Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20080192458 A1
Publication typeApplication
Application numberUS 11/827,890
Publication dateAug 14, 2008
Filing dateJul 13, 2007
Priority dateFeb 12, 2007
Also published asCN101641623A, CN102121627A, EP2122396A2, US8538217, US8628255, US20100188839, US20100188867, WO2008100277A2, WO2008100277A3, WO2008100277A8
Publication number11827890, 827890, US 2008/0192458 A1, US 2008/192458 A1, US 20080192458 A1, US 20080192458A1, US 2008192458 A1, US 2008192458A1, US-A1-20080192458, US-A1-2008192458, US2008/0192458A1, US2008/192458A1, US20080192458 A1, US20080192458A1, US2008192458 A1, US2008192458A1
InventorsYi-Qun Li
Original AssigneeIntematix Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Light emitting diode lighting system
US 20080192458 A1
Abstract
A lighting system for generating an illumination product comprises an excitation source, blue/UV LED, operable to generate excitation radiation and a remotely located phosphor, photo luminescent material. Excitation radiation is guided from the excitation source to the phosphor by a waveguiding medium, the waveguiding medium being configured such that the distance the radiation travels from the excitation source to the phosphor layer is at least one centimeter in length. The UV/blue excitation source provides excitation radiation to the phosphor(s), causing the phosphor(s) to photo luminesce, and it may also provide a component of the final illumination product. The configuration of the waveguide allows a greater flexibility in lighting system configurations, such as hanging lighting fixtures, desk lighting fixtures, floor standing lighting fixtures, desk lamps, track lighting, spot lighting, accent lighting, lighting panels, inspection lamps and endoscopes.
Images(7)
Previous page
Next page
Claims(25)
1. A lighting system comprising:
(a) an excitation source operable to generate excitation radiation;
(b) a phosphor; and
(c) a waveguide configured to guide the excitation radiation from the excitation source to the phosphor; wherein the configuration of the waveguide determines the configuration of the lighting system.
2. The lighting system according to claim 1, and further comprising a reflective surface provided on at least a part of at least one surface of the waveguide, the reflective surface being configured to reflect excitation radiation toward a light emitting surface of the waveguide.
3. The lighting system according to claim 2, wherein the distance the excitation radiation travels from the excitation source to the phosphor is at least one centimeter in length.
4. The lighting system of claim 1, wherein the excitation source comprises a light emitting diode.
5. The lighting system of claim 1, wherein the excitation radiation comprises UV/blue light.
6. The lighting system of claim 1, wherein the waveguide is configured to be in the shape of a system selected from the group consisting of hanging lighting fixtures, desk lighting fixtures, floor standing lighting fixtures, desk lamps, track lighting, spot lighting, accent lighting, inspection light, endoscope light and lighting panel.
7. The lighting system of claim 1, wherein the phosphor is coated in layer form on at least a part of a light emitting surface of the waveguide.
8. The lighting system of claim 1, wherein a light emitting surface of the waveguide further includes a surface topology to enhance emission of light from the surface.
9. The lighting system of claim 1, wherein the phosphor is embedded in particulate form in at least a portion of the waveguide medium.
10. The lighting system of claim 1, wherein the lighting system produces a white light illumination product.
11. The lighting system of claim 1, wherein the waveguide is a medium selected from the group consisting of polymeric resins, acrylic, butylate and glasses.
12. The lighting system of claim 1, wherein the peak emission wavelength of the light emitted by the excitation source is greater than about 300 nm, and the peak emission wavelength of at least one component of the photo luminescent light emitted by the phosphor is greater than about 430 nm.
13. The lighting system of claim 1, wherein the peak emission wavelength of the light emitted by the excitation source is in a range from about 300 to about 500 nm, and at least one component of the photo luminescent light emitted by the phosphor is greater than about 500 nm.
14. The lighting system of claim 1, wherein the phosphor is a composition of at least two phosphors.
15. The lighting system of claim 13, wherein the phosphor composition contains at least one phosphor selected from the group consisting of phosphors that emit light in the blue, green, yellow, orange, and red regions of the electromagnet spectrum.
16. A method of generating a product illumination, the process comprising:
(a) generating excitation radiation from an excitation source;
(b) waveguiding the excitation radiation to a phosphor configured to photo luminesce upon absorption of at least some of the excitation radiation; and
(c) emitting waveguided excitation radiation from the excitation source and photo luminescent light from the phosphor as a combined, product illumination.
17. The method according to claim 16, and further comprising providing a reflective surface provided on at least a part of at least one surface of the waveguide, the reflective surface being configured to reflect excitation radiation toward a light emitting surface of the waveguide.
18. The method according to claim 16, wherein the distance the excitation radiation travels from the excitation source to the phosphor is at least one centimeter in length.
19. An endoscope lighting system comprising:
(a) a light emitting diode operable to generate excitation radiation of a first wavelength;
(b) a flexible fiber waveguide configured to guide the excitation radiation from the light emitting diode to a distal end of the fiber waveguide; and
(c) a lens provided at the distal end of the waveguide, said lens incorporating a phosphor operable to emit light of a second wavelength in response to the excitation radiation.
20. A lighting panel comprising:
(a) a plurality of light emitting diodes operable to generate excitation radiation of a first wavelength;
(b) a substantially planar waveguide having a light emitting face;
(c) a phosphor provided over the substantially the entire light emitting face; and
(d) a reflecting layer provided on at least the surface of the waveguide opposite the light emitting face, the lighting panel being configured such that excitation radiation from the light emitting diodes is coupled into at least one edge of the waveguide such that the excitation radiation propagates substantially throughout the waveguide and is then emitted through the light emitting face and wherein at least a part of the excitation radiation excites the phosphor which emits light of a second wavelength.
21. The lighting panel of claim 20, wherein the lighting panel is configured to fit an aperture of a suspended ceiling.
22. The lighting panel of claim 20, and further comprising a heat sink around at least a part of the edged of the waveguide, the heat sink being in thermal communication with the plurality of light emitting diodes.
23. A lighting system comprising:
(a) at least one light emitting diode source operable to generate excitation radiation of a first wavelength;
(b) a plurality of flexible optical fibers configured as a flexible sheet and each fiber having a phosphor on at least a part of its outer surface; and
(c) a flexible waveguide configured to couple excitation radiation from the excitation source to at least one end of each fiber such that the excitation radiation propagates substantially throughout the length of each fiber and is emitted through the light surface of each fiber and wherein at least a part of the excitation radiation excites the phosphor which emits light of a second wavelength.
24. The lighting system of claim 23, wherein the fibers are woven as a flexible sheet and comprise the warp and/or weft of the sheet.
25. The lighting system of claim 23, wherein the plurality of fibers are mounted on a flexible backing material.
Description
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application claims priority to U.S. Provisional Application Ser. No. 60/901,837 filed Feb. 12, 2007 entitled “Illumination systems comprising UV/blue excitation radiation waveguided to a remotely located phosphor” which is incorporated by reference herein in its entirety.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The field of the invention is directed to Light Emitting Diode (LED) lighting/illumination systems/fixtures or luminaires. More specifically, the present embodiments are directed to LED lighting systems with phosphor, photo luminescent, wavelength conversion to generate a desired color of light.
  • [0004]
    2. Description of the Related Art
  • [0005]
    The introduction of solid state semiconductor devices such as semiconductor light emitting diodes (LEDs) has allowed a new generation of energy efficient lighting systems to come into existence. Today, most lighting fixture designs utilizing LEDs comprise systems in which an LED (or an LED array) replaces conventional system components such as incandescent bulbs, mercury vapor and compact fluorescent lamps. LEDs often further include a phosphor, photo luminescent material, whose light, emitted in response to excitation radiation from the LED in the system, combines with light from the LED to produce the lighting system's illumination product. It is common in such conventional systems to incorporate further elements such as a light reflection backplane, a light diffusing front plane, and color filter pigments and paints.
