Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20080200878 A1
Publication typeApplication
Application numberUS 12/033,947
Publication dateAug 21, 2008
Filing dateFeb 20, 2008
Priority dateNov 10, 1999
Also published asUS6962488, US7393189, US20030190244, US20050186098
Publication number033947, 12033947, US 2008/0200878 A1, US 2008/200878 A1, US 20080200878 A1, US 20080200878A1, US 2008200878 A1, US 2008200878A1, US-A1-20080200878, US-A1-2008200878, US2008/0200878A1, US2008/200878A1, US20080200878 A1, US20080200878A1, US2008200878 A1, US2008200878A1
InventorsSherman G. Davis, Raphael Gordon, Valentine P. Injev, Kurt D. Leukanech, Michael D. Morgan, Mel M. Oliveira, Gary P. Sorensen, Daniel J. Wilson
Original AssigneeDavis Sherman G, Raphael Gordon, Injev Valentine P, Leukanech Kurt D, Morgan Michael D, Oliveira Mel M, Sorensen Gary P, Wilson Daniel J
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Surgical Cassette having a plurality of latching surfaces
US 20080200878 A1
Abstract
A cassette having a molded flow channel contained on an elastomeric sheet that is bonded or mechanically attached to a rigid substrate. The flow channel projects outwardly from the exterior of the cassette so that a peristaltic pump having pump head rollers mounted radially from the axis of rotation of the pump motor compress the elastomeric flow channels against the rigid substrate during operation.
Images(8)
Previous page
Next page
Claims(47)
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. A cassette, comprising:
a) a body having an exterior, the exterior having sides;
b) a handle on the exterior of the body;
c) an aspiration pressure sensor interface on the exterior of the body; and
d) a plurality of latching surfaces formed on the sides of the body.
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
33. (canceled)
34. (canceled)
35. (canceled)
36. (canceled)
37. (canceled)
38. (canceled)
39. (canceled)
40. (canceled)
41. (canceled)
42. (canceled)
43. (canceled)
44. (canceled)
45. (canceled)
46. (canceled)
47. (canceled)
Description
  • [0001]
    This application is a continuation-in-part application of U.S. patent application Ser. No. 09/846,724, filed May 1, 2001, currently co-pending which is a continuation of U.S. patent application Ser. No. 09/437,392, filed Nov. 10, 1999, now U.S. Pat. No. 6,293,926 B1, and a continuation-in-part of U.S. patent application Ser. No. 10/153,371, filed May 28, 2002, currently co-pending.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The present invention relates generally to peristaltic pumps and more specifically to peristaltic pumps used in ophthalmic surgical equipment.
  • [0003]
    Most prior art peristaltic pumps work by compressing or squeezing a length of flexible tubing (sometimes between a fixed race) using a rotating roller head. As the roller head rotates, the rollers pinch off a portion of the tubing and push any fluid trapped in the tubing between the rollers in the direction of rotation. Peristaltic pumps are widely used in medical applications because of their predictable, constant flow properties. These prior art systems, however, typically require manual connection of the pump tube segment around the rotating roller head.
  • [0004]
    Prior art peristaltic pumps using rotating roller heads also typically impart unwanted pressure pulsations. Several pulsation damping devices have been developed to address this problem (see e.g., U.S. Pat. No. 4,921,477 (Davis)).
  • [0005]
    Accordingly, a need continues to exist for a peristaltic pump that reduces pressure pulsations and that is simpler and more economical to manufacture and use.
  • BRIEF SUMMARY OF THE INVENTION
  • [0006]
    The present invention improves upon prior art peristaltic pumps by providing a cassette having a molded flow channel contained on an elastomeric sheet that is bonded or mechanically attached to a rigid substrate. The cassette is used in combination with a peristaltic pump having pump head rollers that are mounted radially from the axis of rotation of the pump motor so as to compress the elastomeric flow channels against the rigid substrate during operation.
  • [0007]
    One objective of the present invention is to provide a cassette that uses molded elastomeric flow channels.
  • [0008]
    Another objective of the present invention is to provide a cassette for a peristaltic pump having radially oriented pump rollers.
  • [0009]
    Yet another objective of the present invention is to provide a cassette for a peristaltic pump having pump rollers that compress elastomeric flow channels in the cassette against a rigid substrate.
  • [0010]
    These and other advantages and objectives of the present invention will become apparent from the detailed description, drawings and claims that follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0011]
    FIG. 1 is a schematic top plan view of a first embodiment of the present invention, with the motor and roller head removed for clarity.
  • [0012]
    FIG. 2 is a schematic side elevational view of a first embodiment of the present invention, with the motor and roller head removed for clarity.
  • [0013]
    FIG. 3 is a cross-sectional view of the first embodiment of the present invention taken at line 3-3 in FIG. 1.
  • [0014]
    FIG. 4 is a schematic top plan view of a second embodiment of the present invention, with the motor and roller head removed for clarity.
  • [0015]
    FIG. 5 is a schematic side elevational view of a second embodiment of the present invention, with the motor and roller head removed for clarity.
  • [0016]
    FIG. 6 is a schematic front elevational view of a second embodiment of the present invention, with the motor and roller head removed for clarity.
  • [0017]
    FIG. 7 is a perspective view of a third embodiment of the cassette of the present invention.
  • [0018]
    FIG. 8 is a perspective view of a surgical console that may be used with the present invention.
  • [0019]
    FIG. 9 is a perspective view of a fourth embodiment of the cassette of the present invention.
  • [0020]
    FIG. 10 is a perspective view of a fifth embodiment of the cassette of the present invention.
  • [0021]
    FIG. 11 is a perspective view of the cassette of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0022]
    As best seen in FIGS. 1, 2 and 3, in a first embodiment of the present invention, pump 10 of the present invention generally includes pump motor 12, roller head 14, containing one or more rollers 16 and cassette 18 having elastomeric sheet 20 applied to the exterior of relatively rigid body or substrate 22. Pump motor 12 preferably is a stepper or D.C. servo motor. Roller head 14 is attached to shaft 24 of motor 12 so that motor 12 rotates roller head 14 in a plane generally normal to axis 25 of shaft 24, and the longitudinal axes of rollers 16 are generally radial to axis 25 of shaft 24.
  • [0023]
    Sheet 20 contains molded fluid channel 26 that is generally planar, arcuate in shape (within the plane) and having a radius approximating that of rollers 16 about shaft 24. Fluid channel 26 fluidly connects ports 28 and 30. Sheet 20 may be made of any suitably flexible, easily molded material such as silicone rubber or thermoplastic elastomer. Sheet 20 is attached or bonded to substrate 22 by any suitable technique such as adhesive, heat fusion or mechanical crimping. Substrate 22 preferably is made of a material that is rigid with respect to sheet 20, such as a rigid thermoplastic, and may be made by any suitable method, such as machining or injection molding.
  • [0024]
    In use, cassette 18 is held in close proximity to roller head 14 so that rollers 16 compress channel 26 against substrate 22 as roller head 14 rotates. The longitudinal axes of the rollers are arranged so that roller 16 contact with channel 26 is generally parallel with the plane of channel 26. Such an arrangement eliminates the need to loop a length of flexible tubing over the pump roller head and thus simplifies the loading of pump channel 26 against pump roller head 14. Rollers 16 may be tapered along their axial length to accommodate the difference in path length traveled by the inner and outer sections of rollers 16 as roller head 14 rotates. Unwanted pressure pulsations could be minimized by providing channel transition regions 46 and 47 having internal cross-sections that taper from zero to the full cross-section of channel 26. These regions minimize the abrupt change in displaced volume as rollers 16 transition on or off of channel 26.
  • [0025]
    As best seen in FIGS. 4-6, in a second embodiment of the present invention, cassette 18′ may contain additional fluid channels that provide control of irrigation fluid as well as aspiration fluid. For example, cassette 18′ may contain aspiration inlet port 32 and aspiration outlet port 34 that are connected through channel 26′. Upstream of port 32, cassette 18′ may contain aspiration pressure sensor interface 36, which may be any of a variety of non-invasive pressure sensors such as those disclosed in U.S. Pat. No. 5,910,110 (Bastable) and U.S. Pat. No. 5,470,312 (Zanger, et al.), the entire contents of which being incorporated herein by reference. Cassette 18′ may also contain a vent pinch valve site 38 for allowing the venting of any vacuum from channel 26′. Irrigation fluid enters cassette 18′ through port 40 and exits cassette 18′ through port 42 and is controlled by valve or pinch valve site 44, which may be actuated by a plunger (not shown). Vent 38 may be operated in a similar method. In addition, between port 40 and irrigation pinch valve site 44, cassette 18′ may contain irrigation pressure interface 50. Pressure interface 50 may be made from a thin molded membrane contained within elastomeric sheet 20′ over a fluid chamber (not shown) contained within substrate 22′. Such an interface allows detection of irrigation pressure in a non-invasive manner using a surface contact pressure transducer or calibrated load cell.
  • [0026]
    As best seen in FIG. 7, cassette 18″ of the present invention contains aspiration pressure sensor interface 36″. Interface 36″ may consist of thin diaphragm 37 preferably made of metal or rigid plastic. An external loadcell (not shown) located on console 80 is used to deflect diaphragm 37 to a predetermined initial force load. Changes in pressure on the internal side of diaphragm 37 opposite the loadcell will cause a change in force on the loadcell that can be correlated to the pressure level on interface 36″. The inventors have discovered that forces on cassette 18″ during use can cause flexing of substrate 22″. Such flexing can cause inaccurate reading from the load cell used in conjunction with pressure sensor interface 36″. In order to minimize such inaccuracies, substrate 22″ contains a raised boss 60 around pressure sensor interface 36″. When substrate 22″ is clamped in place against a rigid mounting member (not shown) on console 80, boss 60 helps to stabilize the area around pressure sensor interface 36″ and isolate pressure sensor interface 36″ from forces acting on other regions of substrate 22″. In addition, cassette 18″ may contain one or more plurality of latching surfaces 90 per side that cooperate with a latching mechanism, such as the latching mechanism described in commonly-owned U.S. patent application Ser. No. 10/132,797, filed Apr. 25, 2002, to assist in holding cassette 18″ firmly within console 80 further reducing the possibility of flexing of cassette 18″. Latching surfaces 90 preferably are located along sides 92 of substrate 22″ and preferably, are formed as indentations within sides 92 of substrate 22″. Such a construction helps to prevent the possibility of the latching mechanism capturing the finger of a user. Alternatively, as shown in FIGS. 9-10, cassette 118 can have continuous latching surfaces 90′ with (FIG. 9) or without (FIG. 10) finger pinch protective cover 94. Cassette 118 preferably has handle 360 that is aligned near the axis of the pump roller head. Such a construction eases the insertion of cassette 118 into the latching mechanism.
  • [0027]
    Cassette 18″ that may be used with pump 10 of the present invention may also contain a plurality of identifying tabs 70 projecting from housing substrate 22″. Tabs 70 may be generally of the shape described in U.S. Pat. No. 6,059,544 (Jung, et al.) and may be of variable opaqueness, from completely opaque to partially translucent to relatively clear. The opaqueness of tabs 70 may be used by console 80 (as seen in FIG. 8) to identify the particular cassette 18″ being used from a variety of suitable cassette 18″ in a manner similar to that disclosed in U.S. Pat. No. 6,059,544 (Jung, et al.), the entire contents of which being incorporated herein by reference.
  • [0028]
    As best seen in FIG. 11, cassette 218 may contain one or more alignment features, such as indentations 300 that match corresponding alignment features (not shown) on console 80. One skilled in the art will recognize that instead of indentation 300, protrusions (not shown) may be used alternatively. Indentations 80 assure that cassette 218 is located properly within console 80, rotationally, vertically and horizontally. Indentations 80 may be located on either side of cassette 218.
  • [0029]
    In addition, pressure sensor well 335 has aspiration exit port 340 located above bottom 338 of well 335. Such a construction allows any solid material flowing into well 335 through port 340 to precipitate down to bottom 338 of well 335. Port 340 is also located in the middle of well 335 so as not to draw precipitated material on bottom 338 into port 340 during reverse flow situations, such as venting or reflux. Cassette 218 may contain one or more auxiliary vent port(s) 350 that provides redundant venting paths in case port 340 becomes clogged.
  • [0030]
    This description is given for purposes of illustration and explanation. It will be apparent to those skilled in the relevant art that modifications may be made to the invention as herein described without departing from its scope or spirit.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4140118 *Mar 9, 1977Feb 20, 1979Andros IncorporatedCassette chamber for intravenous delivery system
US4187057 *Jan 11, 1978Feb 5, 1980Stewart-Naumann Laboratories, Inc.Peristaltic infusion pump and disposable cassette for use therewith
US4479761 *Dec 28, 1982Oct 30, 1984Baxter Travenol Laboratories, Inc.Actuator apparatus for a prepackaged fluid processing module having pump and valve elements operable in response to externally applied pressures
US4493706 *Aug 12, 1982Jan 15, 1985American Hospital Supply CorporationLinear peristaltic pumping apparatus and disposable casette therefor
US4530647 *Feb 8, 1984Jul 23, 1985Unolab Co., Ltd.Peristaltic pump having conical rollers
US4537561 *Feb 24, 1983Aug 27, 1985Medical Technology, Ltd.Peristaltic infusion pump and disposable cassette for use therewith
US4713051 *May 21, 1985Dec 15, 1987Coopervision, Inc.Cassette for surgical irrigation and aspiration and sterile package therefor
US4758238 *Aug 6, 1987Jul 19, 1988Alcon Laboratories, Inc.Fast response tubeless vacuum aspiration collection cassette
US4768547 *Sep 2, 1986Sep 6, 1988Critikon, Inc.Parenteral solution pump assembly
US4795440 *Feb 24, 1987Jan 3, 1989Baxter International Inc.Low-volume non-bubble collecting pressure dome
US4798090 *Feb 11, 1987Jan 17, 1989Cobe Laboratories, Inc.Apparatus for use with fluid flow transfer device
US4798580 *Apr 27, 1987Jan 17, 1989Site Microsurgical Systems, Inc.Disposable peristaltic pump cassette system
US4838865 *Aug 21, 1986Jun 13, 1989Gambro Lundia AbFluid monitor system
US4861242 *Aug 19, 1987Aug 29, 1989Cobe Laboratories, Inc.Self-loading peristaltic pump
US4904168 *Dec 28, 1988Feb 27, 1990United Sonics, Inc.Cassette assembly for ophthalmic surgery system
US4921477 *Jun 21, 1989May 1, 1990The Cooper Companies, Inc.Surgical irrigation and aspiration system with dampening device
US4923375 *Mar 1, 1989May 8, 1990Ejlersen Henning MHose pump, in particular an insulin pump
US4927411 *May 1, 1987May 22, 1990Abbott LaboratoriesDrive mechanism for disposable fluid infusion pumping cassette
US4935005 *Feb 1, 1989Jun 19, 1990Nestle, S.A.Opthalmic fluid flow control system
US4963131 *Mar 16, 1989Oct 16, 1990Surgin Surgical Instrumentation, Inc.Disposable cassette for ophthalmic surgery applications
US5041096 *Oct 27, 1989Aug 20, 1991Nestle, S.A.Fluid handling method and system and fluid interface apparatus usable therewith
US5056992 *Feb 22, 1989Oct 15, 1991Hewlett-Packard CompanyIV pump and disposable flow chamber with flow control
US5106366 *Mar 8, 1990Apr 21, 1992Nestle, S.A.Medical fluid cassette and control system
US5195960 *Apr 17, 1991Mar 23, 1993Site Microsurgical Systems, Inc.Disposable vacuum/peristaltic pump cassette system
US5207647 *Nov 5, 1991May 4, 1993Phelps David YNeedle device
US5267956 *Sep 15, 1992Dec 7, 1993Alcon Surgical, Inc.Surgical cassette
US5302093 *May 1, 1992Apr 12, 1994Mcgaw, Inc.Disposable cassette with negative head height fluid supply and method
US5364342 *Oct 13, 1993Nov 15, 1994Nestle S.A.Microsurgical cassette
US5403277 *Jan 12, 1993Apr 4, 1995Minnesota Mining And Manufacturing CompanyIrrigation system with tubing cassette
US5429485 *Jun 30, 1994Jul 4, 1995Minnesota Mining And Manufacturing CompanyPlural inlet pumping cassette with integral manifold
US5429602 *Apr 28, 1993Jul 4, 1995Hauser; Jean-LucProgrammable portable infusion pump system
US5460490 *May 19, 1994Oct 24, 1995Linvatec CorporationMulti-purpose irrigation/aspiration pump system
US5470312 *Feb 25, 1994Nov 28, 1995Allergan, Inc.Irrigation/aspiration apparatus for surgical procedures
US5518378 *Feb 9, 1995May 21, 1996Debiotec S.A.Cassette-type peristaltique pump fitted with an undeceitful assembly
US5588815 *Nov 15, 1995Dec 31, 1996Alcon Laboratories, Inc.Surgical cassette loading and unloading system
US5634907 *Dec 22, 1994Jun 3, 1997Sandoz Nutrition Ltd.System for detection of fluid infusion
US5709539 *May 21, 1996Jan 20, 1998Varian Associates, Inc.Pressing plate for linearized pulses from a peristaltic pump
US5720721 *May 3, 1996Feb 24, 1998Zevex, Inc.Method for monitoring viscosity and occlusions in an enteral feeding pump delivery
US5746708 *Dec 22, 1993May 5, 1998Baxter International Inc.Peristaltic pump tube holder with pump tube shield and cover
US5746719 *Oct 25, 1996May 5, 1998Arthur D. Little, Inc.Fluid flow control system incorporating a disposable pump cartridge
US5759017 *Jan 28, 1997Jun 2, 1998Medtronic Electromedics, Inc.Peristaltic pump and tube loading system
US5810204 *Oct 15, 1996Sep 22, 1998James River CorporationApparatus for dispensing liquid soap or other liquids
US5897524 *Mar 24, 1997Apr 27, 1999Wortrich; Theodore S.Compact cassette for ophthalmic surgery
US5906598 *Nov 22, 1995May 25, 1999Baxter International Inc.Self-priming drip chamber with extended field of vision
US5910110 *Jun 7, 1995Jun 8, 1999Mentor Ophthalmics, Inc.Controlling pressure in the eye during surgery
US5927956 *Sep 1, 1998Jul 27, 1999Linvatec CorporationPeristaltic pump tubing system with latching cassette
US5996634 *Jan 23, 1996Dec 7, 1999Baxter International IncStress-bearing umbilicus for a compact centrifuge
US6012999 *Dec 24, 1997Jan 11, 2000Patterson; Richard A.Hydraulically-operated bicycle shifting system with positive pressure actuation
US6059544 *Aug 21, 1996May 9, 2000Alcon Laboratories, Inc.Identification system for a surgical cassette
US6129699 *Oct 31, 1997Oct 10, 2000Sorenson Development, Inc.Portable persistaltic pump for peritoneal dialysis
US6293926 *Nov 10, 1999Sep 25, 2001Alcon Universal Ltd.Peristaltic pump and cassette
US6364857 *Nov 17, 2000Apr 2, 2002Deka Products Limited PartnershipCassette for intravenous-line flow-control system
US6572349 *May 1, 2001Jun 3, 2003Alcon, Inc.Peristaltic pump and cassette
US6811386 *May 25, 2001Nov 2, 2004Constance LimitedPeristaltic pump with preformed tube
US6962488 *Apr 4, 2003Nov 8, 2005Alcon, Inc.Surgical cassette having an aspiration pressure sensor
US7393189 *Apr 26, 2005Jul 1, 2008Alcon, Inc.Surgical cassette having an aspiration pressure sensor
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7775780Jan 24, 2006Aug 17, 2010Alcon, Inc.Surgical cassette
US8202243Oct 27, 2005Jun 19, 2012Novartis AgFluid pressure sensing chamber
US8398582Oct 27, 2005Mar 19, 2013Novartis AgFluid pressure sensing chamber
US8568289May 22, 2012Oct 29, 2013Michigan Critical Care Consultants, Inc.Apparatus and method for monitoring and controlling extracorporeal blood flow relative to patient fluid status
US8678792Apr 17, 2012Mar 25, 2014Michigan Critical Care Consultants, Inc.Pulsatile rotary ventricular pump
US8760637Aug 24, 2011Jun 24, 2014Alcon Research, Ltd.Optical sensing system including electronically switched optical magnification
US8790096Apr 7, 2010Jul 29, 2014Alcon Research, Ltd.Multiple segmented peristaltic pump and cassette
US9126219Sep 6, 2013Sep 8, 2015Alcon Research, Ltd.Acoustic streaming fluid ejector
US9381288Mar 11, 2014Jul 5, 2016Thoratec CorporationFluid handling system
US9545337Sep 5, 2013Jan 17, 2017Novartis AgAcoustic streaming glaucoma drainage device
US9693896Feb 27, 2014Jul 4, 2017Novartis AgSystems and methods for ocular surgery
US20070095143 *Oct 27, 2005May 3, 2007Alcon, Inc.Fluid pressure sensing chamber
US20070098578 *Oct 27, 2005May 3, 2007Alcon, Inc.Fluid pressure sensing chamber
US20070172368 *Jan 24, 2006Jul 26, 2007Alcon, Inc.Surgical cassette
US20100209263 *Feb 12, 2010Aug 19, 2010Mazur Daniel EModular fluid pump with cartridge
Classifications
U.S. Classification604/153, 417/477.2
International ClassificationA61B19/00, A61B17/00, A61M1/00, F04B43/12, A61F9/007
Cooperative ClassificationA61B90/90, A61B90/98, A61M1/0025, A61M2205/12, A61M1/0058, A61M1/0072, A61B2017/00199, A61M2205/6018, F04B43/1269, A61M1/0031, A61M2205/6063, A61M2205/123
European ClassificationA61B19/44, A61M1/00, F04B43/12G4, A61M1/00K