified. The 5′ terminal nucleotides of the two primers may coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51: 263 (1987); Erlich, ed., PCR Technology, (Stockton Press, NY, 1989). As used herein, PCR is considered to be one, but not the only, example of a nucleic acid polymerase reaction method for amplifying a nucleic acid test sample comprising the use of a known nucleic acid as a primer and a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid.
  • “Antibodies” (Abs) and “immunoglobulins” (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas.
  • “Native antibodies” and “native immunoglobulins” are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains (Clothia et al., J. Mol. Biol., 186: 651-663 [1985]; Novotny and Haber, Proc. Natl. Acad. Sci. USA, 82: 4592-4596 [1985]).
  • The term “variable” refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a β-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the β-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., supra). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab′)2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
  • “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
  • “Single-chain Fv” or “sFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv see Pluckthun, A. in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).
  • The “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (K) and lambda (A), based on the amino acid sequences of their constant domains.
  • Depending on the amino acid sequence of the constant domain of their heavy chains, Immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy-chain constant domains that correspond to the different classes of immunoglobulins are called α, δ, ε, γ, and μ, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.
  • The term “antibody” is used in the broadest sense and specifically covers single monoclonal antibodies (including agonist and antagonist antibodies), antibody compositions with polyepitopic specificity, bispecific antibodies, diabodies, and single-chain molecules, as well as antibody fragments (e.g., Fab, F(ab′)2, and Fv), so long as they exhibit the desired biological activity.
  • The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler and Milstein, Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567 [Cabilly et al.]). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352: 624-628 (1991) and Marks et al., J. Mol. Biol., 222: 581-597 (1991), for example.
  • The monoclonal antibodies herein specifically include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (Cabilly et al., supra; Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851-6855 [1984]).
  • “Humanized” forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details see: Jones et al., Nature, 321: 522-525 (1986); Reichmann et al., Nature, 332: 323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2: 593-596 (1992). The humanized antibody includes a Primatized T antibody wherein the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest.
  • “Non-immunogenic in a human” means that upon contacting the polypeptide of interest or polypeptide variant in a pharmaceutically acceptable carrier and in a therapeutically effective amount with the appropriate tissue of a human, no state of sensitivity or resistance to the polypeptide of interest or variant is demonstrable upon the second administration of the polypeptide of interest or variant after an appropriate latent period (e.g., 8 to 14 days).
  • The term “diabodies” refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) on the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93111161; and Holliger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993).
  • The term “LFA-1-mediated disorders” refers to pathological states caused by cell adherence interactions involving the LFA-1 receptor on lymphocytes. Examples of such disorders include T cell inflammatory responses such as inflammatory skin diseases including psoriasis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); adult respiratory distress syndrome; dermatitis; meningitis; encephalitis; uveitic; allergic conditions such as eczema and asthma and other conditions involving infiltration of T cells and chronic inflammatory responses; skin hypersensitivity reactions (including poison ivy and poison oak); atherosclerosis; leukocyte adhesion deficiency; autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE), diabetes mellitus, multiple sclerosis, Reynaud's syndrome, autoimmune thyroiditis, experimental autoimmune encephalomyelitis, Sjorgen's syndrome, juvenile onset diabetes, and immune responses associated with delayed hypersensitivity mediated by cytokines and T-lymphocytes typically found in tuberculosis, sarcoidosis, polymyositis, granulomatosis and vasculitis; pernicious anemia; diseases involving leukocyte diapedesis; CNS inflammatory disorder, multiple organ injury syndrome secondary to septicemia or trauma; autoimmune hemolytic anemia; myethemia gravis; antigen-antibody complex mediated diseases; all types of transplantations, including graft vs. host or host vs. graft disease; hemorrhagic shock; pulmonary oxygen toxicity; pulmonary fibrosis; wound repair; B-cell lymphomas; etc.
  • In particular, the preferred indications for antibodies to CD11a or CD11b are psoriasis, transplant rejection, asthma, wound repair, and pulmonary fibrosis; the preferred indications for antibodies to CD18 are hemorrhagic shock, meningitis; encephalitis; multiple sclerosis; asthma; and pulmonary oxygen toxicity; and the preferred indication for antibodies to CD20 is B-cell lymphoma.
  • “Treatment” refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in which the disorder is to be prevented.
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, sheep, pigs, cows, etc. Preferably, the mammal herein is human.
  • The term “LFA-1 antagonist” generally refers to an antibody directed against either CD11a or CD18 or both, but also includes soluble forms of ICAM-1 (e.g., the ICAM-1 extracellular domain), antibodies to ICAM-1, and fragments thereof, or other molecules capable of inhibiting the interaction of LFA-1 and ICAM-1.
  • The term “anti-LFA-1 antibody” or “anti-LFA-1 MAb” refers to an antibody directed against either CD11a or CD18 or both. The anti-CD11a antibodies include, e.g., MHM24 (Hildreth et al., Eur. J. Immunol., 13: 202-208 [1983]), R3.1 (IgG1; Rothlein, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Conn.), 25-3 (or 25.3; an IgG1 available from Immunotech, France; see Olive et al., in Feldmann, ed., Human T cell Clones. A new Approach to Immune Regulation, Clifton, N.J., Humana, [1986] p. 173), KBA (IgG2a; Nishimura et al., Cell. Immunol., 107:32 [1987]; Nishimura et al., Cell. Immunol., 94: 122 [1985]1), M7/15 (IgG2b; Springer et al., Immunol. Rev., 68: 171 [1982]), IOT16 (Vermot Desroches et al., Scand. J. Immunol., 33: 277-286 [1991]), SPVL7 (Vermot Desroches et al., supra), and M17 (IgG2a; available from ATCC, which are rat anti-murine CD11a antibodies).
  • Examples of anti-CD18 antibodies include MHM23 (Hildreth et al., supra), M18/2 (IgG2a; Sanches-Madrid et al., J. Exp. Med., 158: 586 [1983]), H52 (Fekete et al., J. Clin. Lab Immunol., 31: 145-149 [1990]), Mas191c (Vermot Desroches et al., supra), IOT18 (Vermot Desroches et al., supra), 60.3 (Taylor et al., Clin. Exp. Immunol., 71: 324-328 [1988]), and 60.1 (Campana et al., Eur. J. Immunol., 16: 537-542 [1986]).
  • Other examples of suitable LFA-1 antagonists, including antibodies, are described in Hutchings et al., Nature, 348: 639 (1990), WO 91/18011 published Nov. 28, 1991, WO 91/16928 published Nov. 14, 1991, WO 91/16927 published Nov. 14, 1991, Can. Pat. Appln. 2,008,368 published Jun. 13, 1991, WO 90/15076 published Dec. 13, 1990, WO 90/10652 published Sep. 20, 1990, EP 387,668 published Sep. 19, 1990, EP 379,904 published Aug. 1, 1990, EP 346,078 published Dec. 13, 1989, U.S. Pat. No. 5,071,964, U.S. Pat. No. 5,002,869, Australian Pat. Appln. 8815518 published Nov. 10, 1988, EP 289,949 published Nov. 9, 1988, and EP 303,692 published Feb. 22, 1989.
  • MODES FOR CARRYING OUT THE INVENTION 1 General Description of the Invention
  • The current invention is concerned with incorporating a salvage receptor binding epitope of the Fc region of an IgG into a polypeptide of interest so as to increase its circulatory half-life, but so as not to lose its biological activity. This can take place by any means, such as by mutation of the appropriate region in the polypeptide of interest to mimic the Fc region or by incorporating the epitope into a peptide tag that is then fused to the polypeptide of interest at either end or in the middle or by DNA or peptide synthesis.
  • A systematic method for preparing such a polypeptide variant having an increased in vivo half-life comprises several steps. The first involves identifying the sequence and conformation of a salvage receptor binding epitope on an Fc region of an IgG molecule. Once this epitope is identified, the sequence of the polypeptide of interest is modified to include the sequence and conformation of the identified binding epitope. After the sequence is mutated, the polypeptide variant is tested to see if it has a longer in vivo half-life than that of the original polypeptide, i.e., the polypeptide of interest. If the polypeptide variant does not have a longer in vivo half-life upon testing, its sequence is further altered to include the sequence and conformation of the identified binding epitope. The altered polypeptide is tested for longer in vivo half-life, and this process is continued until a molecule is obtained that exhibits a longer in vivo half-life.
  • The salvage receptor binding epitope being thus incorporated into the polypeptide of interest is any suitable such epitope as defined above, and its nature will depend, e.g., on the type of polypeptide being modified. The transfer is made such that the biological activity of the polypeptide of interest is maintained, i.e., the transferred portion does not adversely affect the conformation of the polypeptide of interest or affect its binding to ligands that confers its biological activity. For example, if the polypeptide of interest is an antibody, the salvage receptor binding epitope is not placed so as to interfere with an antigen-binding site of the antibody.
  • Preferably, the polypeptide of interest contains an Ig domain or Ig-like domain and the salvage receptor binding epitope is placed so that it is located within this Ig domain or Ig-like domain. More preferably, the epitope constitutes a region wherein any one or more amino acid residues from one or two loops of the Fc domain are transferred to an analogous position of the Ig domain or Ig-like domain of the polypeptide of interest. Even more preferably, three or more residues from one or two loops of the Fc domain are transferred. Still more preferred, the epitope is taken from the CH2 domain of the Fc region (e.g., of an IgG) and transferred to the CH1, CH3, or VH region, or more than one such region, of an Ig or to a Ig-like domain. Alternatively, the epitope is taken from the CH2 domain of the Fc region and transferred to the CL region or VL region, or both, of an Ig or to an Ig-like domain of the polypeptide of interest.
  • For example, for purposes of discussing variants wherein the polypeptide of interest is anti-CD18, reference is made to FIG. 2, which illustrates the relevant consensus primary structures of various Igs, i.e., human IgG1 CH1 domain, human IgG2 CH1 domain, human IgG3 CH1 domain, human IgG4 CH1 domain, human kappa CL domain, and human lambda CL domain, as well as the specific sequence for Fab v1b, a preferred anti-CD18 Fab variant herein. Further, FIG. 2 indicates the residues of Fab v1b that are of interest and of most importance. In a preferred embodiment, the residues of importance are those with an asterisk in FIG. 2, i.e., in one loop of Fab v1 b, MIS with a T residue one amino acid C-terminal to MIS, and in another loop of Fab v1 b, HQN with a D residue two amino acids C-terminal to HQN and a K residue one amino acid C-terminal to the D residue.
  • In one most preferred embodiment, the salvage receptor binding epitope comprises the sequence (5′ to 3′):
  • PKNSSMISNTP, (SEQ ID NO: 3)