  • [0006]
    U.S. Pat. No. 6,350,041 teaches a solid state lamp based on an LED which emits radially dispersed light for room illumination and other applications. The lamp comprises a solid state light source such as an LED or laser which transmits light through a separator to a disperser that disperses the light in a desired pattern and/or changes the color of light. In one embodiment, the light source comprises a blue emitting LED, the separator is a light pipe or fiber optic device and the disperser disperses the light radially and converts some of the blue light to yellow to produce a white light illumination product. The separator spaces the LED a sufficient distance from the disperser such that heat from the LED will not transfer to the disperser when the LED is carrying elevated currents as is necessary for room illumination. Such a lamp provides a solid state light source that can disperse light in many patterns, but is particularly applicable to a radial dispersion of white light for room illumination enabling the lamp to be used as an alternative light source in existing luminaires and lighting fixtures.
  • [0007]
    While such lighting system designs may have demonstrated properties that are acceptable to some customers, properties such as intensity, color temperature and color perception, for instance, they lack flexibility in how the design components may be placed in the system. Phosphor layers are typically placed, for example, adjacent or in close approximation to a light emitting surface of the LED die/chip from whom they derive their excitation energy. Often, the phosphor layer must be coated directly onto the LED die to achieve the desired intensity and color of the illumination being generated.
  • [0008]
    A need exists therefore for an improved illumination/lighting system based entirely on solid-state components, as before, but enhanced by providing greater flexibility in the placement of the components in the system.
  • SUMMARY OF THE INVENTION
  • [0009]
    Embodiments of the present invention are directed to lighting systems comprising an excitation radiation source, which may for example be an LED or a laser diode, and a remotely located phosphor(s). Light from the excitation source is transported to the phosphor via a waveguiding medium and provides excitation radiation to the phosphor(s) and/or phosphor layer(s), causing a photo luminescence. The light from the phosphor(s) may comprise the final illumination product, or it may be combined with any visible light from the radiation source (which may occur, for example, in the case of a blue LED as the radiation source). The final illumination product may be white light, or any colored light. The presence of the waveguide transporting excitation radiation (and possibly the blue light component of the final illumination product) to the phosphor(s) allows greater flexibility in the design of the lighting system. Lighting system configurations allowed by the presence of the waveguide include for example hanging lighting fixtures/luminaires, desk lighting fixtures, table lamps, wall sconces, floor standing lamps, track lighting, spot lighting, accent lighting, inspection light, endoscope light and/or panel lighting. Typically, the distance the radiation travels from the excitation source to the phosphor layer is at least one centimeter in length though it may be typically be 10 cm or more. In some embodiments, the peak emission wavelength of the light emitted by the blue/UV LED is greater than about 300 nm, and the peak emission wavelength of at least one component of the photo luminescent light emitted by the phosphor is greater than about 430 nm.
  • [0010]
    According to the invention a lighting system comprises: (a) an excitation source operable to generate excitation radiation; (b) a phosphor; and (c) a waveguide configured to guide the excitation radiation from the excitation source to the phosphor and wherein the configuration of the waveguide determines the configuration of the lighting system. The use of a waveguide enables new lighting system configurations and/or shapes to be fabricated since bulky components such as heat sinks, driver circuitry, and/or power converters can be located remote to the light emitting surface(s). To maximize light output a reflective surface can be provided on at least a part of at least one surface of the waveguide, the reflective surface being configured to reflect excitation radiation toward a light emitting surface of the waveguide. In one arrangement the distance the radiation travels from the excitation source to the phosphor layer is at least one centimeter in length, though it may typically travel 10, 50 or 100 cm in length.
  • [0011]
    In one arrangement the excitation source comprises a light emitting diode which is advantageously operable to emit UV/blue light, excitation radiation.
  • [0012]
    The waveguide can be configured to be in the shape of a lighting system such as a hanging lighting fixture, a desk lighting fixture, a floor standing lighting fixture, a desk lamp, track lighting, spot lighting, accent lighting or a lighting panel for incorporation into a suspended ceiling.
  • [0013]
    In one arrangement the phosphor is coated in layer form on at least a part of a light emitting surface of the waveguide, for example an end surface of an elongate waveguide. Alternatively, the phosphor is embedded in particulate form in at least a portion of the waveguide medium. Moreover, the light emitting surface of the waveguide can further includes a surface topology to enhance emission of light from the surface such as a roughening of the surface or a regular pattern.
  • [0014]
    The present invention finds particular application in lighting systems which produce a white light illumination product. The waveguide medium can comprise a glass, a plastics material such as acrylic or a polymeric resin.
  • [0015]
    In one arrangement the peak emission wavelength of the light emitted by the excitation source is greater than about 300 nm, and the peak emission wavelength of at least one component of the photo luminescent light emitted by the phosphor is greater than about 430 nm. Preferably, the peak emission wavelength of the light emitted by the excitation source is in a range from about 300 to about 500 nm, and at least one component of the photo luminescent light emitted by the phosphor is greater than about 500 nm.
  • [0016]
    To achieve a desired color of illumination product or color temperature the phosphor is a composition of at least two phosphors that emit light in the blue, green, yellow, orange, or red regions of the electromagnet spectrum.
  • [0017]
    According to a further aspect of the invention a method of generating a product illumination comprises: (a) generating excitation radiation from an excitation source; (b) waveguiding the excitation radiation to a phosphor configured to photo lumines upon absorption of at least some of the excitation radiation; and (c) emitting waveguided excitation radiation from the excitation source and photo luminescent light from the phosphor as a combined product illumination.
  • [0018]
    In one embodiment an endoscope lighting system comprises: (a) a light emitting diode operable to generate excitation radiation of a first wavelength; (b) a flexible fiber waveguide configured to guide the excitation radiation from the light emitting diode to a distal end of the fiber waveguide; and (c) a lens provided at the distal end of the waveguide, said lens incorporating a phosphor operable to emit light of a second wavelength in response to the excitation radiation.
  • [0019]
    According to a further embodiment a lighting panel comprises: (a) a plurality of light emitting diodes operable to generate excitation radiation of a first wavelength; (b) a substantially planar waveguide having a light emitting face; (c) a phosphor provided over substantially the entire light emitting face and (d) a reflecting layer provided on at least the surface of the waveguide opposite the light emitting face, the lighting panel being configured such that excitation radiation from the light emitting diodes is coupled into at least one edge of the waveguide such as to propagate substantially throughout the waveguide and is then emitted through the light emitting face where at least a part of the excitation radiation excites the phosphor which emits light of a second wavelength. Preferably, the lighting panel is configured to fit an aperture of a suspended ceiling. The lighting panel can further comprise a heat sink around at least a part of the edged of the waveguide, the heat sink being in thermal communication with the plurality of light emitting diodes.
  • [0020]
    According to a yet further embodiment a lighting system comprises: (a) at least one light emitting diode source operable to generate excitation radiation of a first wavelength; (b) a plurality of flexible optical fibers configured as a flexible sheet and each fiber having a phosphor on at least a part of its outer surface and (c) a flexible waveguide configured to couple excitation radiation from the excitation source to at least one end of each fiber such that the excitation radiation propagates substantially throughout the length of each fiber and is emitted through the light surface of each fiber and wherein at least a part of the excitation radiation excites the phosphor which emits light of a second wavelength. In one arrangement the fibers are woven as a flexible sheet and comprise the warp and/or weft of the sheet. Alternatively, the plurality of fibers can be mounted on a flexible backing material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0021]
    In order that the present invention is better understood embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
  • [0022]
    FIG. 1 is an illustration of one embodiment of the present invention wherein the lighting system comprises a hanging lighting fixture;
  • [0023]
    FIG. 2 is an illustration of another embodiment of the present lighting system, wherein the system comprises a desk lighting fixture or table lamp;
  • [0024]
    FIG. 3 is an illustration of another embodiment of the present invention, wherein the system comprises a spot lighting fixture;
  • [0025]
    FIG. 4 is a partially exploded schematic representation of a lighting panel;
  • [0026]
    FIG. 5 is a schematic representation of an inspection light in accordance with the invention; and
  • [0027]
    FIG. 6 is a representation of a lighting system in accordance with the invention comprising a flexible sheet.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0028]
    According to the present embodiments, a lighting system comprises three components: 1) an excitation source, typically a blue or UV emitting LED, 2) a remotely located phosphor, photo luminescent, material which may be coated as a layer on or incorporated in a system component, and 3) a waveguide media for transporting excitation radiation from the excitation source to the phosphor. In these embodiments the blue (e.g. 460 nm) emitting LED serves two purposes: one is to function as a source of excitation radiation needed to cause luminescence of the remotely located phosphor and the second is to contribute to the light which forms the final illumination product. The waveguide media can be either solid or liquid in form, but is most often solid to most efficiently guide or transport the excitation radiation. Simultaneously, the waveguide (or parts thereof) may carry the blue/UV light from the LED chip that is not absorbed by a phosphor, this light instead contributing to the illumination product formed by combining LED-originated light and phosphor-originated light.
  • The Shape of the Waveguide Can Determine the Configuration of the Lighting System
  • [0029]
    The shape and/or configuration of the waveguide can determine, at least in part, the configuration and appearance that the present lighting system assumes. In some embodiments, the blue or UV-emitting LED chip may be embedded inside the waveguide media or positioned adjacent to the waveguide to ensure efficient coupling of the LED excitation radiation/light into the waveguide. The LED light may then be guided to a light output structure having a surface (external or internal) coated with the phosphor layer. The phosphor within this structure generates light with a desired emission-peak wavelength and the surface of the output structure is optimized for light extraction, by for example a surface topology such as a roughening of the surface. The presence of the waveguide allows for the lighting system to be configured in virtually any shape, allowing for highly efficient phosphor conversion, and the ability to aim the product illumination in a desired direction. The present lighting system further allows more convenient inclusion of a heat sink adjacent to the LED chip, since the output of the product illumination is located at a distant position. The color of the light delivered by the phosphor-coated output surface is controlled in part by the thickness and emission characteristics of the phosphor.
  • Description of Preferred Embodiments
  • [0030]
    FIG. 1 is an illustration of one embodiment of the present invention in which the lighting system comprises a hanging lighting fixture 10. In this example, a blue (wavelength in a range 450 to 460 nm) or UV-emitting (soft UV 400 to 420 nm) LED 11 is mounted at a first end of a light waveguiding medium 12, which may be referred to as a “waveguide”. The waveguide 12 can be fabricated from any material that is substantially transparent to the excitation radiation, blue/UV light, and can typically comprise a plastics material such as acrylic, butyrate or a glass. At an opposite end (distal end) of the waveguide 12 is a light output surface 13 of the waveguide, which in the embodiment illustrated is coated with a layer of the phosphor, photo luminescent, material 14. Examples of phosphor materials are given in table 1 below together with their CIE chromaticity coordinates CIE (x) and CIE (y). The phosphor can be applied as a layer using a binder material such as silicone gel. The first end of the waveguide may have a reflective surface 15 for directing light that strikes it back towards the output surface end 13 of the waveguide. The blue/UV LED 11 may be mounted on a heat sink 16, to absorb any excess heat produced by the LED. Additionally the heat sink 16 can be configured to support the fixture during installation and house a power supply to enable the fixture to be driven directly from a mains supply.
  • [0031]
    In operation light (excitation radiation) 17 emitted by the LED 11, which is of a first wavelength range λ1, is guided by the waveguide 12 to the light emitting surface 13 where it causes excitation of the phosphor material 14 which re-emits light of a second longer wavelength range λ2. Light 18 output from the second end of the waveguide which comprises the final illumination product is a combination of the emitted excitation radiation (λ1) 18 a and the light 18 b emitted by the phosphor (λ2). The illumination product 18 can be emitted in an isotropic manner, that is to say, in all directions; or it may be either fully focused or only partially focused depending on the configuration of the light emitting surface. The path length that the blue/UV light, excitation radiation, 17 travels along the waveguide 12, from the LED 11 to the phosphor layer 14 on the output surface 13, is typically at least one centimeter (cm), and in other embodiments may be greater than about 10 cm, 50 cm, or 100 cm. The lighting fixture 10 is suspended by a cable 19 used to additionally supply electrical power to the fixture. In FIG. 1, which is a schematic representation, the excitation radiation/light 17 is depicted as traveling in a straight line though it will be appreciated that in practice light will be guided by total internal reflection within the waveguide through a process of multiple internal reflections.
  • [0032]
    In the embodiment of FIG. 1, to aesthetically enhance the appearance of the lighting fixture, blue excitation light 18 c is allowed to exit from the walls of the waveguide 12. In other embodiments the external surface of the waveguide 12: can be covered, partially or completely, with an opaque or reflective material to prevent emission of the excitation radiation; can be covered at least in part with one or more colored filters to impart a desired color to the emission 18 c; or can have one or more phosphor materials provided on at least a part of the outer surface to generate a different color light 18 c or the same color light as the product illumination 18.
  • [0033]
    FIG. 2 is an illustration of another embodiment of a lighting system in accordance with the invention, wherein the system comprises a desk lighting fixture 20, desk or table lamp. Here, the waveguide media comprises two parts, a first part comprising a solid cylindrical rod 21 which is optically coupled to a base of a second part 22 which is shaped substantially as a solid-angle cone. The base of the cone forms the light output surface 23 of the waveguide. In this embodiment, the base of the cone 22 is coated with a phosphor layer 24. The blue/UV LED 25 is mounted at a distal end of the axial rod 21 which is positioned normal to the base of the cone 22, intersecting the base at its centre. As in the previous configuration, the LED 25 may be mounted on a heat sink 26 which itself is in thermal communication with a base 27.
  • [0034]
    In operation, blue/UV light 28 from the LED 25 travels up from the distal end of the rod shaped waveguide 21, through the waveguide 21, to the solid angle cone portion 22. Once inside the cone 22, the blue/UV light may be routed in various desired patterns, or it may be reflected off the curved surfaces of the cone in a diffuse manner, eventually striking the phosphor layer 24 covering the base of the cone. Visible blue light 29 a from the blue/UV LED 25, and photo luminescent light from the phosphor(s) 29 b in the coating, are emitted from the base of the cone, and in combination comprise the illumination product 29. The path length traveled by the blue/UV light through the waveguide, from the LED to the phosphor layer on the output surface, will vary depending on the number of reflections that occur on the surfaces of the cone portion of the waveguide. Again, the path length of the waveguide is at least one centimeter (cm), but in other embodiments may be greater than about 10 cm, 50 cm or 100 cm.
  • [0035]
    As with the hanging light fixture some blue excitation radiation 29 c can be emitted through the curved surface of the cone shaped waveguide and/or rod shaped waveguide. As will be apparent to those skilled in the art, in other embodiments the external surface of one or both waveguide parts 21, 22: can be covered, partially or completely, with an opaque material to prevent emission of the excitation radiation; can be covered at least in part with one or more colored filters to impart a desired color to the emission 18 c; or can have one or more phosphor materials provided on at least a part of the outer surface to generate a different color light 18 c or the same color light as the product illumination 18. In another embodiment a patterned colored filter or colored phosphor pattern can be provided on the outer surface of one or more waveguides. In yet further embodiments the solid cone can be replaced with a hollow conical shell with an inner reflecting surface and the phosphor provided on a transparent/translucent window enclosing the open base of the cone.
  • [0036]
    FIG. 3 is an illustration of another embodiment of the present invention, wherein the system comprises what may be described as spot lighting, and/or accent lighting 30. Here again, the blue/UV LED 31 is mounted on a heat sink 32, some surfaces of which have been coated with a reflective material to maximize coupling of light into the waveguide. The waveguide 33 is configured to transport excitation light 34 according to a desired distribution pattern to a plurality of light output surfaces 35. The operation of the lighting system is analogous to the operation of the other embodiments and the illumination product 36 comprises the combined light from the LED 36 a and phosphor 36 b. To enable the light output to be directed in a desired direction the various parts of the waveguide 35 can be pivotally or flexibly coupled together.
  • [0037]
    FIG. 4 is a partially exploded schematic representation of a lighting panel 40 in accordance with the invention. The example lighting panel is intended for use in a suspended (drop) ceiling of a type that are commonly used in offices and commercial premises in which a grid of support members (T bars) are suspended from the ceiling by steel cables and ceiling tiles supported by the grid of support members. The ceiling tiles can be square (60 cm×60 cm) or rectangular (4 feet×2 feet) in shape and fluorescent light fittings are configured to fit within such size openings.
  • [0038]
    In accordance with the invention the lighting panel comprises a square/rectangular sheet of waveguide material 41, which is dimensioned such that the lighting fixture, including heat sinks around the peripheral edge of the panel, will fit into a tile aperture of a standard suspended ceiling. A series of blue or UV-emitting LEDs 42 are mounted in corresponding apertures 43 within the edges of the planar waveguide 41. In the example illustrated LEDs 42 are provided along two orthogonal edges though in other embodiments they can be provided along one, two, three or all edges of the waveguide. The waveguide 41 can be constructed from any material which is substantially transparent to the excitation radiation and can typically comprise a sheet plastics material such as acrylic.
  • [0039]
    As illustrated, on a lower face of the planar waveguide 41 there is provided a layer of phosphor, photo luminescent, material 44. On the upper face of the planar waveguide 41, that is the face directed toward the supporting ceiling, there is provided a layer of highly reflective material 45 to ensure the majority of light is emitted from the lower face of the panel. The blue/UV LEDs 42 are mounted on a heat sink 46 (only one of which is illustrated in FIG. 4) which is configured along the edge of the lighting panel. To maximize light output the edges of the planar waveguide 41 can additionally include a reflecting surface.
  • [0040]
    In operation light (excitation radiation) 47 emitted by the LEDs 42, which is of a first wavelength range λ1, is coupled into the waveguide 41 and is guided over the entire surface of the waveguide 41. Light which is emitted through the lower face causes excitation of the phosphor material 44 which re-emits light of a second longer wavelength range λ2. Light 48 output from the lower face of the waveguide panel which comprises the final illumination product is a combination of the emitted excitation radiation (λ1) 48 a and the light 48 b emitted by the phosphor (λ2). Typically, the illumination product will be white light and the phosphor layer can comprise a mixture of green (525 to 535 nm) and orange (590 to 610 nm) emissive phosphors which are activated by blue light. The correlated color temperature (CCT), measured in degrees Kelvin, of light produced by the panel can be selected by the quantity, thickness, and composition of phosphor materials. In other arrangements the panel can be configured to produce colored light by appropriate selection of the phosphor material, thickness and excitation source.
  • [0041]
    To enhance the extraction of light, the surface of the waveguide panel advantageously includes some surface topology such as a roughening of the surface or a regular patterning of the surface. In alternative embodiments the phosphor can be incorporated within the waveguide medium in the form of suspended particles. An advantage of the lighting system of the invention is the compact nature, especially overall thickness, of the fixture which can be the same as the thickness of the planar waveguide. Although the lighting panel is described as being for use in a suspended ceiling it can also be used on a wall, flush with a ceiling, as a part of a floor or any horizontal surface such as a counter top or other planar surfaces such as stair treads or risers. Moreover, the panel can be used as a part of a structural component of a building or piece of furniture. In the case of stair treads or risers the wave waveguide preferably comprises a laminated glass construction with the phosphor being incorporated within one of the intervening laminations. In addition to flat panel lighting it will be appreciated that the waveguide can be fabricated into curved surfaces or other form as desired.
  • [0042]
    FIG. 5 is a schematic, partially exploded, illustration of another embodiment of the present invention, wherein the system comprises an inspection light 50 for use in applications where is access is limited and in which the light can be readily configured to provide illumination in a desired direction. Here the optical waveguide comprises a flexible optical fiber 51 which can include a resilient outer sheath to maintain the fiber in the desired configuration. A blue/UV LED 52 is mounted on a heat sink 35 that is configured to attach to the fiber 51 and couple light from the LED into the fiber. At a distal end of the fiber 51 a lens 54 incorporating the phosphor material is provided. The operation of the inspection light is analogous to the operation of the other embodiments and the illumination product 55 comprises the combined light from the LED 55 a and phosphor 55 b. The inspection light is particularly suited to applications where access is restricted or otherwise impaired and finds particular application as a light source in an endoscope or catheter (lumen) as used for example in keyhole surgery or as a dental inspection lamp which can be incorporated in a dentistry drill or other tool. In medical applications the lens can be detachable and replaced for each operation. In other embodiments the inspection light can also be mounted on a weighted base and the lamp them directed in a desired direction analogous to an angle poise desk lamp. Moreover, the base can provide thermal management of the LED by acting as a heat sink and can incorporate driver circuitry and/or AC to DC converter circuitry.
  • [0043]
    Referring to FIG. 6 there is shown a further lighting system 60 in accordance with the invention which comprises a light emitting flexible sheet. In this embodiment the waveguide comprises a plurality of flexible optical fibers or filaments 61 which are attached to a flexible sheet backing material 62. The sheet material 62 can comprise any flexible material such as for example woven cloth, paper or a thin plastics material and can be transparent, translucent or opaque. Each fiber 61, which can comprise acrylic, has a phosphor coating on its outer surface (represented as a dotted pattern in FIG. 6) and in the example illustrated the fibers 61 are arranged in parallel although other patterns will be readily apparent to those skilled in the art such as a wavy pattern, zigzag etc. For ease of fabrication the fibers can have a circular cross section and can be fabricated by drawing a rod of material. In alternative arrangements they can have different cross sections such as for example elliptical or square. The fibers 61 are configured such that at least one end of each is accessible from a single edge of the material; as illustrated the ends of the fibers are accessible from the top and bottom edges.
  • [0044]
    Excitation energy 63 (of wavelength λ1) from a plurality of blue LEDs 64 is coupled into the fibers 61 by a flexible light guide 65. The flexible light guide 65, which can be made of acrylic, can be molded onto the edge of the material/fibers 62/61 or include a slot for receiving the material/fibers. The LEDs 64 can be mounted in corresponding recesses 66, which as illustrated are in an upper surface of the flexible light guide 64 or molded as a part of the light guide 65. The LEDs are preferably low power to eliminate the need for heat sinking the LEDs. The flexible waveguide 65 further includes a reflecting layer on its upper and side faces to maximize light output from the lower face which is coupled into the fibers. Light output 66, illumination product, from the lighting system 60 can comprise a combination of the excitation radiation (λ1) and light generated by the phosphor (λ2).
  • [0045]
    Operation of the lighting system 60 is analogous to the operation of the other embodiments. Excitation radiation, light, 63 generated by the LEDs 64 is dispersed along the length of the light guide 65 and is coupled into the fibers 61 where it excites the phosphor as it propagates along the length of the fibers. The lighting system of the embodiment of FIG. 6 finds particular application as decorative or accent lighting and can be used for example as a drape curtain, wall hanging or a ceiling covering. Preferably the light emitting sheet material/fiber is manufactured in long lengths of standard width which can be cut to length and width and the flexible light guide 65 includes inter-cooperating plug and socket connectors to enable differing lengths of light guide to be produced in a modular fashion.
  • [0046]
    In a further embodiment the optical fibers 61 can be woven as part of a cloth in which the fibers comprise the warp and/or weft of the woven material. Alternatively, the cloth can be woven from fibers alone, though light would then need to be coupled into at least two edges of the material. Moreover, fibers coated in phosphors which emit different colors of light can be used to give a desired color pattern. Alternatively, the sheet material can be fabricated by laying the fibers over one another in a desired pattern and thermally bonding them together.
  • [0047]
    It will be appreciated that the present invention is not restricted to the specific embodiments described and that variations can be made that are within the scope of the invention. For example other lighting systems/fixtures/luminaires will be readily apparent to those skilled in the art by appropriate configuration of the waveguide such as for example a bollard lamp, wall sconces, chandeliers etc. To improve uniformity of the light output intensity the lighting system can further include a light diffusing material. In one arrangement this can be included within or on the light emitting surface of the waveguide.
  • [0048]
    A modular lighting system is also envisaged which comprises a set of cooperating waveguide members, such as splitters/dividers, straight, curved and flexible waveguide sections etc, which can then be used to construct different lighting systems as required.
  • [0049]
    Advantageously, the lighting system includes an LED chip having a peak emission wavelength greater than about 300 nm and preferably with a wavelength greater than 450 nm (blue) so that the excitation radiation can be used as a part of the illumination product.
  • [0050]
    In some embodiments the phosphor may be mixed into a host matrix that may comprise a paint or a resin, wherein the phosphor is impregnated into the host matrix at a concentration designed to impart to the product illumination the desired values of chromaticity, color rendering, temperature and intensity. At least a portion of a surface of the waveguide may be coated with the phosphor-containing host matrix. In other embodiments the phosphor may be blended in a polymeric or glass-based host matrix at a concentration such that at least a portion of the waveguide media is provided for by the phosphor-containing polymeric or glass-based host matrix.
  • [0051]
    The illumination product can be substantially white light in which case the LED chip has a peak emission wavelength greater than about 300 nm and a yellow or orange/green phosphor. The composition, amount, concentration, and distribution of the phosphor within or on the lighting system's output surface may be carefully controlled to achieve the desired color rendering of the product white light. Proper variation of those parameters will produce a white light that may appear substantially different, with as much bluish or yellowish character as the designer wishes.
  • [0000]
    TABLE 1
    Examples of blue/UV activated phosphor, photo luminescent, materials.
    Chromaticity
    Color of coordinates
    emitted light CIE (x) CIE (y) Phosphor composition
    Green 0.25 0.63 Sr0.925Ba1.025Mg0.05Eu0.06Si1.03O4Cl0.12
    Yellow 0.41 0.56 Sr1.40Ba0.55Mg0.05Eu0.06Si1.03O4Cl0.12
    Yellow 0.44 0.53 Sr1.6Ba0.35Mg0.05Eu0.06Si1.03O4Cl0.12
    Yellow 0.46 0.51 Sr1.725Ba0.225Mg0.05Eu0.06Si1.03O4Cl0.12
    Yellow 0.47 0.50 Sr1.725Ba0.15Mg0.05Eu0.06Si1.03O4Cl0.12
    Orange 0.54 0.46 Sr3Eu0.06Si1.02O5F0.18
    Orange 0.55 0.44 Sr3Eu0.06Si1.02O5F0.18
    Orange 0.57 0.42 (Sr0.9Ba0.1)2.76Eu0.06Si1.02O5F0.18
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3593055 *Apr 16, 1969Jul 13, 1971Bell Telephone Labor IncElectro-luminescent device
US3670193 *May 14, 1970Jun 13, 1972Duro Test CorpElectric lamps producing energy in the visible and ultra-violet ranges
US3676668 *Dec 29, 1969Jul 11, 1972Gen ElectricSolid state lamp assembly
US3691482 *Jan 19, 1970Sep 12, 1972Bell Telephone Labor IncDisplay system
US3709685 *Feb 18, 1971Jan 9, 1973Ilford LtdPhotoconductive zinc oxide sensitized by substituted thiazolidene dyes
US3743833 *Jul 16, 1971Jul 3, 1973Eastman Kodak CoRadiographic elements and binders
US3763405 *Dec 21, 1971Oct 2, 1973Nippon Electric CoSolid state luminescent display device
US3793046 *Dec 6, 1971Feb 19, 1974Philips CorpMethod of manufacturing a pigment
US3819973 *Nov 2, 1972Jun 25, 1974Hosford AElectroluminescent filament
US3819974 *Mar 12, 1973Jun 25, 1974D StevensonGallium nitride metal-semiconductor junction light emitting diode
US3849707 *Mar 7, 1973Nov 19, 1974IbmPLANAR GaN ELECTROLUMINESCENT DEVICE
US3875456 *Apr 4, 1973Apr 1, 1975Hitachi LtdMulti-color semiconductor lamp
US3932881 *Mar 7, 1975Jan 13, 1976Nippon Electric Co., Inc.Electroluminescent device including dichroic and infrared reflecting components
US3937998 *Sep 25, 1974Feb 10, 1976U.S. Philips CorporationLuminescent coating for low-pressure mercury vapour discharge lamp
US3972717 *Mar 20, 1974Aug 3, 1976Hoechst AktiengesellschaftElectrophotographic recording material
US4047075 *Feb 27, 1976Sep 6, 1977Licentia-Patent-Verwaltungs-G.M.B.H.Encapsulated light-emitting diode structure and array thereof
US4081764 *Sep 10, 1973Mar 28, 1978Minnesota Mining And Manufacturing CompanyZinc oxide light emitting diode
US4084215 *Feb 25, 1977Apr 11, 1978The United States Of America As Represented By The Secretary Of The NavyStrobe light having reduced electromagnetic radiation
US4104076 *Sep 8, 1976Aug 1, 1978Saint-Gobain IndustriesManufacture of novel grey and bronze glasses
US4143394 *Jul 20, 1977Mar 6, 1979Licentia Patent-Verwaltungs-G.M.B.H.Semiconductor luminescence device with housing
US4176294 *Dec 3, 1976Nov 27, 1979Westinghouse Electric Corp.Method and device for efficiently generating white light with good rendition of illuminated objects
US4211955 *Mar 2, 1978Jul 8, 1980Ray Stephen WSolid state lamp
US4315192 *Dec 31, 1979Feb 9, 1982Westinghouse Electric Corp.Fluorescent lamp using high performance phosphor blend which is protected from color shifts by a very thin overcoat of stable phosphor of similar chromaticity
US4443532 *Jul 29, 1981Apr 17, 1984Bell Telephone Laboratories, IncorporatedInduced crystallographic modification of aromatic compounds
US4573766 *Dec 19, 1983Mar 4, 1986Cordis CorporationLED Staggered back lighting panel for LCD module
US4618555 *Dec 27, 1984Oct 21, 1986Mitsubishi Chemical Ind., Ltd.Electrophotographic photoreceptor comprising azo compounds
US4638214 *Apr 21, 1986Jan 20, 1987General Electric CompanyFluorescent lamp containing aluminate phosphor
US4667036 *Aug 20, 1984May 19, 1987Basf AktiengesellschaftConcentration of light over a particular area, and novel perylene-3,4,9,10-tetracarboxylic acid diimides
US4678285 *Jan 10, 1985Jul 7, 1987Ricoh Company, Ltd.Liquid crystal color display device
US4727003 *Sep 25, 1986Feb 23, 1988Ricoh Company, Ltd.Electroluminescence device
US4772885 *Nov 18, 1985Sep 20, 1988Ricoh Company, Ltd.Liquid crystal color display device
US4845223 *Dec 8, 1986Jul 4, 1989Basf AktiengesellschaftFluorescent aryloxy-substituted perylene-3,4,9,10-tetracarboxylic acid diimides
US4859539 *Sep 19, 1988Aug 22, 1989Eastman Kodak CompanyOptically brightened polyolefin coated paper support
US4915478 *Oct 5, 1988Apr 10, 1990The United States Of America As Represented By The Secretary Of The NavyLow power liquid crystal display backlight
US4918497 *Dec 14, 1988Apr 17, 1990Cree Research, Inc.Blue light emitting diode formed in silicon carbide
US4946621 *Feb 24, 1988Aug 7, 1990Centre National De La Recherche Scientifique (Cnrs)Luminescent mixed borates based on rare earths
US4992704 *Apr 17, 1989Feb 12, 1991Basic Electronics, Inc.Variable color light emitting diode
US5110931 *Nov 8, 1989May 5, 1992Hoechst AktiengesellschaftProcess for the preparation of n,n'-dimethylperylene-3,4,9,10-tetracarboxylic diimide in high-hiding pigment form
US5126214 *Mar 5, 1990Jun 30, 1992Idemitsu Kosan Co., Ltd.Electroluminescent element
US5131916 *Feb 22, 1991Jul 21, 1992Bayer AktiengesellschaftColored fluorescent polymer emulsions for marker pens: graft copolymers and fluorescent dyes in aqueous phase
US5143433 *Nov 1, 1991Sep 1, 1992Litton Systems Canada LimitedNight vision backlighting system for liquid crystal displays
US5143438 *Oct 10, 1991Sep 1, 1992Thorn Emi PlcLight sources
US5208462 *Dec 19, 1991May 4, 1993Allied-Signal Inc.Wide bandwidth solid state optical source
US5210051 *Jun 5, 1991May 11, 1993Cree Research, Inc.High efficiency light emitting diodes from bipolar gallium nitride
US5211467 *Jan 7, 1992May 18, 1993Rockwell International CorporationFluorescent lighting system
US5237182 *Nov 26, 1991Aug 17, 1993Sharp Kabushiki KaishaElectroluminescent device of compound semiconductor with buffer layer
US5278731 *Sep 10, 1992Jan 11, 1994General Electric CompanyFiber optic lighting system using conventional headlamp structures
US5283425 *Jan 29, 1993Feb 1, 1994Rohm Co., Ltd.Light emitting element array substrate with reflecting means
US5405709 *Sep 13, 1993Apr 11, 1995Eastman Kodak CompanyWhite light emitting internal junction organic electroluminescent device
US5439971 *Aug 2, 1994Aug 8, 1995Eastman Chemical CompanyFluorescent pigment concentrates
US5518808 *Nov 5, 1993May 21, 1996E. I. Du Pont De Nemours And CompanyLuminescent materials prepared by coating luminescent compositions onto substrate particles
US5535230 *Jan 3, 1995Jul 9, 1996Shogo TzuzukiIlluminating light source device using semiconductor laser element
US5557168 *Mar 30, 1994Sep 17, 1996Okaya Electric Industries Co., Ltd.Gas-discharging type display device and a method of manufacturing
US5563621 *Nov 17, 1992Oct 8, 1996Black Box Vision LimitedDisplay apparatus
US5619356 *Sep 16, 1994Apr 8, 1997Sharp Kabushiki KaishaReflective liquid crystal display device having a compensator with a retardation value between 0.15 μm and 0.38 μm and a single polarizer
US5660461 *Dec 8, 1994Aug 26, 1997Quantum Devices, Inc.Arrays of optoelectronic devices and method of making same
US5677417 *Apr 28, 1994Oct 14, 1997Max-Planck-Gesellschaft Zur FoerderungTetraaroxyperylene-3,4,9,10-tetracarboxylic polyimides
US5679152 *Jan 27, 1994Oct 21, 1997Advanced Technology Materials, Inc.Method of making a single crystals Ga*N article
US5763901 *Oct 2, 1996Jun 9, 1998Kabushiki Kaisha ToshibaSemiconductor light-emitting device and method for manufacturing the device
US5770887 *Oct 11, 1994Jun 23, 1998Mitsubishi Cable Industries, Ltd.GaN single crystal
US5771039 *Jun 6, 1994Jun 23, 1998Ditzik; Richard J.Direct view display device integration techniques
US5777350 *Nov 30, 1995Jul 7, 1998Nichia Chemical Industries, Ltd.Nitride semiconductor light-emitting device
US5869199 *Mar 17, 1994Feb 9, 1999Sumitomo Electric Industries, Ltd.Organic electroluminescent elements comprising triazoles
US5959316 *Sep 1, 1998Sep 28, 1999Hewlett-Packard CompanyMultiple encapsulation of phosphor-LED devices
US5962971 *Aug 29, 1997Oct 5, 1999Chen; HsingLED structure with ultraviolet-light emission chip and multilayered resins to generate various colored lights
US6137217 *Aug 28, 1992Oct 24, 2000Gte Products CorporationFluorescent lamp with improved phosphor blend
US6299338 *Nov 30, 1998Oct 9, 2001General Electric CompanyDecorative lighting apparatus with light source and luminescent material
US6340824 *Aug 31, 1998Jan 22, 2002Kabushiki Kaisha ToshibaSemiconductor light emitting device including a fluorescent material
US6504301 *Sep 3, 1999Jan 7, 2003Lumileds Lighting, U.S., LlcNon-incandescent lightbulb package using light emitting diodes
US6533446 *Feb 16, 2001Mar 18, 2003Dialight CorporationOmnidirectional light with protected in-ground light source
US6576488 *Jun 11, 2001Jun 10, 2003Lumileds Lighting U.S., LlcUsing electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
US6600175 *Mar 26, 1996Jul 29, 2003Advanced Technology Materials, Inc.Solid state white light emitter and display using same
US6636686 *Dec 31, 1998Oct 21, 2003Bruce D. BelferBraided optical fiber bundles
US6843590 *May 15, 2001Jan 18, 2005Quantum Vision, Inc.Waveguide based light source
US6869812 *May 13, 2003Mar 22, 2005Heng LiuHigh power AllnGaN based multi-chip light emitting diode
US6917751 *Feb 27, 2004Jul 12, 2005Nec CorporationAll optical display with storage and IR-quenchable phosphors
US6921920 *Aug 31, 2001Jul 26, 2005Smith & Nephew, Inc.Solid-state light source
US7277618 *Jul 7, 2006Oct 2, 2007Sumita Optical Glass, Inc.White light-emitting device using fluorescent fiber
US7425084 *Sep 30, 2006Sep 16, 2008Ruud Lighting, Inc.Bollard luminaire
US7479662 *Aug 29, 2003Jan 20, 2009Lumination LlcCoated LED with improved efficiency
US7506986 *Jan 27, 2005Mar 24, 2009Sanyo Electric Co., Ltd.Projection type video display
US7762701 *Oct 28, 2008Jul 27, 2010Osram Sylvania Inc.Rear-loaded light emitting diode module for automotive rear combination lamps
US7943945 *Nov 1, 2005May 17, 2011Cree, Inc.Solid state white light emitter and display using same
US7955878 *Dec 21, 2009Jun 7, 2011Stanley Electric Co., Ltd.Semiconductor light emitting device and method of manufacturing the same
US20040016938 *Jul 18, 2003Jan 29, 2004Bruce BaretzSolid state white light emitter and display using same
US20050219171 *Mar 31, 2004Oct 6, 2005Main Light Industries, Inc.LED curtain display system and method of making
US20060049416 *Nov 1, 2005Mar 9, 2006Bruce BaretzSolid state white light emitter and display using same
US20060235277 *Apr 19, 2006Oct 19, 2006Fuji Photo Film Co., Ltd.Endoscope system
US20080075406 *Sep 20, 2007Mar 27, 2008Masaaki KadomiOptical component and light emitting device using the same
US20080158907 *Nov 8, 2007Jul 3, 2008Fitipower Integrated Technology, IncBacklight module having light guide plate with fluorescent layer thereon
US20080224597 *Jun 1, 2008Sep 18, 2008Cree, Inc.Solid state white light emitter and display using same
US20080224598 *Jun 1, 2008Sep 18, 2008Cree, Inc.Solid state white light emitter and display using same
US20080262316 *Jul 28, 2005Oct 23, 2008Kyocera CorporationLight Source Apparatus and Endoscope Provided with Light Source Apparatus
US20090039756 *Jul 18, 2008Feb 12, 2009Olympus CorporationFiber light source
US20090059359 *Aug 27, 2008Mar 5, 2009Carl Zeiss Surgical GmbhSecondary light source
US20090067194 *Sep 11, 2007Mar 12, 2009World Properties, Inc.Light guide with imprinted phosphor
US20090140630 *Mar 17, 2006Jun 4, 2009Mitsubishi Chemical CorporationLight-emitting device, white light-emitting device, illuminator, and image display
US20110006334 *Feb 19, 2009Jan 13, 2011Kabushiki Kaisha ToshibaWhite led lamp, backlight, light emitting device, display device and illumination device
US20120140466 *Jun 8, 2011Jun 7, 2012Intematix CorporationLed spotlight
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7826698Apr 30, 2010Nov 2, 2010Oree, Inc.Elimination of stitch artifacts in a planar illumination area
US7907804Nov 26, 2008Mar 15, 2011Oree, Inc.Elimination of stitch artifacts in a planar illumination area
US7929816Nov 26, 2008Apr 19, 2011Oree, Inc.Waveguide sheet containing in-coupling, propagation, and out-coupling regions
US8064743Sep 23, 2010Nov 22, 2011Oree, Inc.Discrete light guide-based planar illumination area
US8128272Jun 7, 2006Mar 6, 2012Oree, Inc.Illumination apparatus
US8172447Nov 26, 2008May 8, 2012Oree, Inc.Discrete lighting elements and planar assembly thereof
US8182128Nov 26, 2008May 22, 2012Oree, Inc.Planar white illumination apparatus
US8197105Aug 9, 2010Jun 12, 2012Intematix CorporationLED-based lamps
US8215815Nov 26, 2008Jul 10, 2012Oree, Inc.Illumination apparatus and methods of forming the same
US8231237Mar 5, 2009Jul 31, 2012Oree, Inc.Sub-assembly and methods for forming the same
US8238703Mar 7, 2011Aug 7, 2012Oree Inc.Waveguide sheet containing in-coupling, propagation, and out-coupling regions
US8272758Jun 25, 2009Sep 25, 2012Oree, Inc.Illumination apparatus and methods of forming the same
US8297786Mar 2, 2010Oct 30, 2012Oree, Inc.Slim waveguide coupling apparatus and method
US8301002Jul 10, 2009Oct 30, 2012Oree, Inc.Slim waveguide coupling apparatus and method
US8328406May 12, 2010Dec 11, 2012Oree, Inc.Low-profile illumination device
US8338197Nov 2, 2011Dec 25, 2012Albeo Technologies, Inc.LED chip-based lighting products and methods of building
US8348489Jan 29, 2009Jan 8, 2013Qualcomm Mems Technologies, Inc.Thin illumination system
US8414174Nov 4, 2011Apr 9, 2013Oree, Inc.Illumination apparatus
US8425085Apr 28, 2009Apr 23, 2013Albeo Technologies, Inc.Thermal management of LED-based lighting systems
US8441192Dec 31, 2010May 14, 2013Amina M. ChidiacLED based lamp replacment
US8452144 *Feb 24, 2011May 28, 2013Kabushiki Kaisha ToshibaLight emitter and light emitting device
US8459856Apr 18, 2012Jun 11, 2013Oree, Inc.Planar white illumination apparatus
US8491140Nov 5, 2010Jul 23, 2013Cree, Inc.Lighting device with multiple emitters and remote lumiphor
US8506121Dec 18, 2007Aug 13, 2013Albeo Technologies, Inc.Flow-through LED lighting system
US8534901Sep 13, 2010Sep 17, 2013Teledyne Reynolds, Inc.Collimating waveguide apparatus and method
US8542964 *Jul 5, 2012Sep 24, 2013Oree, Inc.Waveguide sheet containing in-coupling, propagation, and out-coupling regions
US8550684Nov 26, 2008Oct 8, 2013Oree, Inc.Waveguide-based packaging structures and methods for discrete lighting elements
US8558255Dec 18, 2012Oct 15, 2013Albeo Technologies, Inc.LED chip-based lighting products and methods of building
US8564737Sep 9, 2011Oct 22, 2013Cree, Inc.LED backlight system for LCD displays
US8564739Jan 3, 2011Oct 22, 2013Cree, Inc.LED backlight system for LCD displays
US8564742Jul 15, 2011Oct 22, 2013Cree, Inc.LED backlight system for LCD displays
US8579466Aug 24, 2012Nov 12, 2013Oree, Inc.Illumination apparatus and methods of forming the same
US8591072Feb 17, 2012Nov 26, 2013Oree, Inc.Illumination apparatus confining light by total internal reflection and methods of forming the same
US8608328May 6, 2011Dec 17, 2013Teledyne Technologies IncorporatedLight source with secondary emitter conversion element
US8624527Mar 29, 2010Jan 7, 2014Oree, Inc.Independently controllable illumination device
US8641254Mar 7, 2013Feb 4, 2014Oree, Inc.Illumination apparatus
US8651692Jun 15, 2010Feb 18, 2014Intematix CorporationLED based lamp and light emitting signage
US8674616Mar 29, 2011Mar 18, 2014Qualcomm Mems Technologies, Inc.Distributed illumination system
US8686449May 25, 2012Apr 1, 2014Intematix CorporationLight emitting device with phosphor wavelength conversion
US8698387 *Dec 16, 2008Apr 15, 2014Olympus CorporationLight source device and endoscope apparatus comprising the same
US8721149Jul 31, 2012May 13, 2014Qualcomm Mems Technologies, Inc.Illumination device having a tapered light guide
US8727597Jun 23, 2010May 20, 2014Oree, Inc.Illumination apparatus with high conversion efficiency and methods of forming the same
US8740439Dec 21, 2012Jun 3, 2014Qualcomm Mems Technologies, Inc.Thin illumination system
US8770779 *Jun 29, 2012Jul 8, 2014Hubbell IncorporatedSmall aperture recessed wall wash downlight
US8783931Apr 14, 2011Jul 22, 2014Rambus Delaware LlcLight injection system and method for uniform luminosity of waveguide-based displays
US8810126Jun 4, 2013Aug 19, 2014Olympus CorporationLight source device and endoscope apparatus comprising the same
US8840276Oct 22, 2013Sep 23, 2014Oree, Inc.Illumination apparatus confining light by total internal reflection and methods of forming the same
US8851731 *Oct 25, 2011Oct 7, 2014Ningbo Baishi Electric Co., LtdLight-diffusion LED lamp
US8981629Mar 13, 2013Mar 17, 2015Albeo Technologies, Inc.Methods of integrating LED chips with heat sinks, and LED-based lighting assemblies made thereby
US8998478 *Apr 17, 2012Apr 7, 2015Rambus Delaware LlcLighting assembly
US9021739 *Feb 11, 2014May 5, 2015Seoul Viosys Co., Ltd.Plant cultivation apparatus for producing the plant having high content of ginsenosides
US9028120Aug 8, 2012May 12, 2015Quarkstar LlcIllumination devices including multiple light emitting elements
US9039244Aug 20, 2014May 26, 2015Oree, Inc.Illumination apparatus confining light by total internal reflection and methods of forming the same
US9046225 *Aug 16, 2013Jun 2, 2015General Electric CompanyLighting system with improved illumination distribution
US9052094 *Jun 30, 2010Jun 9, 2015Osram Opto Semiconductors GmbhSemiconductor light source
US9076951Mar 13, 2013Jul 7, 2015Albeo Technologies, Inc.Methods of integrating LED chips with heat sinks, and LED-based lighting assemblies made thereby
US9081125Feb 1, 2013Jul 14, 2015Quarkstar LlcIllumination devices including multiple light emitting elements
US9116273 *Nov 23, 2012Aug 25, 2015Shenzhen China Star Optoelectronics Technology Co., Ltd.Backlight module and display apparatus
US9140429Oct 14, 2010Sep 22, 2015Cree, Inc.Optical element edge treatment for lighting device
US9164218Sep 5, 2014Oct 20, 2015Oree, Inc.Slim waveguide coupling apparatus and method
US9195095Sep 18, 2013Nov 24, 2015Cree, Inc.LED lighting devices incorporating waveguides
US9206956Feb 7, 2014Dec 8, 2015Quarkstar LlcIllumination device providing direct and indirect illumination
US9217545Jun 2, 2014Dec 22, 2015Olympus CorporationLight source device and endoscope apparatus comprising the same
US9244212May 7, 2014Jan 26, 2016Qualcomm Mems Technologies, Inc.Illumination device having a tapered light guide
US9291320Aug 30, 2013Mar 22, 2016Cree, Inc.Consolidated troffer
US9303830Jun 2, 2014Apr 5, 2016Olympus CorporationLight source device and endoscope apparatus comprising the same
US9335029Apr 17, 2013May 10, 2016Cree, Inc.Lighting device with remote lumiphor and non-planar optical element
US9335462Jul 18, 2014May 10, 2016Quarkstar LlcLuminaire module with multiple light guide elements
US9354377Sep 17, 2014May 31, 2016Quarkstar LlcLight guide illumination device with light divergence modifier
US9366396Dec 9, 2013Jun 14, 2016Cree, Inc.Optical waveguide and lamp including same
US9366799May 30, 2014Jun 14, 2016Cree, Inc.Optical waveguide bodies and luminaires utilizing same
US9389367Jul 10, 2013Jul 12, 2016Cree, Inc.Optical waveguide and luminaire incorporating same
US9395057Feb 7, 2011Jul 19, 2016Cree, Inc.Lighting device with flexibly coupled heatsinks
US9395479Feb 20, 2015Jul 19, 2016Qualcomm Mems Technologies, Inc.Illumination device having a tapered light guide
US9410680Apr 17, 2014Aug 9, 2016Quarkstar LlcIllumination devices with adjustable optical elements
US9442243Dec 9, 2013Sep 13, 2016Cree, Inc.Waveguide bodies including redirection features and methods of producing same
US9448353Feb 20, 2015Sep 20, 2016Qualcomm Mems Technologies, Inc.Illumination device having a tapered light guide
US9459398Jul 18, 2014Oct 4, 2016Quarkstar LlcIllumination device in which source light injection is non-parallel to device's optical axis
US9519095Mar 15, 2013Dec 13, 2016Cree, Inc.Optical waveguides
US9557030Sep 17, 2014Jan 31, 2017Quarkstar LlcLight guide illumination device for direct-indirect illumination
US9581751Mar 15, 2013Feb 28, 2017Cree, Inc.Optical waveguide and lamp including same
US9587790Mar 15, 2013Mar 7, 2017Cree, Inc.Remote lumiphor solid state lighting devices with enhanced light extraction
US9587791Feb 23, 2016Mar 7, 2017Olympus CorporationLight source device and endoscope apparatus comprising the same
US9625638Mar 15, 2013Apr 18, 2017Cree, Inc.Optical waveguide body
US9645303Aug 28, 2014May 9, 2017Cree, Inc.Luminaires utilizing edge coupling
US9664839Sep 17, 2014May 30, 2017Quarkstar LlcIllumination device for direct-indirect illumination
US20080158878 *Dec 18, 2007Jul 3, 2008Peter Van LaanenFlow-Through LED Lighting System
US20090001397 *May 29, 2008Jan 1, 2009Oree, Advanced Illumiation Solutions Inc.Method and device for providing circumferential illumination
US20090161383 *Nov 26, 2008Jun 25, 2009Noam MeirWaveguide sheet containing in-coupling, propagation, and out-coupling regions
US20090162015 *Nov 26, 2008Jun 25, 2009Noam MeirStitches elimination structure and method to provide the same
US20090167149 *Dec 16, 2008Jul 2, 2009Olympus CorporationLight source device and endoscope apparatus comprising the same
US20090225566 *Mar 5, 2009Sep 10, 2009Micha ZimmermannIllumination apparatus and methods of forming the same
US20090290348 *Apr 28, 2009Nov 26, 2009Peter Van LaanenThermal Management Of LED-Based Lighting Systems
US20100321919 *Jun 15, 2010Dec 23, 2010Intematix CorporationLed based lamp and light emitting signage
US20110013423 *Dec 3, 2008Jan 20, 2011Selbrede Martin GLight injection system and method for uniform luminosity of waveguide-based displays
US20110058353 *Aug 9, 2010Mar 10, 2011Intematix CorporationLed-based lamps
US20110090713 *Jul 8, 2008Apr 21, 2011Helio Optoelectronics CorporationFlexible backlight module
US20110096263 *Jan 3, 2011Apr 28, 2011Cree, Inc.Led backlight system for lcd displays
US20110235365 *Apr 14, 2011Sep 29, 2011Mccollum Timothy ALight injection system and method for uniform luminosity of waveguide-based displays
US20120268966 *Apr 17, 2012Oct 25, 2012Rambus Inc.Lighting assembly
US20120298888 *Jun 30, 2010Nov 29, 2012Benjamin Claus KrummacherSemiconductor Light Source
US20130062647 *Jun 28, 2012Mar 14, 2013Luminus Devices, Inc.Light emitting devices including wavelength converting material
US20130100642 *Oct 25, 2011Apr 25, 2013Marcus ZhangLight-diffusion led lamp
US20130272029 *Jun 6, 2012Oct 17, 2013Radiant Opto-Electronics CorporationLight source module
US20140003039 *Jun 29, 2012Jan 2, 2014Hubbell IncorporatedSmall aperture recessed wall wash downlight
US20140126242 *Nov 23, 2012May 8, 2014Shenzhen China Star Optoelectronics Technology Co., Ltd.Backlight module and display apparatus
US20140225003 *Feb 11, 2014Aug 14, 2014Seoul Viosys Co., Ltd.Plant cultivation apparatus for producing the plant having high content of ginsenosides
US20140355302 *Aug 18, 2014Dec 4, 2014Cree, Inc.Outdoor and/or Enclosed Structure LED Luminaire for General Illumination Applications, Such as Parking Lots and Structures
US20150049509 *Aug 16, 2013Feb 19, 2015General Electric Company Global ResearchLighting System with Improved Illumination Distribution
US20150185416 *Mar 13, 2015Jul 2, 2015Teledyne Scientific & Imaging, LlcSilicon waveguides with embedded active circuitry
US20150346424 *May 29, 2015Dec 3, 2015Jose Antonio LasoManaged Illumination Lightguide
CN103527953A *Oct 22, 2013Jan 22, 2014云南邦桥节能科技有限公司Illuminating lamp
EP2172695A2 *Sep 23, 2009Apr 7, 2010Taiwan Network Computer & Electronic Co., Ltd.Light distribution panel having light distribution curves formed of multiple faces
EP2350526A2 *Oct 8, 2009Aug 3, 2011Qualcomm Mems Technologies, IncDistributed illumination system
EP2350526A4 *Oct 8, 2009Apr 18, 2012Qualcomm Mems Technologies IncDistributed illumination system
EP2383590A1 *Jun 7, 2010Nov 2, 2011Schott AgPlanar illumination element
EP2648023A1 *Apr 4, 2013Oct 9, 2013G.I.A.Lighting system, lighting license plate, method of fabrication of the license plate
EP2821689A1 *Jun 25, 2014Jan 7, 2015Toshiba Lighting & Technology CorporationLight emitting device and lighting device
WO2011019753A1 *Aug 10, 2010Feb 17, 2011Intematix CorporationLed-based lamps
WO2011148173A2 *May 24, 2011Dec 1, 2011Design Led Products LimitedLighting apparatus
WO2011148173A3 *May 24, 2011Feb 23, 2012Design Led Products LimitedLighting apparatus
WO2012054559A3 *Oct 19, 2011Oct 26, 2012Chroma Technology CorporationLight engine module and system including same
WO2012075523A1 *Dec 7, 2011Jun 14, 2012Bioconst Pty LtdIllumination device
WO2014053434A1 *Sep 30, 2013Apr 10, 2014Zumtobel Lighting GmbhSystem for illumination and generating lighting effects and led lamp therefor
WO2014120671A1 *Jan 28, 2014Aug 7, 2014Cree, Inc.Consolidated troffer
WO2015042188A1 *Sep 17, 2014Mar 26, 2015Quarkstar LlcLuminaire with optical modifier
Classifications
U.S. Classification362/84, 313/498
International ClassificationH01J1/62, F21V9/16
Cooperative ClassificationF21Y2115/10, G02B6/005, G02B6/0021, G02B6/0008, F21Y2105/00, F21S8/06, F21S8/04, F21S8/033, F21S8/02, F21S6/002, A61B5/4547, A61B5/0084, A61B1/0653, F21V14/06
European ClassificationA61B1/06P, A61B5/00P12B, F21S6/00D, F21S8/06, F21S8/02, F21S8/04, G02B6/00L6O8, G02B6/00L4E
Legal Events
DateCodeEventDescription
Dec 6, 2007ASAssignment
Owner name: INTEMATIX CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, YI-QUN;REEL/FRAME:020207/0940
Effective date: 20071022