Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20080200776 A1
Publication typeApplication
Application numberUS 11/950,589
Publication dateAug 21, 2008
Filing dateDec 5, 2007
Priority dateFeb 17, 2007
Also published asDE102007007969A1
Publication number11950589, 950589, US 2008/0200776 A1, US 2008/200776 A1, US 20080200776 A1, US 20080200776A1, US 2008200776 A1, US 2008200776A1, US-A1-20080200776, US-A1-2008200776, US2008/0200776A1, US2008/200776A1, US20080200776 A1, US20080200776A1, US2008200776 A1, US2008200776A1
InventorsOlaf Schermeier, Gotz Kullik
Original AssigneeDrager Medical Ag & Co. Kg
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Patient connection for the artificial respiration of a patient
US 20080200776 A1
Abstract
A breathing gas-carrying patient connection (2) for the artificial respiration of a patient (1) by means of an anesthesia apparatus or respirator (3) with one or more sensors (9, 10, 11) for detecting patient-relevant measured variables and with means for the telemetric transmission of the sensor data from the patient connection (2) to a machine-side connection element (13) for the patient connection (2), wherein the means for the telemetric transmission of the sensor data are designed for wireless bidirectional communication between the patient connection (2) and the connection element (13), makes possible the reliable transmission of data into the machine-side connection element (13).
Images(3)
Previous page
Next page
Claims(20)
1. A patient connection device for the artificial respiration of a patient with an anesthesia apparatus or respirator having a machine-side connection element, the patient connection device comprising:
a patient connection element for applying to an air passage of a patient;
one or more sensors located on said patient connection element for detecting patient-relevant measured variables;
a telemetric transmission means for telemetrically transmitting said patient-relevant measured variables from said patient connection element to said machine-side connection element such that said respirator receives said patient-relevant measured variables, said sensor data transmission means being in bidirectional communication with said patient connection element and said machine-side connection element.
2. A patient connection device in accordance with claim 1, wherein said patient-relevant measured variables include identification information.
3. A patient connection device in accordance with claim 2, wherein said telemetric transmission means changes the identification information.
4. A patient connection device in accordance with claim 1, wherein said telemetric transmission means wirelessly transmits energy from said connection element into said patient connection such that said one or more sensors are powered via said wireless energy transmission.
5. A patient connection in accordance with claim 1, further comprising an energy storage means and/or a data memory.
6. A patient connection in accordance with claim 1, wherein said patient connection element is an endotracheal tube, a tracheotomy cannula or a full face, nasal or larynx mask.
7. A patient connection in accordance with claim 1, wherein said connection element comprises at least one Y-piece, a breathing tube or a breathing system.
8. A patient connection in accordance with claim 1, wherein said telemetric transmission means is designed as inductive or capacitive elements.
9. A patient connection in accordance with claim 1, wherein at least one of said sensors is a temperature sensor, an oxygen saturation sensor, a pulmonary internal pressure sensor and/or an electrode.
10. A patient connection in accordance with claim 9, wherein one or more electrodes are provided, said one or more electrodes being an electrocardiogram (ECG) electrode or an electroimpedance tomography (EIT) electrode.
11. A device for the artificial respiration of a patient, the device comprising:
a respirator with a respirator connection receiver portion;
a patient connection insertion element connected to said respirator connection receiver portion, said patient connection insertion element having a patient insertion end in contact with the patient;
a sensor located at said patient insertion end of said patient connection insertion element, said sensor sensing a patient parameter to define patient sensor data;
a wireless telemetric transmission means for wireless bidirectional telemetric communication between said patient connection insertion element and said respirator connection receiver portion such that said patient sensor data passes from said sensor located at said patient insertion end to said respirator connection receiver portion, whereby said respirator receives said patient sensor data.
12. A device in accordance with claim 11, wherein said patient insertion end of said patient connection insertion element has an inflatable gasket, said sensor being a temperature sensor for measuring a body core temperature of the patient, said temperature sensor being located on an outer surface of said inflatable gasket, said inflatable gasket being in an inflated state when said patient connection insertion element is in contact with the patient, said temperature sensor being in contact with the patient when said inflatable gasket is in said inflated state.
13. A device in accordance with claim 11, wherein said wireless telemetric transmission means includes a first antenna located within said patient connection insertion element and a second antenna located within said respirator connection receiver portion, said first antenna being located at an end of said patient connection insertion element opposite said patient insertion end, said first antenna being opposite said second antenna.
14. A device in accordance with claim 13, wherein said second antenna is electrically connected to said respirator via a first electric line extending within said respirator connection receiver portion, said sensor being electrically connected via a second electric line, said second electric line extending within said patient connection insertion element from said first antenna to said sensor.
15. A device in accordance with claim 12, further comprising an electrode, said electrode being one of an electroimpedance tomography electrode, an electrocardiogram electrode and an impedance cardiography electrode, said electrode being located on said outer surface of said inflatable gasket opposite said temperature sensor, said electrode being in contact with the patient when said inflatable gasket is in said inflated state.
16. A device in accordance with claim 13, further comprising a breathing gas humidifier and a plurality of bacteria filters, said respirator connection element including a Y-piece connection element having a first branch connection portion and a second branch connection portion, said second antenna being located within said first branch connection portion, one of said bacteria filters being connected to said first branch connection portion, another of said bacteria filters being connected to said second branch connection portion, said breathing gas humidifier being connected to said second branch connection portion.
17. A device in accordance with claim 11, further comprising a data storage and energy means for storing energy and for storing said patient sensor data, said patient data including manufacturing data of said patient connection insertion element and information relating to a number of uses of said patient connection insertion element.
18. A device in accordance with claim 11, wherein said wireless telemetric transmission means wirelessly transmits energy from said respirator connection receiver portion to said patient connection insertion element such that said sensor is powered via said wireless energy transmission.
19. A device in accordance with claim 11, wherein said patient connection insertion element is an endotracheal tube, a tracheotomy cannula or a full face, nasal or larynx mask.
20. A device for the artificial respiration of a patient, the device comprising:
a respirator;
a patient respirator connection structure connecting said respirator to the patient, said patient respirator connection structure having a patient receiving portion and a respirator connection portion, said respirator connection portion being connected to a machine side of said respirator, said patient receiving portion being in contact with the patient;
a plurality of sensors located at an end of said patient receiving portion, each sensor sensing a patient parameter to define patient sensor data;
a wireless telemetric transmitter telemetrically transmitting said patient sensor data from said plurality of sensors located on said patient receiving portion to said respirator connection portion such that said respirator receives said patient sensor data, said wireless telemetric transmitter being in bidirectional communication with said plurality of sensors located on said patient receiving portion and said respirator;
a display means for displaying said patient sensor data.
Description
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application claims the benefit of priority under 35 U.S.C. § 119 of German Patent Application DE 10 2007 007 969.0 filed Feb. 17, 2007, the entire contents of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention pertains to a breathing gas-carrying patient connection for the artificial respiration of a patient.
  • BACKGROUND OF THE INVENTION
  • [0003]
    The measurement of physiological variables, for example, the airway pressure and the flow through the airways, the breathing gas temperature, the body core temperature, the oxygen saturation and ECG (Electrocardiogram) are of great significance for the therapy of patients with respiration support, hereinafter called generally artificial respiration. These measurements are carried out, in general, with individual sensors at individual cables independently from the breathing tubes for the respiration support.
  • [0004]
    The treatment parameters and data arising for a certain patient from the type of the patient connection are entered manually by the attending staff in the respiration support device, i.e., especially an anesthesia apparatus or a respirator.
  • [0005]
    The individual sensors used with their cables lead to error-prone and cluttered situations in hospitals (so-called “spaghetti syndrome”), and the need to enter device data and therapy data takes time and requires attention on the part of the attending staff. A tube with a device for detecting the endotracheal pressure and the breath flow is disclosed in DE 199 51 578 C1. In this device a differential pressure sensor is arranged in a liquid-proof manner in the tube wall close to the tip of the tube and a differential pressure sensor is arranged close to the base and the two sensors are coupled pneumatically via a duct in the tube wall. This duct is connected to the atmosphere via an opening. A transmitter is provided for the telemetric transmission of the measured data.
  • SUMMARY OF THE INVENTION
  • [0006]
    The object of the present invention is to provide a breathing gas-carrying patient connection for the artificial respiration of a patient, which detects, on the one hand, various patient-relevant measured variables in a non-invasive manner and, on the other hand, makes possible the reliable transmission of data directly from the patient connection into a machine-side connection element.
  • [0007]
    According to the invention, a patient connection device is provided for the artificial respiration of a patient with an anesthesia apparatus or respirator having a machine-side connection element. The patient connection device may comprise a patient connection element for applying to an air passage of a patient. One or more sensors may be located on the patient connection element for detecting patient-relevant measured variables. A telemetric transmission means may be provided for telemetrically transmitting the patient-relevant measured variables from the patient connection element to the machine-side connection element such that the respirator receives the patient-relevant measured variables. The sensor data transmission means may be in bidirectional communication with the patient connection element and the machine-side connection element.
  • [0008]
    The patient-relevant measured variables may include identification information.
  • [0009]
    The telemetric transmission means may change the identification information.
  • [0010]
    The telemetric transmission means may wirelessly transmit energy from the connection element into the patient connection such that the one or more sensors are powered via the wireless energy transmission.
  • [0011]
    The patient connection may further comprise an energy storage means and/or a data memory.
  • [0012]
    The patient connection element may be an endotracheal tube, a tracheotomy cannula or a full face, nasal or larynx mask.
  • [0013]
    The connection element may comprise at least one Y-piece, a breathing tube or a breathing system.
  • [0014]
    The telemetric transmission means may be designed as inductive or capacitive elements.
  • [0015]
    At least one of the sensors may be a temperature sensor, an oxygen saturation sensor, a pulmonary internal pressure sensor and/or an electrode.
  • [0016]
    One or more electrodes may be provided. The one or more electrodes may be an electrocardiogram (ECG) electrode or an electroimpedance tomography (EIT) electrode.
  • [0017]
    According to the invention, a device for the artificial respiration of a patient is provided. The device may comprise a respirator with a respirator connection receiver portion. A patient connection insertion element may be connected to the respirator connection receiver portion. The patient connection insertion element may have a patient insertion end in contact with the patient. A sensor may be located at the patient insertion end of the patient connection insertion element. The sensor may sense a patient parameter to define patient sensor data. A wireless telemetric transmission means may be provided for wireless bidirectional telemetric communication between the patient connection insertion element and the respirator connection receiver portion such that the patient sensor data passes from the sensor located at the patient insertion end to the respirator connection receiver portion. The respirator may receive the patient sensor data.
  • [0018]
    The patient insertion end of the patient connection insertion element may have an inflatable gasket. The sensor may be a temperature sensor for measuring a body core temperature of the patient. The temperature sensor may be located on an outer surface of the inflatable gasket. The inflatable gasket may be in an inflated state when the patient connection insertion element is in contact with the patient. The temperature sensor may be in contact with the patient when the inflatable gasket is in the inflated state.
  • [0019]
    The wireless telemetric transmission means may include a first antenna located within the patient connection insertion element and a second antenna located within the respirator connection receiver portion. The first antenna may be located at an end of the patient connection insertion element opposite the patient insertion end. The first antenna may be opposite the second antenna.
  • [0020]
    The second antenna may be electrically connected to the respirator via a first electric line extending within the respirator connection receiver portion. The sensor may be electrically connected via a second electric line. The second electric line may extend within the patient connection insertion element from the first antenna to the sensor.
  • [0021]
    The device may comprise an electrode. The electrode may be one of an electroimpedance tomography electrode, an electrocardiogram electrode and an impedance cardiography electrode. The electrode may be located on the outer surface of the inflatable gasket opposite the temperature sensor. The electrode may be in contact with the patient when the inflatable gasket is in the inflated state.
  • [0022]
    The device may further comprise a breathing gas humidifier and a plurality of bacteria filters. The respirator connection element may include a Y-piece connection element having a first branch connection portion and a second branch connection portion. The second antenna may be located within the first branch connection portion. One of the bacteria filters may be connected to the first branch connection portion. Another of the bacteria filters may be connected to the second branch connection portion. The breathing gas humidifier may be connected to the second branch connection portion.
  • [0023]
    The device may further comprise a data storage and energy means for storing energy and for storing the patient sensor data. The patient data may include manufacturing data of the patient connection insertion element and information relating to a number of uses of the patient connection insertion element.
  • [0024]
    The wireless telemetric transmission means may wirelessly transmit energy from the respirator connection receiver portion to the patient connection insertion element such that the sensor is powered via the wireless energy transmission.
  • [0025]
    The patient connection insertion element may be an endotracheal tube, a tracheotomy cannula or a full face, nasal or larynx mask.
  • [0026]
    According to the invention, a device is provided for the artificial respiration of a patient. The device may comprise a respirator and a patient respirator connection structure connecting the respirator to the patient. The patient respirator connection structure may have a patient receiving portion and a respirator connection portion. The respirator connection portion may be connected to a machine side of the respirator. The patient receiving portion may be in contact with the patient. A plurality of sensors may be located at an end of the patient receiving portion. Each sensor may sense a patient parameter to define patient sensor data. A wireless telemetric transmitter may be provided for telemetrically transmitting the patient sensor data from the plurality of sensors located on the patient receiving portion to the respirator connection portion such that the respirator receives the patient sensor data. The wireless telemetric transmitter may be in bidirectional communication with the plurality of sensors located on the patient receiving portion and the respirator. A display means may be provided for displaying the patient sensor data.
  • [0027]
    An essential advantage of the present invention is that a breathing gas-carrying patient connection follows from the structural integration of different sensors and the preferred integration of a data memory and preferably of an energy storage means with a corresponding interface for data and energy between the patient connection and the anesthesia apparatus or respirator performing the artificial respiration.
  • [0028]
    A breathing gas-carrying patient connection is defined especially as an endotracheal tube, called “tube” for short, a tracheotomy cannula or a full face, nasal or larynx mask used for the respiration.
  • [0029]
    The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which the preferred embodiment of the invention is illustrated.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0030]
    In the drawings:
  • [0031]
    FIG. 1 is a schematic view showing an intubated patient connected to a respirator;
  • [0032]
    FIG. 2 is a cross sectional view showing a detail through the tip of the tube; and
  • [0033]
    FIG. 3 is a cross sectional view showing a detail through the electrically non-conductive antenna connection between the tube connector and the Y-piece.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0034]
    Referring to the drawings in particular, FIG. 1 shows a patient 1 with a patient connection 2 designed as a tube in the trachea 8 (FIG. 2). The sensor data and electric energy are transmitted in a contactless and field-based manner into and from the respirator 3 via the first electric line 7 in the expiration branch, because an active breathing gas humidifier 6 is inserted in the inspiration branch. The inspiration branch and the expiration branch are equipped with bacteria filters 5. The respirator 3 is, for example, a home respirator. The data transfer into the respirator 3 is carried out by means of a plug-type contact 4 or, as an alternative, likewise in a field-based and contactless manner, especially inductively. A display 26 is connected to the respirator 3 to display patient sensor data.
  • [0035]
    FIG. 2 shows a sectional view of a detail through the tip of the patient connection 2 designed according to this embodiment as a tube in the trachea 8 of the patient 1. A sensor is a pulmonary internal pressure sensor 10, which according to this embodiment is arranged on the inside of the tube in order to perform the measurement there possibly unaffected by body fluids that are present. The temperature sensor 11 for measuring the body core temperature is placed on the outside of the inflatable gasket 24 of the tube in order to have optimal contact with the body tissue there. An ECG electrode is likewise positioned on the outside of the inflatable gasket of the tube. The electrode 9 may also be one of several ECG electrodes. The electrode 9 may also be an EIT (electroimpedance tomography) electrode, which is used, e.g., to supply electric power or as a counterelectrode in an EIT system. The at least one electrode 9 may also be used for impedance cardiography (ICG), which is known per se. The second electric line 12 in the tube wall is used to derive the sensor signals and to send energy to the sensors.
  • [0036]
    FIG. 3 shows a sectional view of a detail through the electrically non-conductive, preferably inductive antenna connection between the tube connector 22 and the connection element 13, which is designed as a Y-piece here. The antenna connection is established by means of the first antenna 15 in the Y-piece and the second antenna 16 in the tube connector 22. The data memory and energy storage means 14 is located in the tube and is connected to the second antenna 16 and to the sensors by means of the second electric line 12. The electric lines 7 and 12 are preferably integrated in the wall of the expiration branch or of the tube. Sensor data containing identification information, such as static specific data on the patient connection 2 itself, for example, geometric or physical characteristics, information on use, manufacturer data, manufacturing and shelf life data, etc., as well as variable information, for example, patient data, respiration parameters and information on the preparation performed in case of multiple usability of the patient connection 2, may be stored in the data memory and energy storage means 14. The sensor data optionally contain information on the measured patient data during a time period during which the antenna connection was interrupted (data logger function). The energy storage means is also used especially for the temporary operation of the sensors 9, 10, 11 when the line connection to the respirator 3 is interrupted, for example, when the patient 1 shall be connected to another respirator 3. An additional energy storage means in the form of a miniaturized battery or a capacitor with very high capacity may optionally be provided.
  • [0037]
    It is especially advantageous to use the electromagnetically operated transponder technique by means of so-called RFID (Radio Frequency Identification) tags.
  • [0038]
    The antenna connection between the tube or the tube connector 22 and the connection element 13 to the respirator 3, which the connection element is designed as a Y-piece here, contains especially coils, capacitors for magnetic, electromagnetic and/or capacitive coupling. Optical elements are also suitable, in principle, for a non-conductive coupling and transmission. It is essential that the data and energy transmission take place in a contactless manner exclusively by field effects. As a result, all electrically conductive elements are hermetically encapsulated, so that they are nonsusceptible to all fluids in the patient 1 and can be subjected to all the hygienic procedures practiced in routine clinical practice, for example, washing in a dishwasher and/or disinfection by wiping with aqueous preparations in a very simple manner. In addition, advantages arise for electric safety, for example, compatibility with defibrillators.
  • [0039]
    While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4046139 *Aug 23, 1976Sep 6, 1977Bernard HornMedical temperature measuring device
US4224939 *Jun 6, 1978Sep 30, 1980Volker LangBacteria-tight system for artificial respiration
US4383534 *Jun 5, 1980May 17, 1983Peters Jeffrey LVital signs monitoring apparatus
US5313955 *Oct 30, 1992May 24, 1994Rodder Jerome APulmonary flow head
US5417713 *Feb 9, 1993May 23, 1995Leonard BloomTransesophageal defibrillating system
US20030135124 *Aug 16, 2002Jul 17, 2003Russell Ted W.Methods, apparatus and articles-of-manufacture for noninvasive measurement and monitoring of peripheral blood flow, perfusion, cardiac output biophysic stress and cardiovascular condition
US20040182392 *Dec 16, 2003Sep 23, 2004Henning GerderBreathing gas tube for a respirator
US20050061315 *Jun 9, 2004Mar 24, 2005Kent LeeFeedback system and method for sleep disordered breathing therapy
US20050061318 *Sep 22, 2003Mar 24, 2005Faram Joseph DeeContinuous high-frequency oscillation breathing treatment apparatus
US20050177024 *Feb 10, 2004Aug 11, 2005Mackin Robert A.Endotracheal camera
US20060150712 *Jan 13, 2005Jul 13, 2006Viktors BerstisMethod and apparatus for indicating a parameter of transmitted fluid
US20070074722 *Sep 21, 2006Apr 5, 2007Kurve Technology, Inc.Medicament delivery control, monitoring, and reporting system and method
US20070208269 *Apr 26, 2007Sep 6, 2007Mumford John RMask assembly, system and method for determining the occurrence of respiratory events using frontal electrode array
US20080091117 *Oct 16, 2006Apr 17, 2008Choncholas Gary JMethod and apparatus for airway compensation control
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8181648Sep 26, 2008May 22, 2012Nellcor Puritan Bennett LlcSystems and methods for managing pressure in a breathing assistance system
US8265555Nov 19, 2009Sep 11, 2012Dräger Medical GmbHTube nozzle for a respirator
US8302602Sep 30, 2008Nov 6, 2012Nellcor Puritan Bennett LlcBreathing assistance system with multiple pressure sensors
US8353291Mar 24, 2009Jan 15, 2013Covidien LpSystems and methods for compensating for pressure drop in a breathing assistance system
US8707954Oct 9, 2008Apr 29, 2014Daniel A. McCarthyAir/oxygen supply system and method
US8720442Apr 27, 2012May 13, 2014Covidien LpSystems and methods for managing pressure in a breathing assistance system
US8776790Jul 16, 2009Jul 15, 2014Covidien LpWireless, gas flow-powered sensor system for a breathing assistance system
US8844521Apr 9, 2010Sep 30, 2014Daniel A. McCarthyAir/oxygen ventilator system and method
US20090241952 *Mar 24, 2009Oct 1, 2009Nellcor Puritan Bennett LlcSystems and methods for compensating for pressure drop in a breathing assistance system
US20100078023 *Sep 26, 2008Apr 1, 2010Nellcor Puritan Bennett LlcSystems and methods for managing pressure in a breathing assistance system
US20100094366 *Oct 9, 2008Apr 15, 2010Mccarthy Daniel AAir/oxygen supply system and method
US20100151785 *Nov 19, 2009Jun 17, 2010Drager Medical Ag & Co., KgTube nozzle for a respirator
US20150144131 *Feb 2, 2015May 28, 2015Carefusion 207, Inc.Smart connections
EP2997894A1 *Sep 16, 2015Mar 23, 2016Oridion Medical 1987 Ltd.Gas sampling connector
WO2014085682A1 *Nov 27, 2013Jun 5, 2014Pulmone Advanced Medical Devices, Ltd.Managing a detachable component of a medical device
WO2014109793A1 *Aug 13, 2013Jul 17, 2014Ali AyoobNeonatal laryngeal mask airway (nlma-0, nlma-1)
Classifications
U.S. Classification600/301
International ClassificationA61B5/00
Cooperative ClassificationA61M2205/14, A61M2230/04, A61M16/0875, A61M2205/6054, A61M2205/3569, A61M2205/3592, A61M2016/0027, A61M16/1065, A61M2205/3368, A61M16/08, A61M16/107, A61M16/1055
European ClassificationA61M16/08, A61M16/08T
Legal Events
DateCodeEventDescription
Dec 5, 2007ASAssignment
Owner name: DRAEGER MEDICAL AG & CO. KG, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHERMEIER, OLAF;KULLIK, GOETZ;REEL/FRAME:020198/0538
Effective date: 20071028
Oct 13, 2010ASAssignment
Owner name: DRAEGER MEDICAL GMBH, GERMANY
Free format text: CHANGE OF NAME;ASSIGNOR:DRAEGER MEDICAL AG & CO. KG;REEL/FRAME:025130/0321
Effective date: 20100831
Sep 18, 2015ASAssignment
Owner name: DRAEGERWERK AG & CO. KGAA, GERMANY
Free format text: MERGER;ASSIGNORS:DRAEGER MEDICAL GMBH;DRAEGERWERK AG & CO. KGAA;REEL/FRAME:036632/0067
Effective date: 20150603