    and optionally further comprises a sequence selected from the group consisting of HQSLGTQ (SEQ ID NO: 11), HQNLSDGK (SEQ ID NO: 1), HQNISDGK (SEQ ID NO: 2), or VISSHLGQ (SEQ ID NO: 31), particularly where the polypeptide of interest is a Fab or (Fab′)2.
  • In another most preferred embodiment, the salvage receptor binding epitope is a polypeptide that is not an Fc containing the sequence(s)(5′ to 3′): HQNLSDGK (SEQ ID NO: 1), HQNISDGK (SEQ ID NO: 2), or VISSHLGQ (SEQ ID NO: 31) and the sequence: PKNSSMISNTP (SEQ ID NO: 3). This epitope is suitably fused to the polypeptide of interest, and in a preferred aspect is contained on a peptide that is fused to the polypeptide of interest. Examples of polypeptides of interest suitable for this purpose include those which will have altered secondary or tertiary structure, with adverse consequences, if the sequence thereof is mutated, such as growth hormone or nerve growth factor.
  • In one embodiment, the variants can be prepared by recombinant means. Thus, nucleic acid encoding the variant is prepared, placed into a replicable vector and the vector is used to transfect or transform suitable host cells for expression. The polypeptide variant is produced by culturing the host cells in a culture medium and recovering the polypeptide variant from the host cell culture. If the polypeptide variant is being secreted, it is recovered from the culture medium. In another embodiment, the polypeptide variant is prepared by altering a polypeptide of interest that is cleared from the kidney and does not contain an Fc region of an IgG so that it comprises a salvage receptor binding epitope of an Fc region of an IgG and has an increased in vivo half-life. The altering step is preferably conducted by Kunkel, site-directed, cassette, or PCR mutagenesis. Kunkel mutagenesis is described, e.g., by Kunkel, Proc. Natl. Acad. Sci. U.S.A., 82: 488-492 (1985).
  • 2. Preparation of Polypeptides of Interest and their Variants
  • Most of the discussion below pertains to production of the polypeptide of interest or polypeptide variant by culturing cells transformed with a vector containing the nucleic acid encoding the polypeptide of interest or polypeptide variant and recovering the polypeptide of interest or variant from the cell culture. It is further envisioned that the polypeptide of interest may be produced by homologous recombination, as provided for in WO 91/06667 published 16 May 1991. Briefly, this method involves transforming primary mammalian cells containing endogenous polypeptide (e.g., human cells if the desired polypeptide is human) with a construct (i.e., vector) comprising an amplifiable gene (such as dihydrofolate reductase [DHFR] or others discussed below) and at least one flanking region of a length of at least about 150 bp that is homologous with a DNA sequence at the locus of the coding region of the gene of the polypeptide of interest to provide amplification of the gene encoding the polypeptide of interest. The amplifiable gene must be at a site that does not interfere with expression of the gene encoding the polypeptide of interest. The transformation is conducted such that the construct becomes homologously integrated into the genome of the primary cells to define an amplifiable region.
  • Primary cells comprising the construct are then selected for by means of the amplifiable gene or other marker present in the construct. The presence of the marker gene establishes the presence and integration of the construct into the host genome. No further selection of the primary cells need be made, since selection will be made in the second host. If desired, the occurrence of the homologous recombination event can be determined by employing PCR and either sequencing the resulting amplified DNA sequences or determining the appropriate length of the PCR fragment when DNA from correct homologous integrants is present and expanding only those cells containing such fragments. Also if desired, the selected cells may be amplified at this point by stressing the cells with the appropriate amplifying agent (such as methotrexate if the amplifiable gene is DHFR), so that multiple copies of the target gene are obtained. Preferably, however, the amplification step is not conducted until after the second transformation described below.
  • After the selection step, DNA portions of the genome, sufficiently large to include the entire amplifiable region, are isolated from the selected primary cells. Secondary mammalian expression host cells are then transformed with these genomic DNA portions and cloned, and clones are selected that contain the amplifiable region. The amplifiable region is then amplified by means of an amplifying agent if not already amplified in the primary cells. Finally, the secondary expression host cells now comprising multiple copies of the amplifiable region containing the polypeptide of interest are grown so as to express the gene and produce the polypeptide.
  • A. Isolation of DNA Encoding Polypeptide of Interest
  • The DNA encoding the polypeptide of interest may be obtained from any cDNA library prepared from tissue believed to possess the mRNA encoding the polypeptide of interest and to express it at a detectable level. The gene encoding the polypeptide of interest may also be obtained from a genomic library or by in vitro oligonucleotide synthesis, assuming the complete nucleotide or amino acid sequence is known.
  • Libraries are screened with probes designed to identify the gene of interest or the protein encoded by it. For cDNA expression libraries, suitable probes include monoclonal or polyclonal antibodies that recognize and specifically bind to the polypeptide of interest; oligonucleotides of about 20-80 bases in length that encode known or suspected portions of the cDNA encoding the polypeptide of interest from the same or different species; and/or complementary or homologous cDNAs or fragments thereof that encode the same or a similar gene. Appropriate probes for screening genomic DNA libraries include, but are not limited to, oligonucleotides, cDNAs, or fragments thereof that encode the same or a similar gene, and/or homologous genomic DNAs or fragments thereof. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures as described in Chapters 10-12 of Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989).
  • An alternative means to isolate the gene encoding the polypeptide of interest is to use PCR methodology as described in Section 14 of Sambrook et al., supra. This method requires the use of oligonucleotide probes that will hybridize to the polypeptide of interest. Strategies for selection of oligonucleotides are described below.
  • A preferred method of practicing this invention is to use carefully selected oligonucleotide sequences to screen cDNA libraries from various tissues.
  • The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The actual nucleotide sequence(s) is usually based on conserved or highly homologous nucleotide sequences. The oligonucleotides may be degenerate at one or more positions. The use of degenerate oligonucleotides may be of particular importance where a library is screened from a species in which preferential codon usage is not known. The oligonucleotide must be labeled such that it can be detected upon hybridization to DNA in the library being screened. The preferred method of labeling is to use 32P-labeled ATP with polynucleotide kinase, as is well known in the art, to radiolabel the oligonucleotide. However, other methods may be used to label the oligonucleotide, including, but not limited to, biotinylation or enzyme labeling.
  • Of particular interest is the nucleic acid encoding the polypeptide of interest that encodes a full-length polypeptide. In some preferred embodiments, the nucleic acid sequence includes the polypeptide of interest's signal sequence. Nucleic acid having all the protein coding sequence is obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Section 7.79 of Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.
  • B. Preparation of Variants of Polypeptide of Interest
  • The variants of the polypeptide of interest are suitably prepared by introducing appropriate nucleotide changes as set forth above for the Fc region into the DNA encoding the polypeptide of interest, or by in vitro synthesis of the desired polypeptide variant. Such variants include, for example, deletions from, or insertions or substitutions of, residues within the amino acid sequence of the polypeptide of interest so that it contains the proper epitope and has a longer half-life in serum. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the polypeptide of interest, such as changing the number or position of glycosylation sites. Moreover, like most mammalian genes, the polypeptide of interest might be encoded by multi-exon genes.
  • For the design of amino acid sequence variants of the polypeptide of interest, the location of the mutation site and the nature of the mutation will be determined by the specific polypeptide of interest being modified. For example, an immunoglobulin or immunoglobulin-like domain will be initially modified by locating loops that are structurally similar to the two loops in IgG CH2 that contain the salvage receptor epitope. The sites for mutation can be modified individually or in series, e.g., by (1) substituting first with conservative amino acid choices and then with more radical selections depending upon the results achieved, (2) deleting the target residue, or (3) inserting residues of the same or a different class adjacent to the located site, or combinations of options 1-3.
  • A useful method for identification of certain residues or regions of the polypeptide of interest that are preferred locations for mutagenesis is called “alanine scanning mutagenesis,” as described by Cunningham and Wells, Science, 244: 1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the surrounding aqueous environment in or outside the cell. Those domains demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at or for the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to optimize the performance of a mutation at a given site, alanine scanning or random mutagenesis is conducted at the target codon or region and the variants produced are screened for increased circulatory half-life.
  • Amino acid sequence deletions generally range from about 1 to 30 residues, more preferably about 1 to 10 residues, and typically are contiguous. Contiguous deletions ordinarily are made in even numbers of residues, but single or odd numbers of deletions are within the scope hereof. As an example, deletions may be introduced into regions of low homology among LFA-1 antibodies which share the most sequence identity to the amino acid sequence of the polypeptide of interest to modify the half-life of the polypeptide. Deletions from the polypeptide of interest in areas of substantial homology with one of the binding sites of other ligands will be more likely to modify the biological activity of the polypeptide of interest more significantly. The number of consecutive deletions will be selected so as to preserve the tertiary structure of the polypeptide of interest in the affected domain, e.g., beta-pleated sheet or alpha helix.
  • Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intra-sequence insertions of single or multiple amino acid residues. Intra-sequence insertions (i.e., insertions within the mature polypeptide sequence) may range generally from about 1 to 10 residues, more preferably 1 to 5, most preferably 1 to 3. Insertions are preferably made in even numbers of residues, but this is not required. Examples of insertions include insertions to the internal portion of the polypeptide of interest, as well as N- or C-terminal fusions with proteins or peptides containing the desired epitope that will result, upon fusion, in an increased half-life.
  • A third group of variants are amino acid substitution variants. These variants have at least one amino acid residue in the polypeptide molecule removed and a different residue inserted in its place. The sites of greatest interest for substitutional mutagenesis include one or two loops in antibodies. Other sites of interest are those in which particular residues of the polypeptide obtained from various species are identical among all animal species of the polypeptide of interest, this degree of conservation suggesting importance in achieving biological activity common to these molecules. These sites, especially those falling within a sequence of at least three other identically conserved sites, are substituted in a relatively conservative manner. Such conservative substitutions are shown in Table 1 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 1, or as further described below in reference to amino acid classes, are introduced and the products screened.
  • TABLE 1
    Original Exemplary Preferred
    Residue Substitutions Substitutions
    Ala (A) val; leu; ile val
    Arg (R) lys; gln; asn lys
    Asn (N) gln; his; lys; arg gln
    Asp (D) glu glu
    Cys (C) ser ser
    Gln (Q) asn asn
    Glu (E) asp asp
    Gly (G) pro; ala ala
    His (H) asn; gln; lys; arg arg
    Ile (I) leu; val; met; ala; leu
    phe; norleucine
    Leu (L) norleucine; ile; ile
    val; met; ala; phe
    Lys (K) arg; gln; asn arg
    Met (M) leu; phe; ile leu
    Phe (F) leu; val; ile; ala; tyr leu
    Pro (P) ala ala
    Ser (S) thr thr
    Thr (T) ser ser
    Trp (W) tyr; phe tyr
    Tyr (Y) trp; phe; thr; ser phe
    Val (V) ile; leu; met; phe; leu
    ala; norleucine
  • Substantial modifications in function of the polypeptide of interest are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:
  • (1) hydrophobic: norleucine, met, ala, val, leu, ile;
  • (2) neutral hydrophilic: cys, ser, thr;
  • (3) acidic: asp, glu;
  • (4) basic: asn, gin, his, lys, arg;
  • (5) residues that influence chain orientation: gly, pro; and
  • (6) aromatic: trp, tyr, phe.
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites.
  • It may be desirable to inactivate one or more protease cleavage sites that are present in the molecule. These sites are identified by inspection of the encoded amino acid sequence, in the case of trypsin, e.g., for an arginyl or lysinyl residue. When protease cleavage sites are identified, they are rendered inactive to proteolytic cleavage by substituting the targeted residue with another residue, preferably a basic residue such as glutamine or a hydrophilic residue such as serine; by deleting the residue; or by inserting a prolyl residue immediately after the residue.
  • In another embodiment, any methionyl residues other than the starting methionyl residue of the signal sequence, or any residue located within about three residues N- or C-terminal to each such methionyl residue, is substituted by another residue (preferably in accord with Table 1) or deleted. Alternatively, about 1-3 residues are inserted adjacent to such sites.
  • Any cysteine residues not involved in maintaining the proper conformation of the polypeptide of interest also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking.
  • In the first embodiment, nucleic acid molecules encoding amino acid sequence variants of the polypeptide of interest are prepared by a variety of methods known in the art. These methods include, but are not limited to, preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the polypeptide on which the variant herein is based (“polypeptide of interest”).
  • Oligonucleotide-mediated mutagenesis is a preferred method for preparing substitution, deletion, and insertion polypeptide variants herein. This technique is well known in the art as described by Adelman et al., DNA, 2: 183 (1983). Briefly, the DNA is altered by hybridizing an oligonucleotide encoding the desired mutation to a DNA template, where the template is the single-stranded form of a plasmid or bacteriophage containing the unaltered or native DNA sequence of the polypeptide to be varied. After hybridization, a DNA polymerase is used to synthesize an entire second complementary strand of the template that will thus incorporate the oligonucleotide primer, and will code for the selected alteration in the DNA.
  • Generally, oligonucleotides of at least 25 nucleotides in length are used. An optimal oligonucleotide will have 12 to 15 nucleotides that are completely complementary to the template on either side of the nucleotide(s) coding for the mutation. This ensures that the oligonucleotide will hybridize properly to the single-stranded DNA template molecule. The oligonucleotides are readily synthesized using techniques known in the art such as that described by Crea et al., Proc. Natl. Acad. Sci. USA, 75: 5765 (1978).
  • The DNA template can be generated by those vectors that are either derived from bacteriophage M13 vectors (the commercially available M13 mp 18 and M13mp19 vectors are suitable), or those vectors that contain a single-stranded phage origin of replication as described by Viera et al. Meth. Enzymol., 153: 3 (1987). Thus, the DNA that is to be mutated may be inserted into one of these vectors to generate single-stranded template. Production of the single-stranded template is described in Sections 4.21-4.41 of Sambrook et al., supra.
  • Alternatively, single-stranded DNA template may be generated by denaturing double-stranded plasmid (or other) DNA using standard techniques.
  • For alteration of the original DNA sequence to generate the polypeptide variants of this invention, the oligonucleotide is hybridized to the single-stranded template under suitable hybridization conditions. A DNA polymerizing enzyme, usually the Klenow fragment of DNA polymerase 1, is then added to synthesize the complementary strand of the template using the oligonucleotide as a primer for synthesis. A heteroduplex molecule is thus formed such that one strand of DNA encodes the mutated form of the polypeptide, and the other strand (the original template) encodes the original, unaltered sequence of the polypeptide. This heteroduplex molecule is then transformed into a suitable host cell, usually a prokaryote such as E. coli JM101. After the cells are grown, they are plated onto agarose plates and screened using the oligonucleotide primer radiolabeled with 32P to identify the bacterial colonies that contain the mutated DNA. The mutated region is then removed and placed in an appropriate vector for protein production, generally an expression vector of the type typically employed for transformation of an appropriate host.
  • The method described immediately above may be modified such that a homoduplex molecule is created wherein both strands of the plasmid contain the mutation(s). The modifications are as follows: The single-stranded oligonucleotide is annealed to the single-stranded template as described above. A mixture of three deoxyribonucleotides, deoxyriboadenosine (dATP), deoxyriboguanosine (dGTP), and deoxyribothymidine (dTTP), is combined with a modified thio-deoxyribocytosine called dCTP-(αS) (which can be obtained from the Amersham Corporation). This mixture is added to the template-oligonucleotide complex. Upon addition of DNA polymerase to this mixture, a strand of DNA identical to the template except for the mutated bases is generated. In addition, this new strand of DNA will contain dCTP-(αS) instead of dCTP, which serves to protect it from restriction endonuclease digestion.
  • After the template strand of the double-stranded heteroduplex is nicked with an appropriate restriction enzyme, the template strand can be digested with ExoIII nuclease or another appropriate nuclease past the region that contains the site(s) to be mutagenized. The reaction is then stopped to leave a molecule that is only partially single-stranded. A complete double-stranded DNA homoduplex is then formed using DNA polymerase in the presence of all four deoxyribonucleotide triphosphates, ATP, and DNA ligase. This homoduplex molecule can then be transformed into a suitable host cell such as E. coli JM101, as described above.
  • DNA encoding polypeptide mutants with more than one amino acid to be substituted may be generated in one of several ways. If the amino acids are located close together in the polypeptide chains they may be mutated simultaneously using one oligonucleotide that codes for all of the desired amino acid substitutions. If, however, the amino acids are located some distance from each other (separated by more than about ten amino acids), it is more difficult to generate a single oligonucleotide that encodes all of the desired changes. Instead, one of two alternative methods may be employed.
  • In the first method, a separate oligonucleotide is generated for each amino acid to be substituted. The oligonucleotides are then annealed to the single-stranded template DNA simultaneously, and the second strand of DNA that is synthesized from the template will encode all of the desired amino acid substitutions.
  • The alternative method involves two or more rounds of mutagenesis to produce the desired mutant. The first round is as described for the single mutants: wild-type DNA is used for the template, an oligonucleotide encoding the first desired amino acid substitution(s) is annealed to this template, and the heteroduplex DNA molecule is then generated. The second round of mutagenesis utilizes the mutated DNA produced in the first round of mutagenesis as the template. Thus, this template already contains one or more mutations. The oligonucleotide encoding the additional desired amino acid substitution(s) is then annealed to this template, and the resulting strand of DNA now encodes mutations from both the first and second rounds of mutagenesis. This resultant DNA can be used as a template in a third round of mutagenesis, and so on.
  • PCR mutagenesis is also suitable for making amino acid variants of this invention. While the following discussion refers to DNA, it is understood that the technique also finds application with RNA. The PCR technique generally refers to the following procedure (see Erlich, supra, the chapter by R. Higuchi, p. 61-70): When small amounts of template DNA are used as starting material in a PCR, primers that differ slightly in sequence from the corresponding region in a template DNA can be used to generate relatively large quantities of a specific DNA fragment that differs from the template sequence only at the positions where the primers differ from the template. For introduction of a mutation into a plasmid DNA, one of the primers is designed to overlap the position of the mutation and to contain the mutation; the sequence of the other primer must be identical to a stretch of sequence of the opposite strand of the plasmid, but this sequence can be located anywhere along the plasmid DNA. It is preferred, however, that the sequence of the second primer is located within 200 nucleotides from that of the first, such that in the end the entire amplified region of DNA bounded by the primers can be easily sequenced. PCR amplification using a primer pair like the one just described results in a population of DNA fragments that differ at the position of the mutation specified by the primer, and possibly at other positions, as template copying is somewhat error-prone.
  • If the ratio of template to product material is extremely low, the vast majority of product DNA fragments incorporate the desired mutations). This product material is used to replace the corresponding region in the plasmid that served as PCR template using standard DNA technology. Mutations at separate positions can be introduced simultaneously by either using a mutant second primer, or performing a second PCR with different mutant primers and ligating the two resulting PCR fragments simultaneously to the vector fragment in a three (or more)-part ligation.
  • In a specific example of PCR mutagenesis, template plasmid DNA (1 μg) is linearized by digestion with a restriction endonuclease that has a unique recognition site in the plasmid DNA outside of the region to be amplified. Of this material, 100 ng is added to a PCR mixture containing PCR buffer, which contains the four deoxynucleotide triphosphates and is included in the GeneAmp® kits (obtained from Perkin-Elmer Cetus, Norwalk, Conn. and Emeryville, Calif.), and 25 μmole of each oligonucleotide primer, to a final volume of 50 μL. The reaction mixture is overlaid with 35 μL mineral oil. The reaction mixture is denatured for five minutes at 100° C., placed briefly on ice, and then 1 μL Thermus aquaticus (Taq) DNA polymerase (5 units/μL, purchased from Perkin-Elmer Cetus) is added below the mineral oil layer. The reaction mixture is then inserted into a DNA Thermal Cycler (purchased from Perkin-Elmer Cetus) programmed as follows:
      • 2 min. 55° C.
      • 30 sec. 72° C., then 19 cycles of the following:
        • 30 sec. 94° C.
        • 30 sec. 55° C., and
        • 30 sec. 72° C.
  • At the end of the program, the reaction vial is removed from the thermal cycler and the aqueous phase transferred to a new vial, extracted with phenol/chloroform (50:50 vol), and ethanol precipitated, and the DNA is recovered by standard procedures. This material is subsequently subjected to the appropriate treatments for insertion into a vector.
  • Another method for preparing variants, cassette mutagenesis, is based on the technique described by Wells et al., Gene, 34: 315 (1985). The starting material is the plasmid (or other vector) comprising the DNA to be mutated. The codon(s) in the DNA to be mutated are identified. There must be a unique restriction endonuclease site on each side of the identified mutation site(s). If no such restriction sites exist, they may be generated using the above-described oligonucleotide-mediated mutagenesis method to introduce them at appropriate locations in the DNA. After the restriction sites have been introduced into the plasmid, the plasmid is cut at these sites to linearize it. A double-stranded oligonucleotide encoding the sequence of the DNA between the restriction sites but containing the desired mutation(s) is synthesized using standard procedures. The two strands are synthesized separately and then hybridized together using standard techniques. This double-stranded oligonucleotide is referred to as the cassette. This cassette is designed to have 3′ and 5′ ends that are compatible with the ends of the linearized plasmid, such that it can be directly ligated to the plasmid. This plasmid now contains the mutated DNA sequence.
  • C. Insertion of Nucleic Acid into Replicable Vector
  • The nucleic acid (e.g., cDNA or genomic DNA) encoding the polypeptide variant is inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Many vectors are available, and selection of the appropriate vector will depend on 1) whether it is to be used for DNA amplification or for DNA expression, 2) the size of the nucleic acid to be inserted into the vector, and 3) the host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the host cell with which it is compatible. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • (i) Signal Sequence Component
  • The polypeptide variants of this invention may be produced not only directly, but also as a fusion with a heterologous polypeptide, preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature polypeptide variant. In general, the signal sequence may be a component of the vector, or it may be a part of the DNA that is inserted into the vector. The heterologous signal sequence selected should be one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the polypeptide of interest's signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group consisting of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II leaders. For yeast secretion the original or wild-type signal sequence may be substituted by, e.g., the yeast invertase leader, yeast alpha factor leader (including Saccharomyces and Kluyveromyces α-factor leaders, the latter described in U.S. Pat. No. 5,010,182 issued 23 Apr. 1991), yeast acid phosphatase leader, mouse salivary amylase leader, carboxypeptidase leader, yeast BAR1 leader, Humicola lanuginosa lipase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 Apr. 1990), or the signal described in WO 90/13646 published 15 Nov. 1990. In mammalian cell expression the original human signal sequence (i.e., the polypeptide presequence that normally directs secretion of the native polypeptide of interest from which the variant of interest is derived from human cells in vivo) is satisfactory, although other mammalian signal sequences may be suitable, such as signal sequences from other animal polypeptides and signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders, for example, the herpes simplex gD signal.
  • The DNA for such precursor region is ligated in reading frame to DNA encoding the mature polypeptide variant.
  • (ii) Origin of Replication Component
      • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 (ATCC 37,017), or from other commercially available bacterial vectors such as, e.g., pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM1 (Promega Biotech, Madison, Wis.), is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV, or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).
  • Most expression vectors are “shuttle” vectors, i.e., they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in E. coli and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.
  • DNA may also be amplified by insertion into the host genome. This is readily accomplished using Bacillus species as hosts, for example, by including in the vector a DNA sequence that is complementary to a sequence found in Bacillus genomic DNA. Transfection of Bacillus with this vector results in homologous recombination with the genome and insertion of the DNA. However, the recovery of genomic DNA encoding the polypeptide variant is more complex than that of an exogenously replicated vector because restriction enzyme digestion is required to excise the DNA.
  • (iii) Selection Gene Component
  • Expression and cloning vectors should contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
  • One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin (Southern et al., J. Molec. Appl. Genet., 1: 327 [1982]), mycophenolic acid (Mulligan et al., Science, 209: 1422 [1980]), or hygromycin (Sugden et al., Mol. Cell. Biol., 5: 410-413 [1985]). The three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenotic acid), or hygromycin, respectively.
  • Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the nucleic acid, such as DHFR or thymidine kinase. The mammalian cell transformants are placed under selection pressure that only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes the polypeptide variant. Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Increased quantities of the polypeptide variant are synthesized from the amplified DNA. Other examples of amplifiable genes include metallothionein-II and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc.
  • For example, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77: 4216 (1980). The transformed cells are then exposed to increased levels of methotrexate. This leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding the polypeptide variant. This amplification technique can be used with any otherwise suitable host, e.g., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060).
  • Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding the polypeptide variant, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965,199.
  • A suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 (Stinchcomb et al., Nature, 282: 39 [1979]; Kingsman et al., Gene, 7: 141 [1979]; or Tschemper et al., Gene, 10: 157 [1980]). The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 (Jones, Genetics, 85: 12 [1977]). The presence of the trp1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, Leu2-deficient yeast strains (ATCC No. 20,622 or 38,626) are complemented by known plasmids bearing the Leu2 gene.
  • In addition, vectors derived from the 1.6 μm circular plasmid pKD1 can be used for transformation of Kluyveromyces yeasts. Bianchi et al., Curr. Genet., 12: 185 (1987). More recently, an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis. Van den Berg, Bio/Technology, 8: 135 (1990). Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed. Fleer et al., Bio/Technology, 9: 968-975 (1991).
  • (iv) Promoter Component
  • Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the nucleic acid. Promoters are untranslated sequences located upstream (5′) to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequence, such as the nucleic acid sequence of the polypeptide variants herein, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to the DNA encoding the polypeptide variant by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector. The promoter of the polypeptide of interest and many heterologous promoters may be used to direct amplification and/or expression of the DNA. However, heterologous promoters are preferred, as they generally permit greater transcription and higher yields of recombinantly produced polypeptide variant as compared to the promoter of the polypeptide of interest.
  • Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems (Chang et al., Nature, 275: 615 [1978]; and Goeddel et al., Nature, 281: 544 [1979]), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8: 4057 [1980] and EP 36,776) and hybrid promoters such as the tac promoter (deBoer et al., Proc. Natl. Acad. Sci. USA, 80: 21-25 [1983]). However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a skilled worker operably to ligate them to DNA encoding the polypeptide variant (Siebenlist et al., Cell, 20: 269 [1980]) using linkers or adaptors to supply any required restriction sites. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the polypeptide variant.
  • Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3′ end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3′ end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
  • Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem., 255: 2073 [1980]) or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg., 7: 149 [1968]; and Holland, Biochemistry, 17: 4900 [1978]), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
  • Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in Hitzeman et al., EP 73,657. Yeast enhancers also are advantageously used with yeast promoters.
  • Transcription of polypeptide variant from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 Jul. 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, and from the promoter normally associated with the polypeptide variant sequence, provided such promoters are compatible with the host cell systems.
  • The early and late promoters of the SV40 virus are conveniently obtained as an 5V40 restriction fragment that also contains the SV40 viral origin of replication. Fiers et al., Nature, 273:113 (1978); Mulligan and Berg, Science, 209: 1422-1427 (1980); Pavlakis et al., Proc. Natl. Aced. Sci. USA, 78: 7398-7402 (1981). The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment. Greenaway et al., Gene, 18: 355-360 (1982). A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446 A modification of this system is described in U.S. Pat. No. 4,601,978. See also Gray et al., Nature, 295: 503-508 (1982) on expressing cDNA encoding immune interferon in monkey cells; Reyes et al., Nature, 297: 598-601 (1982) on expression of human β-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus; Canaani and Berg, Proc. Natl. Acad. Sci. USA, 79: 5166-5170 (1982) on expression of the human interferon β1 gene in cultured mouse and rabbit cells; and Gorman et al., Proc. Natl. Acad. Sci. USA, 79: 6777-6781 (1982) on expression of bacterial CAT sequences in CV-1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter.
  • (v) Enhancer Element Component
  • Transcription of a DNA encoding the polypeptide variant of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent, having been found 5′ (Laimins et al., Proc. Natl. Acad. Sci. USA, 78: 993 [1981]) and 3′ (Lusky et al., Mol. Cell. Bio., 3: 1108 [1983]) to the transcription unit, within an intron (Banerji et al., Cell, 33: 729 [1983]), as well as within the coding sequence itself (Osborne et al., Mol. Cell. Bio., 4: 1293 [1984]). Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature, 297: 17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5′ or 3′ to the polypeptide-variant-encoding sequence, but is preferably located at a site 5′ from the promoter.
  • (vi) Transcription Termination Component
  • Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the polypeptide variant.
  • (vii) Construction and Analysis of Vectors
  • Construction of suitable vectors containing one or more of the above-listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and relegated in the form desired to generate the plasmids required.
  • For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform E. coli K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing et al., Nucleic Acids Res., 9: 309 (1981) or by the method of Maxam et al., Methods in Enzymology, 65: 499 (1980).
  • (viii) Transient Expression Vectors
  • Particularly useful in the practice of this invention are expression vectors that provide for the transient expression in mammalian cells of DNA encoding the polypeptide variant. In general, transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector. Sambrook et al., supra, pp. 16.17-16.22. Transient expression systems, comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptide variants encoded by cloned DNAs, as well as for the rapid screening of such polypeptides for desired biological or physiological properties. Thus, transient expression systems are particularly useful in the invention for purposes of identifying polypeptide variants that are biologically active.
  • (ix) Suitable Exemplary Vertebrate Cell Vectors
  • Other methods, vectors, and host cells suitable for adaptation to the synthesis of the polypeptide variant in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058. A particularly useful plasmid for mammalian cell culture production of the polypeptide variant is pRK5 (EP 307,247) or pSV16B (WO 91/08291 published 13 Jun. 1991). The pRK5 derivative pRK5B (Holmes et al., Science, 253: 1278-1280 [1991]) is particularly suitable herein for such expression.
  • D. Selection and Transformation of Host Cells
  • Suitable host cells for cloning or expressing the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), E. coli DH5α, and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonAΔ; E. coli W3110 strain 9E4, which has the complete genotype tonAΔ ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoAΔE15 Δ(argF-lac) 169 ΔdegP ΔompT kan′; E. coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoAΔE15 Δ(argF-lac) 169 ΔdegP ΔompT Δrbs 7 ilvG kan′; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued 7 Aug. 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.
  • In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for polypeptide-variant-encoding vectors. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., supra) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 737 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., supra), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28: 265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76: 5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 Oct. 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 Jan. 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem, Biophys. Res. Commun., 112: 284-289 [1983]; Tilburn et al., Gene, 26: 205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4: 475-479 [1985]).
  • Suitable host cells for the production of the polypeptide variant are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. See, e.g., Luckow et al., Bio/Technology, 6: 47-55 (1988); Miller et al., in Genetic Engineering, Setlow, J. K. et al., eds., Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda et al., Nature, 315: 592-594 (1985). A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts. Typically, plant cells are transfected by incubation with certain strains of the bacterium Agrobacterium tumefaciens, which has been previously manipulated to contain the DNA. During incubation of the plant cell culture with A. tumefaciens, the DNA encoding the polypeptide variant is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the DNA. In addition, regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences. Depicker et al., J. Mol. Appl. Gen., 1: 561 (1982). In addition, DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue. EP 321,196 published 21 Jun. 1989.
  • However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years (Tissue Culture, Academic Press, Kruse and Patterson, editors [1973]). Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36: 59 [1977]); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/−DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77: 4216 [1980]); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23: 243-251 [1980]); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor cells (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci., 383: 44-68 [1982]); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
  • Host cells are transfected and preferably transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO4 and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.
  • Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook et al., supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23: 315 (1983) and WO 89/05859 published 29 Jun. 1989. In addition, plants may be transfected using ultrasound treatment as described in WO 91/00358 published 10 Jan. 1991.
  • For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52: 456-457 (1978) is preferred. General aspects of mammalian cell host system transformations have been described by Axel in U.S. Pat. No. 4,399,216 issued 16 Aug. 1983. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact. 130: 946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76: 3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, etc., may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185: 527-537 (1990) and Mansour et al., Nature, 336: 348-352 (1988).
  • E. Culturing the Host Cells
  • Prokaryotic cells used to produce the polypeptide variant of this invention are cultured in suitable media as described generally in Sambrook et al., supra.
  • The mammalian host cells used to produce the polypeptide variant of this invention may be cultured in a variety of media. Commercially available media such as Ham's F-10 (Sigma), F-12 (Sigma), Minimal Essential Medium ([MEM], Sigma), RPMI-1640 (Sigma), Dulbecco's Modified Eagle's Medium ([D-MEM], Sigma), and D-MEM/F-12 (Gibco BRL) are suitable for culturing the host cells. In addition, any of the media described, for example, in Ham and Wallace, Methods in Enzymology, 58: 44 (1979); Barnes and Sato, Anal. Biochem., 102: 255 (1980); U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 5,122,469; or 4,560,655; U.S. Pat. Re. No. 30,985; WO 90/03430; or WO 87/00195 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, aprotinin, and/or epidermal growth factor [EGF]), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as Gentamycin™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • In general, principles, protocols, and practical techniques for maximizing the productivity of in vitro mammalian cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991).
  • The host cells referred to in this disclosure encompass cells in in vitro culture as well as cells that are within a host animal.
  • F. Detecting Gene Amplification/Expression
  • Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, northern blotting to quantitate the transcription of mRNA (Thomas, Proc. Natl. Acad. Sci. USA, 77: 5201-5205 [1980]), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, particularly 32P. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
  • Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like. A particularly sensitive staining technique suitable for use in the present invention is described by Hsu et al., Am. J. Clin. Path., 75: 734-738 (1980).
  • Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a polypeptide variant as described further in Section 4 below.
  • G. Purification of Polypeptide
  • If the variant is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration; optionally, the protein may be concentrated with a commercially available protein concentration filter, followed by separating the polypeptide variant from other impurities by one or more steps selected from immunoaffinity chromatography, ion-exchange column fractionation (e.g., on diethylaminoethyl (DEAE) or matrices containing carboxymethyl or sulfopropyl groups), chromatography on Blue-Sepharose, CM Blue-Sepharose, MONO-Q, MONO-S, lentil lectin-Sepharose, WGA-Sepharose, Con A-Sepharose, Ether Toyopearl, Butyl Toyopearl, Phenyl Toyopearl, or protein A Sepharose, SDS-PAGE chromatography, silica chromatography, chromatofocusing, reverse phase HPLC (e.g., silica gel with appended aliphatic groups), gel filtration using, e.g., Sephadex molecular sieve or size-exclusion chromatography, chromatography on columns that selectively bind the polypeptide, and ethanol or ammonium sulfate precipitation.
  • Recombinant polypeptide variant produced in bacterial culture may usually be isolated by initial extraction from cell pellets, followed by one or more concentration, salting-out, aqueous ion-exchange, or size-exclusion chromatography steps. Additionally, the recombinant polypeptide variant may be purified by affinity chromatography. Finally, HPLC may be employed for final purification steps. Microbial cells employed in expression of nucleic acid encoding the polypeptide variant may be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or through the use of cell lysing agents.
  • A protease inhibitor such as methylsulfonylfluoride (PMSF) may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • Within another embodiment, supernatants from systems which secrete recombinant polypeptide variant into culture medium are first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate may be applied to a suitable purification matrix. For example, a suitable affinity matrix may comprise a ligand for the protein, a lectin or antibody molecule bound to a suitable support. Alternatively, an anion-exchange resin may be employed, for example, a matrix or substrate having pendant DEAE groups. Suitable matrices include acrylamide, agarose, dextran, celluose, or other types commonly employed in protein purification. Alternatively, a cation-exchange step may be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are particularly preferred.
  • Finally, one or more RP-HPLC steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, may be employed to further purify a polypeptide variant composition. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a homogeneous recombinant polypeptide variant.
  • Fermentation of yeast which produce the polypeptide variant as a secreted polypeptide greatly simplifies purification. Secreted recombinant polypeptide variant resulting from a large-scale fermentation may be purified by methods analogous to those disclosed by Urdal et al., J. Chromatog., 296: 171 (1984). This reference describes two sequential, RP-HPLC steps for purification of recombinant human IL-2 on a preparative HPLC column. Alternatively, techniques such as affinity chromatography, may be utilized to purify the polypeptide variant.
  • Mammalian polypeptide variant synthesized in recombinant culture is characterized by the presence of non-human cell components, including proteins, in amounts and of a character which depend on the purification steps taken to recover the polypeptide variant from culture. These components ordinarily will be from yeast, prokaryotic, or non-human higher eukaryotic origin and preferably are present in innocuous contaminant quantities, on the order of less than about 1% by weight.
  • H. Covalent Modifications of Polypeptide Variants
  • Covalent modifications of polypeptide variants are included within the scope of this invention. They may be made by chemical synthesis or by enzymatic or chemical cleavage of the variant polypeptide, if applicable. Other types of covalent modifications of the polypeptide variant are introduced into the molecule by reacting targeted amino acid residues of the polypeptide variant with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.
  • Cysteinyl residues most commonly are reacted with α-haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, α-bromo-β-(5-imidozoyl)propionic acid, chloroacetyl phosphate, N-alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.
  • Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1 M sodium cacodylate at pH 6.0.
  • Lysinyl and amino-terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing α-amino-containing residues include imidoesters such as methyl picolinimidate, pyridoxal phosphate, pyridoxal, chloroborohydride, trinitrobenzenesulfonic acid, O-methylisourea, 2,4-pentanedione, and transaminase-catalyzed reaction with glyoxylate.
  • Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.
  • The specific modification of tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Tyrosyl residues are iodinated using 125I or 131I to prepare labeled proteins for use in radioimmunoassay, the chloramine T method described above being suitable.
  • Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides (R—N═C═N—R′), where R and R′ are different alkyl groups, such as 1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.
  • Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. These residues are deamidated under neutral or basic conditions. The deamidated form of these residues falls within the scope of this invention.
  • Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α-amino groups of lysine, arginine, and histidine side chains (T. E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 [1983]), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.
  • Another type of covalent modification of the polypeptide variant included within the scope of this invention comprises altering the original glycosylation pattern of the polypeptide variant. By altering is meant deleting one or more carbohydrate moieties found in the polypeptide variant, and/or adding one or more glycosylation sites that are not present in the polypeptide variant.
  • Glycosylation of polypeptide variants is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
  • Addition of glycosylation sites to the polypeptide variant is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original polypeptide variant (for O-linked glycosylation sites). For ease, the polypeptide variant amino acid sequence is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the polypeptide variant at preselected bases such that codons are generated that will translate into the desired amino acids. The DNA mutation s) may be made using methods described above.
  • Another means of increasing the number of carbohydrate moieties on the polypeptide variant is by chemical or enzymatic coupling of glycosides to the polypeptide variant. These procedures are advantageous in that they do not require production of the polypeptide variant in a host cell that has glycosylation capabilities for N- or O-linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330 published 11 Sep. 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).
  • Removal of any carbohydrate moieties present on the polypeptide variant may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the polypeptide variant to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide variant intact. Chemical deglycosylation is described by Hakimuddin, et al., Arch. Biochem. Biophys., 259: 52 (1987) and by Edge et al., Anal. Biochem., 118: 131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptide variants can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138: 350 (1987).
  • Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., J. Biol. Chem., 257: 3105 (1982). Tunicamycin blocks the formation of protein-N-glycoside linkages.
  • Another type of covalent modification of the polypeptide variant comprises linking the polypeptide variant to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
  • 3. Therapeutic Compositions; Administration of Variant
  • Uses of anti-CD18 variants include anti-Mac1/anti-neutrophil as well as anti-LFA-1 applications. If the polypeptide variant acts as an antibody it may optionally be fused to a second polypeptide and the antibody or fusion thereof may be used to isolate and purify the protein to which it binds from a source such as a CD11 or CD18 antigen. In another embodiment, the invention provides a method for detecting CD11a or CD18 in vitro or in vivo comprising contacting the anti-CD11a or CD18 antibody fragment variant herein with a sample, especially a serum sample, suspected of containing the CD11a or CD18 and detecting if binding has occurred.
  • The polypeptide variant herein is also suitably used in quantitative diagnostic assays as a standard or control against which samples containing unknown quantities of the polypeptide variant may be prepared.
  • Therapeutic formulations of the polypeptide variant for its particular indication are prepared for storage by mixing the polypeptide variant having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers (Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., [1980]), in the form of lyophilized cake or aqueous solutions. Acceptable carriers, excipients, or stabilizers are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counter-ions such as sodium; and/or non-ionic surfactants such as Tween, Pluronics, or polyethylene glycol (PEG).
  • Typically, the polypeptide variant used in the method of this invention is formulated by mixing it at ambient temperature at the appropriate pH, and at the desired degree of purity, with physiologically acceptable carriers, i.e., carriers that are non-toxic to recipients at the dosages and concentrations employed. The pH of the formulation depends mainly on the particular use and the concentration of the variant, but preferably ranges anywhere from about 3 to about 8. Formulation in a buffer at pH about 5-8 is one suitable embodiment.
  • The polypeptide variant for use herein is preferably sterile. Sterility is readily accomplished by sterile filtration through (0.2 micron) membranes. The polypeptide variant ordinarily will be stored as an aqueous solution, although lyophilized formulations for reconstitution are acceptable.
  • The variant composition will be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The “therapeutically effective amount” of polypeptide variant to be administered will be governed by such considerations, and, for an LFA-1 antagonist variant, is the minimum amount necessary to prevent, ameliorate, or treat the LFA-1-mediated disorder, including treating rheumatoid arthritis, reducing inflammatory responses, inducing tolerance of immunostimulants, preventing an immune response that would result in rejection of a graft by a host or vice-versa, or prolonging survival of a transplanted graft. The amount of the variant is preferably below the amount that is toxic to the host or renders the host significantly more susceptible to infections.
  • As a general proposition, the initial pharmaceutically effective amount of the LFA-1 antagonist variant administered parenterally per dose will be in the range of about 0.1 to 20 mg/kg of patient body weight per day, with the typical initial range of LFA-1 antagonist variant used being about 0.3 to 15 mg/kg/day.
  • As noted above, however, these suggested amounts of LFA-1 antagonist variant are subject to a great deal of therapeutic discretion. The key factor in selecting an appropriate dose and scheduling is the result obtained, as indicated above. For example, relatively higher doses may be needed initially for the treatment of ongoing and acute graft rejection, or at a later stage for the treatment of acute rejection, which is characterized by a sudden decline in graft function.
  • Where the subsequent dosing is less than 100% of initial dosing, it is calculated on the basis of daily dosing. Thus, for example, if the dosing regimen consists of daily injections of 2 mg/kg/day for 2 weeks followed by a biweekly dose of 0.5 mg/kg/day for 99 days, this would amount to a subsequent dose of about 1.8% of the initial dose, calculated on a daily basis (i.e., 2/day/100% 0.5/14 days/x %, x=˜1.8%). Preferably, the subsequent dosing is less than about 50%, more preferably, less than about 25%, more preferably, less than about 10%, still more preferably, less than about 5%, and most preferably, less than about 2% of the initial dosing of LFA-1 antagonist variant.
  • To obtain the most efficacious results for the LFA-1 antagonist variant, depending on the disorder, the initial dosing is given as close to the first sign, diagnosis, appearance, or occurrence of the disorder as possible or during remissions of autoimmune disorders. Preferably the initial dosing begins before exposure to antigen, as in the case with transplanted grafts. Furthermore, when the initial dosing is prior to or substantially contemporaneous with exposure to antigen, it is preferred that the subsequent dosing is carried out for a longer period of time than the initial dosing, particularly for transplants, and that it be a continuous intermittent maintenance dose that need not be continuous for the life of the patient.
  • The preferred scheduling for the LFA-1 antagonist variant is that the initial dosing (i.e., administered before or at the time of the undesired immune response at a dose administered no less frequently than daily up to and including continuously by infusion) and the subsequent dosing is a dose administered periodically no more than about once a week. More preferably, depending on the specific disorder, and particularly for transplantation, the initial daily dosing is administered for at least about one week, preferably at least about 2 weeks, after the exposure to antigen, e.g., graft, or initiation of an acute immune response (as in autoimmune disorders), and the subsequent dosing is administered no more than once biweekly (preferably once biweekly) for at least about 5 weeks, preferably for at least about 10 weeks, after the initial dosing is terminated.
  • In another preferred embodiment, particularly if the antagonist variant is a Fab or (Fab′)2 of anti-CD11a or anti-CD18 antibodies, initial dosing terminates from about 1 day to 4 weeks after transplantation has occurred, more preferably from about 1 week to 3 weeks, more preferably from about 2 weeks to 3 weeks, and commences from about 1 week before transplantation occurs up to about simultaneously with the transplantation.
  • The polypeptide variant is administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local immunosuppressive treatment, intralesional administration (including perfusing or otherwise contacting the graft with the antagonist before transplantation). Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In addition, the LFA-1 antagonist variant is suitably administered by pulse infusion, particularly with declining doses of the LFA-1 antagonist variant. Preferably the dosing of such variant is given by injections, most preferably intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
  • The polypeptide variant herein need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question. For example, in rheumatoid arthritis, an LFA-1 antagonist variant may be given in conjunction with a glucocorticosteroid. In addition, T cell receptor peptide therapy is suitably an adjunct therapy to prevent clinical signs of autoimmune encephalomyelitis. Offner et al., Science, 251: 430-432 (1991). For transplants, the LFA-1 antagonist variant may be administered concurrently with or separate from an immunosuppressive agent as defined above, e.g., cyclosporin A, to modulate the immunosuppressant effect. The effective amount of such other agents depends on the amount of LFA-1 antagonist variant present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.
  • The various autoimmune disorders described above are treated with LFA-1 antagonist variants in such a fashion as to induce immune tolerance to the self antigen under attack as a result of the disorder. In this regard, autoimmune disorders resemble host versus graft rejection and are treated with LFA-1 antagonist variants in analogous fashion. However, in these disorders the patient is already mounting an immune response to the target antigen, unlike the case with transplants prior to grafting. Thus, it is desirable to first induce and maintain a transient state of immunosuppression by conventional methods in such patients, e.g., by the conventional use of cyclosporin A or other conventional immunosuppressive agents (alone or together with LFA-1 antagonist variant), or to monitor the patient until the occurrence of a period of remission (an absence or substantial lessening of pathological or functional indicia of the autoimmune response).
  • Preferably, transient immunosuppression is induced by T cell depletion using conventional therapy. This is then followed by the administration of the LFA-1 antagonist variant in order to prevent rebound when the immunosuppressive inducing agent is withdrawn or when remission otherwise would abrogate. Alternatively, the remission patient's condition is closely monitored for signs of flare, and immediately upon the initial functional or biochemical appearance of flare the initial dosing regimen is started and continued until the flare subsides. The LFA-1 antagonist variant administration during this period constitutes the initial dose described elsewhere herein.
  • In the case of autoimmune disorders the initial dose will extend about from 1 week to 16 weeks. Thereafter, the lower dose maintenance regimen of LFA-1 antagonist variant is administered in substantially the same fashion as set forth herein for the amelioration of graft or host rejection, although in some instances it is desirable to extend the subsequent or sustaining dose for lengthier periods than with grafts. In an embodiment of this invention, if an antigen or a composition containing the antigen is known to be responsible for the autoimmune response then the antigen is administered to the patient (optionally with IL-1 and/or gamma interferon) after the initial LFA-1 antagonist variant dose and the antagonist variant dose maintained thereafter in order to suppress the regeneration of an autoimmune response against the antigen while minimally immunosuppressing the patient's response to other antigens.
  • The patient optimally will be isolated, preferably in an aseptic environment such as is currently used in transplant practice, at the time of initial treatment with LFA-1 antagonist variant. The patient should be free of any infection. It is not necessary to sustain these conditions during the maintenance dose, and in fact this is one of the advantages of this invention, i.e., that the patient is able to mount a substantially normal immune response to ambient antigens (other than the graft or self antigen) while being treated with the maintenance dosing.
  • The invention herein is particularly amenable to prolonging survival and increasing tolerance of transplanted grafts. The transplants are optionally functionally monitored systematically during the critical postoperative period (the first three months) using any suitable procedure. One such procedure is radionuclide intravenous angiography using 99Tcm-pertechnetate, as described by Thomsen et al., Acta Radiol., 29: 138-140 (1988). In addition, the method herein is amenable to simultaneous, multiple organ perfusion and transplantation. Toledo-Pereyra and MacKenzie, Am. Surg., 46: 161-164 (1980).
  • In some instances, it is desirable to modify the surface of the graft so as to provide positively or negatively charged groups, as by using a suitable amino acid or polymer or by attaching a physiologically acceptable source of charged functional groups. For example, a negatively charged surface is appropriate for blood vessels to diminish blood clotting. It also is desirable in certain circumstances to render the surface hydrophobic or hydrophilic by coupling, e.g., phenylalanine, serine or lysine to the surface. An immunosuppressive agent particularly effective for these surface modifications is glutaraldehyde.
  • As mentioned above, before transplantation an effective amount of the LFA-1 antagonist variant is optionally administered to induce tolerance of the graft. The same dose and schedule as used for initial post-transplantation may be employed. Furthermore, prior to transplantation the graft is optionally contacted with a TGF-β composition as described in U.S. Pat. No. 5,135,915, the disclosure of which is incorporated by reference. Briefly, the contact suitably involves incubating or perfusing the graft with the composition or applying the composition to one or more surfaces of the graft. The treatment generally takes place for at least one minute, and preferably from 1 minute to 72 hours, and more preferably from 2 minutes to 24 hours, depending on such factors as the concentration of TGF-β in the formulation, the graft to be treated, and the particular type of formulation. Also as noted, the graft is simultaneously or separately perfused with LFA-1 antagonist variant. Perfusion is accomplished by any suitable procedure. For example, an organ can be perfused via a device that provides a constant pressure of perfusion having a pressure regulator and overflow situated between a pump and the organ, as described by DD 213,134 published Sep. 5, 1984. Alternatively, the organ is placed in a hyperbaric chamber via a sealing door and perfusate is delivered to the chamber by a pump that draws the fluid from the reservoir while spent perfusate is returned to the reservoir by a valve, as described in EP 125,847 published Nov. 21, 1984.
  • After the graft is treated, it is suitably stored for prolonged periods of time or is used immediately in the transplant procedure. Storage life can be enhanced as described above by using a blood substitute in the formulation (e.g., perfluorochemical emulsion), or by perfusing the graft with a formulation of a TGF-β containing chilled isotonic agent and anticoagulant followed by glycerol to allow for freezing of removed organs with no destruction of the cells, as described in JP 60061501 published Apr. 9, 1985. In addition, the organs can be preserved with known perfusion fluids (containing TGF-β and/or LFA-1 antagonist as noted) while the organs are cooled to freezing temperatures, to preserve the organ semi-permanently without cell necrocytosis, as described by U.S. Pat. Nos. 4,462,215 and 4,494,385.
  • Respecting cardiac transplants specifically, Parent et al., Cryobiology, 18: 571-576 (1981) reports that cold coronary perfusion prior to transplantation at 5° C. increases protection of the homograft during the initial period of implantation. Any of these procedures, or others, are within the scope of this invention if deemed necessary for graft preservation.
  • Before transplantation, the graft is preferably washed free of the TGF-β composition, as by soaking it in a physiological saline solution or by other means appropriate for this purpose. It is not desirable to remove the LFA-1 antagonist variant prior to transplantation.
  • Also, prior to transplantation, the host is optionally given one or more donor-specific blood transfusions to aid in graft survival. An alternative procedure is to subject the host to total lymphoid irradiation prior to or after the transplantation operation. Any other pre-transplant procedures that would be beneficial to the particular transplant recipient can be performed as part of the method of this invention.
  • 4. Antibody Preparation Where Variant is Antibody-Derived
  • (i) Starting Materials and Methods
  • Immunoglobulins (Ig) and certain variants thereof are known and many have been prepared in recombinant cell culture. For example, see U.S. Pat. No. 4,745,055; EP 256,654; EP 120,694; EP 125,023; EP 255,694; EP 266,663; WO 88/03559; Faulkner et al., Nature, 298: 286 (1982); Morrison, J. Immun., 123: 793 (1979); Koehler et al., Proc. Natl. Acad. Sci. USA, 77: 2197 (1980); Raso et al., Cancer Res., 41: 2073 (1981); Morrison et al., Ann. Rev. Immunol., 2: 239 (1984); Morrison, Science, 229: 1202 (1985); and Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851 (1984). Reassorted immunoglobulin chains are also known. See, for example, U.S. Pat. No. 4,444,878; WO 88/03565; and EP 68,763 and references cited therein. The immunoglobulin moiety in the polypeptide variants of the present invention may be obtained from IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA, IgE, IgD, or IgM, but preferably from IgG-1 or IgG-3.
  • (ii) Polyclonal Antibodies
  • Polyclonal antibodies are generally raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl2, or R1N═C═NR, where R and R1 are different alkyl groups.
  • Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining 1 mg or 1 μg of the peptide or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with ⅕ to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.
  • (iii) Monoclonal Antibodies
  • Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies.
  • For example, the monoclonal antibodies may be made using the hybridoma method first described by Kohler and Milstein, Nature, 256: 495 (1975), or may be made by recombinant DNA methods (Cabilly et al., supra).
  • In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 [Academic Press, 1986]).
  • The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred myeloma cels are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Md. USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133: 3001 [1984]; Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 [Marcel Dekker, Inc., New York, 1987]).
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
  • The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107: 220 (1980).
  • After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, supra). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5: 256-262 (1993) and Pluckthun, Immunol. Revs., 130; 151-188 (1992).
  • In a further embodiment, antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348: 552-554 (1990), using the proper antigen such as CD11a, CD18, IgE, or HER-2 to select for a suitable antibody or antibody fragment. Clackson et al., Nature, 352: 624-628 (1991) and Marks et al., J. Mol. Biol., 222: 581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Mark et al., Bio/Technology, 10: 779-783 [1992]), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res., 21: 2265-2266 [1993]). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of “monoclonal” antibodies.
  • The DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (Cabilly et al., supra; Morrison, et al., Proc. Nat. Acad. Sci., 81: 6851 [1984]), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
  • Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
  • For diagnostic applications, the variants herein derived from antibodies typically will be labeled with a detectable moiety. The detectable moiety can be any one which is capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as 3H, 14C, 32P, 35S, or 125I; a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; radioactive isotopic labels, such as, e.g., 125I, 32p, 14C, or 3H; or an enzyme, such as alkaline phosphatase, beta-galactosidase, or horseradish peroxidase.
  • Any method known in the art for separately conjugating the polypeptide variant to the detectable moiety may be employed, including those methods described by Hunter et al., Nature, 144: 945 (1962); David et al., Biochemistry, 13: 1014 (1974); Pain et al., J. Immunol. Meth., 40: 219 (1981); and Nygren, J. Histochem. and Cytochem., 30: 407 (19B2).
  • (iv) Humanized and Human Antibodies
  • Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321: 522-525 [1986]; Riechmann et al., Nature, 332: 323-327 [1988]; Verhoeyen et al., Science, 239: 1534-1536 [1988]), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (Cabilly et al., supra), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called “best-fit” method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151: 2296 [1993]; Chothia and Lesk, J. Mol. Biol., 196: 901 [1987]). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89: 4285 [1992]; Presta et al., J. Immunol., 151: 2623 [1993]).
  • It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the consensus and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved In influencing antigen binding.
  • Alternatively, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90: 2551-255 (1993); Jakobovits et al., Nature, 362: 255-258 (1993); Bruggermann et al., Year in Immuno., 7: 33 (1993). Human antibodies can also be produced in phage-display libraries (Hoogenboom and Winter, J. Mol. Biol., 227: 381 [1991]; Marks et al., J. Mol. Biol., 222: 581 [1991]).
  • (v) Bispecific Antibodies
  • Bispecific antibodies (BsAbs) are antibodies that have binding specificities for at least two different antigens. Bispecific antibodies can be derived from full length antibodies or antibody fragments (e.g. F(ab′)2 bispecific antibodies).
  • Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein and Cuello, Nature, 305: 537-539 [1983]). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10: 3655-3659 (1991).
  • According to a different and more preferred approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.
  • In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy, chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690 published Mar. 3, 1994. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).
  • Bispecific antibodies include cross-linked or “heteroconjugate” antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
  • Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the BsAb. The BsAbs produced can be used as agents for the selective immobilization of enzymes.
  • Recent progress has facilitated the direct recovery of Fab′-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med., 175: 217-225 (1992) describe the production of a fully humanized BsAb F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the BsAb. The BsAb thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets. See also Rodrigues et al., Int. J. Cancers, (Suppl.) 7: 45-50 (1992).
  • Various techniques for making and isolating BsAb fragments directly from recombinant cell culture have also been described. For example, bispecific F(ab′)2 heterodimers have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5): 1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. (USA), 90: 6444-6448 (1993) has provided an alternative mechanism for making BsAb fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making BsAb fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol., 152: 5368 (1994). These researchers designed an antibody which comprised the VH and VL domains of a first antibody joined by a 25-amino-acid-residue linker to the VH and VL domains of a second antibody. The refolded molecule bound to fluorescein and the T-cell receptor and redirected the lysis of human tumor cells that had fluorescein covalently linked to their surface.
  • 5. Uses of Antibody Variants
  • Variant antibodies are useful in diagnostic assays for an antigen of interest, e.g., its production in specific cells, tissues, or serum. The variant antibodies are labeled in the same fashion as described above and/or are immobilized on an insoluble matrix. In one embodiment of an antigen-binding assay, an antibody composition that binds to the antigen is immobilized on an insoluble matrix, the test sample is contacted with the immobilized variant antibody composition to adsorb the antigen, and then the immobilized antigen is contacted with variant antibodies specific for the antigen, as determined by unique labels such as discrete fluorophores or the like. By determining the presence and/or amount of each unique label, the relative proportion and amount of the antigen can be determined.
  • The variant antibodies of this invention are also useful in passively immunizing patients.
  • The variant antibodies also are useful for the affinity purification of an antigen of interest from recombinant cell culture or natural sources.
  • Suitable diagnostic assays for an antigen and its variant antibodies are well known per se. In addition to the bioassays described in the examples below wherein the candidate variant is tested to see if it has appropriate biological activity and increased half-life, competitive, sandwich and steric inhibition immunoassay techniques are useful. The competitive and sandwich methods employ a phase-separation step as an integral part of the method while steric inhibition assays are conducted in a single reaction mixture. Fundamentally, the same procedures are used for the assay of the antigen and for substances that bind the antigen, although certain methods will be favored depending upon the molecular weight of the substance being assayed. Therefore, the substance to be tested is referred to herein as an analyte, irrespective of its status otherwise as an antigen or variant antibody, and proteins that bind to the analyte are denominated binding partners, whether they be antibodies, cell-surface receptors, or antigens.
  • Analytical methods for the antigen or its variant antibodies all use one or more of the following reagents: labeled analyte analogue, immobilized analyte analogue, labeled binding partner, immobilized binding partner, and steric conjugates. The labeled reagents also are known as “tracers.”
  • Immobilization of reagents is required for certain assay methods. Immobilization entails separating the binding partner from any analyte that remains free in solution. This conventionally is accomplished by either insolubilizing the binding partner or analyte analogue before the assay procedure, as by adsorption to a water-insoluble matrix or surface (Bennich et al., U.S. Pat. No. 3,720,760), by covalent coupling (for example, using glutaraldehyde cross-linking), or by insolubilizing the partner or analogue afterward, e.g., by immunoprecipitation.
  • Other assay methods, known as competitive or sandwich assays, are well established and widely used in the commercial diagnostics industry.
  • Competitive assays rely on the ability of a tracer analogue to compete with the test sample analyte for a limited number of binding sites on a common binding partner. The binding partner generally is insolubilized before or after the competition and then the tracer and analyte bound to the binding partner are separated from the unbound tracer and analyte. This separation is accomplished by decanting (where the binding partner was preinsolubilized) or by centrifuging (where the binding partner was precipitated after the competitive reaction). The amount of test sample analyte is inversely proportional to the amount of bound tracer as measured by the amount of marker substance. Dose-response curves with known amounts of analyte are prepared and compared with the test results to quantitatively determine the amount of analyte present in the test sample. These assays are called ELISA systems when enzymes are used as the detectable markers.
  • Another species of competitive assay, called a “homogeneous” assay, does not require a phase separation. Here, a conjugate of an enzyme with the analyte is prepared and used such that when anti-analyte binds to the analyte the presence of the anti-analyte modifies the enzyme activity. In this case, the antigen or its immunologically active fragments are conjugated with a bifunctional organic bridge to an enzyme such as peroxidase. Conjugates are selected for use with anti-polypeptide so that binding of the anti-polypeptide inhibits or potentiates the enzyme activity of the label. This method per se is widely practiced under the name of EMIT.
  • Steric conjugates are used in steric hindrance methods for homogeneous assay. These conjugates are synthesized by covalently linking a low-molecular-weight hapten to a small analyte so that antibody to hapten substantially is unable to bind the conjugate at the same time as anti-analyte. Under this assay procedure the analyte present in the test sample will bind anti-analyte, thereby allowing anti-hapten to bind the conjugate, resulting in a change in the character of the conjugate hapten, e.g., a change in fluorescence when the hapten is a fluorophore.
  • Sandwich assays particularly are useful for the determination of polypeptide variants or polypeptide variant antibodies. In sequential sandwich assays an immobilized binding partner is used to adsorb test sample analyte, the test sample is removed as by washing, the bound analyte is used to adsorb labeled binding partner, and bound material is then separated from residual tracer. The amount of bound tracer is directly proportional to test sample analyte. In “simultaneous” sandwich assays the test sample is not separated before adding the labeled binding partner. A sequential sandwich assay using a monoclonal antibody as one antibody and a polyclonal antibody as the other is useful in testing samples for antigen activity.
  • The foregoing are merely exemplary diagnostic assays for the polypeptide variant and variant antibodies. Other methods now or hereafter developed for the determination of these analytes are included within the scope hereof, including the bioassays described above.
  • The following examples are offered by way of illustration and not by way of limitation. The disclosures of all citations in the specification are expressly incorporated herein by reference.
  • Example I Methods Plasmid Construction
  • The template plasmid, pH52, used for constructing the Fabs (hereafter referred to as Fab) employed in this example was derived from the plasmid p80475 described by Cunningham et al., Science 243: 1330-1336 (1989). Two BamHI sites flanking the F1 origin were removed from pB0475 and DNA coding for anti-CD18 Fab H52, version OZ (Eigenbrot et al., Proteins, 18: 49-62 [1994]1) was substituted for DNA coding for human growth hormone using the EcoRV and SphI sites. Hence, pH52 contains DNA coding for anti-CD18 Fab H52 (version OZ), the STII signal peptides of the light and heavy chain, the alkaline phosphatase promoter region, an M13 helper phage region, and ampicillin-resistance. Fab variants were constructed by Kunkel mutagenesis (Kunkel, Proc. Natl. Acad. Sci. U.S.A., 82: 488-492 [1985]) of pH52 using the following oligonucleotides:
  • oligo V1A
    (SEQ ID NO: 12)
    5′GTGCACCGTGCCTCACCAGAGCTTGGGCAC3′
    changes Ser195-Sen196 to His195-Gln196
    oligo V1B
    (SEQ ID NO: 13)
    5′TGGCACCCTCCCCTAAGAACTCGAGCATGATCAGC-
    AACACACCGGCCCTGGGC3′
    (SEQ ID NO: 14)
    changes Ser127-Ser-Lys-Ser-Thr-Ser-Gly-Gly-Thr-
    Ala-Ala139
    (SEQ ID NO: 15)
    to Ser127-Pro-Lys-Asn-Ser-Ser-Met-Ile-Sen-Asn-Thr-
    Pro-Ala139
    oligo V1C
    (SEQ ID NO: 16)
    5′TGGCACCCTCCAAATCGAGCATCACAGCGGCCCT3′
    (SEQ ID NO: 17)
    changes Ser127-Ser-Lys-Ser-Thr-Ser-Gly-Gly-Thr137
    (SEQ ID NO: 18)
    to Ser127-Lys-Ser-Ser-Ile-Thr137
    oligo V2
    (SEQ ID NO: 19)
    5′TGGTGACCGTGATCTCGAGCCACTTGGGCCAGCAGACCTACATC3′
    (SEQ ID NO: 20)
    changes Val193-Pro-Ser-Ser-Ser-Leu-Gly-Thr-Gln203
    (SEQ ID NO: 21)
    to Val193-Ile-Ser-Ser-His-Leu-Gly-Gln-Gln203
  • Amino acid residue numbers are according to the numbering system described in Kabat et al., supra, NIH Publ. No. 91-3242, Vol. I, pages 647-669 (1991).
  • Fab v1 incorporated oligos V1A and V1C; Fab v1b incorporated oligos V1A and V1B; Fab v2 incorporated oligo V2. Plasmids coding for Fab v1, Fab v1b, and Fab v2 were selected and the DNA sequences checked using dideoxynucleotide sequencing (Sequenase™ protocol, United States Biochemical). F(ab′)2 constructs were made by inserting DNA coding for the IgG1 hinge region followed by a ‘leucine zipper’ at the C-terminus of the H52 heavy constant domain. The inserted amino acid sequence was: CPPCPAPELLGGRMKQLEDKVEELLSKNYHLENEVARLKKLVGER (SEQ ID NO: 22).
  • Another set of Fab versions is based on Fab v1b, i.e., the variant which showed longer half life, using the following oligonucleotides:
  • oligo V1D
    (SEQ ID NO: 23)
    5′TCGAGCATGATCTCTAGAACACCGGCCC3′
    changes Asn136 to Arg136
    oligo V1E
    (SEQ ID NO: 24)
    5′GCCTCACCAGAACCTAGGCACCAAGACCTACATCTG3′
    changes Ser197 to Asn197 and Gln203 to Lys203
    oligo V1F
    (SEQ ID NO: 25)
    5′GCCTCACCAGAACTTAAGCGACGGAAAGACCTACATCTGC3′
    (SEQ ID NO: 26)
    changes Gln196-Ser-Leu-Gly-Thr-Gln-Thr204
    (SEQ ID NO: 27)
    to Gln196-Asn-Leu-Ser-Asp-Gly-Lys-Thr204
    oligo V1G
    (SEQ ID NO: 28)
    5′GCCTCACCAGAATATTACAGATGGCAAGACCTACATCTGC3′
    (SEQ ID NO: 29)
    changes Gln196-Ser-Leu-Gly-Thr-Gln-Thr204
    (SEQ ID NO: 30)
    to Gln196-Asn-Ile-Ser-Asp-Gly-Lys-Thr204

    Fab v3 incorporates oligo V1D; Fab v4 incorporates oligo V1E; Fab v5 incorporates oligo V1F; and Fab v6 incorporates oligo V1G.
  • Expression of DNA Encoding the Variants
  • For each variant, plasmid DNA was transformed into E. coli. The transformants were then plated on Luria Broth (LB) plates containing 5 μg/mL carbenicillin and incubated at 37° C. overnight. A single colony was inoculated into 5 mL [LB+5 μg/mL carbenicillin] and grown for 6-7 hours at 37° C. The 5-mL culture was then added to 500 mL AP5 minimal media in a 2-L baffled flask and grown for 16 hours at 37° C.
  • AP5 minimal media is made as follows: Per 1 liter is added 1.5 g glucose (Sigma™ G-7021), 2.2 g casamino acids technical (Difco™ 0231-01-0), 0.3 g yeast extract certified (Difco™ 0127-01-7), 0.19 g MgSO4 anhydrous or 0.394 g MgSO4.7H2O (Sigma™ M2773), 1.07 g ammonium chloride (Sigma™ A9434), 0.075 g KCl (Sigma™ P5405), 4.09 g NaCl (Sigma™ S3014), 120.0 mL of 1 M triethanolamine pH 7.4, qs to 1.0 L Super-Q™ Water, as well as 1 M triethanolamine pH 7.4 consisting of 133.21 mL triethanolamine, Liquid (Sigma™ T1377) and 950 mL Super-Q™ Water, pH to 7.4 with HCl (Mallinckrodt™ 2612), qs to 1.0 L Super-Q™ Water. This is filtered through a 0.1 μm Sealkleen™ filter and stored at 2-8° C. The expiration period is 6 months.
  • The cells were spun in a 1-L centrifuge bottle at 3000 rpm for 30 minutes, the supernatant was decanted and the pelleted cells were frozen for 1 hour. The pellet was resuspended in 10 mL of cold TE buffer (10 mM TRIS, 1 mM EDTA, pH 7.6) with 100/L 0.1 M benzamidine (Sigma) added. The resuspended pellet was agitated on ice for 1 hour, spun at 18,000 rpm for 15 minutes, and the supernatant decanted and held on ice.
  • The supernatant was then passed over a Protein G-Sepharose™ Fast Flow (Pharmacia) column [0.5 mL bed volume] previously equilibrated by passing 10 mL TE buffer through the column. The column was then washed with 10 mL TE buffer, and the Fab eluted with 2.5 mL 100 mM acetic acid, pH 2.8, into a tube containing 0.5 mL TRIS, pH 8.0. The eluant was concentrated in a Centricon-30™ (Amicon) centrifuge to 0.5 mL, 2 mL phosphate-buffered saline was added to concentrated eluant, and the resulting mixture was re-concentrated to 0.5 mL. SDS-PAGE gels were run to ascertain that protein had been produced.
  • Analytical Methods Used During Purification Procedure of Anti-CD11/CD18 Fab Variants and F(ab′)2 Antibody Fragment
  • SDS polyacrylamide gel electrophoresis (SDS-PAGE) and two different high performance liquid chromatography (HPLC) methods were used to analyze the products obtained in each step of the purification process. The HPLC methods used include reverse-phase chromatography and cation-exchange chromatography, which were performed on a WATERS™ HPLC system.
  • Reverse-phase chromatography was carried out on a reverse-phase PLRP-S™ 4.6×50 mm column, 8-mm particle size (Polymer Laboratories, Shropshire, UK), maintained at 50° C. The proteins were eluted using an increasing linear gradient from 31% B to 41% B. Buffer A contained 0.1% trifluoroacetic acid in deionized water, and Buffer B contained 0.1% trifluoroacetic acid in HPLC-grade acetonitrile. The flow rate was maintained at 2 mL/min, and the protein profile was monitored at 214 nm.
  • Analysis by cation-exchange chromatography was carried out on a Bakerbond carboxy-sulfon (CSX)™ 50×4.6 mm column (J. T. Baker Phillipsburg, N.J.), maintained at 55° C. The proteins were eluted using an increasing linear gradient from pH 6.0 to pH 8.0 at a flow rate of 2 mL/min using a detection wavelength of 280 nm. Buffer A contained 16 mM each of HEPES/PIPES/MES, pH 6.0, and Buffer B contained 16 mM each of HEPES/PIPES/MES, pH 8.0. For the separation of the different Fab variants, a linear gradient was run for 22 min from 25% B to 56% B. For the separation of the Zipper-F(ab′)2 and F(ab′)2 antibody fragments, the linear gradient was run from 40% B to 100% B in 22 minutes.
  • SDS-PAGE analysis was carried out on precast Novex™ gels (Novex, San Diego, Calif.). The proteins were stained using the Morrissey silver stain method. Morrissey, Anal. Biochem., 117: 307-310 (1981).
  • Purification of Anti-CD11/CD18 Fab Antibody Fragment and Fab Variants
  • The anti-CD11/CD18 Fab antibody fragment and the different Fab variants were isolated using the same extraction and purification scheme.
  • Extraction
  • Frozen cell pellets (100 g) were re-suspended at room temperature in 120 mM MES buffer, pH 6.0, containing 5 mM EDTA (5 ml of buffer per g of cell pellet) and completely disrupted by three passages through a microfluidizer (Microfluidics Corporation, Newton, Mass.). The homogenate was adjusted to 0.25% (v/v) polyethyleneimine (PEI) and the solid debris was removed by centrifugation (7280×g, 30 min, 4° C.).
  • ABX Chromatography A
  • The supernatant containing the antibody fragment was diluted to a conductivity of 2.5 millisiemens with purified water, filtered through a 0.22 micron filter (Suporcap-50™, Gelman Sciences, Ann Arbor, Mich.), and then loaded onto a 1.6×9.5 cm Bakerbond ABX column (J. T. Baker, Phillipsburg, N.J.) equilibrated in 50 mM MES/5 mM disodium EDTA, pH 6.0 (Buffer A). The effluent was UV monitored at 280 nm. After loading, the column was washed with Buffer A until the UV trace returned to baseline. Antibody fragments were eluted with a 20-column-volume gradient from 0 to 100 mM ammonium sulfate in buffer A. Fractions were analyzed on a cation-exchange column as described in the Analytical Methods section above and pooled accordingly.
  • SP Senharose High Performance (SPHP) Chromatography
  • The ABX pool was diluted with water for Injection (WFI) to a conductivity of less than 4 mS and loaded onto a SPHP 1.6×9.2 cm column (Pharmacia-Biotech Inc., Piscataway, N.J.), equilibrated with 25 mM MOPS buffer, pH 6.9. Separation was achieved by a 20-column-volume linear gradient from 0 to 200 mM sodium acetate in 25 mM MOPS buffer, pH 6.9. Fractions were analyzed by CSX HPLC and SDS-PAGE as described in the Analytical Methods section above and pooled accordingly.
  • Formulation
  • The SPHP pools containing the antibody fragments were concentrated to 5 mg/mL using Amicon stir cells and YM10 membrane filters (Amicon, Inc. Beverly, Mass.). The purified and concentrated antibody samples were buffer-exchanged into phosphate buffer saline (PBS) by gel permeation chromatography on a Sephadex™ G25 (Pharmacia Biotech Inc. Piscataway, N.J.) column.
  • Endotoxin Determinations
  • Endotoxin determinations were performed with the Limulus amoebocyte lysate test (Associates of Cape Cod Inc., Woods Hole, Mass.). Samples containing less than 2 endotoxin units (Eu) per mg of protein were used in the pharmacokinetic studies.
  • Purification of the Anti-CD11/CD18 F(ab′)2 Antibody Fragment
  • The F(ab′)2 fragment was initially purified by ABX chromatography as a leucine zipper (Fab′)2 variant [zipper-F(ab′)2]. This construct was engineered by adding a leucine zipper domain after the hinge region of the H52 heavy chain, After purification, the leucine zipper domain was cleaved by pepsin digestion after which the F(ab′)2 was purified by SPHP and Phenyl Toyopearl™ chromatography as described below
  • Extraction and ABX Chromatography of Zipper-F(ab′)2 Antibody Fragment
  • Extraction and ABX chromatography of the zipper-F(ab′)2 antibody fragment was carried out as described above for the Fab antibody fragment variants.
  • Pepsin Digestion of Zipper-F(ab′)2 Antibody Fragment
  • The ABX-purified Zipper-F(ab′)2 was treated with pepsin to remove the leucine zipper portion of the molecule to yield the F(ab′) antibody fragment. The ABX purified sample was concentrated on Amicon stir cells to 5 mg/mL and then diluted 1:3.5 with 100 mM sodium citrate buffer, pH 3.5. To this solution, pepsin (1 mg/mL) dissolved in 100 mM sodium citrate buffer, pH 3.5, was added at a pepsin-to-protein ratio of 1:12. After 4 hours at room temperature, the mixture's pH was raised to pH 6.4 with 10% NaOH.
  • SPHP Chromatography of Pepsin-Treated Zipper-F(ab′)2 Antibody Fragment
  • Purification of the F(ab′)2 antibody fragment from the leucine zipper domain and undesired antibody fragments was accomplished by SPHP chromatography as described above for the Fab antibody fragment variants.
  • Phenyl Toyopearl™ Chromatography of SPHP-purified F(ab′)2 Antibody Fragment The SPHP-purified F(ab′)2 pool was made 1.5 M in ammonium sulfate by adding solid ammonium sulfate. The conditioned pool was then loaded onto a Phenyl Toyopearl™ 650M (Tosohaas, Montgomeryville, Pa.) 1.6×10 cm column equilibrated with 1.5 M ammonium sulfate, 50 mM sodium acetate, pH 5.4 (Buffer A). A 20-column-volume gradient was runned from 70% Buffer A to 100% 0.15 M ammonium sulfate in 50 mM sodium acetate, pH 5.4 (Buffer B). The fractions were analyzed by reverse phase and CSX HPLC and SDS-PAGE as described in the Analytical Methods section above.
  • Formulation of F(ab′)2 Antibody Fragment and Endotoxin Measurements
  • Formulation of the purified F(ab′)2 antibody fragment was performed as described above for the Fab antibody fragment variants. After endotoxin determinations, samples containing less than 2 Eu per mg of protein were used in the pharmacokinetic studies set forth below.
  • Pharmacokinetic Study of Anti-CD11/18 Constructs in Mice after Intravenous Administration
  • The objective of this single-dose pharmacokinetic study of five humanized huH52 anti-CD18 antibody fragments (constructs) in mice was to determine if non-specific clearance of antibody fragments is affected by alterations to amino acids in the constant domain. Serum samples were collected from male CD1 mice over a 24-hour period and human anti-CD18 serum concentrations were measured by ELISA.
  • The anti-CD18 antibody fragments investigated were derived from E.-coli-produced recombinant humanized monoclonal Fab antibody fragments as described above. The Fab fragment and the construct in which two Fab′ subunits were joined together by two disulfide bonds were investigated. Lastly, three new versions of the original Fab were constructed by altering amino acids in the constant domain. See the Study Design table below for further description of the constructs.
  • The construct antigen-binding sites are directed against the CD18 subunit of the CD11/CD18 glycoprotein complex on the surface of leukocytes. These antibody fragments are chimpanzee and human-specific; therefore, the serum pharmacokinetic information obtained in mice provides a description of the non-specific clearance of the fragments.
  • Because linear pharmacokinetics were expected in this study, a single-dose level of 2 mg/kg was chosen rather than multiple-dose levels.
  • Study Designa
    Group
    Number Construct ID Construct Description
    1 Fab Fab fragment alone
    2 Double Two Fab′ subunits joined with a double
    disulfide disulfide bond
    3 Fabv1 new version 1 of the original Fab constructed
    by altering amino acids in the constant domain
    4 Fabv1B new version 1B of the original Fab constructed
    by altering amino acids in the constant domain
    5 Fabv2 new version 2 of the original Fab constructed
    by altering amino acids in the constant domain
    aEach group consisted of 20 male mice; each mouse received a 2 mg/kg dose.
  • The pharmacokinetics of the five antibody constructs were studied in male Crl:CD-1® (ICR)BR VAF/Plus® (mice (approximately 20-30 g). Five groups, each consisting of twenty mice, received an intravenous bolus dose of 2 mg/kg via the tail vein. Blood samples were collected at 5 and 30 minutes, 1, 2, 4, 8, 12, 16, 20, and 24 hours post-dose. Serum was harvested and concentrations of the antibody fragments were determined in a MAC-1 capture ELISA as follows:
  • 96-Well microtiter plates were coated overnight with murine anti-CD18 monoclonal antibody. After overnight incubation at 4° C., plates were washed three times with ELISA wash buffer and blocked for 1 hour with ELISA diluent. ELISA wash buffer is phosphate-buffered saline (PBS)/0.05% Polysorbate™ 20. This buffer is prepared per liter as 50 mL 20×PBS/1.0% Polysorbate™ 20 (a mixture obtained by dissolving 160 g NaCl, 4.0 g KCl, 22.6 g Na2HPO4, and 4.0 g KH2PO4 in glass-distilled or deionized water, adding 10.0 mL Polysorbate™ 20 [Sigma™ P 1379 or equivalent], qs to 1000 mL, and sterile filtering using a 0.22 μm or smaller filter), and qs to 1.0 L of distilled or deionized water, stored at ambient temperature. The expiration period is 2 weeks from the date of preparation.
  • The ELISA diluent was PBS/0.5% BSA/0.05% Polysorbate™ 20/0.01% Thimerosal™/1 mM CaCl2/1 mM MgCl2. This diluent was prepared per liter as 5.0 g bovine serum albumin (Armour™ N0068 or equivalent), 50 mL 20×PBS/1.0% Polysorbate™ 20/0.2% Thimerosal™ (a mixture obtained by dissolving 160 g NaCl, 4.0 g KCl, 22.6 g Na2HPO4, and 4.0 g KH2PO4 in glass-distilled or deionized water, and adding 10.0 mL Polysorbate™ 20 [Sigma P-1379 or equivalent] and 2.0 g Thimerosal™ [Sigma™-5125 or equivalent], qs to 1000 mL), 0.1% (v/v)1 M CaCl2 (Genentech™ A3165), 0.1% (v/v) 1 M MgCl2 (Genentech™ A3167), qs to 1.0 L of distilled or deionized water, and stored at 2-8° C., with the expiration period 1 month from the date of preparation.
  • After blocking, the plates were washed again three times with ELISA wash buffer. Soluble MAC1 (CD11b/CD18 as described by Berman et al., J. Cell. Biochem., 52: 183-195 [1993]) was then captured out of a concentrate of media, conditioned by CHO cells expressing the truncated CD11b/CD18 heterodimer. After a 2-hour incubation period, the plates were washed six times with ELISA wash buffer and 100 μL of the mouse serum sample being tested or the standard containing the homologous recombinant human anti-CD18 Fab were added. The mouse serum samples were first diluted 1/10 in ELISA diluent and then a further ¼ into sample diluent; 100 μL was taken from this initial 1/40 dilution. Sample diluent is 10% Swiss Webster Mouse serum in ELISA diluent.
  • Following a second 2-hour incubation, the plates were again washed six times with ELISA wash buffer and 100 μL of horseradish-peroxidase-conjugated F(ab′)2 directed against a human Fab was added. After a 1-hour incubation at ambient temperature, the plates were washed with ELISA wash buffer as described above and 100 μL of phosphate-buffered saline, pH 7.2, containing 2.2 mmol/L orthophenylene diamine (OPD) and 0.012% (v/v) hydrogen peroxide (H2O2) was added to each well. When color had fully developed, the reaction was stopped with 100 μL per well of 4.5 mol/L sulfuric acid. The absorbance of the well contents was measured at 492 nm minus 405 nm background absorbance using an automatic plate reader from SLT, Labinstruments. Data were reduced by using a four-parameter, curve-fitting program based on an algorithm for least-squares estimation of non-linear parameters.
  • Serum concentration versus time data were analyzed utilizing a non-linear curve-fitting program and subsequent pharmacokinetics parameters were estimated. D'Argenio and Schumitzky, ADAPT II User's Guide, Biomedical Simulations Resource, University of Southern California, Los Angeles, Release 2, 1990.
  • A two-compartment model was used to characterize the serum concentration versus time data for the five groups. See Table 2 for primary model parameters and calculated pharmacokinetic parameters. The two-compartment model fit is superimposed on the data and shown in FIGS. 1A and 1B. A data listing is provided in Table 3. The volume of the central compartment approximated the plasma volume for all groups.
  • TABLE 2
    Primary and Secondary Pharmacokinetic Model
    Parameter Estimates Determined After Administration
    of 2 mg/kg Constructs to Mice
    Group Number
    1 2 3 4 5
    Linker Fab Double S-S Fab v1 Fab v1B Fab v2
    Dose (mg/kg) 2.0 2.0 2.0 2.0 2.0
    V1/W 44.7 53.9 51.7 42.3 49.1
    (ml/kg)a
    Ke (hr−1)b 4.22 0.486 3.35 1.89 3.86
    Kcp (hr−1)c 0.431 0.581 1.21 4.01 1.77
    Kpc (hr−1)d 1.40 1.09 1.22 3.42 1.33
    CL/W 189 26 173 80 190
    (mL/hr/kg)e
    t1/2α(hr)f 0.14 0.37 0.14 0.08 0.11
    t1/2β(hr) 0.57 2.5 0.84 0.92 0.83
    Tmax(min)g 5.0 5.0 5.0 5.0 5.0
    Cmax (μg/mL)h 34 35 28 34 26
    Co (μg/mL)i 39 46 39 44 39
    AUC/dose/W 9.3 96 12 23 10
    (hr*μg/
    mL)j
    T (hr)k 0.24 2.1 0.30 0.53 0.26
    aVolume of the central compartment as calculated from the equation V = dose/ΣAi.
    bKe is the rate constant associated with the elimination of material from the central compartment.
    cKcp is the rate constant associated with the transfer of material from the central to a peripheral compartment.
    dKpc is the rate constant associated with the transfer of material from the peripheral to the central compartment.
    eWeight-normalized serum clearance.
    ft1/2α and t1/2β are the initial and terminal half-lives associated with each exponential phase.
    gTime of maximum observed concentration.
    hMaximum observed concentrations.
    iZero-time concentration estimated from the disposition function as ΣAi.
    jDose-normalized area under the serum concentration versus time curve.
    kPermanence time.
  • TABLE 3
    Data Listing: Concentration vs. time data
    for 2 mg/kg human anti-CD18 constructs.a
    Concentration (μg/mL)
    Time
    (hours) Group 1 Group 2 Group 3 Group 4 Group 5
    0.083 28.12 34.28 26.1 28.16 25.16
    0.083 33.89 34.67 28.38 33.63 26.39
    0.5 4.84 26.6 4.67 10.61 4.25
    0.5 5.17 20.74 5.83 12.83 4.21
    1 0.91 16.18 2.1 7.16 1.95
    1 1.09 18.24 2.13 6.89 1.54
    2 0.16 11.01 0.82 3.71 0.76
    2 0.31 12 0.57 4.9 0.68
    4 0.31 6.36 0.14 0.91 0.15
    4 LTSb 6.78 0.14 0.67 0.12
    8 LTS 1.95 LTS LTS LTS
    8 LTS 1.66 LTS LTS LTS
    12 LTS 0.71 LTS LTS LTS
    12 LTS 0.88 LTS LTS LTS
    16 LTS 0.17 LTS LTS LTS
    16 LTS 0.16 LTS LTS LTS
    20 LTS 0.1 LTS LTS LTS
    20 LTS 0.08 LTS LTS LTS
    24 LTS 0.08 LTS LTS LTS
    24 LTS LTS LTS LTS LTS
    aConcentration data represent one sample per mouse.
    bLTS = Less than the sensitivity of the assay (0.13 μg/mL for groups 1 and 3-5; 0.06 μg/mL for group 2).
  • Results
  • The data are shown in FIGS. 1A and 1B, where FIG. 1A shows the pharmacokinetics of all five constructs over a time period of 0 to 5 hours, and FIG. 1B shows the pharmacokinetics of all five constructs over a time period of 0 to 25 hours. The initial (or α-phase) half-lives varied as did the terminal (1-phase) half-lives. The Fab v1 B variant had a clearance of 80 mL/hr/kg, which is about three-fold higher than that of the double-disulfide (Fab′)2. The Fab v1, Fab, and Fab v2 had approximately 3-fold greater clearance over the Fab v1B and about 6-fold greater clearance over the double-disulfide (Fab′)2 (173, 189, and 190 mL/hr/kg, respectively).
  • The effective molecular weight of the original Fab was 49 kD, and its clearance was 189 mL/hr/kg.
  • The Fab versions 1, 1B, and 2 all have molecular weights similar to that of the original Fab, yet version 1B was cleared from the serum 2-fold more slowly. Thus, alterations of the amino acid sequence in the Fab constant domain affect clearance. The effect seen on beta-phase half-life shows that with the two least- successful variants 1 and 2, there was a detectable effect that was not sufficient to increase significantly overall permanence time.

Claims (20)

1. Nucleic acid encoding a polypeptide variant of a polypeptide of interest which polypeptide of interest is cleared from the kidney and does not contain a Fc region of an IgG, which variant comprises a salvage receptor binding epitope of an Fc region of an IgG, and which variant has a longer in vivo half-life than the polypeptide of interest.
2. The nucleic acid of claim 1 wherein the polypeptide of interest contains an Ig domain or Ig-like domain that is not a CH2 domain.
3. The nucleic acid of claim 2 wherein the epitope is contained within the Ig domain or Ig-like domain.
4. The nucleic acid of claim 3 wherein the Ig domain or Ig-like domain comprises a CH1 domain.
5. The nucleic acid of claim 3 wherein the epitope is taken from one or two loops of the Fc region and transferred to the Ig domain or Ig-like domain.
6. The nucleic acid of claim 5 wherein the epitope is taken from the CH2 domain of the Fc region and transferred to the CH1, CH3, or VH region, or more than one such region, of an Ig or to a Ig-like domain.
7. The nucleic acid of claim 5 wherein the epitope is taken from the CH2 domain of the Fc region and transferred to the CL region or VL region, or both, of an Ig or to an Ig-like domain.
8. The nucleic acid of claim 3 wherein the polypeptide of interest is a Fab, a (Fab′)2, a diabody, a Fv fragment, a single-chain Fv fragment, or a receptor.
9. The nucleic acid of claim 8 wherein the polypeptide of interest is an LFA-1 antagonist.
10. The nucleic acid of claim 9 wherein the polypeptide of interest is a Fab or (Fab′)2 of an anti-LFA-1 antibody.
11. The nucleic acid of claim 10 wherein the polypeptide of interest is an anti-CD18 Fab or anti-CD18 (Fab′)2.
12. The nucleic acid of claim 11 wherein the polypeptide of interest is human or humanized.
13. The nucleic acid of claim 1 wherein the epitope comprises the sequences: HQNLSDGK (SEQ ID NO: 1), HQNISDGK (SEQ ID NO: 2), HQSLGTQ (SEQ ID NO: 11), or VISSHLGQ (SEQ ID NO: 31) and PKNSSMISNTP (SEQ ID NO: 3).
14. The nucleic acid of claim 13 wherein the epitope is fused to the polypeptide of interest.
15. The nucleic acid of claim 14 wherein the polypeptide of interest is growth hormone or nerve growth factor.
16. A replicable vector comprising the nucleic acid of claim 1.
17. A host cell comprising the nucleic acid of claim 1.
18. A host cell that is transformed with the nucleic acid of claim 1.
19. A method for producing a polypeptide variant comprising culturing the host cells of claim 1 in a culture medium and recovering the variant from the host cell culture.
20. The method of claim 19 wherein the variant is recovered from the host cell culture medium.
US11/830,537 1995-04-14 2007-07-30 Altered polypeptides with increased half-life Abandoned US20080166759A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/830,537 US20080166759A1 (en) 1995-04-14 2007-07-30 Altered polypeptides with increased half-life

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/422,112 US6121022A (en) 1995-04-14 1995-04-14 Altered polypeptides with increased half-life
US09/628,568 US6998253B1 (en) 1995-04-14 2000-07-31 Altered polypeptides with increased half-life
US11/281,880 US20070031922A1 (en) 1995-04-14 2005-11-17 Altered polypeptides with increased half-life
US11/830,537 US20080166759A1 (en) 1995-04-14 2007-07-30 Altered polypeptides with increased half-life

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/281,880 Continuation US20070031922A1 (en) 1995-04-14 2005-11-17 Altered polypeptides with increased half-life

Publications (1)

Publication Number Publication Date
US20080166759A1 true US20080166759A1 (en) 2008-07-10

Family

ID=23673445

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/422,112 Expired - Lifetime US6121022A (en) 1995-04-14 1995-04-14 Altered polypeptides with increased half-life
US09/628,568 Expired - Fee Related US6998253B1 (en) 1995-04-14 2000-07-31 Altered polypeptides with increased half-life
US11/281,880 Abandoned US20070031922A1 (en) 1995-04-14 2005-11-17 Altered polypeptides with increased half-life
US11/830,537 Abandoned US20080166759A1 (en) 1995-04-14 2007-07-30 Altered polypeptides with increased half-life

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/422,112 Expired - Lifetime US6121022A (en) 1995-04-14 1995-04-14 Altered polypeptides with increased half-life
US09/628,568 Expired - Fee Related US6998253B1 (en) 1995-04-14 2000-07-31 Altered polypeptides with increased half-life
US11/281,880 Abandoned US20070031922A1 (en) 1995-04-14 2005-11-17 Altered polypeptides with increased half-life

Country Status (1)

Country Link
US (4) US6121022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940871B2 (en) 2006-03-20 2015-01-27 The Regents Of The University Of California Engineered anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting
US8940298B2 (en) 2007-09-04 2015-01-27 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting and detection
US11208632B2 (en) 2016-04-26 2021-12-28 R.P. Scherer Technologies, Llc Antibody conjugates and methods of making and using the same
WO2023235772A3 (en) * 2022-05-31 2024-01-04 Fred Hutchinson Cancer Center Humanized anti-cd45 antibodies and uses thereof

Families Citing this family (634)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121022A (en) * 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
US6136311A (en) 1996-05-06 2000-10-24 Cornell Research Foundation, Inc. Treatment and diagnosis of cancer
IL132838A (en) 1997-06-13 2004-08-31 Genentech Inc Protein recovery by chromatography followed by filtration upon a charged layer
TWI239847B (en) 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
US7790856B2 (en) 1998-04-07 2010-09-07 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US20080050367A1 (en) 1998-04-07 2008-02-28 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US6761888B1 (en) * 2000-05-26 2004-07-13 Neuralab Limited Passive immunization treatment of Alzheimer's disease
US7179892B2 (en) 2000-12-06 2007-02-20 Neuralab Limited Humanized antibodies that recognize beta amyloid peptide
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
US6867203B2 (en) 1998-12-29 2005-03-15 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory and immune-suppressive compounds
US6897044B1 (en) * 1999-01-28 2005-05-24 Biogen Idec, Inc. Production of tetravalent antibodies
ATE474854T1 (en) * 2000-01-27 2010-08-15 Medimmune Llc RSV NEUTRALIZING ANTIBODIES WITH VERY HIGH AFFINITY
EP1259547B1 (en) 2000-03-01 2012-07-11 Medimmune, Inc. High potency recombinant antibodies and method for producing them
US6677136B2 (en) * 2000-05-03 2004-01-13 Amgen Inc. Glucagon antagonists
DE60140457D1 (en) 2000-09-01 2009-12-24 Blood Res Center MODIFIED POLYPEPTIDES STABILIZED IN THE DESIRED CONFORMATION, AND METHOD FOR THE PRODUCTION THEREOF
WO2002043658A2 (en) * 2000-11-06 2002-06-06 The Jackson Laboratory Fcrn-based therapeutics for the treatment of auto-immune disorders
US7179900B2 (en) * 2000-11-28 2007-02-20 Medimmune, Inc. Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
US6855493B2 (en) 2000-11-28 2005-02-15 Medimmune, Inc. Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
US7700751B2 (en) 2000-12-06 2010-04-20 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize β-amyloid peptide
PE20020574A1 (en) 2000-12-06 2002-07-02 Wyeth Corp HUMANIZED ANTIBODIES THAT RECOGNIZE THE AMYLOID PEPTIDE BETA
US7658921B2 (en) * 2000-12-12 2010-02-09 Medimmune, Llc Molecules with extended half-lives, compositions and uses thereof
EP2357187A1 (en) * 2000-12-12 2011-08-17 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
PL372140A1 (en) * 2001-01-29 2005-07-11 Idec Pharmaceuticals Corporation Modified antibodies and methods of use
WO2002096948A2 (en) * 2001-01-29 2002-12-05 Idec Pharmaceuticals Corporation Engineered tetravalent antibodies and methods of use
EP2075256A2 (en) 2002-01-14 2009-07-01 William Herman Multispecific binding molecules
US7662925B2 (en) * 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
US20080254027A1 (en) * 2002-03-01 2008-10-16 Bernett Matthew J Optimized CD5 antibodies and methods of using the same
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20080260731A1 (en) * 2002-03-01 2008-10-23 Bernett Matthew J Optimized antibodies that target cd19
US20070148171A1 (en) * 2002-09-27 2007-06-28 Xencor, Inc. Optimized anti-CD30 antibodies
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
MY139983A (en) 2002-03-12 2009-11-30 Janssen Alzheimer Immunotherap Humanized antibodies that recognize beta amyloid peptide
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
US20060235208A1 (en) * 2002-09-27 2006-10-19 Xencor, Inc. Fc variants with optimized properties
PT3284753T (en) 2002-10-17 2020-05-04 Genmab As Human monoclonal antibodies against cd20
US9701754B1 (en) 2002-10-23 2017-07-11 City Of Hope Covalent disulfide-linked diabodies and uses thereof
DE10254601A1 (en) 2002-11-22 2004-06-03 Ganymed Pharmaceuticals Ag Gene products differentially expressed in tumors and their use
WO2004069182A2 (en) * 2003-02-01 2004-08-19 Neuralab Limited Active immunization to generate antibodies to soluble a-beta
US20070275460A1 (en) * 2003-03-03 2007-11-29 Xencor.Inc. Fc Variants With Optimized Fc Receptor Binding Properties
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
US8388955B2 (en) * 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
TWI374893B (en) * 2003-05-30 2012-10-21 Janssen Alzheimer Immunotherap Humanized antibodies that recognize beta amyloid peptide
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
WO2005063815A2 (en) * 2003-11-12 2005-07-14 Biogen Idec Ma Inc. Fcϝ receptor-binding polypeptide variants and methods related thereto
EP1697415A1 (en) * 2003-11-12 2006-09-06 Biogen Idec MA Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
NZ547157A (en) 2003-12-10 2009-07-31 Medarex Inc Interferon Alpha Antibodies and their uses
EP1691837B1 (en) 2003-12-10 2012-06-20 Medarex, Inc. Ip-10 antibodies and their uses
EP2275448A3 (en) * 2003-12-19 2013-02-06 Genentech, Inc. Monovalent antibody fragments useful as therapeutics
WO2005077981A2 (en) * 2003-12-22 2005-08-25 Xencor, Inc. Fc POLYPEPTIDES WITH NOVEL Fc LIGAND BINDING SITES
CA2561264A1 (en) * 2004-03-24 2005-10-06 Xencor, Inc. Immunoglobulin variants outside the fc region
DE102004024617A1 (en) 2004-05-18 2005-12-29 Ganymed Pharmaceuticals Ag Differentially expressed in tumors gene products and their use
PL1781705T3 (en) 2004-06-21 2015-03-31 Squibb & Sons Llc Interferon alpha receptor i antibodies and their uses
US7598356B2 (en) * 2004-07-08 2009-10-06 Board of Regents of the University of Nebraska by and on behalf of the University of Nebraska Medical Center Method for purifying a protein of the cystine-knot superfamily
US20150010550A1 (en) 2004-07-15 2015-01-08 Xencor, Inc. OPTIMIZED Fc VARIANTS
KR100864549B1 (en) 2004-08-04 2008-10-20 어플라이드 몰리큘라 에볼류션, 인코포레이티드 Variant fc regions
ZA200701656B (en) * 2004-08-05 2008-09-25 Genentech Inc Humanized anti-cment antagonists
US20060074225A1 (en) * 2004-09-14 2006-04-06 Xencor, Inc. Monomeric immunoglobulin Fc domains
US20060115485A1 (en) * 2004-10-29 2006-06-01 Medimmune, Inc. Methods of preventing and treating RSV infections and related conditions
EP2325207B1 (en) 2004-11-12 2017-03-15 Xencor, Inc. FC variants with altered binding to FCRN
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
JP2008523815A (en) 2004-12-15 2008-07-10 エラン ファーマ インターナショナル リミテッド Humanized amyloid beta antibody for use in improving cognition
WO2006076594A2 (en) * 2005-01-12 2006-07-20 Xencor, Inc. Antibodies and fc fusion proteins with altered immunogenicity
HUE025945T2 (en) 2005-02-15 2016-07-28 Univ Duke Anti-cd19 antibodies and uses in oncology
KR101433381B1 (en) 2005-03-23 2014-10-02 젠맵 에이/에스 Antibodies against cd38 for treatment of multiple myeloma
EP2221316A1 (en) 2005-05-05 2010-08-25 Duke University Anti-CD19 antibody therapy for autoimmune disease
CN105315373B (en) 2005-05-09 2018-11-09 小野药品工业株式会社 The human monoclonal antibodies of programmed death-1 (PD-1) and the method for carrying out treating cancer using anti-PD-1 antibody
AU2006247064A1 (en) * 2005-05-18 2006-11-23 Biogen Idec Inc. Methods for treating fibrotic conditions
SI2314623T1 (en) 2005-06-21 2012-11-30 Xoma Technology Ltd IL-1beta binding antibodies and fragments thereof
WO2007002543A2 (en) 2005-06-23 2007-01-04 Medimmune, Inc. Antibody formulations having optimized aggregation and fragmentation profiles
SG163554A1 (en) 2005-07-01 2010-08-30 Medarex Inc Human monoclonal antibodies to programmed death ligand 1 (pd-l1)
AU2006265936A1 (en) * 2005-07-01 2007-01-11 Medimmune, Llc An integrated approach for generating multidomain protein therapeutics
US9580506B2 (en) * 2005-07-21 2017-02-28 Genmab A/S Potency assays for antibody drug substance binding to an Fc receptor
EP1762575A1 (en) 2005-09-12 2007-03-14 Ganymed Pharmaceuticals AG Identification of tumor-associated antigens for diagnosis and therapy
EP1931709B1 (en) * 2005-10-03 2016-12-07 Xencor, Inc. Fc variants with optimized fc receptor binding properties
JP4860703B2 (en) * 2005-10-06 2012-01-25 ゼンコー・インコーポレイテッド Optimized anti-CD30 antibody
KR20080073293A (en) 2005-10-14 2008-08-08 메디뮨 엘엘씨 Cell display of antibody libraries
AR056142A1 (en) * 2005-10-21 2007-09-19 Amgen Inc METHODS TO GENERATE THE MONOVALENT IGG ANTIBODY
KR101461263B1 (en) 2005-10-21 2014-11-17 노파르티스 아게 Human antibodies against IL-13 and therapeutic uses
US20070099246A1 (en) * 2005-11-03 2007-05-03 Sandy John D Antibodies, assays and kits to quantitate cartilage destruction
EP1790664A1 (en) 2005-11-24 2007-05-30 Ganymed Pharmaceuticals AG Monoclonal antibodies against claudin-18 for treatment of cancer
AU2006321554B2 (en) 2005-12-08 2012-08-02 E. R. Squibb & Sons, L.L.C. Human monoclonal antibodies to Fucosyl-GM1 and methods for using anti-Fucosyl-GM1
TW200745163A (en) * 2006-02-17 2007-12-16 Syntonix Pharmaceuticals Inc Peptides that block the binding of IgG to FcRn
EP1999148B8 (en) 2006-03-06 2014-03-05 Medlmmune, LLC Humanized anti-cd22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
US8784810B2 (en) 2006-04-18 2014-07-22 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
JP5244785B2 (en) 2006-08-11 2013-07-24 小野薬品工業株式会社 Monoclonal antibody against stroma-derived factor-1 (SDF-1)
US8524867B2 (en) 2006-08-14 2013-09-03 Xencor, Inc. Optimized antibodies that target CD19
CN101627055A (en) 2006-09-05 2010-01-13 梅达雷克斯公司 The antibody of bone morphogenetic protein and acceptor thereof and their using method
US8323653B2 (en) 2006-09-08 2012-12-04 Medimmune, Llc Humanized anti-CD19 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
CA2660795C (en) * 2006-09-18 2014-11-18 Xencor, Inc. Optimized antibodies that target hm1.24
EA018836B1 (en) 2006-10-02 2013-11-29 Медарекс, Л.Л.К. Human antibodies that bind cxcr4 and uses thereof
CA2666679C (en) 2006-10-19 2016-06-07 Merck & Co., Inc. High affinity antibody antagonists of interleukin-13 receptor alpha 1
PL2068922T3 (en) 2006-10-19 2012-11-30 Csl Ltd Anti-il-13r alpha 1 antibodies and their uses thereof
US8618248B2 (en) 2006-10-31 2013-12-31 President And Fellows Of Harvard College Phosphopeptide compositions and anti-phosphopeptide antibody compositions and methods of detecting phosphorylated peptides
JP2010509920A (en) 2006-11-15 2010-04-02 メダレックス インコーポレーティッド Human monoclonal antibodies against BTLA and methods of use
CN101626782B (en) 2006-12-01 2013-03-27 梅达雷克斯公司 Human antibodies that bind cd22 and uses thereof
CL2007003622A1 (en) 2006-12-13 2009-08-07 Medarex Inc Human anti-cd19 monoclonal antibody; composition comprising it; and tumor cell growth inhibition method.
AU2007333098A1 (en) 2006-12-14 2008-06-19 Medarex, Inc. Human antibodies that bind CD70 and uses thereof
RU2554747C9 (en) 2006-12-20 2015-10-20 Ксома (Сша) Ллс Method of treating il-1beta-dependent diseases
ES2910298T3 (en) 2007-03-08 2022-05-12 Humanigen Inc Antibodies against EphA3 for the treatment of solid tumors
EP1970384A1 (en) 2007-03-14 2008-09-17 Ganymed Pharmaceuticals AG Monoclonal antibodies for treatment of cancer
US8003097B2 (en) 2007-04-18 2011-08-23 Janssen Alzheimer Immunotherapy Treatment of cerebral amyloid angiopathy
JP5575636B2 (en) 2007-05-07 2014-08-20 メディミューン,エルエルシー Anti-ICOS antibodies and their use in the treatment of tumors, transplants and autoimmune diseases
EP1997832A1 (en) 2007-05-29 2008-12-03 Ganymed Pharmaceuticals AG Monoclonal antibodies against Claudin-18 for treatment of cancer
EP1997830A1 (en) 2007-06-01 2008-12-03 AIMM Therapeutics B.V. RSV specific binding molecules and means for producing them
US7580304B2 (en) * 2007-06-15 2009-08-25 United Memories, Inc. Multiple bus charge sharing
DK2182983T3 (en) 2007-07-27 2014-07-14 Janssen Alzheimer Immunotherap TREATMENT OF AMYLOIDOGENIC DISEASES WITH HUMANIZED ANTI-ABETA ANTIBODIES
EP2069401A4 (en) 2007-07-31 2011-02-23 Medimmune Llc Multispecific epitope binding proteins and uses thereof
MX2010001363A (en) 2007-08-09 2010-03-09 Syntonix Pharmaceuticals Inc Immunomodulatory peptides.
PL2769729T3 (en) 2007-09-04 2019-09-30 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
AR068767A1 (en) 2007-10-12 2009-12-02 Novartis Ag ANTIBODIES AGAINST SCLEROSTIN, COMPOSITIONS AND METHODS OF USE OF THESE ANTIBODIES TO TREAT A PATHOLOGICAL DISORDER MEDIATIONED BY SCLEROSTIN
JO3076B1 (en) 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap Immunotherapy regimes dependent on apoe status
MX2010004761A (en) 2007-11-02 2010-05-19 Novartis Ag Molecules and methods for modulating low-density-lipoprotein receptor-related protein 6 (lrp6).
CA2982321C (en) 2007-12-14 2021-01-05 Novo Nordisk A/S Antibodies against human nkg2d and uses thereof
AU2008343085B2 (en) 2007-12-20 2015-03-12 Xoma (Us) Llc Methods for the treatment of gout
RU2490278C2 (en) 2007-12-21 2013-08-20 Медиммун Лимитед ELEMENT BOUND WITH INTERLEUKIN-4 RECEPTOR α (IL-4Rα)-173
US8092804B2 (en) 2007-12-21 2012-01-10 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Rα)-173
EP2240203B1 (en) 2008-02-05 2014-04-09 Bristol-Myers Squibb Company Alpha 5 - beta 1 antibodies and their uses
SI2250279T1 (en) 2008-02-08 2016-10-28 Medimmune, Llc Anti-ifnar1 antibodies with reduced fc ligand affinity
CL2009000545A1 (en) * 2008-03-06 2010-10-15 Genentech Inc Use of a c-met antagonist and a her antagonist for the treatment of cancer.
US20100048488A1 (en) * 2008-08-01 2010-02-25 Syntonix Pharmaceuticals, Inc. Immunomodulatory peptides
EP2328616B1 (en) 2008-08-05 2015-04-29 Novartis AG Compositions and methods for antibodies against complement protein c5
US20100069616A1 (en) * 2008-08-06 2010-03-18 The Regents Of The University Of California Engineered antibody-nanoparticle conjugates
AR072999A1 (en) 2008-08-11 2010-10-06 Medarex Inc HUMAN ANTIBODIES THAT JOIN GEN 3 OF LYMPHOCYTARY ACTIVATION (LAG-3) AND THE USES OF THESE
EP2166021A1 (en) 2008-09-16 2010-03-24 Ganymed Pharmaceuticals AG Monoclonal antibodies for treatment of cancer
US8192738B2 (en) 2008-09-19 2012-06-05 Medimmune, Llc Targeted antibodies directed to DLL4
US9067981B1 (en) 2008-10-30 2015-06-30 Janssen Sciences Ireland Uc Hybrid amyloid-beta antibodies
US8298533B2 (en) 2008-11-07 2012-10-30 Medimmune Limited Antibodies to IL-1R1
BRPI0921845A2 (en) 2008-11-12 2019-09-17 Medimmune Llc stable sterile aqueous formulation, pharmaceutical unit dosage form, pre-filled syringe, and methods for treating a disease or disorder, treating or preventing rejection, depleting unique expressing t cells in a human patient, and disrupting central germinal architecture in a secondary lymphoid organ of a primate
WO2010063785A2 (en) 2008-12-03 2010-06-10 Genmab A/S Antibody variants having modifications in the constant region
US20110311450A1 (en) 2008-12-08 2011-12-22 Zurit Levine Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US8775090B2 (en) 2008-12-12 2014-07-08 Medimmune, Llc Crystals and structure of a human IgG Fc variant with enhanced FcRn binding
EP2379595A2 (en) 2008-12-23 2011-10-26 AstraZeneca AB Targeted binding agents directed to 5 1 and uses thereof
EP2382238A1 (en) 2008-12-31 2011-11-02 Biogen Idec MA Inc. Anti-lymphotoxin antibodies
WO2010096394A2 (en) 2009-02-17 2010-08-26 Redwood Biosciences, Inc. Aldehyde-tagged protein-based drug carriers and methods of use
WO2010096486A1 (en) 2009-02-17 2010-08-26 Cornell Research Foundation, Inc. Methods and kits for diagnosis of cancer and prediction of therapeutic value
LT2398902T (en) 2009-02-20 2023-12-27 Astellas Pharma Inc. Methods and compositions for diagnosis and treatment of cancer
BRPI1005984A2 (en) * 2009-02-23 2016-10-04 Glenmark Pharmaceuticals Sa humanized antibody or fragment thereof that binds to human cd19, isolated nucleic acid, vector, host cell, method for producing a humanized antibody or fragment thereof that binds to human cd12, composition, immunoconjugate, use of humanized antibody or fragment of the same, article of manufacture and kit
LT2403878T (en) 2009-03-05 2017-10-10 E. R. Squibb & Sons, L.L.C. Fully human antibodies specific to cadm1
WO2010102244A1 (en) 2009-03-06 2010-09-10 Kalobios Pharmaceuticals, Inc. Treatment of leukemias and chronic myeloproliferative diseases with antibodies to epha3
SG175734A1 (en) 2009-04-20 2011-12-29 Oxford Biotherapeutics Ltd Antibodies specific to cadherin-17
US9062116B2 (en) 2009-04-23 2015-06-23 Infinity Pharmaceuticals, Inc. Anti-fatty acid amide hydrolase-2 antibodies and uses thereof
JP2012524524A (en) 2009-04-27 2012-10-18 ノバルティス アーゲー Composition of therapeutic antibodies specific for IL-12 receptor β1 subunit and methods of use
MA33279B1 (en) 2009-04-27 2012-05-02 Novartis Ag COMPOSITIONS AND METHODS FOR INCREASING MUSCLE GROWTH
JP6091891B2 (en) 2009-05-15 2017-03-08 ユニバーシティ・ヘルス・ネットワーク Compositions and methods for treating hematological cancers targeting SIRPα-CD47 interaction
EP3431501A1 (en) 2009-06-18 2019-01-23 Pfizer Inc Anti notch-1 antibodies
IN2012DN00863A (en) 2009-07-31 2015-07-10 Medarex Inc
WO2011021146A1 (en) 2009-08-20 2011-02-24 Pfizer Inc. Osteopontin antibodies
AU2010290131C1 (en) 2009-08-24 2015-12-03 Amunix Operating Inc. Coagulation factor VII compositions and methods of making and using same
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
WO2011029823A1 (en) 2009-09-09 2011-03-17 Novartis Ag Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
WO2011047083A1 (en) 2009-10-13 2011-04-21 Oxford Biotherapeutics Ltd. Antibodies against epha10
WO2011053465A1 (en) 2009-10-14 2011-05-05 Kalobios Pharmaceuticals, Inc. Antibodies to epha3
ES2702053T3 (en) 2009-11-02 2019-02-27 Univ Washington Therapeutic compositions of nucleases and methods
CA2779384C (en) 2009-11-04 2018-02-27 Schering Corporation Engineered anti-tslp antibody
HUE035516T2 (en) 2009-11-11 2018-05-28 Ganymed Pharmaceuticals Gmbh Antibodies specific for claudin 6 (CLDN6)
EP2322555A1 (en) 2009-11-11 2011-05-18 Ganymed Pharmaceuticals AG Antibodies specific for claudin 6 (CLDN6)
SI2504364T1 (en) 2009-11-24 2017-11-30 Medimmune Limited Targeted binding agents against b7-h1
EP2327725A1 (en) 2009-11-26 2011-06-01 InflaRx GmbH Anti-C5a binding moieties with high blocking activity
WO2011067711A2 (en) 2009-12-01 2011-06-09 Compugen Ltd Novel heparanase splice variant
CA3040276A1 (en) 2009-12-02 2011-06-09 Imaginab, Inc. J591 minibodies and cys-diabodies for targeting human prostate specific membrane antigen (psma) and methods for their use
AU2010334809C1 (en) 2009-12-23 2015-02-26 Agenus Inc. Binding members for human cytomegalovirus
WO2011091078A2 (en) 2010-01-19 2011-07-28 Xencor, Inc. Antibody fc variants with enhanced complement activity
US8609092B2 (en) 2010-02-08 2013-12-17 Agensys, Inc. Antibody drug conjugates (ADC) that bind to 161P2F10B proteins
AR080154A1 (en) 2010-02-10 2012-03-14 Immunogen Inc CD20 ANTIBODIES AND ITS USE
BR112012019902A2 (en) 2010-02-10 2019-09-24 Novartis Ag "method and compounds for muscle growth"
WO2011100566A2 (en) 2010-02-12 2011-08-18 Oncomed Pharmaceuticals, Inc. Methods for identifying and isolating cells expressing a polypeptide
EP2371864A1 (en) 2010-03-23 2011-10-05 Ganymed Pharmaceuticals AG Monoclonal antibodies for treatment of cancer
AU2011230537C1 (en) 2010-03-26 2018-08-02 Trustees Of Dartmouth College Vista regulatory T cell mediator protein, vista binding agents and use thereof
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
US9290573B2 (en) 2010-05-06 2016-03-22 Novartis Ag Therapeutic low density lipoprotein-related protein 6 (LRP6) multivalent antibodies
PE20130207A1 (en) 2010-05-06 2013-02-28 Novartis Ag ANTIBODIES ANTAGONISTS TO LRP6 (LOW DENSITY LIPOPROTEIN-RELATED PROTEIN 6) AND COMPOSITIONS
WO2011163401A2 (en) 2010-06-22 2011-12-29 Neogenix Oncology, Inc. Colon and pancreas cancer specific antigens and antibodies
EP2404936A1 (en) 2010-07-06 2012-01-11 Ganymed Pharmaceuticals AG Cancer therapy using CLDN6 target-directed antibodies in vivo
DK2591006T3 (en) 2010-07-09 2019-07-29 Bioverativ Therapeutics Inc PROCESSABLE SINGLE CHAIN MOLECULES AND POLYPEPTIDES MADE BY USING THEREOF
EP2603526A1 (en) 2010-08-13 2013-06-19 Medimmune Limited Monomeric polypeptides comprising variant fc regions and methods of use
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
UA114883C2 (en) 2010-08-20 2017-08-28 Новартіс Аг Antibodies for epidermal growth factor receptor 3 (her3)
WO2012035518A1 (en) 2010-09-17 2012-03-22 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
ES2719624T3 (en) 2010-09-23 2019-07-11 Prec Biologics Inc Peptidomimetics of colon and pancreas cancer
TWI764324B (en) 2010-09-29 2022-05-11 美商艾澤西公司 Antibody drug conjugates (adc) that bind to 191p4d12 proteins
JP2013543384A (en) 2010-10-05 2013-12-05 ノバルティス アーゲー Anti-IL12Rbeta1 antibody and its use in the treatment of autoimmune and inflammatory diseases
EP2643018B1 (en) 2010-11-23 2020-10-14 AlderBio Holdings LLC Anti-il-6 antibodies for the treatment of oral mucositis
WO2012075581A1 (en) 2010-12-06 2012-06-14 Ym Biosciences Inc. Antibodies selective for cells presenting erbb2 at high density
AU2011342799B2 (en) 2010-12-15 2016-06-09 Wyeth Llc Anti-Notch1 antibodies
WO2012092539A2 (en) 2010-12-31 2012-07-05 Takeda Pharmaceutical Company Limited Antibodies to dll4 and uses thereof
US9540438B2 (en) 2011-01-14 2017-01-10 Redwood Bioscience, Inc. Aldehyde-tagged immunoglobulin polypeptides and methods of use thereof
CA2825255C (en) 2011-01-24 2021-05-18 Ym Biosciences Inc. Antibodies selective for cells presenting egfr at high density
CA2830923A1 (en) 2011-04-15 2012-10-18 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof for treatment of immune related disorders and cancer
KR20230156151A (en) 2011-04-29 2023-11-13 유니버시티 오브 워싱톤 스루 이츠 센터 포 커머셜리제이션 Therapeutic nuclease compositions and methods
EP2707391B1 (en) 2011-05-13 2017-11-08 Gamamabs Pharma Antibodies against her3
CN107090043B (en) 2011-05-13 2021-12-07 加尼梅德药物公司 Antibodies for treating claudin 6 expressing cancers
DK2714738T3 (en) 2011-05-24 2019-01-28 Zyngenia Inc MULTIVALENT AND MONOVALENT MULTISPECIFIC COMPLEXES AND THEIR APPLICATIONS
KR102046666B1 (en) 2011-05-25 2019-11-19 이나뜨 파르마 Anti-kir antibodies for the treatment of inflammatory disorders
WO2012170742A2 (en) 2011-06-07 2012-12-13 University Of Hawaii Treatment and prevention of cancer with hmgb1 antagonists
US9244074B2 (en) 2011-06-07 2016-01-26 University Of Hawaii Biomarker of asbestos exposure and mesothelioma
ES2724778T3 (en) 2011-06-10 2019-09-16 Bioverativ Therapeutics Inc Procoagulant compounds and procedures for their use
WO2012172495A1 (en) 2011-06-14 2012-12-20 Novartis Ag Compositions and methods for antibodies targeting tem8
AU2012273955A1 (en) 2011-06-22 2014-01-09 Inserm (Institut National De La Sante Et De La Recherche Medicale) Anti-Axl antibodies and uses thereof
EP2723376B1 (en) 2011-06-22 2018-12-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-axl antibodies and uses thereof
UA114478C2 (en) 2011-06-28 2017-06-26 Берлін-Хемі Аг Antibodies to adp-ribosyl cyclase 2
CA2836855C (en) 2011-06-30 2020-07-14 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
EP2726098A1 (en) 2011-06-30 2014-05-07 F.Hoffmann-La Roche Ag Anti-c-met antibody formulations
WO2013006437A1 (en) 2011-07-01 2013-01-10 Novartis Ag Method for treating metabolic disorders
AU2012282116B2 (en) 2011-07-11 2016-07-07 Ichnos Sciences SA Antibodies that bind to OX40 and their uses
WO2013012733A1 (en) 2011-07-15 2013-01-24 Biogen Idec Ma Inc. Heterodimeric fc regions, binding molecules comprising same, and methods relating thereto
JP2014526886A (en) 2011-07-15 2014-10-09 モルフォシス・アー・ゲー Antibodies cross-reactive with macrophage migration inhibitory factor (MIF) and D-dopachrome tomerase (D-DT)
UY34317A (en) 2011-09-12 2013-02-28 Genzyme Corp T cell antireceptor antibody (alpha) / ß
WO2013039954A1 (en) 2011-09-14 2013-03-21 Sanofi Anti-gitr antibodies
EP2760471B9 (en) 2011-09-30 2017-07-19 Dana-Farber Cancer Institute, Inc. Therapeutic peptides
ES2769786T3 (en) 2011-10-14 2020-06-29 Recordati Ag Antibodies and methods for diseases related to the Wnt pathway
US9220774B2 (en) 2011-11-01 2015-12-29 Bionomics Inc. Methods of treating cancer by administering anti-GPR49 antibodies
WO2013067054A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Antibodies and methods of treating cancer
EP2773373B1 (en) 2011-11-01 2018-08-22 Bionomics, Inc. Methods of blocking cancer stem cell growth
WO2013067060A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Anti-gpr49 antibodies
ES2749349T3 (en) 2011-11-07 2020-03-19 Medimmune Llc Multispecific and multivalent binding proteins and uses thereof
ES2758433T3 (en) 2011-12-05 2020-05-05 Novartis Ag Antibodies to epidermal growth factor receptor 3 (HER3)
ES2784131T3 (en) 2011-12-05 2020-09-22 X Body Inc PDGF receptor beta-binding polypeptides
BR112014013568A2 (en) 2011-12-05 2017-06-13 Novartis Ag epidermal growth factor 3 (her3) receptor antibodies directed to her3 domain ii
CN104144946A (en) 2011-12-19 2014-11-12 爱克索马美国有限责任公司 Methods for treating acne
PT2794905T (en) 2011-12-20 2020-06-30 Medimmune Llc Modified polypeptides for bispecific antibody scaffolds
CA2859493A1 (en) 2011-12-21 2013-06-27 Novartis Ag Compositions and methods for antibodies targeting factor p
WO2013106485A2 (en) 2012-01-09 2013-07-18 The Scripps Research Institute Ultralong complementarity determining regions and uses thereof
JP2015509091A (en) 2012-01-09 2015-03-26 ザ スクリプス リサーチ インスティテュート Humanized antibody
CN109111526A (en) 2012-01-12 2019-01-01 比奥贝拉蒂治疗公司 Chimeric factor VIII polypeptide and application thereof
CA2848985A1 (en) 2012-02-01 2013-08-08 Compugen Ltd. C10rf32 antibodies, and uses thereof for treatment of cancer
PT2814840T (en) 2012-02-15 2020-01-28 Bioverativ Therapeutics Inc Factor viii compositions and methods of making and using same
EP3549953A1 (en) 2012-02-15 2019-10-09 Bioverativ Therapeutics Inc. Recombinant factor viii proteins
CN113773385A (en) 2012-03-28 2021-12-10 赛诺菲 Antibodies to bradykinin B1 receptor ligands
SG11201407209YA (en) 2012-05-07 2014-12-30 Sanofi Sa Methods for preventing biofilm formation
WO2013167153A1 (en) 2012-05-09 2013-11-14 Ganymed Pharmaceuticals Ag Antibodies useful in cancer diagnosis
WO2013175276A1 (en) 2012-05-23 2013-11-28 Argen-X B.V Il-6 binding molecules
KR20150027072A (en) 2012-06-04 2015-03-11 아이알엠 엘엘씨 Site-specific labeling methods and molecules produced thereby
JP2015525222A (en) 2012-06-08 2015-09-03 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. Chimeric coagulation factor
PE20150212A1 (en) 2012-06-08 2015-02-27 Glenmark Pharmaceuticals Sa ANTI-TRKA ANTIBODIES WITH ENHANCED INHIBITORY PROPERTIES AND THEIR DERIVATIVES
WO2013185113A1 (en) 2012-06-08 2013-12-12 Biogen Idec Ma Inc. Procoagulant compounds
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
TWI677507B (en) 2012-06-22 2019-11-21 達特茅斯學院基金會 Novel vista-ig constructs and the use of vista-ig for treatment of autoimmune, allergic and inflammatory disorders
UY34887A (en) 2012-07-02 2013-12-31 Bristol Myers Squibb Company Una Corporacion Del Estado De Delaware OPTIMIZATION OF ANTIBODIES THAT FIX THE LYMPHOCYTE ACTIVATION GEN 3 (LAG-3) AND ITS USES
EP2870250B2 (en) 2012-07-06 2022-06-29 Bioverativ Therapeutics Inc. Cell line expressing single chain factor viii polypeptides and uses thereof
BR112015000267B1 (en) 2012-07-11 2023-01-24 Bioverativ Therapeutics Inc. CHIMERIC PROTEINS, AND PHARMACEUTICAL COMPOSITION
NZ731881A (en) 2012-07-25 2022-07-29 Celldex Therapeutics Inc Anti-kit antibodies and uses thereof
PT2887959T (en) 2012-08-23 2019-02-01 Seattle Genetics Inc Antibody drug conjugates (adc) that bind to 158p1d7 proteins
JOP20200308A1 (en) 2012-09-07 2017-06-16 Novartis Ag IL-18 binding molecules
EP3552628A1 (en) 2012-09-07 2019-10-16 The Trustees Of Dartmouth College Vista modulators for diagnosis and treatment of cancer
PT2895513T (en) 2012-09-12 2018-10-08 Genzyme Corp Fc containing polypeptides with altered glycosylation and reduced effector function
US9790268B2 (en) 2012-09-12 2017-10-17 Genzyme Corporation Fc containing polypeptides with altered glycosylation and reduced effector function
EP2733153A1 (en) 2012-11-15 2014-05-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the preparation of immunoconjugates and uses thereof
WO2014084859A1 (en) 2012-11-30 2014-06-05 Novartis Ag Molecules and methods for modulating tmem16a activities
EP2928921B1 (en) 2012-12-05 2021-01-20 Novartis AG Compositions and methods for antibodies targeting epo
CN110066341B (en) 2012-12-17 2023-01-31 Pf阿根图姆知识产权控股有限责任公司 Proteins, conjugates, pharmaceutical compositions, DNA constructs, host cells, and methods of making human SIRP alpha fusion proteins
EP2938633B1 (en) 2012-12-28 2018-02-07 Precision Biologics, Inc. Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer
AU2013371957B2 (en) 2013-01-02 2018-10-25 Ichnos Sciences SA Antibodies that bind to TL1A and their uses
KR102626525B1 (en) 2013-02-08 2024-01-19 노파르티스 아게 Specific sites for modifying antibodies to make immunoconjugates
PL2953969T3 (en) 2013-02-08 2020-02-28 Novartis Ag Anti-il-17a antibodies and their use in treating autoimmune and inflammatory disorders
WO2014124258A2 (en) 2013-02-08 2014-08-14 Irm Llc Specific sites for modifying antibodies to make immunoconjugates
FI3889173T3 (en) 2013-02-15 2023-10-02 Bioverativ Therapeutics Inc Optimized factor viii gene
AU2014249290B2 (en) 2013-03-11 2018-11-22 Genzyme Corporation Hyperglycosylated binding polypeptides
US9498532B2 (en) 2013-03-13 2016-11-22 Novartis Ag Antibody drug conjugates
EP3611189A1 (en) 2013-03-14 2020-02-19 Novartis AG Antibodies against notch 3
EP2968541A4 (en) 2013-03-15 2017-02-08 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
BR112015021134A2 (en) 2013-03-15 2017-10-10 Novartis Ag drug and antibody conjugates
EP2968498A4 (en) 2013-03-15 2016-09-07 Biogen Ma Inc Factor ix polypeptide formulations
MX2015011075A (en) 2013-03-15 2015-10-29 Dana Farber Cancer Inst Inc Therapeutic peptides.
US10053510B2 (en) 2013-05-24 2018-08-21 Promis Neurosciences Inc. FasR antibodies and methods of use
AR096601A1 (en) 2013-06-21 2016-01-20 Novartis Ag ANTIBODIES OF LEXINED OXIDATED LDL RECEIVER 1 AND METHODS OF USE
US9562101B2 (en) 2013-06-21 2017-02-07 Novartis Ag Lectin-like oxidized LDL receptor 1 antibodies and methods of use
WO2015017146A2 (en) 2013-07-18 2015-02-05 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
AU2014290361B2 (en) 2013-07-18 2019-04-18 Taurus Biosciences, Llc Humanized antibodies with ultralong complementarity determining regions
WO2015014376A1 (en) 2013-07-31 2015-02-05 Biontech Ag Diagnosis and therapy of cancer involving cancer stem cells
CA2919701A1 (en) 2013-08-01 2015-02-05 Agensys, Inc. Antibody drug conjugates (adc) that bind to cd37 proteins
KR102048718B1 (en) 2013-08-02 2019-11-26 화이자 인코포레이티드 Anti-cxcr4 antibodies and antibody-drug conjugates
EP3875106A1 (en) 2013-08-08 2021-09-08 Bioverativ Therapeutics Inc. Purification of chimeric fviii molecules
TW201734054A (en) 2013-08-13 2017-10-01 賽諾菲公司 Antibodies to plasminogen activator inhibitor-1 (PAI-1) and uses thereof
MX2016001851A (en) 2013-08-13 2016-05-16 Sanofi Sa Antibodies to plasminogen activator inhibitor-1 (pai-1) and uses thereof.
US20160200818A1 (en) 2013-08-14 2016-07-14 Novartis Ag Methods of treating Sporadic Inclusion Body Myositis
TW202003554A (en) 2013-08-14 2020-01-16 美商百歐維拉提夫治療公司 Factor VIII-XTEN fusions and uses thereof
HUE057005T2 (en) 2013-09-25 2022-04-28 Bioverativ Therapeutics Inc On-column viral inactivation methods
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
ES2837392T3 (en) 2013-10-02 2021-06-30 Medimmune Llc Neutralizing anti-influenza A antibodies and their uses
WO2015066550A1 (en) 2013-10-31 2015-05-07 Resolve Therapeutics, Llc Therapeutic nuclease-albumin fusions and methods
CN105849125B (en) 2013-11-07 2020-05-15 国家医疗保健研究所 Neuregulin allosteric anti-HER 3 antibody
EP3065769A4 (en) 2013-11-08 2017-05-31 Biogen MA Inc. Procoagulant fusion compound
WO2015085210A1 (en) 2013-12-06 2015-06-11 Dana-Farber Cancer Institute, Inc. Therapeutic peptides
US9546215B2 (en) 2013-12-09 2017-01-17 Allakos Inc. Anti-Siglec-8 antibodies and methods of use thereof
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
EA035324B1 (en) 2013-12-24 2020-05-28 Ардженкс Бвба NEONATAL Fc RECEPTOR (FcRn) ANTAGONISTS AND METHODS OF USE THEREOF
MX369173B (en) 2013-12-24 2019-10-30 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments.
CN116731201A (en) 2014-01-10 2023-09-12 比奥贝拉蒂治疗公司 Factor VIII chimeric proteins and uses thereof
AU2015222757B2 (en) 2014-02-28 2020-10-08 Allakos Inc. Methods and compositions for treating Siglec-8 associated diseases
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
SG11201606850QA (en) 2014-03-12 2016-09-29 Novartis Ag Specific sites for modifying antibodies to make immunoconjugates
AU2015229009B2 (en) 2014-03-14 2019-08-22 Dana-Farber Cancer Institute, Inc. Vaccine compositions and methods for restoring NKG2D pathway function against cancers
DK3129067T3 (en) 2014-03-19 2023-03-27 Genzyme Corp SITE-SPECIFIC GLYCOMODIFICATION OF TARGETING MOBILITIES
CN106164094B (en) 2014-03-21 2021-05-14 X博迪公司 Bispecific antigen binding polypeptides
MX2016012285A (en) 2014-03-24 2017-01-23 Genentech Inc Cancer treatment with c-met antagonists and correlation of the latter with hgf expression.
EP3126397B1 (en) 2014-04-04 2020-01-29 Bionomics, Inc. Humanized antibodies that bind lgr5
TW201622746A (en) 2014-04-24 2016-07-01 諾華公司 Methods of improving or accelerating physical recovery after surgery for hip fracture
IL249092B (en) 2014-05-28 2022-07-01 Agenus Inc Anti-gitr antibodies and methods of use thereof
ES2901705T3 (en) 2014-06-06 2022-03-23 Bristol Myers Squibb Co Glucocorticoid-Induced Tumor Necrosis Factor Receptor (GITR) Antibodies and Uses Thereof
US11123426B2 (en) 2014-06-11 2021-09-21 The Trustees Of Dartmouth College Use of vista agonists and antagonists to suppress or enhance humoral immunity
EP3161001A2 (en) 2014-06-25 2017-05-03 Novartis AG Antibodies specific for il-17a fused to hyaluronan binding peptide tags
US11008561B2 (en) 2014-06-30 2021-05-18 Bioverativ Therapeutics Inc. Optimized factor IX gene
US10786578B2 (en) 2014-08-05 2020-09-29 Novartis Ag CKIT antibody drug conjugates
EP4122957A1 (en) 2014-08-07 2023-01-25 Novartis AG Angiopoietin-like 4 antibodies and methods of use
WO2016020882A2 (en) 2014-08-07 2016-02-11 Novartis Ag Angiopoetin-like 4 (angptl4) antibodies and methods of use
TN2016000577A1 (en) 2014-08-12 2018-04-04 Novartis Ag Anti-cdh6 antibody drug conjugates
EP3183267A1 (en) 2014-08-19 2017-06-28 Merck Sharp & Dohme Corp. Anti-tigit antibodies
JO3663B1 (en) 2014-08-19 2020-08-27 Merck Sharp & Dohme Anti-lag3 antibodies and antigen-binding fragments
WO2016046301A1 (en) 2014-09-26 2016-03-31 Bayer Pharma Aktiengesellschaft Stabilized adrenomedullin derivatives and use thereof
MA41044A (en) 2014-10-08 2017-08-15 Novartis Ag COMPOSITIONS AND METHODS OF USE FOR INCREASED IMMUNE RESPONSE AND CANCER TREATMENT
US10064952B2 (en) 2014-10-09 2018-09-04 Genzyme Corporation Glycoengineered antibody drug conjugates
CA2964317C (en) 2014-10-14 2021-10-05 Halozyme, Inc. Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
MA41480A (en) 2014-10-17 2017-12-19 Glenmark Pharmaceuticals Sa ANTIBODIES BOUND TO CCR6 AND THEIR USES
MX2017006301A (en) 2014-11-14 2017-08-21 Novartis Ag Antibody drug conjugates.
JP6668345B2 (en) 2014-11-21 2020-03-18 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Antibodies containing modified heavy chain constant regions
RS60631B1 (en) 2014-11-21 2020-09-30 Bristol Myers Squibb Co Antibodies against cd73 and uses thereof
CA2969730A1 (en) 2014-12-05 2016-06-09 Immunext, Inc. Identification of vsig8 as the putative vista receptor and its use thereof to produce vista/vsig8 modulators
WO2016091891A1 (en) 2014-12-09 2016-06-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies against axl
WO2016092524A1 (en) 2014-12-11 2016-06-16 Inbiomotion S.L. Binding members for human c-maf
EP3233912B1 (en) 2014-12-19 2021-05-19 Regenesance B.V. Antibodies that bind human c6 and uses thereof
UY36449A (en) 2014-12-19 2016-07-29 Novartis Ag COMPOSITIONS AND METHODS FOR ANTIBODIES DIRECTED TO BMP6
EP3237448A1 (en) 2014-12-23 2017-11-01 Bristol-Myers Squibb Company Antibodies to tigit
CN107530423B (en) 2015-01-14 2022-04-05 布里格姆及妇女医院股份有限公司 Treatment of cancer with anti-LAP monoclonal antibodies
SG11201706583PA (en) 2015-02-19 2017-09-28 Compugen Ltd Anti-pvrig antibodies and methods of use
EP3259597B1 (en) 2015-02-19 2022-04-06 Compugen Ltd. Pvrig polypeptides and methods of treatment
WO2016135041A1 (en) 2015-02-26 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Fusion proteins and antibodies comprising thereof for promoting apoptosis
WO2016142782A1 (en) 2015-03-09 2016-09-15 Argen-X N.V. Methods of reducing serum levels of fc-containing agents using fcrn antagonsits
SG11201708804WA (en) 2015-05-07 2017-11-29 Agenus Inc Anti-ox40 antibodies and methods of use thereof
WO2016187068A1 (en) 2015-05-15 2016-11-24 The General Hospital Corporation Antagonistic anti-tumor necrosis factor receptor superfamily antibodies
TW201702272A (en) 2015-05-22 2017-01-16 美國紀念斯隆 凱特琳癌症中心 T cell receptor-like antibodies specific for a PRAME peptide
WO2016188911A1 (en) 2015-05-22 2016-12-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies fragments inhibiting both the cath-d catalytic activity and its binding to the lrp1 receptor
EP3303396B1 (en) 2015-05-29 2022-11-23 Bristol-Myers Squibb Company Antibodies against ox40 and uses thereof
MX2017015690A (en) 2015-06-05 2018-07-06 Novartis Ag Antibodies targeting bone morphogenetic protein 9 (bmp9) and methods therefor.
WO2016203432A1 (en) 2015-06-17 2016-12-22 Novartis Ag Antibody drug conjugates
EP3310385A4 (en) 2015-06-17 2018-12-19 Allakos Inc. Methods and compositions for treating fibrotic diseases
MX2017016647A (en) 2015-06-24 2019-04-25 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments.
JOP20200312A1 (en) 2015-06-26 2017-06-16 Novartis Ag Factor xi antibodies and methods of use
EA201890162A1 (en) 2015-06-29 2018-07-31 Бристол-Маерс Сквибб Компани ANTIBODIES TO CD40 WITH ENHANCED AGONISTIC ACTIVITY
WO2017009712A1 (en) 2015-07-13 2017-01-19 Compugen Ltd. Hide1 compositions and methods
EP3328994A4 (en) 2015-07-31 2019-04-17 Memorial Sloan-Kettering Cancer Center Antigen-binding proteins targeting cd56 and uses thereof
KR20180035852A (en) 2015-08-03 2018-04-06 노파르티스 아게 Methods for treating FGF21-associated disorders
WO2017024060A1 (en) 2015-08-03 2017-02-09 Biogen Ma Inc. Factor ix fusion proteins and methods of making and using same
KR20180050321A (en) 2015-08-07 2018-05-14 이미지냅 인코포레이티드 An antigen binding construct for targeting a molecule
WO2017040790A1 (en) 2015-09-01 2017-03-09 Agenus Inc. Anti-pd-1 antibodies and methods of use thereof
RU2021133819A (en) 2015-09-02 2021-12-10 Иммутеп С.A.С. ANTI-LAG-3 ANTIBODIES
MY186352A (en) 2015-09-09 2021-07-15 Novartis Ag Thymic stromal lymphopoietin (tslp)-binding antibodies and methods of using the antibodies
HUE053914T2 (en) 2015-09-09 2021-07-28 Novartis Ag Thymic stromal lymphopoietin (tslp)-binding antibodies and methods of using the antibodies
US20190022092A1 (en) 2015-09-15 2019-01-24 Acerta Pharma B.V. Therapeutic Combinations of a BTK Inhibitor and a GITR Binding Molecule, a 4-1BB Agonist, or an OX40 Agonist
US9862760B2 (en) 2015-09-16 2018-01-09 Novartis Ag Polyomavirus neutralizing antibodies
WO2017066714A1 (en) 2015-10-16 2017-04-20 Compugen Ltd. Anti-vsig1 antibodies and drug conjugates
US10604577B2 (en) 2015-10-22 2020-03-31 Allakos Inc. Methods and compositions for treating systemic mastocytosis
JO3555B1 (en) 2015-10-29 2020-07-05 Merck Sharp & Dohme Antibody neutralizing human respiratory syncytial virus
MA44334A (en) 2015-10-29 2018-09-05 Novartis Ag ANTIBODY CONJUGATES INCLUDING A TOLL-TYPE RECEPTOR AGONIST
CA3005855A1 (en) 2015-11-19 2017-05-26 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
JP6849694B2 (en) 2015-11-30 2021-03-24 ブリストル−マイヤーズ スクウィブ カンパニー Anti-human IP-10 antibodies and their use
SG11201804265XA (en) 2015-12-02 2018-06-28 Agenus Inc Antibodies and methods of use thereof
CN108602870A (en) 2015-12-04 2018-09-28 诺华股份有限公司 Antibody cytokine grafts composition and is used for immunoregulatory method
KR20180086502A (en) 2015-12-16 2018-07-31 머크 샤프 앤드 돔 코포레이션 The anti-LAG3 antibody and the antigen-binding fragment
CN109069623A (en) 2015-12-18 2018-12-21 诺华股份有限公司 Target the antibody and its application method of CD32b
JP6993699B2 (en) 2016-01-11 2022-02-03 ウニヴェルズィテート・ツューリヒ Immunostimulatory humanized monoclonal antibody against human interleukin-2 and its fusion protein
US11505599B2 (en) 2016-01-14 2022-11-22 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for Foxp3-derived peptides
RS63548B1 (en) 2016-02-01 2022-09-30 Bioverativ Therapeutics Inc Optimized factor viii genes
CN116920085A (en) 2016-02-12 2023-10-24 詹森药业有限公司 anti-VISTA (B7H 5) antibodies
WO2017141208A1 (en) 2016-02-17 2017-08-24 Novartis Ag Tgfbeta 2 antibodies
KR20220033522A (en) 2016-03-04 2022-03-16 브리스톨-마이어스 스큅 컴퍼니 Combination therapy with anti-cd73 antibodies
IL261602B1 (en) 2016-03-04 2024-02-01 Univ Rockefeller Antibodies to cd40 with enhanced agonist activity
US20190077870A1 (en) 2016-03-16 2019-03-14 Merrimack Pharmaceuticals, Inc. Engineered trail for cancer therapy
CN109641955B (en) 2016-03-22 2022-07-08 国家医疗保健研究所 Humanized anti-claudin-1antibodies and uses thereof
AU2017239038A1 (en) 2016-03-22 2018-10-04 Bionomics Inc Administration of an anti-LGR5 monoclonal antibody
CN109069638B (en) 2016-03-24 2022-03-29 璟尚生物制药公司 Trispecific inhibitors for cancer therapy
US11525000B2 (en) 2016-04-15 2022-12-13 Immunext, Inc. Anti-human VISTA antibodies and use thereof
CN109071647B (en) 2016-04-27 2022-11-22 诺华股份有限公司 Anti-growth differentiation factor 15 antibody and application thereof
TW201802121A (en) 2016-05-25 2018-01-16 諾華公司 Reversal binding agents for anti-factor XI/XIa antibodies and uses thereof
WO2017205721A1 (en) 2016-05-27 2017-11-30 Agenus Inc. Anti-tim-3 antibodies and methods of use thereof
AU2017283787B2 (en) 2016-06-15 2020-09-17 Novartis Ag Methods for treating disease using inhibitors of bone morphogenetic protein 6 (BMP6)
JP7261379B2 (en) 2016-06-20 2023-04-20 カイマブ・リミテッド Anti-PD-L1 antibody
WO2018029474A2 (en) 2016-08-09 2018-02-15 Kymab Limited Anti-icos antibodies
US9567399B1 (en) 2016-06-20 2017-02-14 Kymab Limited Antibodies and immunocytokines
MA45554A (en) 2016-07-01 2019-05-08 Resolve Therapeutics Llc OPTIMIZED BINUCLEASE FUSIONS.
CA3030765A1 (en) 2016-07-14 2018-01-18 Bristol-Myers Squibb Company Antibodies against tim3 and uses thereof
NL2017267B1 (en) 2016-07-29 2018-02-01 Aduro Biotech Holdings Europe B V Anti-pd-1 antibodies
EP3491022A1 (en) 2016-07-29 2019-06-05 Institut National de la Sante et de la Recherche Medicale (INSERM) Antibodies targeting tumor associated macrophages and uses thereof
NL2017270B1 (en) 2016-08-02 2018-02-09 Aduro Biotech Holdings Europe B V New anti-hCTLA-4 antibodies
EP3494141A4 (en) 2016-08-03 2020-04-08 Bio-Techne Corporation Identification of vsig3/vista as a novel immune checkpoint and use thereof for immunotherapy
BR112019002331A2 (en) 2016-08-05 2019-06-18 Allakos Inc anti-siglec-7 antibodies for cancer treatment and methods of obtaining them
US11447542B2 (en) 2016-08-05 2022-09-20 Medimmune, Llc Anti-O2 antibodies and uses thereof
BR112019002529A2 (en) 2016-08-09 2019-05-28 Kymab Ltd isolated antibody, composition, method for modulating t-cell balance, method for treating a therapy-treatable disease or condition, method for treating cancer, igg1 antibody combination, anti-ics antibody, transgenic non-human mammal, and method for producing a antibody
KR102585976B1 (en) 2016-08-17 2023-10-05 컴퓨젠 엘티디. Anti-tigit antibodies, anti-pvrig antibodies and combinations thereof
US10981976B2 (en) 2016-08-31 2021-04-20 University Of Rochester Human monoclonal antibodies to human endogenous retrovirus K envelope (HERV-K) and use thereof
US20190270821A1 (en) 2016-09-13 2019-09-05 Humanigen, Inc. Epha3 antibodies for the treatment of pulmonary fibrosis
AU2017327769B2 (en) 2016-09-15 2023-12-21 Universität Stuttgart Antigen binding protein against HER3
JOP20190055A1 (en) 2016-09-26 2019-03-24 Merck Sharp & Dohme Anti-cd27 antibodies
MA46529A (en) 2016-10-11 2019-08-21 Agenus Inc ANTI-LAG-3 ANTIBODIES AND PROCESSES FOR USE
CN109843917B (en) 2016-10-19 2023-10-03 免疫医疗有限责任公司 anti-O1 antibodies and uses thereof
TWI788307B (en) 2016-10-31 2023-01-01 美商艾歐凡斯生物治療公司 Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
WO2018083248A1 (en) 2016-11-03 2018-05-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
WO2018087720A1 (en) 2016-11-14 2018-05-17 Novartis Ag Compositions, methods, and therapeutic uses related to fusogenic protein minion
EP3545002A2 (en) 2016-11-23 2019-10-02 Bioverativ Therapeutics Inc. Mono- and bispecific antibodies binding to coagulation factor ix and coagulation factor x
JP2020500874A (en) 2016-12-02 2020-01-16 バイオベラティブ セラピューティクス インコーポレイテッド Method of treating hemophilic arthropathy using chimeric clotting factor
MA46968A (en) 2016-12-02 2019-10-09 Bioverativ Therapeutics Inc METHODS FOR INDUCTION OF IMMUNE TOLERANCE TO COAGULATION FACTORS
KR102603681B1 (en) 2016-12-07 2023-11-17 아게누스 인코포레이티드 Antibodies and methods of using them
CA3046205A1 (en) 2016-12-07 2018-06-14 Agenus Inc. Anti-ctla-4 antibodies and methods of use thereof
KR102616666B1 (en) 2016-12-23 2023-12-27 노파르티스 아게 Factor XI Antibodies and Methods of Use
US20180230218A1 (en) 2017-01-04 2018-08-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
EP3565839A4 (en) 2017-01-05 2021-04-21 Gensun Biopharma Inc. Checkpoint regulator antagonists
JP2020503351A (en) 2017-01-06 2020-01-30 アイオバンス バイオセラピューティクス,インコーポレイテッド Proliferation of tumor infiltrating lymphocytes by potassium channel agonist and its therapeutic use
TW201837168A (en) 2017-01-06 2018-10-16 美商艾歐凡斯生物治療公司 Expansion of tumor infiltrating lymphocytes (TILS) with tumor necrosis factor receptor superfamily (TNFRSF) agonists and therapeutic combinations of TILS and TNFRSF agonists
JOP20190187A1 (en) 2017-02-03 2019-08-01 Novartis Ag Anti-ccr7 antibody drug conjugates
US11266745B2 (en) 2017-02-08 2022-03-08 Imaginab, Inc. Extension sequences for diabodies
BR112019016344A2 (en) 2017-02-08 2020-04-07 Novartis Ag mimetic antibodies fgf21 and uses thereof
CN110506057B (en) 2017-02-17 2023-09-29 百时美施贵宝公司 ALPHA synuclein antibody and application thereof
WO2018158398A1 (en) 2017-03-02 2018-09-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to nectin-4 and uses thereof
KR102628323B1 (en) 2017-03-24 2024-01-22 노바르티스 아게 How to prevent and treat heart disease
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
TWI788340B (en) 2017-04-07 2023-01-01 美商必治妥美雅史谷比公司 Anti-icos agonist antibodies and uses thereof
TWI796329B (en) 2017-04-07 2023-03-21 美商默沙東有限責任公司 Anti-ilt4 antibodies and antigen-binding fragments
CN110650976A (en) 2017-04-13 2020-01-03 艾杜罗生物科技欧洲控股有限责任公司 anti-SIRP alpha antibodies
EP3609921A2 (en) 2017-04-13 2020-02-19 Agenus Inc. Anti-cd137 antibodies and methods of use thereof
EP3612560A1 (en) 2017-04-21 2020-02-26 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
AR111651A1 (en) 2017-04-28 2019-08-07 Novartis Ag CONJUGATES OF ANTIBODIES THAT INCLUDE TOLL TYPE RECEIVER AGONISTS AND COMBINATION THERAPIES
PT3618863T (en) 2017-05-01 2023-08-23 Agenus Inc Anti-tigit antibodies and methods of use thereof
MX2019013137A (en) 2017-05-05 2020-07-14 Allakos Inc Methods and compositions for treating allergic ocular diseases.
KR20200003913A (en) 2017-05-10 2020-01-10 이오반스 바이오테라퓨틱스, 인크. Expansion of Tumor Infiltrating Lymphocytes from Liquid Tumors and Uses thereof
US11168129B2 (en) 2017-05-15 2021-11-09 University Of Rochester Broadly neutralizing anti-influenza human monoclonal antibody and uses thereof
US20200362058A1 (en) 2017-05-24 2020-11-19 Novartis Ag Antibody-cytokine engrafted proteins and methods of use
JOP20190271A1 (en) 2017-05-24 2019-11-21 Novartis Ag Antibody-cytokine engrafted proteins and methods of use for immune related disorders
CN110662762A (en) 2017-05-24 2020-01-07 诺华股份有限公司 Antibody cytokine transplantation proteins and methods for treating cancer
WO2018215937A1 (en) 2017-05-24 2018-11-29 Novartis Ag Interleukin-7 antibody cytokine engrafted proteins and methods of use in the treatment of cancer
AU2018272852A1 (en) 2017-05-25 2019-11-28 Bristol-Myers Squibb Company Antibodies comprising modified heavy constant regions
KR20200021474A (en) 2017-06-01 2020-02-28 컴퓨젠 엘티디. Triple Combination Antibody Therapeutics
UY37758A (en) 2017-06-12 2019-01-31 Novartis Ag METHOD OF MANUFACTURING OF BIESPECTIFIC ANTIBODIES, BISPECTIFIC ANTIBODIES AND THERAPEUTIC USE OF SUCH ANTIBODIES
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
WO2018229706A1 (en) 2017-06-16 2018-12-20 Novartis Ag Combination therapy for the treatment of cancer
GB201709808D0 (en) 2017-06-20 2017-08-02 Kymab Ltd Antibodies
RU2019143078A (en) 2017-06-28 2021-07-28 Новартис Аг METHODS FOR PREVENTION AND TREATMENT OF URINE CONTENT
KR20200035130A (en) 2017-08-09 2020-04-01 바이오버라티브 테라퓨틱스 인크. Nucleic acid molecules and uses thereof
MX2020002070A (en) 2017-08-22 2020-03-24 Sanabio Llc Soluble interferon receptors and uses thereof.
MX2020002076A (en) 2017-08-25 2020-03-24 Five Prime Therapeutics Inc B7-h4 antibodies and methods of use thereof.
US11230601B2 (en) 2017-10-10 2022-01-25 Tilos Therapeutics, Inc. Methods of using anti-lap antibodies
EP3700933A1 (en) 2017-10-25 2020-09-02 Novartis AG Antibodies targeting cd32b and methods of use thereof
SG11202003980PA (en) 2017-10-31 2020-05-28 Staten Biotechnology B V Anti-apoc3 antibodies and methods of use thereof
EP3714041A1 (en) 2017-11-22 2020-09-30 Iovance Biotherapeutics, Inc. Expansion of peripheral blood lymphocytes (pbls) from peripheral blood
JP2021503891A (en) 2017-11-22 2021-02-15 ノバルティス アーゲー Reversal binders for anti-factor XI / XIa antibodies and their use
JP2021508439A (en) 2017-12-01 2021-03-11 ノバルティス アーゲー Polyomavirus neutralizing antibody
KR20200096786A (en) 2017-12-08 2020-08-13 아르제넥스 비브이비에이 Use of FcRn antagonists for the treatment of systemic myasthenia gravis
WO2019118873A2 (en) 2017-12-15 2019-06-20 Iovance Biotherapeutics, Inc. Systems and methods for determining the beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof and beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof
WO2019122882A1 (en) 2017-12-19 2019-06-27 Kymab Limited Bispecific antibody for icos and pd-l1
GB201721338D0 (en) 2017-12-19 2018-01-31 Kymab Ltd Anti-icos Antibodies
WO2019126536A1 (en) 2017-12-20 2019-06-27 Alexion Pharmaceuticals Inc. Humanized anti-cd200 antibodies and uses thereof
JP7284759B2 (en) 2017-12-27 2023-05-31 ブリストル-マイヤーズ スクイブ カンパニー ANTI-CD40 ANTIBODY AND USES THEREOF
CN111886255A (en) 2018-01-12 2020-11-03 百时美施贵宝公司 anti-TIM 3 antibodies and uses thereof
WO2019148412A1 (en) 2018-02-01 2019-08-08 Merck Sharp & Dohme Corp. Anti-pd-1/lag3 bispecific antibodies
BR112020015228A2 (en) 2018-02-01 2020-12-29 Bioverativ Therapeutics Inc. USE OF LENTIVIRAL VECTORS THAT EXPRESS FACTOR VIII
US11787857B2 (en) 2018-02-02 2023-10-17 Bio-Techne Corporation Compounds that modulate the interaction of VISTA and VSIG3 and methods of making and using
JP2021512962A (en) 2018-02-13 2021-05-20 アイオバンス バイオセラピューティクス,インコーポレイテッド Expansion culture of tumor-infiltrating lymphocytes (TIL) with adenosine A2A receptor antagonist and therapeutic combination of TIL and adenosine A2A receptor antagonist
NL2020520B1 (en) 2018-03-02 2019-09-12 Labo Bio Medical Invest B V Multispecific binding molecules for the prevention, treatment and diagnosis of neurodegenerative disorders
PE20210290A1 (en) 2018-03-21 2021-02-11 Five Prime Therapeutics Inc SIGHT BINDING ANTIBODIES AT ACID pH
PE20210665A1 (en) 2018-03-23 2021-03-31 Bristol Myers Squibb Co ANTIBODIES AGAINST MICA AND / OR MICB AND ITS USES
AU2019244091B2 (en) 2018-03-28 2023-12-07 Bristol-Myers Squibb Company Interleukin-2/Interleukin-2 receptor alpha fusion proteins and methods of use
EP3552631A1 (en) 2018-04-10 2019-10-16 Inatherys Antibody-drug conjugates and their uses for the treatment of cancer
US20210047389A1 (en) 2018-05-03 2021-02-18 University Of Rochester Anti-influenza neuraminidase monoclonal antibodies and uses thereof
CA3099049A1 (en) 2018-05-18 2019-11-21 Bioverativ Therapeutics Inc. Methods of treating hemophilia a
TW202015726A (en) 2018-05-30 2020-05-01 瑞士商諾華公司 Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
JP2021525071A (en) 2018-05-31 2021-09-24 ノバルティス アーゲー Hepatitis B antibody
AU2019277029C1 (en) 2018-06-01 2024-01-04 Novartis Ag Binding molecules against BCMA and uses thereof
KR20210016448A (en) 2018-06-01 2021-02-15 컴퓨젠 엘티디. Anti-PVRIG/anti-TIGIT bispecific antibodies and methods of use
EP3800999A4 (en) 2018-06-04 2022-06-01 Biogen MA Inc. Anti-vla-4 antibodies having reduced effector function
WO2019236739A1 (en) 2018-06-05 2019-12-12 Amgen Inc. Modulating antibody dependent cellular phagocytosis
EP3814381A4 (en) 2018-06-29 2022-08-10 Gensun Biopharma Inc. Trispecific antagonists
KR20210027426A (en) 2018-07-03 2021-03-10 브리스톨-마이어스 스큅 컴퍼니 FGF21 formulation
WO2020014132A2 (en) 2018-07-09 2020-01-16 Five Prime Therapeutics, Inc. Antibodies binding to ilt4
WO2020014306A1 (en) 2018-07-10 2020-01-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
CA3104536A1 (en) 2018-07-11 2020-01-16 Bristol-Myers Squibb Company Antibodies binding to vista at acidic ph
CA3108799A1 (en) 2018-08-09 2020-02-13 Bioverativ Therapeutics Inc. Nucleic acid molecules and uses thereof for non-viral gene therapy
TW202031273A (en) 2018-08-31 2020-09-01 美商艾歐凡斯生物治療公司 Treatment of nsclc patients refractory for anti-pd-1 antibody
WO2020053742A2 (en) 2018-09-10 2020-03-19 Novartis Ag Anti-hla-hbv peptide antibodies
CA3110530A1 (en) 2018-09-11 2020-03-19 Amgen Inc. Methods of modulating antibody-dependent cell-mediated cytotoxicity
WO2020056077A1 (en) 2018-09-13 2020-03-19 The Board Of Regents Of The University Of Texas System Novel lilrb4 antibodies and uses thereof
WO2020061210A1 (en) 2018-09-18 2020-03-26 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
AU2019352017A1 (en) 2018-10-03 2021-05-06 Staten Biotechnology B.V. Antibodies specific for human and cynomolgus ApoC3 and methods of use thereof
CN113164780A (en) 2018-10-10 2021-07-23 泰洛斯治疗公司 anti-LAP antibody variants and uses thereof
UY38407A (en) 2018-10-15 2020-05-29 Novartis Ag TREM2 STABILIZING ANTIBODIES
EP3873532A1 (en) 2018-10-31 2021-09-08 Novartis AG Dc-sign antibody drug conjugates
CN112969469A (en) 2018-11-05 2021-06-15 艾欧凡斯生物治疗公司 Treatment of anti-PD-1 antibody refractory NSCLC patients
SG11202104969RA (en) 2018-11-16 2021-06-29 Bristol Myers Squibb Co Anti-nkg2a antibodies and uses thereof
JP2022513653A (en) 2018-11-28 2022-02-09 ブリストル-マイヤーズ スクイブ カンパニー Antibodies containing modified heavy chain constant regions
US20220098310A1 (en) 2018-12-06 2022-03-31 Alexion Pharmaceuticals, Inc. Anti-alk2 antibodies and uses thereof
TW202039554A (en) 2018-12-19 2020-11-01 瑞士商諾華公司 Anti-tnf-alpha antibodies
SG11202106629PA (en) 2018-12-21 2021-07-29 Novartis Ag Antibodies to pmel17 and conjugates thereof
CA3122773A1 (en) 2018-12-26 2020-07-02 Xilio Development, Inc. Anti-ctla4 antibodies and methods of use thereof
BR112021013096A2 (en) 2019-01-04 2022-04-19 Resolve Therapeutics, Llc TREATMENT OF SJÖGREN'S DISEASE WITH NUCLEASE FUSION PROTEINS
CA3127236A1 (en) 2019-01-22 2020-07-30 Bristol-Myers Squibb Company Antibodies against il-7r alpha subunit and uses thereof
CN113710324A (en) 2019-01-23 2021-11-26 千禧制药公司 anti-CD 38 antibodies
CA3131953A1 (en) 2019-03-01 2020-09-10 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
SG11202109331QA (en) 2019-03-01 2021-09-29 Iovance Biotherapeutics Inc Expansion of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof
EP3947446A1 (en) 2019-03-25 2022-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of taupathy disorders by targeting new tau species
AU2020253455A1 (en) 2019-04-03 2021-11-04 Genzyme Corporation Anti-alpha beta TCR binding polypeptides with reduced fragmentation
GB2589049C (en) 2019-04-11 2024-02-21 argenx BV Anti-IgE antibodies
SG11202112056PA (en) 2019-05-20 2021-12-30 Novartis Ag Mcl-1 inhibitor antibody-drug conjugates and methods of use
CN113853219A (en) 2019-05-20 2021-12-28 诺华股份有限公司 Antibody drug conjugates with linkers comprising hydrophilic groups
CU20210096A7 (en) 2019-05-21 2022-06-06 Novartis Ag CD19 BINDING MOLECULES
KR20220010743A (en) 2019-05-21 2022-01-26 노파르티스 아게 Trispecific binding molecules to BCMA and uses thereof
WO2020236797A1 (en) 2019-05-21 2020-11-26 Novartis Ag Variant cd58 domains and uses thereof
AU2020286968A1 (en) 2019-06-07 2021-11-25 Argenx Bvba Pharmaceutical formulations of FcRn inhibitors suitable for subcutaneous administration
PE20220489A1 (en) 2019-06-12 2022-04-07 Novartis Ag NATRIURETIC PEPTIDE 1 RECEPTOR ANTIBODIES AND METHODS OF USE
CN114174326A (en) 2019-06-18 2022-03-11 拜耳公司 Long-term stable adrenomedullin analogues and uses thereof
US10851157B2 (en) 2019-07-01 2020-12-01 Gensun Biopharma, Inc. Antagonists targeting the TGF-β pathway
US11634501B2 (en) 2019-07-19 2023-04-25 Oncoresponse, Inc. Immunomodulatory antibodies and methods of use thereof
CN114144436A (en) 2019-07-24 2022-03-04 H.隆德贝克有限公司 anti-mGluR 5 antibodies and uses thereof
KR20220041881A (en) 2019-07-29 2022-04-01 컴퓨젠 엘티디. Anti-PVRIG antibody formulations and uses thereof
AU2020329217A1 (en) 2019-08-12 2022-07-28 Aptevo Research And Development Llc 4-1BB and OX40 binding proteins and related compositions and methods, antibodies against 4-1BB, antibodies against OX40
BR112022003740A2 (en) 2019-08-30 2022-05-31 Agenus Inc Anti-cd96 antibodies and methods of using them
TW202124446A (en) 2019-09-18 2021-07-01 瑞士商諾華公司 Combination therapies with entpd2 antibodies
JP2022548881A (en) 2019-09-18 2022-11-22 ノバルティス アーゲー ENTPD2 Antibodies, Combination Therapy and Methods of Using Antibodies and Combination Therapy
MX2022003204A (en) 2019-09-19 2022-04-18 Bristol Myers Squibb Co Antibodies binding to vista at acidic ph.
WO2021058729A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof
EP4034560A1 (en) 2019-09-27 2022-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance antibodies and uses thereof
TW202126284A (en) 2019-09-30 2021-07-16 美商百歐維拉提夫治療公司 Lentiviral vector formulations
MX2022003935A (en) 2019-10-04 2022-04-25 Tae Life Sciences Llc Antibody compositions comprising fc mutations and site-specific conjugation properties.
CA3158893A1 (en) 2019-10-24 2021-04-29 Minotaur Therapeutics, Inc. Chimeric cytokine modified antibodies and methods of use thereof
BR112022008558A2 (en) 2019-11-04 2022-08-09 Compugen Ltd METHOD OF TREATMENT FOR CANCER, COMBINATION TREATMENT OF NIVOLUMAB AND ANTI-PVRIG ANTIBODIES, AND, USE
WO2021105389A1 (en) 2019-11-29 2021-06-03 Kymab Limited Treatment for physiological iron overload
WO2021113831A1 (en) 2019-12-05 2021-06-10 Compugen Ltd. Anti-pvrig and anti-tigit antibodies for enhanced nk-cell based tumor killing
US20230040928A1 (en) 2019-12-09 2023-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to her4 and uses thereof
EP4087875A1 (en) 2020-01-08 2022-11-16 Argenx BV Methods for treating pemphigus disorders
US20230087600A1 (en) 2020-02-06 2023-03-23 Bristol-Myers Squibb Company Il-10 and uses thereof
TW202200209A (en) 2020-02-28 2022-01-01 美商健臻公司 Modified binding polypeptides for optimized drug conjugation
EP4119162A4 (en) 2020-03-13 2023-08-23 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Pvrig binding protein and its medical uses
JP2023520773A (en) 2020-03-27 2023-05-19 ノバルティス アーゲー Bispecific combination therapy for treating proliferative and autoimmune diseases
US20230107644A1 (en) 2020-04-01 2023-04-06 University Of Rochester Monoclonal antibodies against the hemagglutinin (ha) and neuraminidase (na) of influenza h3n2 viruses
EP4132971A1 (en) 2020-04-09 2023-02-15 Merck Sharp & Dohme LLC Affinity matured anti-lap antibodies and uses thereof
JP2023523480A (en) 2020-04-28 2023-06-06 ザ ロックフェラー ユニバーシティー Neutralizing anti-SARS-COV-2 antibodies and methods of use thereof
US20230181756A1 (en) 2020-04-30 2023-06-15 Novartis Ag Ccr7 antibody drug conjugates for treating cancer
MX2022013633A (en) 2020-04-30 2023-02-09 Sairopa B V Anti-cd103 antibodies.
CN115551553A (en) 2020-05-12 2022-12-30 Inserm(法国国家健康医学研究院) Novel method for treating cutaneous T cell lymphoma and lymphoma of TFH origin
US20230192867A1 (en) 2020-05-15 2023-06-22 Bristol-Myers Squibb Company Antibodies to garp
CR20220646A (en) 2020-05-17 2023-10-23 Astrazeneca Uk Ltd Sars-cov-2 antibodies and methods of selecting and using the same
US20230265175A1 (en) 2020-06-25 2023-08-24 Merck Sharp & Dohme Llc High affinity antibodies targeting tau phosphorylated at serine 413
AU2021299932A1 (en) 2020-06-29 2023-02-02 Assistance Publique-Hôpitaux De Paris (Aphp) Anti-protein S single-domain antibodies and polypeptides comprising thereof
WO2022006153A1 (en) 2020-06-29 2022-01-06 Resolve Therapeutics, Llc Treatment of sjogren's syndrome with nuclease fusion proteins
MX2023001492A (en) 2020-08-06 2023-03-08 Bioverativ Usa Inc Inflammatory cytokines and fatigue in subject with a complement mediated disease.
IL300257A (en) 2020-08-10 2023-03-01 Astrazeneca Uk Ltd Sars-cov-2 antibodies for treatment and prevention of covid-19
EP4222172A1 (en) 2020-09-30 2023-08-09 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations, anti-tigit antibodies, and anti-pd-1 antibodies
CA3195019A1 (en) 2020-10-06 2022-04-14 Maria Fardis Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
EP4232822A2 (en) 2020-10-26 2023-08-30 Compugen Ltd. Pvrl2 and/or pvrig as biomarkers for treatment
GB202017058D0 (en) 2020-10-27 2020-12-09 Kymab Ltd Antibodies and uses thereof
WO2022098870A1 (en) 2020-11-04 2022-05-12 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies
AU2021373366A1 (en) 2020-11-06 2023-06-01 Novartis Ag Cd19 binding molecules and uses thereof
US20240002509A1 (en) 2020-11-06 2024-01-04 Novartis Ag ANTIBODY Fc VARIANTS
AU2021374083A1 (en) 2020-11-06 2023-06-01 Novartis Ag Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies
WO2022115451A1 (en) 2020-11-24 2022-06-02 Novartis Ag Mcl-1 inhibitor antibody-drug conjugates and methods of use
JP2023549925A (en) 2020-11-24 2023-11-29 ノバルティス アーゲー Anti-CD48 antibodies, antibody-drug conjugates and uses thereof
WO2022119976A1 (en) 2020-12-01 2022-06-09 Aptevo Research And Development Llc Heterodimeric psma and cd3-binding bispecific antibodies
TW202241468A (en) 2020-12-11 2022-11-01 美商艾歐凡斯生物治療公司 Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with braf inhibitors and/or mek inhibitors
US20240052042A1 (en) 2020-12-14 2024-02-15 Novartis Ag Reversal binding agents for anti-natriuretic peptide receptor i (npri) antibodies and uses thereof
WO2022133140A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors
EP4262827A1 (en) 2020-12-17 2023-10-25 Iovance Biotherapeutics, Inc. Treatment of cancers with tumor infiltrating lymphocytes
CA3203382A1 (en) 2020-12-31 2022-07-07 Adrian Emanual Wells Devices and processes for automated production of tumor infiltrating lymphocytes
JP2024505636A (en) 2021-01-15 2024-02-07 ザ ロックフェラー ユニバーシティー Anti-SARS-COV-2 neutralizing antibody
TW202244060A (en) 2021-01-20 2022-11-16 美商昂科里斯龐司公司 Immunomodulatory antibodies and uses thereof
GB202101125D0 (en) 2021-01-27 2021-03-10 Kymab Ltd Antibodies and uses thereof
WO2022165275A2 (en) 2021-01-28 2022-08-04 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations and anti-pd-1-antibodies
EP4284516A1 (en) 2021-01-28 2023-12-06 Compugen Ltd. Anti-pvrig antibodies formulations and uses thereof
CA3206549A1 (en) 2021-01-29 2022-08-04 Frederick G. Vogt Methods of making modified tumor infiltrating lymphocytes and their use in adoptive cell therapy
CA3209364A1 (en) 2021-03-01 2022-09-09 Jennifer O'neil Combination of masked ctla4 and pd1/pdl1 antibodies for treating cancer
EP4301467A1 (en) 2021-03-01 2024-01-10 Xilio Development, Inc. Combination of ctla4 and pd1/pdl1 antibodies for treating cancer
JP2024509184A (en) 2021-03-05 2024-02-29 アイオバンス バイオセラピューティクス,インコーポレイテッド Tumor preservation and cell culture composition
EP4308691A1 (en) 2021-03-19 2024-01-24 Iovance Biotherapeutics, Inc. Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd69 selection and gene knockout in tils
WO2022204155A1 (en) 2021-03-23 2022-09-29 Iovance Biotherapeutics, Inc. Cish gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2022204564A2 (en) 2021-03-25 2022-09-29 Iovance Biotherapeutics, Inc. Methods and compositions for t-cell coculture potency assays and use with cell therapy products
WO2022207785A1 (en) 2021-03-31 2022-10-06 Kymab Limited Antibodies to gfral
WO2022212645A1 (en) 2021-03-31 2022-10-06 Bioverativ Usa Inc. Reducing surgery-associated hemolysis in cold agglutinin disease patients
AU2022251923A1 (en) 2021-03-31 2023-11-16 Cambridge Enterprise Limited Therapeutic inhibitors of gdf15 signalling
EP4314068A1 (en) 2021-04-02 2024-02-07 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
BR112023021475A2 (en) 2021-04-16 2023-12-19 Novartis Ag ANTIBODY-DRUG CONJUGATES AND METHODS FOR PRODUCING THEM
TW202308669A (en) 2021-04-19 2023-03-01 美商艾歐凡斯生物治療公司 Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
AU2022264339A1 (en) 2021-04-28 2023-11-09 Minotaur Therapeutics, Inc. Humanized chimeric bovine antibodies and methods of use
WO2022235867A2 (en) 2021-05-06 2022-11-10 The Rockefeller University Neutralizing anti-sars- cov-2 antibodies and methods of use thereof
WO2022245754A1 (en) 2021-05-17 2022-11-24 Iovance Biotherapeutics, Inc. Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
US20230115257A1 (en) 2021-05-17 2023-04-13 Curia Ip Holdings, Llc Sars-cov-2 spike protein antibodies
WO2022245859A1 (en) 2021-05-17 2022-11-24 Curia Ip Holdings, Llc Sars-cov-2 spike protein antibodies
CA3219336A1 (en) 2021-05-18 2022-11-24 Kymab Limited Uses of anti-icos antibodies
US20220389120A1 (en) 2021-06-03 2022-12-08 Gensun Biopharma Inc. Multispecific antagonists
GB202107994D0 (en) 2021-06-04 2021-07-21 Kymab Ltd Treatment of cancer
AU2022293999A1 (en) 2021-06-14 2023-11-30 argenx BV Anti-il-9 antibodies and methods of use thereof
WO2022269451A1 (en) 2021-06-22 2022-12-29 Novartis Ag Bispecific antibodies for use in treatment of hidradenitis suppurativa
WO2023275621A1 (en) 2021-07-01 2023-01-05 Compugen Ltd. Anti-tigit and anti-pvrig in monotherapy and combination treatments
CA3226111A1 (en) 2021-07-22 2023-01-26 Iovance Biotherapeutics, Inc. Method for cryopreservation of solid tumor fragments
WO2023009716A1 (en) 2021-07-28 2023-02-02 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors
EP4130038A1 (en) 2021-08-03 2023-02-08 Institut national de recherche pour l'agriculture, l'alimentation et l'environnement Anti-il-2 antibody, complex comprising it, and uses thereof
TW202328439A (en) 2021-09-09 2023-07-16 美商艾歐凡斯生物治療公司 Processes for generating til products using pd-1 talen knockdown
WO2023049862A1 (en) 2021-09-24 2023-03-30 Iovance Biotherapeutics, Inc. Expansion processes and agents for tumor infiltrating lymphocytes
US20230117205A1 (en) 2021-09-30 2023-04-20 Seagen Inc. B7-h4 antibody-drug conjugates for the treatment of cancer
WO2023064958A1 (en) 2021-10-15 2023-04-20 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations, anti-tigit antibodies, and anti-pd-1 antibodies
TW202331735A (en) 2021-10-27 2023-08-01 美商艾歐凡斯生物治療公司 Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
TW202342095A (en) 2021-11-05 2023-11-01 英商阿斯特捷利康英國股份有限公司 Composition for treatment and prevention of covid-19
WO2023086803A1 (en) 2021-11-10 2023-05-19 Iovance Biotherapeutics, Inc. Methods of expansion treatment utilizing cd8 tumor infiltrating lymphocytes
WO2023091968A1 (en) 2021-11-17 2023-05-25 Disc Medicine, Inc. Methods for treating anemia of kidney disease
GB202117111D0 (en) 2021-11-26 2022-01-12 Kymab Ltd Antibodies for use as therapeutics against bacterial infections
WO2023139107A1 (en) 2022-01-18 2023-07-27 argenx BV Galectin-10 antibodies
WO2023147399A1 (en) 2022-01-27 2023-08-03 The Rockefeller University Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof
WO2023147488A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Cytokine associated tumor infiltrating lymphocytes compositions and methods
WO2023147486A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Tumor infiltrating lymphocytes engineered to express payloads
WO2023178192A1 (en) 2022-03-15 2023-09-21 Compugen Ltd. Il-18bp antagonist antibodies and their use in monotherapy and combination therapy in the treatment of cancer
EP4245374A2 (en) 2022-03-18 2023-09-20 Compugen Ltd. Pvrl2 and/or pvrig as biomarkers for treatment
WO2023187657A1 (en) 2022-03-30 2023-10-05 Novartis Ag Methods of treating disorders using anti-natriuretic peptide receptor 1 (npr1) antibodies
WO2023196877A1 (en) 2022-04-06 2023-10-12 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2023201369A1 (en) 2022-04-15 2023-10-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
WO2023209177A1 (en) 2022-04-29 2023-11-02 Astrazeneca Uk Limited Sars-cov-2 antibodies and methods of using the same
WO2023220608A1 (en) 2022-05-10 2023-11-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with an il-15r agonist
WO2023222854A1 (en) 2022-05-18 2023-11-23 Kymab Limited Uses of anti-icos antibodies
WO2023245048A1 (en) 2022-06-15 2023-12-21 Bioverativ Usa Inc. Anti-complement c1s antibody formulation
WO2023242361A1 (en) 2022-06-15 2023-12-21 argenx BV Fcrn binding molecules and methods of use
WO2023250507A1 (en) 2022-06-24 2023-12-28 Bioverativ Usa Inc. Methods for treating complement-mediated diseases
WO2024011114A1 (en) 2022-07-06 2024-01-11 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
WO2024020579A1 (en) 2022-07-22 2024-01-25 Bristol-Myers Squibb Company Antibodies binding to human pad4 and uses thereof
WO2024026496A1 (en) 2022-07-28 2024-02-01 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations and anti-pd-1 antibodies
WO2024026474A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle
WO2024026494A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Viral particles retargeted to transferrin receptor 1
US20240052051A1 (en) 2022-07-29 2024-02-15 Regeneron Pharmaceuticals, Inc. Anti-tfr:payload fusions and methods of use thereof
WO2024030758A1 (en) 2022-08-01 2024-02-08 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
US11773160B1 (en) 2022-08-05 2023-10-03 Anaveon AG Immune-stimulating IL-2 fusion proteins

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475091A (en) * 1987-05-04 1995-12-12 The Dana Farber Cancer Institute R6-5-D6, an antibody which binds intercellular adhesion molecule-1
US5489533A (en) * 1987-05-04 1996-02-06 Dana Farber Cancer Institute Isolated nucleic acid molecules encoding ICAM-2
US5739277A (en) * 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
US5747035A (en) * 1995-04-14 1998-05-05 Genentech, Inc. Polypeptides with increased half-life for use in treating disorders involving the LFA-1 receptor
US5869046A (en) * 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6096871A (en) * 1995-04-14 2000-08-01 Genentech, Inc. Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life
US6121022A (en) * 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8607679D0 (en) * 1986-03-27 1986-04-30 Winter G P Recombinant dna product
WO1993022332A2 (en) * 1992-04-24 1993-11-11 Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
WO1994004689A1 (en) * 1992-08-14 1994-03-03 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Recombinant toxin with increased half-life

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475091A (en) * 1987-05-04 1995-12-12 The Dana Farber Cancer Institute R6-5-D6, an antibody which binds intercellular adhesion molecule-1
US5489533A (en) * 1987-05-04 1996-02-06 Dana Farber Cancer Institute Isolated nucleic acid molecules encoding ICAM-2
US5739277A (en) * 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
US5747035A (en) * 1995-04-14 1998-05-05 Genentech, Inc. Polypeptides with increased half-life for use in treating disorders involving the LFA-1 receptor
US5869046A (en) * 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6096871A (en) * 1995-04-14 2000-08-01 Genentech, Inc. Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life
US6121022A (en) * 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
US6998253B1 (en) * 1995-04-14 2006-02-14 Genentech, Inc. Altered polypeptides with increased half-life
US20070031922A1 (en) * 1995-04-14 2007-02-08 Genentech, Inc. Altered polypeptides with increased half-life

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940871B2 (en) 2006-03-20 2015-01-27 The Regents Of The University Of California Engineered anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting
US8940298B2 (en) 2007-09-04 2015-01-27 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting and detection
US9527919B2 (en) 2007-09-04 2016-12-27 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting and detection
US11208632B2 (en) 2016-04-26 2021-12-28 R.P. Scherer Technologies, Llc Antibody conjugates and methods of making and using the same
US11788066B2 (en) 2016-04-26 2023-10-17 R.P. Scherer Technologies, Llc Antibody conjugates and methods of making and using the same
WO2023235772A3 (en) * 2022-05-31 2024-01-04 Fred Hutchinson Cancer Center Humanized anti-cd45 antibodies and uses thereof

Also Published As

Publication number Publication date
US6121022A (en) 2000-09-19
US6998253B1 (en) 2006-02-14
US20070031922A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
US5739277A (en) Altered polypeptides with increased half-life
US5747035A (en) Polypeptides with increased half-life for use in treating disorders involving the LFA-1 receptor
US5869046A (en) Altered polypeptides with increased half-life
US6998253B1 (en) Altered polypeptides with increased half-life
EP0821732B1 (en) Altered polypeptides with increased half-life
US6703018B2 (en) Method of treatment using humanized anti-CD11a antibodies
DE69729209T2 (en) HUMANIZED ANTI-KOERPER AGAINST CD11A
US5440021A (en) Antibodies to human IL-8 type B receptor
ES2210778T3 (en) IMPROVED ANTI-IGE ANTIBODIES AND POLIPEPTIDE IMPROVEMENT PROCEDURE.
US7157085B2 (en) Method for treating IgE-mediated disorders
US8354507B2 (en) HLA-DR specific antibodies, compositions and methods
US20040146507A1 (en) Antibody mutants
EP0946727B1 (en) Antibody mutants
MXPA99004795A (en) HUMANIZED ANTI-CD11a ANTIBODIES

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION