US20080172053A1 - Connective tissue repair system - Google Patents

Connective tissue repair system Download PDF

Info

Publication number
US20080172053A1
US20080172053A1 US12/077,259 US7725908A US2008172053A1 US 20080172053 A1 US20080172053 A1 US 20080172053A1 US 7725908 A US7725908 A US 7725908A US 2008172053 A1 US2008172053 A1 US 2008172053A1
Authority
US
United States
Prior art keywords
connective tissue
staple
anvil
band
trigger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/077,259
Inventor
E. Bruce Toby
Randall J. Huebner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acumed LLC
Original Assignee
Toby E Bruce
Huebner Randall J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toby E Bruce, Huebner Randall J filed Critical Toby E Bruce
Priority to US12/077,259 priority Critical patent/US20080172053A1/en
Publication of US20080172053A1 publication Critical patent/US20080172053A1/en
Assigned to ACUMED LLC reassignment ACUMED LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUEBNER, RANDALL J.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/10Surgical instruments, devices or methods, e.g. tourniquets for applying or removing wound clamps, e.g. containing only one clamp or staple; Wound clamp magazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B17/0644Surgical staples, i.e. penetrating the tissue penetrating the tissue, deformable to closed position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/0682Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil
    • A61B17/0686Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil having a forming anvil staying below the tissue during stapling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/1146Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis of tendons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00862Material properties elastic or resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • A61B2017/081Tissue approximator

Definitions

  • the invention relates to systems for repairing injured connective tissue, including, more particularly, a surgical stapler and staples for repairing partially or completely severed tendons and/or ligaments.
  • Tendons and ligaments are two of several types of connective tissues found in vertebrate organisms. Tendons are bands of fibrous tissue that connect muscles to bones. Ligaments are bands or sheets of fibrous tissue that connect bones or cartilages to one another at a joint or that support an organ. Tendons are essential to joint movement, being present throughout the body, and being particularly numerous throughout the forearm, hand, ankle, and foot.
  • Tendons and ligaments are susceptible to a variety of injuries, ranging from tears to complete severance. For example, because they usually are superficial in location, tendons often are injured by penetrating injuries, such as lacerations.
  • damaged tendons require more force to move after surgery than undamaged tendons, putting additional stress on the sutures used to repair the tendon, frequently resulting in rupture of the tendon before it can heal. Surgeons therefore are encouraged to utilize increasingly complex multistrand repairs, resulting in increased operative time, increased foreign body suture material, and increased handling and manipulation of the tendon. While such procedures enhance the strength of the repair, they also enhance the likelihood of adhesion by the presence of the suture material and/or multiple or large suture knots, and by any rough handling of the involved tissues.
  • the invention provides systems, including apparatus and methods, for repairing injured connective tissue. These systems may include, among others, a surgical stapler and staples for repairing partially or completely severed tendons and/or ligaments.
  • FIG. 1 is an isometric view of a connective tissue repair apparatus, in accordance with aspects of the invention.
  • FIG. 2 is an isometric view of an alternative connective tissue repair apparatus, in accordance with aspects of the invention.
  • FIG. 3 is an exploded isometric view of a portion of the nose section of the connective tissue repair apparatus of FIG. 1 .
  • FIG. 5 is a front elevation view of a surgical staple, in accordance with aspects of the invention.
  • FIG. 6 is a front elevation view of an alternative surgical staple, in accordance with aspects of the invention.
  • FIG. 7 is a front elevation view of another alternative surgical staple, with attached sutures, in accordance with aspects of the invention.
  • FIG. 8A is a cross-sectional side view of the nose of the connective tissue repair apparatus of FIG. 1 , shown cradling an injured band of connective tissue.
  • FIG. 8B is a cross-sectional side view of the nose of the connective tissue repair apparatus of FIG. 1 , shown cradling an injured band of connective tissue, with the clamp body advanced to hold the connective tissue firmly.
  • FIG. 8C is a cross-sectional side view of the nose of the connective tissue repair apparatus of FIG. 1 , shown cradling an injured band of connective tissue, after the surgical staple has been driven through the connective tissue.
  • FIG. 9 is a cross-sectional view of a repaired band of connective tissue, taken along a long axis of the connective tissue, showing a surgical staple configuration.
  • FIG. 10 is a side view of a repaired band of connective tissue, taken along a long axis of the connective tissue, showing an alternative surgical staple configuration.
  • FIG. 11 is a cross-sectional view of a repaired band of connective tissue, showing another alternative surgical staple configuration.
  • the invention provides systems, including apparatus and methods, for repairing injured connective tissue.
  • These apparatus may include, among others, a surgical stapler and staples for repairing partially or completely severed tendons and/or ligaments.
  • the methods may include, among others, methods of using a surgical stapler and/or staples for effecting such repair. Exemplary apparatus and methods are described below, including (I) staplers, (II) staples, (III) methods of use, (IV) staple configurations, and (V) additional considerations.
  • FIGS. 1-4 show exemplary connective tissue staplers, for repairing partially or completely severed tendons and ligaments, in accordance with aspects of the invention.
  • the stapler may include one or more of the following components, among others: (1) a staple driver, configured to advance or drive the legs of a surgical staple through an injured band of connective tissue, (2) an anvil, configured to deflect at least a portion of the legs of the surgical staple as they emerge from the band of connective tissue, back into the band and/or around the exterior of the band, (3) a trigger, operatively connected to the staple driver, configured so that the staple may be advanced by actuating the trigger, (4) a handle, configured for holding or grasping during stapling, (5) a housing, configured to enclose and/or support the staple driver and/or other components of the stapler, and/or (6) a clamp, configured to hold the connective tissue for stapling.
  • a staple driver configured to advance or drive the legs of a surgical staple through an injured band of connective tissue
  • FIG. 1 shows an external view of an exemplary connective tissue repair apparatus (or stapler) 20 .
  • Stapler 20 may include a staple driver (shown below), an anvil 22 , and a trigger 24 .
  • Stapler 20 further may include a handle 26 , a housing 28 , and a clamp 30 .
  • Stapler 20 may be actuated by moving or urging trigger 24 and handle 26 toward one another, for example, by pushing trigger 24 while holding handle 26 .
  • a user preferably pushes the trigger with a thumb or palm, while holding the handle with the fingers.
  • the anvil may be used to support a band or sheet of injured connective tissue 32 for the insertion of a surgical staple 34 by the apparatus.
  • the injured connective tissue may be a tendon, a ligament, and/or any other suitable type of connective tissue.
  • the term “injured,” as used herein, includes any damage to the connective tissue, for example, cuts, tears, lacerations, and/or other form(s) of hurt.
  • the injured connective tissue may be partially or completely severed. If completely severed, the connective tissue may include first 36 and second 38 ends that must be rejoined.
  • the housing may be used to enclose and/or support components of the apparatus.
  • housing 28 substantially encloses the staple driver, while supporting (directly and/or indirectly) anvil 22 , trigger 24 , and handle 26 .
  • the housing may protect portions of the apparatus, while maintaining the proper spatial and/or functional relationships between the same and/or other portions of the apparatus.
  • the trigger and/or handle may be displaced physically from the anvil, so that the stapler may be held and/or actuated without interfering with the placement of connective tissue in the anvil and/or the interaction of the tissue with the staples.
  • the stapler is elongate, with the anvil positioned at a first (nose) end 40 , and the trigger and handle positioned generally at an opposite (butt) end 42 .
  • the housing may include additional features, as desired or warranted, such as a staple port 44 for adding and/or storing staples, prior to use.
  • FIG. 2 shows an external view of another exemplary connective repair apparatus (or stapler) 20 ′, with an alternative trigger/handle mechanism.
  • Stapler 20 ′ may include a staple driver (shown below), an anvil 22 ′, and a trigger 24 ′.
  • Stapler 20 ′ further may include a handle 26 ′, a housing 28 ′, and a clamp 30 ′.
  • Stapler 20 ′ may be actuated, like stapler 20 , by moving or urging trigger 24 ′ and handle 26 ′ toward one another.
  • a user preferably holds the handle using selected fingers and thumb, and pulls the trigger using a remaining finger.
  • FIGS. 3 and 4 show portions of an exemplary stapler (such as the staplers of FIGS. 1 and 2 ) that are involved in the delivery and shaping of staples. These portions, which are primarily from the nose end 50 of the stapler, include, among others, a staple driver 52 , a clamp 54 , and an anvil 56 .
  • the staple driver may include an elongate driver body 58 having a driver face 60 at a first (nose-directed) end, a spring 62 near a second (butt-directed) end, and an elongate slot 64 disposed at least partially in between.
  • the driver face may be configured to hold a surgical staple in an orientation suitable for its insertion into connective tissue when the apparatus is operated, typically by including one or more concave features on the driver face that are complementary to the surgical staple being utilized.
  • the staple driver face may include a lateral groove 66 sized so that a bridging portion of the surgical staple (shown below) may be at least partially inserted into the groove.
  • the staple driver may be operatively connected to a trigger mechanism, such that activating the trigger advances the staple driver, and thus the loaded surgical staple, toward the anvil.
  • the clamp may include an elongate clamp body 68 , with a clamp face 70 at a first (nose-directed) end, a spring-engaging face 72 near a second (butt-directed) end, a staple opening 74 for loading staples, and a guide channel 76 for receiving a staple driver.
  • Staple opening 74 may align with a staple port in the stapler housing (see, e.g., FIG. 1 ), so that staples may be inserted (manually or automatically) into the stapler in advance of the staple driver face.
  • Guide channel 76 may be configured to receive and guide the stapler driver between (1) a loading position, biased toward the butt end of the stapler, where the driver may receive a staple, and (2) a stapling position, biased toward the nose end of the stapler, where the driver may clamp the injured connective tissue and/or deliver the staple.
  • the guide channel may form a longitudinal groove, as shown, into which the staple driver may fit, bounded on three sides by substantially planar faces of the clamp body, and bounded on a fourth side by an extended portion 78 of the anvil.
  • the clamp body may include a projection on its underside that mates with slot 64 in staple driver body 58 , allowing the staple driver to slide along the clamp body within limits defined by the length of slot 64 .
  • the anvil may include an elongate anvil body 80 , with an extended portion 78 toward a first (butt-directed) end, and a staple-shaping portion 82 near a second (nose-directed) end.
  • the staple-shaping portion may include a concave channel 84 , configured so that it can cup a band of injured connective tissue 86 in an appropriate position and orientation to facilitate the insertion of one or more staples into the injured connective tissue, typically so that the site of injury is bridged by the staple.
  • the concave channel may substantially support the first 88 and second 90 severed ends of the connective tissue in abutment, that is, in direct contact with little or no gap between the first and second ends.
  • the concave channel may act in concert with clamp face 70 of clamp 54 .
  • the anvil further may include one or more slots 92 and/or other features or openings to facilitate the use of sutures in the repair of the injured connective tissue.
  • the stapler (and components thereof) may be sized in accordance with the size and/or type of connective tissue under repair.
  • the length of the entire repair apparatus may range between about 80 mm and about 120 mm, and the width of the anvil may range between about 7 mm and about 14 mm.
  • Exemplary flexor tendons may have widths of about 4.7 ⁇ 1.2 mm or 4.3 ⁇ 0.2 mm, and heights of about 3.0 ⁇ 0.4 mm or 3.0 ⁇ 0.7 mm, among others.
  • relatively larger apparatus will facilitate the repair of larger connective tissues, whereas relatively smaller or more delicate apparatus will facilitate the repair of smaller connective tissues (e.g., via microsurgery).
  • the stapler (and components thereof) may be made of any suitable material(s), including metal, plastic, and/or the like. These materials may be capable of sterilization, for example, by autoclaving and/or irradiating, especially for reusable staplers. The materials may be selected to reduce or eliminate damage to connective tissue and/or surrounding tissue, for example, by being smooth and/or nonimmunogenic.
  • the stapler (or portions thereof) may be colored or otherwise marked to distinguish it from other (size) staplers and/or from other surgical instruments.
  • FIG. 5 shows an exemplary surgical staple 110 .
  • This staple includes an elongate bridge portion 112 from which project (or depend) first and second legs 114 a,b having ends or tips 116 a,b , respectively. These ends or tips may be shaped or sharpened to facilitate their passage through tissue.
  • elongated bridge portion 112 and depending legs 114 a,b lie in the same plane, with all formed integrally from a single piece of wire and/or other thin elongate material.
  • the bridge portion and legs may be separated or distinguished by bends 118 a,b .
  • the staple may be flexible enough to be deformed readily upon being driven into the anvil of the apparatus, while rigid enough to hold whatever shape is applied to the staple by the anvil.
  • the cross-section of the staple material may have any suitable shape, such as circular and/or rectangular, with the shape and/or cross-sectional area remaining constant or varying over part or all of the staple.
  • FIG. 6 shows an alternative surgical staple 130 .
  • the alternative staple may incorporate one or more flexible sections 132 , typically, although not necessarily, in the elongate bridge 134 of the staple, with legs 136 a, b retaining sufficient rigidity to be shaped by the anvil.
  • the flexible section may derive its flexibility by any suitable mechanism, for example, by including suture material, nitinol, and so on.
  • the use of staples that incorporate flexible sections may increase the flexibility of repaired regions of connective tissue, relative to regions repaired with staples that are more rigid.
  • flexible staples may facilitate the movement of repaired connective tissue through narrow anatomical passages, for example, the flexor tendon pulleys and sheaths in the hand, with substantially less adhesion and irritation.
  • the flexible section or sections may be joined or secured onto the legs of the staple using any suitable mechanism, including swaging, crimping, gluing, and the like.
  • suture material may be inserted into a hollow needle, whereupon the sleeve may be crimped securely around the suture, so that the needle forms a leg of the resulting staple.
  • FIG. 7 shows yet another alternative surgical staple 150 .
  • Staple 150 optionally includes a flexible section 152 in the elongate bridge 154 between legs 156 a, b of the staple.
  • staple 150 includes two lengths of flexible suture or wire 152 a, b and 53 , each attached to a different staple leg near the elongate bridge.
  • Sutures 152 a, b and 53 terminate in needles, 154 a, b , respectively, so that once staple 150 has been inserted into a band of connective tissue, the staple may be sutured in place, further reinforcing the repair to the connective tissue.
  • the suture or wire generally comprises any material suitable for stitching around and/or through tissue, including standard suture, flexible wire, and so on.
  • the needles generally comprise any surgical needles suitable for stitching around and/or through tissue, narrow or wide gauge, curved or straight, and so on, as dictated or warranted by the application.
  • the surgical staples provided by the invention generally may have any suitable design (e.g., size, shape, and/or material) effective for stabilizing and/or repairing an injury to a band of connective tissue.
  • the surgical staples may include, independently, one or more flexible segments and/or one or more additional sutures, which may or may not include preattached needles.
  • the surgical staple may include only one length of additional suture attached to one leg of the staple.
  • the staples may be sized to correspond, according to any suitable metric, to the size of the connective tissue to be repaired, for example, with a bridge portion long enough to span the tear or severance, possibly including any fraying, and with legs long enough to wrap at least partially around and/or penetrate at least partially into the connective tissue.
  • the length of the bridge portion may range between about 1 mm and about 20 mm, or between about 5 mm and about 15 mm, or be about 8 mm, 10 mm, or 12 mm, among others.
  • the length of the legs may range between about 1 mm and about 20 mm, or between about 5 mm and about 10 mm, or be about 7.5 mm, among others.
  • the diameter of the bridge portion and/or legs may range between about 0.01 mm and about 2 mm, or between about 0.1 mm and about 1 mm, or be about 0.5 mm, among others.
  • the staples may be shaped before use to fit within and/or to be bent by a stapler, and they may be shaped after use to support a particular connective tissue for healing (see, e.g., Section IV below).
  • the staples may be formed of any suitable material(s), particularly biocompatible material(s), including stainless steel, titanium, suture, and/or resorbable material, among others.
  • FIGS. 8A-C viewed together with FIGS. 1 , 3 , and 4 , show an exemplary three-stage method for operating repair apparatus 20 (or 20 ′). This exemplary method is included for illustration and is not intended to limit or define the entire scope of the invention.
  • the connective tissue repair apparatus provided by the invention generally may be operated in any suitable or desired manner.
  • Clamp face 188 may include a concave surface that generally is complementary to concave channel 184 of the anvil, so that the clamp face and concave channel, when in proximity, define a volume within which the injured connective tissue may be supported, aligned, and partially compressed, in anticipation of the insertion of the surgical staple. If the trigger is depressed further, the staple driver will continue to urge the clamp body toward the anvil, until eventually the clamp body reaches a point where it is prevented from advancing further, generally by contact with the anvil; see FIG. 8B .
  • the clamp body preferably is stopped before it advances to a point where it would overly compress or crush the connective tissue, typically before it would compress the tissue to less than about 75% of its normal height.
  • the injured band of connective tissue should be clamped securely between anvil 186 and clamp face 188 , substantially completing the first stage of the stapling process.
  • Stage 2 of the exemplary method comprises stapling the connective tissue to effect the repair.
  • This stage is initiated by continuing to squeeze the trigger beyond the point at which the connected tissue is clamped securely.
  • Depressing the trigger further advances the staple driver through the guide channel (see 76 in FIG. 3 ) within clamp body 178 , such that the tips of the surgical staple begin to protrude from an opening in clamp face 188 defined by the guide channel.
  • the tips of the surgical staple then may be driven into the connective tissue; see FIG. 8C .
  • the interior surface of channel 184 of anvil 186 may be configured so that the tips, and therefore the legs, of the staple are deflected and/or deformed as they emerge from the connective tissue after penetrating the width of the connective tissue, creating a desired staple configuration.
  • the interior surface of the anvil may include grooves, ridges, and/or other features that direct the tips of the staple in the desired direction(s) as the staple is pushed into the anvil.
  • Stage 3 of the exemplary method comprises release and removal of the repaired connective tissue.
  • the trigger may be released, withdrawing the staple driver reciprocally through the guide channel, and away from the anvil and connective tissue. This releases tension applied by the spring, so that clamp face 188 no longer is urged against the anvil, although the clamp body may not retract until the projection on the underside of clamp body 178 contacts the distal end of the elongate slot (see 64 in FIG. 3 ) in staple driver 180 .
  • the repaired connective tissue then may be released from the apparatus, as or after the clamp body retracts.
  • the staples generally may adopt and/or be formed into any configuration capable of and/or adapted to support the injured connective tissue for healing.
  • Exemplary configurations may be two-dimensional (planar) or three-dimensional, and straight and/or curved.
  • the long axis and legs of the staple independently may be aligned with, or offset from, the long axis of the connective tissue.
  • the long axis of the staple may be aligned with the connective tissue, with the legs offset between about 15 and about 45 degrees.
  • Preferred staple configurations reduce the likelihood that the staple will loosen or pull out of the connective tissue, while enhancing healing.
  • These configurations may additionally or alternatively bias the ends of the connective tissue toward one another, potentially enhancing repair.
  • These configurations also may have relatively low surface profiles, to facilitate passage of the stapled tissue through constriction sites such as pulleys and/or sheaths.
  • FIGS. 9 and 10 show two related exemplary configurations, in which the interior surface of the anvil deflects and directs the legs of the surgical staple 200 into a configuration such that at least one leg of the staple is curled around the outer surface of the connective tissue 202 . If two legs of the staple are so curled, each leg may curl in the same direction, or, as shown in FIG. 10 , each may curl in a different direction
  • FIG. 11 shows another exemplary configuration, in which, as the tips of the surgical staple 200 ′ exit the connective tissue 202 ′, the anvil deflects and directs the staple tips back into the connective tissue, for one or both legs of the staple.
  • This configuration in which the staple penetrates the connective tissue more than once, may provide additional strength to the tissue repair.
  • This configuration also may reduce irritation of the tissues surrounding the repair site, as it exposes a reduced amount of foreign material to that tissue. For example, if the connective tissue is a tendon, the reduced exposure to the staple materials may reduce irritation to the tendon sheath, and therefore reduce tendon adhesion during recovery.
  • Staples may be used alone or together with other mechanisms, as necessary or desired to stabilize and repair injuries to connective tissue.
  • tissue repair adequately may be effected by application of a surgical staple alone, so that additional medical procedures are unnecessary. This more likely will be true for simpler injuries, such as partial rather than complete severance.
  • tissue repair may be enhanced by inserting one or more additional staples into the connective tissue bridging the site of the injury. The application of additional staples may be improved by applying additional staples at distinct and nonintersecting angles to each other. Additionally, or in the alternative, tissue repair may be enhanced by applying one or more stitches or sutures across the site of the injury, increasing the strength of the repair.
  • Sutures generally may be applied before the injured tissue is placed in the apparatus, while the tissue resides in the apparatus, and/or after the tissue is removed from the apparatus.
  • the stapler and/or staple are configured to facilitate suturing.
  • the stapler anvil may include one or more slots or ports (see, e.g., slots 82 in FIGS. 3 and 4 ) to facilitate the application of one or more sutures to the injured connective tissue.
  • These sutures may be applied using materials and methods known in the art.
  • the surgical staple itself may include a suture and needle (see, e.g., FIG. 7 ) to facilitate application of sutures across the site of the injury, preferably utilizing slots provided in the anvil.
  • the repair apparatus may be configured, in some embodiments, for a single use, for example, using one or more preloaded staples. These embodiments may be prepackaged in a sterile wrapper. Thus, as needed, the repair apparatus could be removed from the sterile wrapper, used to deploy a staple into the injured connective tissue, and then discarded.
  • the repair apparatus also may be configured, in other embodiments, for reloading additional staples, or different types of staples, for effecting multiple repairs, during the same or different surgical procedures.
  • the repair apparatus may include a staple port for receiving new staples, directly or via a clip or cassette that houses the staples, so that a plurality of surgical staples may be applied before the repair apparatus must be refilled with additional staples.
  • the stapling apparatus may be configured to insert multiple staples into the connective tissue during a single stapling operation, typically at distinct angles.
  • the repair apparatus may be provided alone and/or as part of a surgical kit for connective tissue repair.
  • the kit optionally may include additional supplies, such as surgical staples of one or more sizes or styles.
  • the kit also may include additional tools and/or consumable surgical supplies that may be required for carrying out the connective tissue repair, substantially as described above, such as additional clamps and/or other surgical tools that may facilitate grasping and/or positioning the connective tissue that is being repaired.

Abstract

Systems, including apparatus and methods, for repairing injured connective tissue. These systems may include, among others, a surgical stapler and staples for repairing partially or completely severed tendons and/or ligaments.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/325,703, filed Dec. 20, 2002, now U.S. Pat. No. 7,343,920, which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention relates to systems for repairing injured connective tissue, including, more particularly, a surgical stapler and staples for repairing partially or completely severed tendons and/or ligaments.
  • BACKGROUND
  • Tendons and ligaments are two of several types of connective tissues found in vertebrate organisms. Tendons are bands of fibrous tissue that connect muscles to bones. Ligaments are bands or sheets of fibrous tissue that connect bones or cartilages to one another at a joint or that support an organ. Tendons are essential to joint movement, being present throughout the body, and being particularly numerous throughout the forearm, hand, ankle, and foot.
  • Tendons and ligaments are susceptible to a variety of injuries, ranging from tears to complete severance. For example, because they usually are superficial in location, tendons often are injured by penetrating injuries, such as lacerations.
  • Unfortunately, tendon and ligament injuries may be difficult to repair, for a variety of reasons. For example, the ends of torn connective tissue tend to pull apart significantly after injury, making it unlikely that the injury will heal without surgery to hold the torn ends together. For this reason, tendons often are repaired by pulling the ends of the severed tendon into contact and then stitching them together. Unfortunately, as the repaired tendon heals, the point of reattachment may exhibit adhesion, that is, the abnormal development of new tissue joining the tendon to the surrounding tendon sheath. Adhesion may be reduced by early passive or active movement of the affected joint. Yet, damaged tendons require more force to move after surgery than undamaged tendons, putting additional stress on the sutures used to repair the tendon, frequently resulting in rupture of the tendon before it can heal. Surgeons therefore are encouraged to utilize increasingly complex multistrand repairs, resulting in increased operative time, increased foreign body suture material, and increased handling and manipulation of the tendon. While such procedures enhance the strength of the repair, they also enhance the likelihood of adhesion by the presence of the suture material and/or multiple or large suture knots, and by any rough handling of the involved tissues.
  • Thus, there is a need for a new system for repairing connective tissue, such as tendons and ligaments, that allows their quick and reproducible repair, while leaving the repaired tissue sufficiently strong to permit early range of motion of the involved joint.
  • SUMMARY OF THE INVENTION
  • The invention provides systems, including apparatus and methods, for repairing injured connective tissue. These systems may include, among others, a surgical stapler and staples for repairing partially or completely severed tendons and/or ligaments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an isometric view of a connective tissue repair apparatus, in accordance with aspects of the invention.
  • FIG. 2 is an isometric view of an alternative connective tissue repair apparatus, in accordance with aspects of the invention.
  • FIG. 3 is an exploded isometric view of a portion of the nose section of the connective tissue repair apparatus of FIG. 1.
  • FIG. 4 is a view of the nose of the connective tissue repair apparatus of FIG. 1, shown cradling an injured band of connective tissue.
  • FIG. 5 is a front elevation view of a surgical staple, in accordance with aspects of the invention.
  • FIG. 6 is a front elevation view of an alternative surgical staple, in accordance with aspects of the invention.
  • FIG. 7 is a front elevation view of another alternative surgical staple, with attached sutures, in accordance with aspects of the invention.
  • FIG. 8A is a cross-sectional side view of the nose of the connective tissue repair apparatus of FIG. 1, shown cradling an injured band of connective tissue.
  • FIG. 8B is a cross-sectional side view of the nose of the connective tissue repair apparatus of FIG. 1, shown cradling an injured band of connective tissue, with the clamp body advanced to hold the connective tissue firmly.
  • FIG. 8C is a cross-sectional side view of the nose of the connective tissue repair apparatus of FIG. 1, shown cradling an injured band of connective tissue, after the surgical staple has been driven through the connective tissue.
  • FIG. 9 is a cross-sectional view of a repaired band of connective tissue, taken along a long axis of the connective tissue, showing a surgical staple configuration.
  • FIG. 10 is a side view of a repaired band of connective tissue, taken along a long axis of the connective tissue, showing an alternative surgical staple configuration.
  • FIG. 11 is a cross-sectional view of a repaired band of connective tissue, showing another alternative surgical staple configuration.
  • DETAILED DESCRIPTION
  • The invention provides systems, including apparatus and methods, for repairing injured connective tissue. These apparatus may include, among others, a surgical stapler and staples for repairing partially or completely severed tendons and/or ligaments. The methods may include, among others, methods of using a surgical stapler and/or staples for effecting such repair. Exemplary apparatus and methods are described below, including (I) staplers, (II) staples, (III) methods of use, (IV) staple configurations, and (V) additional considerations.
  • I. Staplers
  • FIGS. 1-4 show exemplary connective tissue staplers, for repairing partially or completely severed tendons and ligaments, in accordance with aspects of the invention. The stapler may include one or more of the following components, among others: (1) a staple driver, configured to advance or drive the legs of a surgical staple through an injured band of connective tissue, (2) an anvil, configured to deflect at least a portion of the legs of the surgical staple as they emerge from the band of connective tissue, back into the band and/or around the exterior of the band, (3) a trigger, operatively connected to the staple driver, configured so that the staple may be advanced by actuating the trigger, (4) a handle, configured for holding or grasping during stapling, (5) a housing, configured to enclose and/or support the staple driver and/or other components of the stapler, and/or (6) a clamp, configured to hold the connective tissue for stapling.
  • FIG. 1 shows an external view of an exemplary connective tissue repair apparatus (or stapler) 20. Stapler 20 may include a staple driver (shown below), an anvil 22, and a trigger 24. Stapler 20 further may include a handle 26, a housing 28, and a clamp 30. Stapler 20 may be actuated by moving or urging trigger 24 and handle 26 toward one another, for example, by pushing trigger 24 while holding handle 26. In particular, in this embodiment, a user preferably pushes the trigger with a thumb or palm, while holding the handle with the fingers.
  • The anvil may be used to support a band or sheet of injured connective tissue 32 for the insertion of a surgical staple 34 by the apparatus. The injured connective tissue may be a tendon, a ligament, and/or any other suitable type of connective tissue. The term “injured,” as used herein, includes any damage to the connective tissue, for example, cuts, tears, lacerations, and/or other form(s) of hurt. In some cases, the injured connective tissue may be partially or completely severed. If completely severed, the connective tissue may include first 36 and second 38 ends that must be rejoined.
  • The housing may be used to enclose and/or support components of the apparatus. Here, housing 28 substantially encloses the staple driver, while supporting (directly and/or indirectly) anvil 22, trigger 24, and handle 26. In this way, the housing may protect portions of the apparatus, while maintaining the proper spatial and/or functional relationships between the same and/or other portions of the apparatus. For example, the trigger and/or handle may be displaced physically from the anvil, so that the stapler may be held and/or actuated without interfering with the placement of connective tissue in the anvil and/or the interaction of the tissue with the staples. Here, the stapler is elongate, with the anvil positioned at a first (nose) end 40, and the trigger and handle positioned generally at an opposite (butt) end 42. The housing may include additional features, as desired or warranted, such as a staple port 44 for adding and/or storing staples, prior to use.
  • FIG. 2 shows an external view of another exemplary connective repair apparatus (or stapler) 20′, with an alternative trigger/handle mechanism. Stapler 20′ may include a staple driver (shown below), an anvil 22′, and a trigger 24′. Stapler 20′ further may include a handle 26′, a housing 28′, and a clamp 30′. Stapler 20′ may be actuated, like stapler 20, by moving or urging trigger 24′ and handle 26′ toward one another. However, in this embodiment, a user preferably holds the handle using selected fingers and thumb, and pulls the trigger using a remaining finger.
  • FIGS. 3 and 4 show portions of an exemplary stapler (such as the staplers of FIGS. 1 and 2) that are involved in the delivery and shaping of staples. These portions, which are primarily from the nose end 50 of the stapler, include, among others, a staple driver 52, a clamp 54, and an anvil 56.
  • The staple driver may include an elongate driver body 58 having a driver face 60 at a first (nose-directed) end, a spring 62 near a second (butt-directed) end, and an elongate slot 64 disposed at least partially in between. The driver face may be configured to hold a surgical staple in an orientation suitable for its insertion into connective tissue when the apparatus is operated, typically by including one or more concave features on the driver face that are complementary to the surgical staple being utilized. For example, the staple driver face may include a lateral groove 66 sized so that a bridging portion of the surgical staple (shown below) may be at least partially inserted into the groove. The staple driver may be operatively connected to a trigger mechanism, such that activating the trigger advances the staple driver, and thus the loaded surgical staple, toward the anvil.
  • The clamp may include an elongate clamp body 68, with a clamp face 70 at a first (nose-directed) end, a spring-engaging face 72 near a second (butt-directed) end, a staple opening 74 for loading staples, and a guide channel 76 for receiving a staple driver. Staple opening 74 may align with a staple port in the stapler housing (see, e.g., FIG. 1), so that staples may be inserted (manually or automatically) into the stapler in advance of the staple driver face. Guide channel 76 may be configured to receive and guide the stapler driver between (1) a loading position, biased toward the butt end of the stapler, where the driver may receive a staple, and (2) a stapling position, biased toward the nose end of the stapler, where the driver may clamp the injured connective tissue and/or deliver the staple. The guide channel may form a longitudinal groove, as shown, into which the staple driver may fit, bounded on three sides by substantially planar faces of the clamp body, and bounded on a fourth side by an extended portion 78 of the anvil. The clamp body may include a projection on its underside that mates with slot 64 in staple driver body 58, allowing the staple driver to slide along the clamp body within limits defined by the length of slot 64.
  • The anvil may include an elongate anvil body 80, with an extended portion 78 toward a first (butt-directed) end, and a staple-shaping portion 82 near a second (nose-directed) end. The staple-shaping portion may include a concave channel 84, configured so that it can cup a band of injured connective tissue 86 in an appropriate position and orientation to facilitate the insertion of one or more staples into the injured connective tissue, typically so that the site of injury is bridged by the staple. In particular, as shown in FIG. 4, where the connective tissue is severed, the concave channel may substantially support the first 88 and second 90 severed ends of the connective tissue in abutment, that is, in direct contact with little or no gap between the first and second ends. The concave channel may act in concert with clamp face 70 of clamp 54. The anvil further may include one or more slots 92 and/or other features or openings to facilitate the use of sutures in the repair of the injured connective tissue.
  • The stapler (and components thereof) may be sized in accordance with the size and/or type of connective tissue under repair. For example, for typical tendon repairs, the length of the entire repair apparatus may range between about 80 mm and about 120 mm, and the width of the anvil may range between about 7 mm and about 14 mm. (Exemplary flexor tendons may have widths of about 4.7±1.2 mm or 4.3±0.2 mm, and heights of about 3.0±0.4 mm or 3.0±0.7 mm, among others.) Generally, relatively larger apparatus will facilitate the repair of larger connective tissues, whereas relatively smaller or more delicate apparatus will facilitate the repair of smaller connective tissues (e.g., via microsurgery).
  • The stapler (and components thereof) may be made of any suitable material(s), including metal, plastic, and/or the like. These materials may be capable of sterilization, for example, by autoclaving and/or irradiating, especially for reusable staplers. The materials may be selected to reduce or eliminate damage to connective tissue and/or surrounding tissue, for example, by being smooth and/or nonimmunogenic. The stapler (or portions thereof) may be colored or otherwise marked to distinguish it from other (size) staplers and/or from other surgical instruments.
  • II. Staples
  • FIGS. 5-7 show exemplary staples for use in repairing connective tissue, in accordance with aspects of the invention. These staples generally may be used for the repair of any suitable tissue, preferably connective tissue, and preferably in conjunction with a repair apparatus, such as the connective tissue repair apparatus described herein.
  • FIG. 5 shows an exemplary surgical staple 110. This staple includes an elongate bridge portion 112 from which project (or depend) first and second legs 114 a,b having ends or tips 116 a,b, respectively. These ends or tips may be shaped or sharpened to facilitate their passage through tissue. Generally, although not necessarily, elongated bridge portion 112 and depending legs 114 a,b lie in the same plane, with all formed integrally from a single piece of wire and/or other thin elongate material. The bridge portion and legs may be separated or distinguished by bends 118 a,b. (Staples generally, though not necessarily, may be prebent to form the bridge portion and legs prior to their being loaded into a stapler.) The staple may be flexible enough to be deformed readily upon being driven into the anvil of the apparatus, while rigid enough to hold whatever shape is applied to the staple by the anvil. The cross-section of the staple material may have any suitable shape, such as circular and/or rectangular, with the shape and/or cross-sectional area remaining constant or varying over part or all of the staple.
  • FIG. 6 shows an alternative surgical staple 130. The alternative staple may incorporate one or more flexible sections 132, typically, although not necessarily, in the elongate bridge 134 of the staple, with legs 136 a, b retaining sufficient rigidity to be shaped by the anvil. The flexible section may derive its flexibility by any suitable mechanism, for example, by including suture material, nitinol, and so on. The use of staples that incorporate flexible sections may increase the flexibility of repaired regions of connective tissue, relative to regions repaired with staples that are more rigid. Thus, flexible staples may facilitate the movement of repaired connective tissue through narrow anatomical passages, for example, the flexor tendon pulleys and sheaths in the hand, with substantially less adhesion and irritation. The flexible section or sections may be joined or secured onto the legs of the staple using any suitable mechanism, including swaging, crimping, gluing, and the like. For example, suture material may be inserted into a hollow needle, whereupon the sleeve may be crimped securely around the suture, so that the needle forms a leg of the resulting staple.
  • FIG. 7 shows yet another alternative surgical staple 150. Staple 150 optionally includes a flexible section 152 in the elongate bridge 154 between legs 156 a, b of the staple. In addition, staple 150 includes two lengths of flexible suture or wire 152 a, b and 53, each attached to a different staple leg near the elongate bridge. Sutures 152 a, b and 53 terminate in needles, 154 a, b, respectively, so that once staple 150 has been inserted into a band of connective tissue, the staple may be sutured in place, further reinforcing the repair to the connective tissue. The suture or wire generally comprises any material suitable for stitching around and/or through tissue, including standard suture, flexible wire, and so on. The needles generally comprise any surgical needles suitable for stitching around and/or through tissue, narrow or wide gauge, curved or straight, and so on, as dictated or warranted by the application.
  • The surgical staples provided by the invention generally may have any suitable design (e.g., size, shape, and/or material) effective for stabilizing and/or repairing an injury to a band of connective tissue. Thus, the surgical staples may include, independently, one or more flexible segments and/or one or more additional sutures, which may or may not include preattached needles. For example, the surgical staple may include only one length of additional suture attached to one leg of the staple. The staples may be sized to correspond, according to any suitable metric, to the size of the connective tissue to be repaired, for example, with a bridge portion long enough to span the tear or severance, possibly including any fraying, and with legs long enough to wrap at least partially around and/or penetrate at least partially into the connective tissue. For example, the length of the bridge portion may range between about 1 mm and about 20 mm, or between about 5 mm and about 15 mm, or be about 8 mm, 10 mm, or 12 mm, among others. Similarly, the length of the legs may range between about 1 mm and about 20 mm, or between about 5 mm and about 10 mm, or be about 7.5 mm, among others. Finally, the diameter of the bridge portion and/or legs may range between about 0.01 mm and about 2 mm, or between about 0.1 mm and about 1 mm, or be about 0.5 mm, among others. The staples may be shaped before use to fit within and/or to be bent by a stapler, and they may be shaped after use to support a particular connective tissue for healing (see, e.g., Section IV below). The staples may be formed of any suitable material(s), particularly biocompatible material(s), including stainless steel, titanium, suture, and/or resorbable material, among others.
  • III. Methods of Use
  • FIGS. 8A-C, viewed together with FIGS. 1, 3, and 4, show an exemplary three-stage method for operating repair apparatus 20 (or 20′). This exemplary method is included for illustration and is not intended to limit or define the entire scope of the invention. The connective tissue repair apparatus provided by the invention generally may be operated in any suitable or desired manner.
  • Stage 1 of the exemplary method comprises properly positioning the connective tissue in the stapler. First, the stapler is loaded (if not already loaded) by inserting a staple 170 through a staple port 172 in stapler housing 174 and a stapler opening 176 in clamp body 178 so that the staple is positioned in front of staple driver 180. Next, a band or other piece of connective tissue 182 is placed in concave channel 184 of anvil 186, and the trigger of the apparatus is depressed toward the handle, urging staple driver 180, loaded staple 170, and the spring (see 62 in FIG. 3) toward the anvil (since the trigger mechanism is coupled to the staple driver); see FIG. 8A. The spring contacts the proximal end (see 72 in FIG. 3) of clamp body 178, advancing a clamp face 188 toward the anvil. Clamp face 188 may include a concave surface that generally is complementary to concave channel 184 of the anvil, so that the clamp face and concave channel, when in proximity, define a volume within which the injured connective tissue may be supported, aligned, and partially compressed, in anticipation of the insertion of the surgical staple. If the trigger is depressed further, the staple driver will continue to urge the clamp body toward the anvil, until eventually the clamp body reaches a point where it is prevented from advancing further, generally by contact with the anvil; see FIG. 8B. The clamp body preferably is stopped before it advances to a point where it would overly compress or crush the connective tissue, typically before it would compress the tissue to less than about 75% of its normal height. The injured band of connective tissue, at this point, should be clamped securely between anvil 186 and clamp face 188, substantially completing the first stage of the stapling process.
  • Stage 2 of the exemplary method comprises stapling the connective tissue to effect the repair. This stage is initiated by continuing to squeeze the trigger beyond the point at which the connected tissue is clamped securely. This causes staple driver 180 to advance further within the barrel of the apparatus, compressing the spring against the proximal end of clamp body 178, while allowing surgical staple 170 to continue to advance toward the connective tissue. Depressing the trigger further advances the staple driver through the guide channel (see 76 in FIG. 3) within clamp body 178, such that the tips of the surgical staple begin to protrude from an opening in clamp face 188 defined by the guide channel. The tips of the surgical staple then may be driven into the connective tissue; see FIG. 8C. The interior surface of channel 184 of anvil 186 may be configured so that the tips, and therefore the legs, of the staple are deflected and/or deformed as they emerge from the connective tissue after penetrating the width of the connective tissue, creating a desired staple configuration. In particular, the interior surface of the anvil may include grooves, ridges, and/or other features that direct the tips of the staple in the desired direction(s) as the staple is pushed into the anvil.
  • Stage 3 of the exemplary method comprises release and removal of the repaired connective tissue. After the tissue has been stapled, the trigger may be released, withdrawing the staple driver reciprocally through the guide channel, and away from the anvil and connective tissue. This releases tension applied by the spring, so that clamp face 188 no longer is urged against the anvil, although the clamp body may not retract until the projection on the underside of clamp body 178 contacts the distal end of the elongate slot (see 64 in FIG. 3) in staple driver 180. The repaired connective tissue then may be released from the apparatus, as or after the clamp body retracts.
  • IV. Staple Configurations
  • FIGS. 9-11 show exemplary staple configurations. These configurations preferably are determined by the anvil, during stapling, as described above. However, in some embodiments, the configuration may be modified (or even established) after stapling, for example, by additional bending. These exemplary configurations are included for illustration and are not intended to limit or define the entire scope of the invention.
  • The staples generally may adopt and/or be formed into any configuration capable of and/or adapted to support the injured connective tissue for healing. Exemplary configurations may be two-dimensional (planar) or three-dimensional, and straight and/or curved. The long axis and legs of the staple independently may be aligned with, or offset from, the long axis of the connective tissue. For example, the long axis of the staple may be aligned with the connective tissue, with the legs offset between about 15 and about 45 degrees. Preferred staple configurations reduce the likelihood that the staple will loosen or pull out of the connective tissue, while enhancing healing. These configurations may additionally or alternatively bias the ends of the connective tissue toward one another, potentially enhancing repair. These configurations also may have relatively low surface profiles, to facilitate passage of the stapled tissue through constriction sites such as pulleys and/or sheaths.
  • FIGS. 9 and 10 show two related exemplary configurations, in which the interior surface of the anvil deflects and directs the legs of the surgical staple 200 into a configuration such that at least one leg of the staple is curled around the outer surface of the connective tissue 202. If two legs of the staple are so curled, each leg may curl in the same direction, or, as shown in FIG. 10, each may curl in a different direction
  • FIG. 11 shows another exemplary configuration, in which, as the tips of the surgical staple 200′ exit the connective tissue 202′, the anvil deflects and directs the staple tips back into the connective tissue, for one or both legs of the staple. This configuration, in which the staple penetrates the connective tissue more than once, may provide additional strength to the tissue repair. This configuration also may reduce irritation of the tissues surrounding the repair site, as it exposes a reduced amount of foreign material to that tissue. For example, if the connective tissue is a tendon, the reduced exposure to the staple materials may reduce irritation to the tendon sheath, and therefore reduce tendon adhesion during recovery.
  • V. Additional Considerations
  • Staples may be used alone or together with other mechanisms, as necessary or desired to stabilize and repair injuries to connective tissue. For example, in some cases, tissue repair adequately may be effected by application of a surgical staple alone, so that additional medical procedures are unnecessary. This more likely will be true for simpler injuries, such as partial rather than complete severance. In other cases, tissue repair may be enhanced by inserting one or more additional staples into the connective tissue bridging the site of the injury. The application of additional staples may be improved by applying additional staples at distinct and nonintersecting angles to each other. Additionally, or in the alternative, tissue repair may be enhanced by applying one or more stitches or sutures across the site of the injury, increasing the strength of the repair. Sutures generally may be applied before the injured tissue is placed in the apparatus, while the tissue resides in the apparatus, and/or after the tissue is removed from the apparatus. Preferably, the stapler and/or staple are configured to facilitate suturing. Thus, the stapler anvil may include one or more slots or ports (see, e.g., slots 82 in FIGS. 3 and 4) to facilitate the application of one or more sutures to the injured connective tissue. These sutures may be applied using materials and methods known in the art. Alternatively, or in addition, the surgical staple itself may include a suture and needle (see, e.g., FIG. 7) to facilitate application of sutures across the site of the injury, preferably utilizing slots provided in the anvil.
  • The repair apparatus may be configured, in some embodiments, for a single use, for example, using one or more preloaded staples. These embodiments may be prepackaged in a sterile wrapper. Thus, as needed, the repair apparatus could be removed from the sterile wrapper, used to deploy a staple into the injured connective tissue, and then discarded.
  • The repair apparatus also may be configured, in other embodiments, for reloading additional staples, or different types of staples, for effecting multiple repairs, during the same or different surgical procedures. For example, the repair apparatus may include a staple port for receiving new staples, directly or via a clip or cassette that houses the staples, so that a plurality of surgical staples may be applied before the repair apparatus must be refilled with additional staples. Alternatively, or in addition, the stapling apparatus may be configured to insert multiple staples into the connective tissue during a single stapling operation, typically at distinct angles.
  • The repair apparatus may be provided alone and/or as part of a surgical kit for connective tissue repair. The kit optionally may include additional supplies, such as surgical staples of one or more sizes or styles. The kit also may include additional tools and/or consumable surgical supplies that may be required for carrying out the connective tissue repair, substantially as described above, such as additional clamps and/or other surgical tools that may facilitate grasping and/or positioning the connective tissue that is being repaired.
  • The disclosure set forth above may encompass multiple distinct inventions with independent utility. Although each of these inventions has been disclosed in its preferred form(s), the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the inventions includes all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. Inventions embodied in other combinations and subcombinations of features, functions, elements, and/or properties may be claimed in applications claiming priority from this or a related application. Such claims, whether directed to a different invention or to the same invention, and whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the inventions of the present disclosure.

Claims (15)

1. A connective tissue repair apparatus, comprising:
an anvil defining an axis and configured to receive and orient a band of connective tissue such that the band extends parallel to the axis;
a staple driver configured to advance a first leg and a second leg of a surgical staple through the band of connective tissue, which has been received and oriented by the anvil, such that the first and second legs enter the band at positions disposed along the band and are deflected by the anvil as they emerge from the band of connective tissue; and
a trigger operatively connected to the staple driver, such that actuating the trigger advances the staple.
2. The connective tissue repair apparatus of claim 1, the connective tissue being severed, forming first and second severed ends, wherein the anvil is configured to align the first and second severed ends for stapling.
3. The connective tissue repair apparatus of claim 1, the first and second legs of the surgical staple having ends that penetrate through the connective tissue during stapling, wherein the anvil is configured to direct the ends back into the band of connective tissue after the ends have penetrated through the tissue.
4. The connective tissue repair apparatus of claim 1, the first and second legs of the surgical staple having ends that penetrate through the connective tissue during stapling, wherein the anvil is configured to direct the ends around the exterior of the band of connective tissue after the ends have penetrated through the tissue.
5. The connective tissue repair apparatus of claim 1, further comprising a connective tissue clamp operatively connected to the trigger, such that actuating the trigger clamps the connective tissue between the anvil and the clamp.
6. The connective tissue repair apparatus of claim 5, wherein releasing the trigger releases the connective tissue from between the anvil and the clamp.
7. The connective tissue repair apparatus of claim 1, further comprising a housing configured to cover at least a portion of the staple driver.
8. The connective tissue apparatus of claim 7, wherein the housing includes a stapler port configured so that a staple may be loaded onto the stapler driver through the stapler port.
9. The connective tissue apparatus of claim 1, wherein the connective tissue is a tendon.
10. A tendon stapler, comprising:
a housing;
an anvil configured to support first and second ends of a severed tendon in alignment and abutment;
a staple driver disposed at least in part within the housing, the staple driver configured to advance a surgical staple against the anvil through the first and second ends of the severed tendon so that tips of the staple enter the tendon at positions disposed along the tendon and are deflected; and
a trigger, configured so that actuating the trigger advances the staple driver.
11. The tendon stapler of claim 10, further comprising a clamp, configured so that advancing the staple driver urges the clamp against the anvil, securing the severed tendon.
12. A kit for repairing an injured band of connective tissue, comprising:
a connective tissue repair apparatus that includes:
an anvil configured to receive and orient a band of connective tissue;
a staple driver configured to advance a first leg and a second leg of a surgical staple through the injured band of connective tissue, with the band of connective tissue received and oriented by the anvil, such that the first and second legs enter the band at positions disposed along the band and are deflected by the anvil as they emerge from the band of connective tissue; and
a trigger operatively connected to the staple driver, such that actuating the trigger advances the staple; and
at least one surgical staple configured for use in the connective tissue repair apparatus.
13. The kit of claim 12, wherein the connective tissue repair apparatus incorporates exactly one surgical staple, and may be used exactly once.
14. The kit of claim 12, wherein the kit includes a plurality of surgical staples.
15. The kit of claim 12, wherein the surgical staple is incorporated in a cassette that includes a plurality of additional surgical staples.
US12/077,259 2002-12-20 2008-03-17 Connective tissue repair system Abandoned US20080172053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/077,259 US20080172053A1 (en) 2002-12-20 2008-03-17 Connective tissue repair system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/325,703 US7343920B2 (en) 2002-12-20 2002-12-20 Connective tissue repair system
US12/077,259 US20080172053A1 (en) 2002-12-20 2008-03-17 Connective tissue repair system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/325,703 Continuation US7343920B2 (en) 2002-12-20 2002-12-20 Connective tissue repair system

Publications (1)

Publication Number Publication Date
US20080172053A1 true US20080172053A1 (en) 2008-07-17

Family

ID=32593855

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/325,703 Expired - Fee Related US7343920B2 (en) 2002-12-20 2002-12-20 Connective tissue repair system
US12/077,259 Abandoned US20080172053A1 (en) 2002-12-20 2008-03-17 Connective tissue repair system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/325,703 Expired - Fee Related US7343920B2 (en) 2002-12-20 2002-12-20 Connective tissue repair system

Country Status (3)

Country Link
US (2) US7343920B2 (en)
AU (1) AU2003297487A1 (en)
WO (1) WO2004058053A2 (en)

Families Citing this family (603)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
EP3170459A1 (en) * 2003-03-11 2017-05-24 Covidien LP Clip applying apparatus with angled jaw
US8714429B2 (en) * 2003-04-29 2014-05-06 Covidien Lp Dissecting tip for surgical stapler
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US20070208252A1 (en) 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20190314620A1 (en) 2004-04-21 2019-10-17 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
WO2006034403A2 (en) * 2004-09-23 2006-03-30 Tyco Healthcare Group, Lp Clip applying apparatus and ligation clip
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US7500979B2 (en) * 2005-08-31 2009-03-10 Ethicon Endo-Surgery, Inc. Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US7673783B2 (en) 2005-11-04 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US7673780B2 (en) 2005-11-09 2010-03-09 Ethicon Endo-Surgery, Inc. Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20070175951A1 (en) * 2006-01-31 2007-08-02 Shelton Frederick E Iv Gearing selector for a powered surgical cutting and fastening instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US7575144B2 (en) * 2006-01-31 2009-08-18 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with single cable actuator
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8721630B2 (en) 2006-03-23 2014-05-13 Ethicon Endo-Surgery, Inc. Methods and devices for controlling articulation
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US7441684B2 (en) * 2006-08-02 2008-10-28 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with audible and visual feedback features
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8056787B2 (en) 2007-03-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with travel-indicating retraction member
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US20080287989A1 (en) * 2007-05-17 2008-11-20 Arch Day Design, Llc Tissue holding implants
US7810693B2 (en) 2007-05-30 2010-10-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with articulatable end effector
US7798386B2 (en) 2007-05-30 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument articulation joint cover
US7549564B2 (en) * 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7905380B2 (en) * 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7658311B2 (en) 2007-06-22 2010-02-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US7766209B2 (en) * 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US20090206133A1 (en) * 2008-02-14 2009-08-20 Ethicon Endo-Surgery, Inc. Articulatable loading units for surgical stapling and cutting instruments
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7819296B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with retractable firing systems
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7861906B2 (en) 2008-02-14 2011-01-04 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with articulatable components
US7819297B2 (en) * 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with reprocessible handle assembly
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
KR101653180B1 (en) 2008-07-30 2016-09-01 아클라런트, 인코포레이션 Paranasal ostium finder devices and methods
EP2323724A1 (en) 2008-09-18 2011-05-25 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100191332A1 (en) 2009-01-08 2010-07-29 Euteneuer Charles L Implantable Tendon Protection Systems and Related Kits and Methods
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US20100241155A1 (en) 2009-03-20 2010-09-23 Acclarent, Inc. Guide system with suction
US9179910B2 (en) * 2009-03-20 2015-11-10 Rotation Medical, Inc. Medical device delivery system and method
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US8821536B2 (en) 2009-06-04 2014-09-02 Rotation Medical, Inc. Methods and apparatus for delivering staples to a target tissue
AU2010256414C1 (en) 2009-06-04 2016-01-21 Rotation Medical, Inc. Methods and apparatus for deploying sheet-like materials
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
JPWO2011105540A1 (en) * 2010-02-26 2013-06-20 三菱重工業株式会社 Composite repair method and composite material using the same
US9198750B2 (en) 2010-03-11 2015-12-01 Rotation Medical, Inc. Tendon repair implant and method of arthroscopic implantation
US8945156B2 (en) 2010-05-19 2015-02-03 University Of Utah Research Foundation Tissue fixation
US8858577B2 (en) 2010-05-19 2014-10-14 University Of Utah Research Foundation Tissue stabilization system
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
CA2812553C (en) 2010-09-30 2019-02-12 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8852214B2 (en) 2011-02-04 2014-10-07 University Of Utah Research Foundation System for tissue fixation to bone
US10952783B2 (en) 2011-12-29 2021-03-23 Rotation Medical, Inc. Guidewire having a distal fixation member for delivering and positioning sheet-like materials in surgery
US9314314B2 (en) 2011-02-15 2016-04-19 Rotation Medical, Inc. Anatomical location markers and methods of use in positioning sheet-like materials during surgery
EP2675391B1 (en) 2011-02-15 2017-09-27 Rotation Medical, Inc. Apparatus for delivering and positioning sheet-like materials
WO2012145059A1 (en) 2011-02-15 2012-10-26 Rotation Medical, Inc. Methods and apparatus for fixing sheet-like materials to a target tissue
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9107661B2 (en) 2011-12-19 2015-08-18 Rotation Medical, Inc. Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue
EP3403601A1 (en) 2011-12-19 2018-11-21 Rotation Medical, Inc. Apparatus for forming pilot holes in bone and delivering fasteners therein for retaining an implant
US9271726B2 (en) 2011-12-19 2016-03-01 Rotation Medical, Inc. Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue
AU2012369140B2 (en) 2011-12-19 2016-11-10 Rotation Medical, Inc. Fasteners for affixing sheet -like materials to bone or tissue
EP2797532B1 (en) 2011-12-29 2016-04-06 Rotation Medical, Inc. Apparatus for delivering and positioning sheet-like materials in surgery
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US10390935B2 (en) 2012-07-30 2019-08-27 Conextions, Inc. Soft tissue to bone repair devices, systems, and methods
US11253252B2 (en) 2012-07-30 2022-02-22 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10835241B2 (en) 2012-07-30 2020-11-17 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10219804B2 (en) 2012-07-30 2019-03-05 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11944531B2 (en) 2012-07-30 2024-04-02 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US9427309B2 (en) 2012-07-30 2016-08-30 Conextions, Inc. Soft tissue repair devices, systems, and methods
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
EP4039236A1 (en) 2013-02-20 2022-08-10 Cytrellis Biosystems, Inc. System for tightening a region of skin
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US20140249557A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
PT2991600T (en) * 2013-05-03 2018-11-05 Cytrellis Biosystems Inc Microclosures and related methods for skin treatment
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
AU2014306273B2 (en) 2013-08-09 2019-07-11 Cytrellis Biosystems, Inc. Methods and apparatuses for skin treatment using non-thermal tissue ablation
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
EP3082897A4 (en) 2013-12-19 2017-07-26 Cytrellis Biosystems, Inc. Methods and devices for manipulating subdermal fat
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US11583384B2 (en) 2014-03-12 2023-02-21 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
WO2015138760A1 (en) 2014-03-12 2015-09-17 Conextions, Inc. Soft tissue repair devices, systems, and methods
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
WO2015172052A1 (en) 2014-05-09 2015-11-12 Rotation Medical, Inc. Medical implant delivery system for sheet-like implant
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
AU2015331752B2 (en) * 2014-10-16 2020-01-30 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
EP3215026B1 (en) 2014-11-04 2023-10-25 Rotation Medical, Inc. Medical implant delivery system
US10123796B2 (en) 2014-11-04 2018-11-13 Rotation Medical, Inc. Medical implant delivery system and related methods
WO2016073502A1 (en) 2014-11-04 2016-05-12 Rotation Medical, Inc. Medical implant delivery system and related methods
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
JP2017533774A (en) 2014-11-14 2017-11-16 サイトレリス バイオシステムズ,インコーポレーテッド Device and method for skin ablation
WO2016085419A1 (en) * 2014-11-28 2016-06-02 Mahmut Tokur Rib and sternum bone suture apparatus
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
WO2016179372A1 (en) 2015-05-06 2016-11-10 Rotation Medical, Inc. Medical implant delivery system and related methods
EP3307204B1 (en) 2015-06-15 2021-11-24 Rotation Medical, Inc. Tendon repair implant
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
JP6653389B2 (en) 2015-12-31 2020-02-26 ローテーション メディカル インコーポレイテッドRotation Medical,Inc. Medical implant delivery system and related methods
CA3008670A1 (en) 2015-12-31 2017-07-06 Rotation Medical, Inc. Fastener delivery system and related methods
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
WO2017172920A1 (en) 2016-03-29 2017-10-05 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
CA3037490A1 (en) 2016-09-21 2018-03-29 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US11696822B2 (en) 2016-09-28 2023-07-11 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
AU2017380830B2 (en) * 2016-12-21 2020-10-08 Trimed Inc. A plantar plate repair device
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
CN110225726A (en) 2017-12-07 2019-09-10 罗特迅医疗有限公司 Medical implant transportation system and correlation technique
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11547397B2 (en) 2017-12-20 2023-01-10 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
CA3091800A1 (en) 2018-02-20 2019-08-29 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2075508A (en) * 1934-07-18 1937-03-30 Edward W Davidson Suture retainer
US2199025A (en) * 1936-06-08 1940-04-30 Carl E Conn Means and method of closing surgical incisions
US2802468A (en) * 1954-12-24 1957-08-13 S & R J Everett & Co Ltd Surgical needles
US3079608A (en) * 1960-01-04 1963-03-05 Res Inst Of Ex Surgical Appara Instrument for ligating blood vessels with metal staples
US3123077A (en) * 1964-03-03 Surgical suture
US3570497A (en) * 1969-01-16 1971-03-16 Gerald M Lemole Suture apparatus and methods
US3735762A (en) * 1970-04-27 1973-05-29 Us Corp Baltimo E Instrument for ligating suturing and dividing organic tubular structures
US3875946A (en) * 1974-02-27 1975-04-08 Ethicon Inc Controlled release suture
US3890975A (en) * 1972-05-31 1975-06-24 Ethicon Inc Controlled release suture
US3976079A (en) * 1974-08-01 1976-08-24 Samuels Peter B Securing devices for sutures
US3981307A (en) * 1974-07-01 1976-09-21 Ethicon, Inc. Thermal attachment of surgical sutures to needles
US4086926A (en) * 1976-10-08 1978-05-02 United States Surgical Corporation Ligating and dividing organic structures
US4111206A (en) * 1975-05-04 1978-09-05 Vishnevsky Alexandr A Surgical instrument for applying metal staples to organs and tissues and for simultaneous division thereof
US4196836A (en) * 1978-02-14 1980-04-08 Senco Products Inc. Surgical stapling instrument
US4344193A (en) * 1980-11-28 1982-08-17 Kenny Charles H Meniscus prosthesis
US4349028A (en) * 1980-10-03 1982-09-14 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
US4506670A (en) * 1983-03-30 1985-03-26 United States Surgical Corporation Two-part surgical fastener applying apparatus with frangible member
US4527726A (en) * 1983-07-18 1985-07-09 Minnesota Mining And Manufacturing Company Bone stapler
US4549545A (en) * 1984-03-05 1985-10-29 Ethicon Inc. Segmented polyurethane surgical buttressing pledgets
US4570623A (en) * 1983-06-02 1986-02-18 Pfizer Hospital Products Group Inc. Arched bridge staple
US4606344A (en) * 1984-07-16 1986-08-19 Ethicon, Inc. Surgical instrument for applying fasteners having improved gap indicating means (Case V)
US4633874A (en) * 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4635637A (en) * 1984-03-29 1987-01-13 Schreiber Saul N Surgical suture
US4649920A (en) * 1986-01-30 1987-03-17 Pfizer Hospital Products Group, Inc. Coated suture
US4665916A (en) * 1985-08-09 1987-05-19 United States Surgical Corporation Surgical stapler apparatus
US4741330A (en) * 1983-05-19 1988-05-03 Hayhurst John O Method and apparatus for anchoring and manipulating cartilage
US4838254A (en) * 1986-08-18 1989-06-13 Georges Gauthier Surgical fastening clip
US4858603A (en) * 1988-06-06 1989-08-22 Johnson & Johnson Orthopaedics, Inc. Bone pin
US4869242A (en) * 1988-07-29 1989-09-26 Galluzzo Mose A Bone fixation pin and method of using the same
US4873976A (en) * 1984-02-28 1989-10-17 Schreiber Saul N Surgical fasteners and method
US4875479A (en) * 1986-07-04 1989-10-24 Vsesojuzny Nauchno-Issledovatelsky I Ispytatelny Institut Meditsinskoi Tekhniki Sutural material
US4895148A (en) * 1986-05-20 1990-01-23 Concept, Inc. Method of joining torn parts of bodily tissue in vivo with a biodegradable tack member
US4901712A (en) * 1988-04-22 1990-02-20 Minnesota Mining And Manufacturing Company Bone nailer
US4926860A (en) * 1988-02-05 1990-05-22 Flexmedics Corporation ARthroscopic instrumentation and method
US4950285A (en) * 1989-11-27 1990-08-21 Wilk Peter J Suture device
US4981149A (en) * 1989-05-16 1991-01-01 Inbae Yoon Method for suturing with a bioabsorbable needle
US4994063A (en) * 1987-02-10 1991-02-19 Garner Eric T Method and apparatus for interosseous bone fixation
US4997436A (en) * 1988-06-03 1991-03-05 Oberlander Michael A Arthroscopic clip insertion tool
US5002563A (en) * 1990-02-22 1991-03-26 Raychem Corporation Sutures utilizing shape memory alloys
US5002562A (en) * 1988-06-03 1991-03-26 Oberlander Michael A Surgical clip
US5053038A (en) * 1989-08-17 1991-10-01 Tenstaple, Inc. Compression bone staple
US5102421A (en) * 1990-06-14 1992-04-07 Wm. E. Anpach, III Suture anchor and method of forming
US5209756A (en) * 1989-11-03 1993-05-11 Bahaa Botros Seedhom Ligament fixation staple
US5211647A (en) * 1992-02-19 1993-05-18 Arthrex Inc. Interference screw and cannulated sheath for endosteal fixation of ligaments
US5236440A (en) * 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
US5242457A (en) * 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
US5246443A (en) * 1990-10-30 1993-09-21 Christian Mai Clip and osteosynthesis plate with dynamic compression and self-retention
US5392978A (en) * 1991-02-08 1995-02-28 United States Surgical Corporation Surgical staple and endoscopic stapler
US5398861A (en) * 1993-04-16 1995-03-21 United States Surgical Corporation Device for driving surgical fasteners
US5425766A (en) * 1987-03-09 1995-06-20 Astra Tech Aktiebolag Resorbable prosthesis
US5431669A (en) * 1993-07-16 1995-07-11 Origin Medsystems, Inc. Surgical clip applier with distal hook
US5484095A (en) * 1992-03-31 1996-01-16 United States Surgical Corporation Apparatus for endoscopically applying staples individually to body tissue
US5500000A (en) * 1993-07-01 1996-03-19 United States Surgical Corporation Soft tissue repair system and method
US5501683A (en) * 1993-06-18 1996-03-26 Linvatec Corporation Suture anchor for soft tissue fixation
US5514181A (en) * 1993-09-29 1996-05-07 Johnson & Johnson Medical, Inc. Absorbable structures for ligament and tendon repair
US5527342A (en) * 1993-12-14 1996-06-18 Pietrzak; William S. Method and apparatus for securing soft tissues, tendons and ligaments to bone
US5547474A (en) * 1992-05-26 1996-08-20 Origin Medsystems, Incorporated Surgical clip closure apparatus with safety stop
US5639008A (en) * 1994-08-25 1997-06-17 The United States Surgical Corporation Anvil for circular stapler
US5645567A (en) * 1994-07-27 1997-07-08 Crainich; Lawrence Surgical staple and stapler device therefor
US5662654A (en) * 1995-06-14 1997-09-02 Incont, Inc. Bone anchor, insertion tool and surgical kit employing same
US5665109A (en) * 1994-12-29 1997-09-09 Yoon; Inbae Methods and apparatus for suturing tissue
US5723008A (en) * 1995-07-20 1998-03-03 Gordon; Leonard Splint for repair of tendons or ligaments and method
US5722982A (en) * 1996-09-26 1998-03-03 University Technology Corporation Strabismus surgery apparatus and method
US5725554A (en) * 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
US5738474A (en) * 1995-05-24 1998-04-14 Blewett; Jeffrey J. Surgical staple and staple drive member
US5741251A (en) * 1997-01-07 1998-04-21 Benoist; Louis Device and method for reducing and stabilizing a bone fracture
US5779707A (en) * 1992-11-13 1998-07-14 Bertholet; Maurice Link piece for bony elements
US5797913A (en) * 1995-07-28 1998-08-25 Groupe Lepine Device for securing bone parts after osteotomy, or for reducing a bone fracture and securing the fractured bone parts, once these parts have been brought together
US5800544A (en) * 1994-12-02 1998-09-01 Omeros Medical Systems, Inc. Tendon and ligament repair system
US5868789A (en) * 1997-02-03 1999-02-09 Huebner; Randall J. Removable suture anchor apparatus
US5879371A (en) * 1997-01-09 1999-03-09 Elective Vascular Interventions, Inc. Ferruled loop surgical fasteners, instruments, and methods for minimally invasive vascular and endoscopic surgery
US5893855A (en) * 1997-04-18 1999-04-13 Jacobs; Robert A. Surgical stapler
US5902319A (en) * 1997-09-25 1999-05-11 Daley; Robert J. Bioabsorbable staples
US5911352A (en) * 1996-12-17 1999-06-15 United States Surgical Corporation Surgical stapling apparatus
US5916224A (en) * 1997-07-09 1999-06-29 The United States Of America As Represented By The Secretary Of The Army Tendon repair clip implant
US5925078A (en) * 1994-01-19 1999-07-20 The General Hospital Corporation Methods and apparatus for joining collagen-containing materials
US5928251A (en) * 1997-09-18 1999-07-27 United States Surgical Corporation Occlusion clamp and occlusion clamp applicator
US6036701A (en) * 1994-01-13 2000-03-14 Ethicon, Inc. Spiral surgical tack
US6102947A (en) * 1995-07-20 2000-08-15 Gordon; Leonard Splint with flexible body for repair of tendons or ligaments and method
US6106556A (en) * 1994-12-02 2000-08-22 Omeros Medical Systems, Inc. Tendon and ligament repair system
US6113611A (en) * 1998-05-28 2000-09-05 Advanced Vascular Technologies, Llc Surgical fastener and delivery system
US6190401B1 (en) * 1991-05-13 2001-02-20 United States Surgical Corporation Device for applying a meniscal staple
US6200330B1 (en) * 1998-11-23 2001-03-13 Theodore V. Benderev Systems for securing sutures, grafts and soft tissue to bone and periosteum
US6277131B1 (en) * 2000-02-15 2001-08-21 Microline, Inc Ladder-type medical clip feeding mechanism
US20020019636A1 (en) * 1999-04-23 2002-02-14 James Ogilvie Shape memory alloy sample
US20020029044A1 (en) * 2000-09-07 2002-03-07 Leonid Monassevitch Staples for bone fixation
US6447524B1 (en) * 2000-10-19 2002-09-10 Ethicon Endo-Surgery, Inc. Fastener for hernia mesh fixation
US6447516B1 (en) * 1999-08-09 2002-09-10 Peter M. Bonutti Method of securing tissue
US20030130669A1 (en) * 2002-01-10 2003-07-10 Damarati John Jairo Method and device for endoscopic suturing
US6607541B1 (en) * 1998-06-03 2003-08-19 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US20040002735A1 (en) * 2002-06-27 2004-01-01 Lizardi Jose E. Suture anchor
US20040006372A1 (en) * 2000-10-20 2004-01-08 Racenet David C. Directionally biased staple and method of manufacturing
US6726705B2 (en) * 2002-06-25 2004-04-27 Incisive Surgical, Inc. Mechanical method and apparatus for bilateral tissue fastening
US6783531B2 (en) * 1999-04-26 2004-08-31 Drew Allen, DPM Compression bone staple, apparatus and method
US20050143759A1 (en) * 2003-12-30 2005-06-30 Kelly William D. Curved cutter stapler shaped for male pelvis
US20060064098A1 (en) * 2002-12-04 2006-03-23 Henrik Hansson Device at fixing means for fixation of bone fragments at bone fractures
US20070010854A1 (en) * 2001-06-07 2007-01-11 Christy Cummins Surgical Staple

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3545444A (en) 1967-10-02 1970-12-08 United States Surgical Corp Wire suture wrapping instrument
US4359053A (en) 1980-06-05 1982-11-16 Snyder Laboratories, Inc. Means of fastening silicone tubing to a rigid surgical needle
USD271332S (en) 1980-12-19 1983-11-08 United States Surgical Corporation Surgical occluding and cutting instrument
WO1986003396A1 (en) 1984-12-10 1986-06-19 Franca Fernando E Surgical needle
US4712550A (en) 1985-04-08 1987-12-15 Sinnett Kevin B Retinal tack
US4781190A (en) 1985-06-18 1988-11-01 Lee Wilson K C Method of arthroscopic repair of a limb joint
US4669473A (en) 1985-09-06 1987-06-02 Acufex Microsurgical, Inc. Surgical fastener
US4924865A (en) 1986-05-20 1990-05-15 Concept, Inc. Repair tack for bodily tissue
US4790303A (en) 1987-03-11 1988-12-13 Acromed Corporation Apparatus and method for securing bone graft
US5171250A (en) 1987-05-14 1992-12-15 Inbae Yoon Surgical clips and surgical clip applicator and cutting and transection device
US5061283A (en) 1987-10-30 1991-10-29 Pfizer Hospital Products Group, Inc. Method for tendon and ligament repair
ES2043842T3 (en) 1987-10-30 1994-01-01 Howmedica DEVICE FOR REPAIR OF TENDONS AND LIGAMENTS.
US5154189A (en) 1988-06-03 1992-10-13 Oberlander Michael A Method for repairing a torn meniscus
CA2013539C (en) 1989-03-31 1999-07-06 Thomas W. Sander Absorbable surgical fastener with bone penetrating elements
US5059206A (en) 1989-04-12 1991-10-22 Winters Thomas F Method and apparatus for repairing a tear in a knee meniscus
US5053047A (en) 1989-05-16 1991-10-01 Inbae Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
US5269783A (en) 1991-05-13 1993-12-14 United States Surgical Corporation Device and method for repairing torn tissue
JP3549206B2 (en) 1993-06-04 2004-08-04 スミス アンド ネフュー インコーポレイテッド Surgical screws and washers
US5458636A (en) 1994-07-20 1995-10-17 U.S. Biomaterials Corporation Prosthetic device for repair and replacement of fibrous connective tissue
US5569252A (en) 1994-09-27 1996-10-29 Justin; Daniel F. Device for repairing a meniscal tear in a knee and method
IL111985A (en) 1994-12-14 1999-04-11 Medical Influence Technologies Staple and thread assembly particularly for use in power-driven staplers for medical suturing
US5972024A (en) 1996-12-24 1999-10-26 Metacardia, Inc. Suture-staple apparatus and method
US6322571B1 (en) 1998-06-05 2001-11-27 Brian D. Adams Apparatus and method for placing sutures in the lacerated end of a tendon and similar body tissues
US6306149B1 (en) 2000-02-15 2001-10-23 Microline, Inc. Medical clip device with cyclical pusher mechanism
US6322580B1 (en) 2000-09-01 2001-11-27 Angiolink Corporation Wound site management and wound closure device

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123077A (en) * 1964-03-03 Surgical suture
US2075508A (en) * 1934-07-18 1937-03-30 Edward W Davidson Suture retainer
US2199025A (en) * 1936-06-08 1940-04-30 Carl E Conn Means and method of closing surgical incisions
US2802468A (en) * 1954-12-24 1957-08-13 S & R J Everett & Co Ltd Surgical needles
US3079608A (en) * 1960-01-04 1963-03-05 Res Inst Of Ex Surgical Appara Instrument for ligating blood vessels with metal staples
US3570497A (en) * 1969-01-16 1971-03-16 Gerald M Lemole Suture apparatus and methods
US3735762A (en) * 1970-04-27 1973-05-29 Us Corp Baltimo E Instrument for ligating suturing and dividing organic tubular structures
US3890975A (en) * 1972-05-31 1975-06-24 Ethicon Inc Controlled release suture
US3875946A (en) * 1974-02-27 1975-04-08 Ethicon Inc Controlled release suture
US3981307A (en) * 1974-07-01 1976-09-21 Ethicon, Inc. Thermal attachment of surgical sutures to needles
US3976079A (en) * 1974-08-01 1976-08-24 Samuels Peter B Securing devices for sutures
US4111206A (en) * 1975-05-04 1978-09-05 Vishnevsky Alexandr A Surgical instrument for applying metal staples to organs and tissues and for simultaneous division thereof
US4086926A (en) * 1976-10-08 1978-05-02 United States Surgical Corporation Ligating and dividing organic structures
US4196836A (en) * 1978-02-14 1980-04-08 Senco Products Inc. Surgical stapling instrument
US4349028A (en) * 1980-10-03 1982-09-14 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
US4344193A (en) * 1980-11-28 1982-08-17 Kenny Charles H Meniscus prosthesis
US4506670A (en) * 1983-03-30 1985-03-26 United States Surgical Corporation Two-part surgical fastener applying apparatus with frangible member
US4741330A (en) * 1983-05-19 1988-05-03 Hayhurst John O Method and apparatus for anchoring and manipulating cartilage
US4570623A (en) * 1983-06-02 1986-02-18 Pfizer Hospital Products Group Inc. Arched bridge staple
US4527726A (en) * 1983-07-18 1985-07-09 Minnesota Mining And Manufacturing Company Bone stapler
US4873976A (en) * 1984-02-28 1989-10-17 Schreiber Saul N Surgical fasteners and method
US4549545A (en) * 1984-03-05 1985-10-29 Ethicon Inc. Segmented polyurethane surgical buttressing pledgets
US4635637A (en) * 1984-03-29 1987-01-13 Schreiber Saul N Surgical suture
US4606344A (en) * 1984-07-16 1986-08-19 Ethicon, Inc. Surgical instrument for applying fasteners having improved gap indicating means (Case V)
US4633874A (en) * 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4665916A (en) * 1985-08-09 1987-05-19 United States Surgical Corporation Surgical stapler apparatus
US4649920A (en) * 1986-01-30 1987-03-17 Pfizer Hospital Products Group, Inc. Coated suture
US4895148A (en) * 1986-05-20 1990-01-23 Concept, Inc. Method of joining torn parts of bodily tissue in vivo with a biodegradable tack member
US4875479A (en) * 1986-07-04 1989-10-24 Vsesojuzny Nauchno-Issledovatelsky I Ispytatelny Institut Meditsinskoi Tekhniki Sutural material
US4838254A (en) * 1986-08-18 1989-06-13 Georges Gauthier Surgical fastening clip
US4994063A (en) * 1987-02-10 1991-02-19 Garner Eric T Method and apparatus for interosseous bone fixation
US5425766A (en) * 1987-03-09 1995-06-20 Astra Tech Aktiebolag Resorbable prosthesis
US4926860A (en) * 1988-02-05 1990-05-22 Flexmedics Corporation ARthroscopic instrumentation and method
US4901712A (en) * 1988-04-22 1990-02-20 Minnesota Mining And Manufacturing Company Bone nailer
US4997436A (en) * 1988-06-03 1991-03-05 Oberlander Michael A Arthroscopic clip insertion tool
US5002562A (en) * 1988-06-03 1991-03-26 Oberlander Michael A Surgical clip
US4858603A (en) * 1988-06-06 1989-08-22 Johnson & Johnson Orthopaedics, Inc. Bone pin
US4869242A (en) * 1988-07-29 1989-09-26 Galluzzo Mose A Bone fixation pin and method of using the same
US4981149A (en) * 1989-05-16 1991-01-01 Inbae Yoon Method for suturing with a bioabsorbable needle
US5053038A (en) * 1989-08-17 1991-10-01 Tenstaple, Inc. Compression bone staple
US5209756A (en) * 1989-11-03 1993-05-11 Bahaa Botros Seedhom Ligament fixation staple
US4950285A (en) * 1989-11-27 1990-08-21 Wilk Peter J Suture device
US5002563A (en) * 1990-02-22 1991-03-26 Raychem Corporation Sutures utilizing shape memory alloys
US5102421A (en) * 1990-06-14 1992-04-07 Wm. E. Anpach, III Suture anchor and method of forming
US5246443A (en) * 1990-10-30 1993-09-21 Christian Mai Clip and osteosynthesis plate with dynamic compression and self-retention
US5392978A (en) * 1991-02-08 1995-02-28 United States Surgical Corporation Surgical staple and endoscopic stapler
US6190401B1 (en) * 1991-05-13 2001-02-20 United States Surgical Corporation Device for applying a meniscal staple
US5211647A (en) * 1992-02-19 1993-05-18 Arthrex Inc. Interference screw and cannulated sheath for endosteal fixation of ligaments
US5484095A (en) * 1992-03-31 1996-01-16 United States Surgical Corporation Apparatus for endoscopically applying staples individually to body tissue
US5236440A (en) * 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
US5242457A (en) * 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
US5547474A (en) * 1992-05-26 1996-08-20 Origin Medsystems, Incorporated Surgical clip closure apparatus with safety stop
US5779707A (en) * 1992-11-13 1998-07-14 Bertholet; Maurice Link piece for bony elements
US5398861A (en) * 1993-04-16 1995-03-21 United States Surgical Corporation Device for driving surgical fasteners
US5501683A (en) * 1993-06-18 1996-03-26 Linvatec Corporation Suture anchor for soft tissue fixation
US5500000A (en) * 1993-07-01 1996-03-19 United States Surgical Corporation Soft tissue repair system and method
US5431669A (en) * 1993-07-16 1995-07-11 Origin Medsystems, Inc. Surgical clip applier with distal hook
US5514181A (en) * 1993-09-29 1996-05-07 Johnson & Johnson Medical, Inc. Absorbable structures for ligament and tendon repair
US5725554A (en) * 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
US5527342A (en) * 1993-12-14 1996-06-18 Pietrzak; William S. Method and apparatus for securing soft tissues, tendons and ligaments to bone
US6036701A (en) * 1994-01-13 2000-03-14 Ethicon, Inc. Spiral surgical tack
US5925078A (en) * 1994-01-19 1999-07-20 The General Hospital Corporation Methods and apparatus for joining collagen-containing materials
US5645567A (en) * 1994-07-27 1997-07-08 Crainich; Lawrence Surgical staple and stapler device therefor
US5639008A (en) * 1994-08-25 1997-06-17 The United States Surgical Corporation Anvil for circular stapler
US6080192A (en) * 1994-12-02 2000-06-27 Omeros Medical Systems, Inc. Tendon and ligament repair system
US5800544A (en) * 1994-12-02 1998-09-01 Omeros Medical Systems, Inc. Tendon and ligament repair system
US6106556A (en) * 1994-12-02 2000-08-22 Omeros Medical Systems, Inc. Tendon and ligament repair system
US5665109A (en) * 1994-12-29 1997-09-09 Yoon; Inbae Methods and apparatus for suturing tissue
US5738474A (en) * 1995-05-24 1998-04-14 Blewett; Jeffrey J. Surgical staple and staple drive member
US5662654A (en) * 1995-06-14 1997-09-02 Incont, Inc. Bone anchor, insertion tool and surgical kit employing same
US5723008A (en) * 1995-07-20 1998-03-03 Gordon; Leonard Splint for repair of tendons or ligaments and method
US6102947A (en) * 1995-07-20 2000-08-15 Gordon; Leonard Splint with flexible body for repair of tendons or ligaments and method
US5797913A (en) * 1995-07-28 1998-08-25 Groupe Lepine Device for securing bone parts after osteotomy, or for reducing a bone fracture and securing the fractured bone parts, once these parts have been brought together
US5722982A (en) * 1996-09-26 1998-03-03 University Technology Corporation Strabismus surgery apparatus and method
US5911352A (en) * 1996-12-17 1999-06-15 United States Surgical Corporation Surgical stapling apparatus
US5741251A (en) * 1997-01-07 1998-04-21 Benoist; Louis Device and method for reducing and stabilizing a bone fracture
US5879371A (en) * 1997-01-09 1999-03-09 Elective Vascular Interventions, Inc. Ferruled loop surgical fasteners, instruments, and methods for minimally invasive vascular and endoscopic surgery
US5868789A (en) * 1997-02-03 1999-02-09 Huebner; Randall J. Removable suture anchor apparatus
US5893855A (en) * 1997-04-18 1999-04-13 Jacobs; Robert A. Surgical stapler
US5916224A (en) * 1997-07-09 1999-06-29 The United States Of America As Represented By The Secretary Of The Army Tendon repair clip implant
US5928251A (en) * 1997-09-18 1999-07-27 United States Surgical Corporation Occlusion clamp and occlusion clamp applicator
US5902319A (en) * 1997-09-25 1999-05-11 Daley; Robert J. Bioabsorbable staples
US6113611A (en) * 1998-05-28 2000-09-05 Advanced Vascular Technologies, Llc Surgical fastener and delivery system
US6607541B1 (en) * 1998-06-03 2003-08-19 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6200330B1 (en) * 1998-11-23 2001-03-13 Theodore V. Benderev Systems for securing sutures, grafts and soft tissue to bone and periosteum
US20020019636A1 (en) * 1999-04-23 2002-02-14 James Ogilvie Shape memory alloy sample
US6783531B2 (en) * 1999-04-26 2004-08-31 Drew Allen, DPM Compression bone staple, apparatus and method
US6447516B1 (en) * 1999-08-09 2002-09-10 Peter M. Bonutti Method of securing tissue
US6277131B1 (en) * 2000-02-15 2001-08-21 Microline, Inc Ladder-type medical clip feeding mechanism
US20020029044A1 (en) * 2000-09-07 2002-03-07 Leonid Monassevitch Staples for bone fixation
US6447524B1 (en) * 2000-10-19 2002-09-10 Ethicon Endo-Surgery, Inc. Fastener for hernia mesh fixation
US20040006372A1 (en) * 2000-10-20 2004-01-08 Racenet David C. Directionally biased staple and method of manufacturing
US20070010854A1 (en) * 2001-06-07 2007-01-11 Christy Cummins Surgical Staple
US20030130669A1 (en) * 2002-01-10 2003-07-10 Damarati John Jairo Method and device for endoscopic suturing
US6726705B2 (en) * 2002-06-25 2004-04-27 Incisive Surgical, Inc. Mechanical method and apparatus for bilateral tissue fastening
US20040002735A1 (en) * 2002-06-27 2004-01-01 Lizardi Jose E. Suture anchor
US20060064098A1 (en) * 2002-12-04 2006-03-23 Henrik Hansson Device at fixing means for fixation of bone fragments at bone fractures
US20050143759A1 (en) * 2003-12-30 2005-06-30 Kelly William D. Curved cutter stapler shaped for male pelvis

Also Published As

Publication number Publication date
US7343920B2 (en) 2008-03-18
WO2004058053A3 (en) 2004-09-02
US20040122471A1 (en) 2004-06-24
WO2004058053A2 (en) 2004-07-15
AU2003297487A8 (en) 2004-07-22
AU2003297487A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
US7343920B2 (en) Connective tissue repair system
US20230301658A1 (en) Surgical stapling apparatus
US7632284B2 (en) Instrument kit and method for performing meniscal repair
EP1767156B2 (en) Surgical stapling instrument having force controlled spacing end effector
US20180228492A1 (en) Clip applying apparatus with angled jaw
US9010606B2 (en) Surgical stapling apparatus
US8939344B2 (en) Surgical stapling apparatus
US9192379B2 (en) Surgical stapling apparatus
US5833695A (en) Surgical stapling system and method of applying staples from multiple staple cartridges
US7226408B2 (en) Tack device with shield
MX2007003818A (en) Surgical stapling instrument.
US20070246505A1 (en) Surgical buttress assemblies and methods of uses thereof
EP2283782A1 (en) Crimp and release of suture holding buttress material
KR102554820B1 (en) suturing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ACUMED LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUEBNER, RANDALL J.;REEL/FRAME:021855/0164

Effective date: 20081104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION