US20080223719A1 - Potentiostat circuit - Google Patents

Potentiostat circuit Download PDF

Info

Publication number
US20080223719A1
US20080223719A1 US12/068,634 US6863408A US2008223719A1 US 20080223719 A1 US20080223719 A1 US 20080223719A1 US 6863408 A US6863408 A US 6863408A US 2008223719 A1 US2008223719 A1 US 2008223719A1
Authority
US
United States
Prior art keywords
input terminal
voltage
terminal
potentiostat
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/068,634
Other versions
US8133369B2 (en
Inventor
Simon Tam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of US20080223719A1 publication Critical patent/US20080223719A1/en
Assigned to SEIKO EPSON CORPORATION reassignment SEIKO EPSON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAM, SIMON
Application granted granted Critical
Publication of US8133369B2 publication Critical patent/US8133369B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • a potentiostat and a biosensor circuit employing the potentiostat.
  • the invention provides a multi-channel biosensor circuit having a potentiostat that enables sequential and simultaneous measurements to be performed at different cells across an array of biosensing devices.
  • a potentiostat is a measurement apparatus commonly used in the electrochemical field for executing voltammetric techniques. Cyclic voltammetry is a particularly useful voltammetric technique and aids the study of reversible reduction-oxidation (redox) reactions. When such techniques are applied to the biosensing field, a reversible redox reaction can take place at the interface between the surface of a biosensor selective receptive membrane (a bioreceptor) and an electrolyte.
  • a biosensor selective receptive membrane a bioreceptor
  • FIG. 2 is a cross-sectional schematic diagram of a sample undergoing cyclic voltammetric measurement using a potentiostat circuit of FIG. 1 .
  • a potentiostat circuit 1000 is connected to a counter electrode CE, a reference electrode RE and a working electrode WE.
  • the circuit is completed by a buffer solution containing samples under test, hereunder referred to as an analyte or electrolyte 1001 , which is represented by a resistor 1020 in FIGS.
  • the reference electrode is separated from the working electrode WE by an insulating layer 1030 of, for example, Si 3 N 4 in FIG. 2 .
  • the reference electrode RE draws no current and is positioned in close proximity to the working electrode WE in order to measure the voltage at the surface of the bioreceptor layer 1015 and close the feedback loop for a first operational amplifier A 1 .
  • the high gain at the first operational amplifier A 1 ensures that the voltage at the reference electrode, and hence the voltage at the surface of the bioreceptor layer 1015 , with respect to the voltage at the working electrode equals V SCAN , as shown in FIGS. 1 a and 1 b , or —(R 2 /R 1 ) V SCAN , as shown in FIG. 1 c.
  • the bioreceptor layer 1015 may be a phage or enzyme that binds with a predetermined DNA or RNA strand, a peptide or another biological molecule, thereby changing the resistance and/or the capacitance of the circuit in which the electrodes are connected.
  • the bioreceptor layer 1015 is known as a probe and the selective biological molecule it interacts with as a target.
  • the characteristics of the capacitance and resistance as functions of applied voltage across them (in this case V SCAN ) vary if the target biological molecule bonds or reacts with the phage or the enzyme provided as the bioreceptor layer 1015 , allowing the presence of the biological molecule to be detected.
  • the potentiostat circuit measures the current at the working electrode WE while a time varying voltage (reflected as the voltage at the reference electrode RE) and equal to V SCAN in the examples as shown in FIGS. 1 a and 1 b is applied at the surface of the bioreceptor layer .
  • the reduction and oxidation reaction cycles are observed as a time varying current flow, I OUT (t) measured at the working electrode WE versus a cycle of scanning voltage, V SCAN (t).
  • the voltage at the working electrode can be held at any DC reference level.
  • the output of the circuit is typically a hysteresis loop with peaks pointing in opposite directions, as shown in FIG. 3 .
  • the shape of the hysteresis loop indicates whether a particular redox reaction has taken place, whether it is reversible and enables a user to study the rate of reaction by adjusting the scan rate dependency.
  • the locations and magnitudes of the peaks are results of the reactants in equilibrium during the charge transfer that occurs in a redox reaction, and hence can be employed to extract the concentration of species in the analyte.
  • a multi-channel potentiostat circuit is required for the analysis of a matrix of samples or to perform analysis a sample using a, matrix of bioreceptors.
  • a known multi-channel potentiostat circuit is illustrated in FIG. 4 .
  • a number of different matrix elements cell 1 , cell 2 , cell N each share a common analyte or electrolyte.
  • the counter electrodes CE of each matrix element cell 1 , cell 2 , . . . , cell N are connected together, meaning that effectively a single counter electrode CE is used.
  • Each matrix element comprises a reference electrode RE disposed close to the surface of a bioreceptor layer (not shown in FIG.
  • each matrix element shares the same feedback loop between the counter electrode and each reference electrode, only one matrix element at a time may be used if the reference electrode is to be held at a required cyclic voltage V SCAN .
  • the matrix elements must therefore be selected and measured sequentially.
  • a potentiostat comprising a first differential amplifier for receiving a scanning voltage at a first input terminal and a voltage of a reference electrode at a second input terminal and for generating an output voltage at an output terminal to be reflected at a working electrode, wherein, when in use, a feedback loop of the potentiostat circuit is closed between the reference electrode and the working electrode.
  • the potentiostat may further comprise a second differential amplifier having a first input terminal connected to the output terminal of the first operational amplifier; and a second input terminal connected to the first input terminal of the first operational amplifier.
  • the first input terminal of the second differential amplifier may be an inverting input terminal and the second input terminal of the second differential amplifier may be a non-inverting input terminal.
  • the present invention provides a single-channel biosensor circuit comprising: a counter electrode, a reference electrode, a working electrode, and a potentiostat circuit as described above.
  • the present invention provides a multi-channel biosensor circuit including a potentiostat as described above and further comprising: an array of counter electrodes, reference electrodes and working electrodes, each reference electrode in the array of reference electrodes being connected to a respective first terminal of a first switch; and each working electrode in the array of working electrodes being connected to a respective first terminal of a second switch, the first switch and the second switch each having a second terminal being connected to the potentiostat circuit, wherein outputs of a shift register unit are connected to a gate terminal of each respective first switch and each respective second switch and thereby adapted to select a counter electrode, reference electrode and working electrode in the array of for sequential readout by the potentiostat circuit.
  • the biosensor circuits may be capable of being read out simultaneously.
  • an input line is shared by each respective first differential amplifier of each respective potentiostat for receiving the scanning voltage.
  • each first differential amplifier of each respective potentiostat may be connected to a respective input line for receiving the scanning voltage.
  • FIGS. 1 a , 1 b and 1 c are schematic circuit diagrams of known potentiostats
  • FIG. 2 is a schematic cross-sectional diagram of an electrochemical cell showing an interface between a sample solution and a bioreceptive layer undergoing cyclic voltammetric measurement;
  • FIG. 3 is a schematic diagram of a theoretical measurement result of a sample undergoing cyclic voltammetric measurement
  • FIG. 4 is a schematic circuit diagram of a known multi-channel potentiostat
  • FIG. 5 a is a schematic circuit diagram of a biosensor including a potentiostat suitable for use in a multi-channel biosensor according to a first embodiment of the present invention
  • FIG. 5 b is a schematic block diagram of a potentiostat suitable for use in a multi-channel biosensor according to the first embodiment of the present invention
  • FIG. 6 is a schematic circuit diagram of a biosensor including a potentiostat suitable for use in a multi-channel biosensor according to a second embodiment of the present invention
  • FIG. 7 is a schematic circuit diagram of a biosensor including a potentiostat suitable for use in a multi-channel biosensor according to a third embodiment of the present invention.
  • FIG. 8 a is a schematic circuit diagram of a multi-channel biosensor employed for sequential readout according to a fourth embodiment of the present invention.
  • FIG. 8 b is a schematic circuit diagram of a multi-channel biosensor employed for simultaneous readout according to a fifth embodiment of the present invention.
  • FIG. 8 c is a schematic circuit diagram of a multi-channel biosensor employed for simultaneous readout according to a sixth embodiment of the present invention.
  • a first embodiment of the present invention comprises a biosensor circuit 1 consisting of a three terminal electrochemical cell, differential amplifiers and a current-to-voltage converter, with a feedback voltage signal path formed between the working electrode WE and the reference electrode RE.
  • the three terminal electrochemical cell is formed using the counter electrode CE, the reference electrode RE and the working electrode WE.
  • the counter electrode CE is connected to a first voltage supply rail 2 connected to a bias voltage V BIAS 3 .
  • a first resistor 4 is connected between the counter electrode CE and a reference electrode RE and represents an electrolyte comprising at least one target biological molecule.
  • the reference electrode RE is disposed upon an insulator (not shown in FIG. 5 ) in close proximity to a working electrode WE, which is disposed upon a bioreceptive layer modeled in FIG. 5 a by a parallel resistor and capacitor arrangement 6 .
  • the reference electrode RE is connected to a potentiostat circuit 5 .
  • the reference electrode RE which draws very little or zero current, is connected to a non-inverting input terminal 8 of a first differential amplifier (or difference amplifier) DA 1 with a gain of unity.
  • the inverting input terminal of the first differential amplifier DA 1 is connected to a second voltage supply rail 18 for providing a cyclic voltage V SCAN .
  • the output terminal 34 of the first differential amplifier DA 1 is connected to a non-inverting input terminal of a first operational amplifier OA 1 configured as a current-voltage converter.
  • the inverting input of the first operational amplifier OA 1 is connected to the working electrode WE.
  • the output terminal of the first operational amplifier OA 1 is connected to a first terminal of a second resistor 26 configured as a feedback resistor in the current-voltage converter.
  • the second terminal of the second resistor 26 is connected to a fourth node 28 located between the working electrode WE and the inverting input of the first operational amplifier OA 1 .
  • the output terminal of the first operational amplifier OA 1 is also connected to an inverting input terminal of a second differential amplifier DA 2 .
  • the non-inverting input terminal of the second differential amplifier DA 2 is connected to the output terminal 34 of the first differential amplifier DA 1 and a non-inverting input terminal of the first operational amplifier OA 1 .
  • An output terminal of the second differential amplifier is connected to an output stage (not shown in FIG. 5 ).
  • the potentiostat circuit 5 is represented as a schematic block diagram having inputs: V SCAN , the voltage of the reference electrode RE and the current i drawn by the working electrode WE.
  • the potentiostat also comprises an output terminal in order to generate an output voltage, V OUT .
  • a second embodiment of the present invention comprises of a biosensor circuit 1 , consisting of a three terminal electrochemical cell, differential amplifiers and a current-to-voltage converter, with a feedback voltage signal path formed between the working electrode WE and the reference electrode RE.
  • the three terminal electrochemical cell is formed using the counter electrode CE, the reference electrode RE and the working electrode WE.
  • the counter electrode CE is connected to the first voltage supply rail 2 connected to a bias voltage V BIAS 3 equal to the system ground.
  • a first resistor 4 is connected between the counter electrode CE and a reference electrode RE and represents an electrolyte comprising at least one target biological molecule.
  • the reference electrode RE is disposed upon an insulator (not shown in FIG. 6 ) in close proximity to a working electrode WE, which is disposed upon a bioreceptive layer represented in FIG. 6 by a parallel resistor and capacitor arrangement 6 .
  • the reference electrode RE and working electrode WE are connected to a potentiostat circuit 5 .
  • the reference electrode RE is connected to the non-inverting input of the differential amplifier DA 1 comprising operational amplifiers A 1 , A 2 and A 5 , and first, second, third and fourth impedance loads.
  • the non-inverting input of the first differential amplifier DA 1 is formed by the non-inverting input of an operational amplifier A 1 with a high open-loop gain.
  • the operational amplifier A 1 is configured to operate as a unity gain voltage follower by connecting its inverting input to its output terminal. It is preferable to provide an operational amplifier A 5 , identical to the operational amplifier A 1 , with the output of the operational connected to the inverting input to compensate the input offset voltage of the operational amplifier A 1 .
  • the non-inverting input of the operational amplifier A 5 forms the inverting input of the first differential amplifier DA 1 and is connected to a supply rail node 18 that provides a cyclic voltage V SCAN .
  • the non-inverting input 12 of the operational amplifier A 2 is connected to the first terminal of the first impedance load 10 and the first terminal of the second impedance load 14 .
  • the second terminal of the first impedance load is connected to the output terminal of the operational amplifier A 1 .
  • the second terminal of the second impedance load is connected to the system ground 16 .
  • the inverting input 22 of the operational amplifier A 2 is connected to the first terminal of the third impedance load 20 and the first terminal of the fourth impedance load 24 .
  • the second terminal of the third impedance load 20 is connected to the output terminal of the operational amplifier A 5 , effectively connected to the scanning voltage V SCAN at node 18 .
  • the second terminal of the fourth impedance load is connected to the output terminal of the operational amplifier A 2 . It is preferable to provide the same values for the first to the fourth impedance loads and obtain a voltage V 2 equals V RE ⁇ V SCAN at node 34 .
  • the inverting input 28 of the operational amplifier A 3 with a very high open-loop gain is connected to the working electrode WE.
  • a feedback resistor R FB 26 is connected between the inverting input 28 and the output terminal 29 of the operational amplifier A 3 , forming a current-to-voltage converter.
  • the high open-loop gain of A 3 forces the voltages at the inverting and non-inverting inputs to be equal.
  • the local voltage difference between the reference electrode RE and working electrode WE V RE ⁇ V WE ⁇ V SCAN , induces a current i caused by the redox reaction at the bioreceptor interface.
  • This current i flows from the working electrode 28 , through the feedback resistor R FB 26 to node 29 and generate a voltage at node 29 equals V WE -i R FB .
  • the second differential amplifier DA 2 comprises an operational amplifier A 4 with its non-inverting input 40 connected to the first terminal of the fifth impedance load 32 and the first terminal of the sixth impedance load 36 .
  • the second terminal of the fifth impedance load 32 is connected to node 34 that forms the non-inverting input of the operational amplifier OA 1 .
  • the second terminal of the sixth impedance load 36 is connected to the system ground 38 .
  • the inverting input 44 of the operational amplifier A 4 is connected to the first terminal of the seventh impedance load 30 and the first terminal of the eighth impedance load 42 .
  • the second terminal of the seventh impedance load 30 is connected to node 29 that forms the output of the operational amplifier OA 1 .
  • the second terminal of the eighth impedance load 42 connects to the output of the operational amplifier A 4 . It is preferable to provide all impedance loads equal in value and obtain an output voltage at the operational amplifier A 4 equal to i R FB .
  • a third embodiment of the present invention is the same as the second embodiment, except that all impedance loads are implemented with capacitive loads. It is preferable to have all capacitive loads equal to C.
  • a multi-channel biosensor circuit 1 is arranged for sequential readout according to an embodiment of the present invention and comprises an array of counter electrodes CE, reference electrodes RE, working electrodes WE, electrolytes and bioreceptor layers.
  • the counter electrodes CE are connected to a first voltage supply rail 2 connected to ground or a DC voltage source 3 .
  • Each counter electrode CE is connected to a first terminal of a first resistor 4 having a second terminal connected to the reference electrode RE.
  • the first resistor 4 represents the electrolyte comprising at least one target biological molecule.
  • the reference electrode RE is disposed upon an insulator (not shown in FIG. 8 a ) in close proximity to a working electrode WE, which is disposed adjacent a bioreceptor layer represented in FIG. 8 a by a parallel resistor and capacitor arrangement 6 .
  • Each reference electrode RE is connected to a first terminal of a respective first transistor 50 having a gate terminal connected to a shift register 52 and a second terminal connected a first input terminal of a potentiostat circuit 5 .
  • Each working electrode WE is connected to a first terminal of a respective second transistor 54 having a gate terminal connected to the shift register 52 and a third terminal connected to a second input terminal of the potentiostat circuit 5 .
  • the potentiostat circuit 5 has a third input terminal connected to a second voltage supply rail 18 to receive a voltage V SCAN , which is also applied to an input terminal of the shift register 52 .
  • the potentiostat circuit 5 comprises an output terminal for outputting a generated voltage V OUT .
  • a multi-channel biosensor circuit l is arranged for simultaneous readout according to a third embodiment of the present invention and comprises an array of counter electrodes CE, reference electrodes RE, working electrodes WE, electrolytes, bioreceptor layers and potentiostat circuits 5 .
  • the counter electrodes CE are connected to a first voltage supply rail 2 connected to ground or a DC voltage source 3 .
  • Each counter electrode CE is connected to a first terminal of a first resistor 4 having a second terminal connected to the reference electrode RE.
  • the first resistor 4 represents the electrolyte comprising at least one target biological molecule.
  • the reference electrode RE is disposed upon an insulator 30 (not shown in FIG. 8 b ) in close proximity to a working electrode WE, which is disposed adjacent a bioreceptor layer represented in FIG. 8 b by a parallel resistor and capacitor arrangement 6 .
  • Each reference electrode RE is connected to a first input terminal of a respective Nth potentiostat circuit 5 and each working electrode is connected to a second input terminal of the respective N th potentiostat circuit 5 .
  • Each Nth potentiostat circuit 5 comprises a third input terminal to receive a voltage V SCAN and an output terminal for outputting a generated voltage V OUT .
  • the counter electrode CE is held at a fixed, ground potential.
  • the circuit is completed by an analyte or electrolyte represented by the resistor 4 , and a bioreceptor layer represented as the parallel resistor and capacitor arrangement 6 .
  • the reference electrode RE is self-adjusted to a voltage V RE . Without drawing any current, this voltage is detected by the non-inverting input terminal of the first amplifier A 1 which is configured as a voltage follower, and copied to its output terminal in order to avoid upsetting the operation of the electrochemical cell.
  • the output voltage is then applied to the non-inverting input terminal of the second amplifier A 2 (in FIGS. 6 and 7 ).
  • a cyclic scanning voltage V SCAN is applied to the inverting input terminal of the second amplifier A 2 .
  • This output voltage is applied to the inverting input 29 of the differential amplifier formed by the fourth amplifier A 4 and corresponding impedance loads 30 , 32 , 42 and 36 .
  • the non-inverting input of this differential amplifier, node 34 is connected to the output of the second amplifier A 2 .
  • FIG. 5 operates in a corresponding manner.
  • the circuit of FIG. 8 a is characterised by the presence of the shift register 52 , the plurality of switching transistors 50 , 54 and also the potentiostat circuit 5 .
  • the counter electrode CE can be at a fixed ground potential or at an arbitrary DC voltage.
  • the potentiostat circuit 5 described above with reference to FIGS. 5 to 7 is represented by a block diagram having inputs V SCAN , the voltage of the reference electrode V RE and the current i drawn by the working electrode WE in order to generate an output voltage, V OUT .
  • the circuit of FIG. 8 b is characterised by the presence of N-number of potentiostat circuits 5 .
  • the common counter electrodes 2 are held at a fixed ground potential or at an arbitrary DC voltage 3 . Since each potentiostat circuit 5 comprises an individual, closed feedback loop, the output voltage V OUT can be read out for each cell simultaneously.
  • the arrangement enables the dropping of a biosensor circuit 1 within a testing vessel comprising an analyte and subsequently the reading out of the generated output voltages V OUT for each of the potentiostat circuits simultaneously. Chemical crosstalk of reaction materials between adjacent cells can be prevented by providing sufficient physical spacing.
  • the voltage V SCAN applied to each potentiostat 5 illustrated in FIG. 8 b can be applied separately to each potentiostat 5 thereby enabling a different value of V SCAN to be applied to each potentiostat 5 , as shown in FIG. 8 c.
  • FIG. 5 is a simplified schematic of the potentiostat circuit 5 and reset switches may be used where appropriate.
  • One counter electrode can be employed for the potentiostat circuits 5 illustrated in FIGS. 8 a to 8 c .
  • the biosensor circuit 1 of FIGS. 8 a to 8 c can be located on a single chip or substrate and since the cell area is large, space remains to incorporate additional circuits to include auto-zero amplifiers, peak detection and discrimination and digitisation means.

Abstract

A potentiostat is provided for a biosensor circuit and permits sequential and simultaneous measurements to be performed at different cells across a matrix of biosensing devices. Accordingly, a potentiostat comprises a first differential amplifier for receiving a scanning voltage at a first input terminal and a voltage at the reference electrode at a second input terminal and for generating an output voltage at an output terminal to be applied to the working electrode, wherein, when in use, a feedback loop of the potentiostat circuit is closed between the reference electrode and the working electrode.

Description

    BACKGROUND OF THE INVENTION
  • Several aspects of the present invention relate, in general, to a potentiostat and a biosensor circuit employing the potentiostat. The invention provides a multi-channel biosensor circuit having a potentiostat that enables sequential and simultaneous measurements to be performed at different cells across an array of biosensing devices.
  • 1. Field of the Invention
  • A potentiostat is a measurement apparatus commonly used in the electrochemical field for executing voltammetric techniques. Cyclic voltammetry is a particularly useful voltammetric technique and aids the study of reversible reduction-oxidation (redox) reactions. When such techniques are applied to the biosensing field, a reversible redox reaction can take place at the interface between the surface of a biosensor selective receptive membrane (a bioreceptor) and an electrolyte.
  • 2. Description of the Related Art
  • Three examples of known potentiostat circuits are illustrated in FIGS. 1 a to 1 c. FIG. 2 is a cross-sectional schematic diagram of a sample undergoing cyclic voltammetric measurement using a potentiostat circuit of FIG. 1. Referring to FIG. 1, a potentiostat circuit 1000 is connected to a counter electrode CE, a reference electrode RE and a working electrode WE. As best shown in FIG. 2, the circuit is completed by a buffer solution containing samples under test, hereunder referred to as an analyte or electrolyte 1001, which is represented by a resistor 1020 in FIGS. 1 a to 1 c and a bioreceptor layer 1015, which is represented as a capacitor and resistor 1025 connected in parallel in FIGS. 1 a to 1 c. The reference electrode is separated from the working electrode WE by an insulating layer 1030 of, for example, Si3N4 in FIG. 2. The reference electrode RE draws no current and is positioned in close proximity to the working electrode WE in order to measure the voltage at the surface of the bioreceptor layer 1015 and close the feedback loop for a first operational amplifier A1. Once the feedback loop is closed, the high gain at the first operational amplifier A1 ensures that the voltage at the reference electrode, and hence the voltage at the surface of the bioreceptor layer 1015, with respect to the voltage at the working electrode equals VSCAN, as shown in FIGS. 1 a and 1 b, or —(R2/R1) VSCAN, as shown in FIG. 1 c.
  • The bioreceptor layer 1015 may be a phage or enzyme that binds with a predetermined DNA or RNA strand, a peptide or another biological molecule, thereby changing the resistance and/or the capacitance of the circuit in which the electrodes are connected. Commonly the bioreceptor layer 1015 is known as a probe and the selective biological molecule it interacts with as a target. The characteristics of the capacitance and resistance as functions of applied voltage across them (in this case VSCAN) vary if the target biological molecule bonds or reacts with the phage or the enzyme provided as the bioreceptor layer 1015, allowing the presence of the biological molecule to be detected. Specifically, the potentiostat circuit measures the current at the working electrode WE while a time varying voltage (reflected as the voltage at the reference electrode RE) and equal to VSCAN in the examples as shown in FIGS. 1 a and 1 b is applied at the surface of the bioreceptor layer .
  • A time varying periodic voltage signal is typically used as VSCAN in FIGS. 1 a to 1 c. This is beneficial when the potentiostat circuit is being used to measure a redox reaction, since the use of a DC voltage may affect the reaction. As VSCAN oscillates, the first half cycle promotes a reduction/oxidation reaction at the interface and the second half cycle promotes an oxidation/reduction reaction at the interface. As VSCAN varies, the rate of the reduction/oxidation reaction varies. At some points the reduction and oxidation reaction rates are at their maximum due to a diffusion of charge carrying species occurring due to the concentration gradient. The required charge transfer is supplied/removed at the working electrode. In operation, the reduction and oxidation reaction cycles are observed as a time varying current flow, IOUT(t) measured at the working electrode WE versus a cycle of scanning voltage, VSCAN(t). The voltage at the working electrode can be held at any DC reference level. The output of the circuit is typically a hysteresis loop with peaks pointing in opposite directions, as shown in FIG. 3. The shape of the hysteresis loop indicates whether a particular redox reaction has taken place, whether it is reversible and enables a user to study the rate of reaction by adjusting the scan rate dependency. The locations and magnitudes of the peaks are results of the reactants in equilibrium during the charge transfer that occurs in a redox reaction, and hence can be employed to extract the concentration of species in the analyte.
  • A multi-channel potentiostat circuit is required for the analysis of a matrix of samples or to perform analysis a sample using a, matrix of bioreceptors. A known multi-channel potentiostat circuit is illustrated in FIG. 4. Referring to FIG. 4, a number of different matrix elements cell 1, cell 2, cell N, each share a common analyte or electrolyte. With such an arrangement, the counter electrodes CE of each matrix element cell 1, cell 2, . . . , cell N are connected together, meaning that effectively a single counter electrode CE is used. Each matrix element comprises a reference electrode RE disposed close to the surface of a bioreceptor layer (not shown in FIG. 4) and a working electrode WE with specific properties such as current sensitivity and dynamic range for the bioreceptor layer. Since each matrix element shares the same feedback loop between the counter electrode and each reference electrode, only one matrix element at a time may be used if the reference electrode is to be held at a required cyclic voltage VSCAN. The matrix elements must therefore be selected and measured sequentially.
  • The cyclic voltage VSCAN that is applied to a cell typically requires measurement time of seconds to hundreds of seconds per cell. In the case of a DNA chip, the number of cells can increase to well over a thousand resulting in an integration time of hours as each cell is sequentially measured and read out. Also, in order to obtain a repeatable output, the number of cycles is large, which further increases measurement time. Furthermore, some samples may degrade or disintegrate during such long measurement periods, and expensive measures are required to keep them in a stable condition.
  • SUMMARY OF THE INVENTION
  • According to a first aspect of the present invention, there is provided a potentiostat comprising a first differential amplifier for receiving a scanning voltage at a first input terminal and a voltage of a reference electrode at a second input terminal and for generating an output voltage at an output terminal to be reflected at a working electrode, wherein, when in use, a feedback loop of the potentiostat circuit is closed between the reference electrode and the working electrode.
  • Preferably, the output voltage of the first differential amplifier is applied to a first input terminal of a first operational amplifier having a negative feedback between an output terminal and a second input terminal, wherein the working electrode is connected to the second input terminal of the first operational amplifier and held at the voltage of the first input terminal of the first operational amplifier.
  • More preferably, the first input terminal is a non-inverting input terminal and the second input terminal is an inverting input terminal.
  • The potentiostat may further comprise a second differential amplifier having a first input terminal connected to the output terminal of the first operational amplifier; and a second input terminal connected to the first input terminal of the first operational amplifier.
  • In that case, the first input terminal of the second differential amplifier may be an inverting input terminal and the second input terminal of the second differential amplifier may be a non-inverting input terminal.
  • The potentiostat may further comprise: a second operational amplifier having a first input terminal connected to the reference electrode; and an output terminal connected to the second input terminal of the first differential amplifier.
  • In another aspect, the present invention provides a single-channel biosensor circuit comprising: a counter electrode, a reference electrode, a working electrode, and a potentiostat circuit as described above.
  • In yet another aspect, the present invention provides a multi-channel biosensor circuit including a potentiostat as described above and further comprising: an array of counter electrodes, reference electrodes and working electrodes, each reference electrode in the array of reference electrodes being connected to a respective first terminal of a first switch; and each working electrode in the array of working electrodes being connected to a respective first terminal of a second switch, the first switch and the second switch each having a second terminal being connected to the potentiostat circuit, wherein outputs of a shift register unit are connected to a gate terminal of each respective first switch and each respective second switch and thereby adapted to select a counter electrode, reference electrode and working electrode in the array of for sequential readout by the potentiostat circuit.
  • The biosensor circuits may be capable of being read out simultaneously. Preferably, an input line is shared by each respective first differential amplifier of each respective potentiostat for receiving the scanning voltage. Alternatively, each first differential amplifier of each respective potentiostat may be connected to a respective input line for receiving the scanning voltage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present invention will now be described, by way of example only, and with reference to the accompanying drawings in which:
  • FIGS. 1 a, 1 b and 1 c are schematic circuit diagrams of known potentiostats;
  • FIG. 2 is a schematic cross-sectional diagram of an electrochemical cell showing an interface between a sample solution and a bioreceptive layer undergoing cyclic voltammetric measurement;
  • FIG. 3 is a schematic diagram of a theoretical measurement result of a sample undergoing cyclic voltammetric measurement;
  • FIG. 4 is a schematic circuit diagram of a known multi-channel potentiostat;
  • FIG. 5 a is a schematic circuit diagram of a biosensor including a potentiostat suitable for use in a multi-channel biosensor according to a first embodiment of the present invention;
  • FIG. 5 b is a schematic block diagram of a potentiostat suitable for use in a multi-channel biosensor according to the first embodiment of the present invention;
  • FIG. 6 is a schematic circuit diagram of a biosensor including a potentiostat suitable for use in a multi-channel biosensor according to a second embodiment of the present invention;
  • FIG. 7 is a schematic circuit diagram of a biosensor including a potentiostat suitable for use in a multi-channel biosensor according to a third embodiment of the present invention;
  • FIG. 8 a is a schematic circuit diagram of a multi-channel biosensor employed for sequential readout according to a fourth embodiment of the present invention;
  • FIG. 8 b is a schematic circuit diagram of a multi-channel biosensor employed for simultaneous readout according to a fifth embodiment of the present invention; and
  • FIG. 8 c is a schematic circuit diagram of a multi-channel biosensor employed for simultaneous readout according to a sixth embodiment of the present invention.
  • Throughout the following description, like reference numerals shall be used to identify like parts.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 5 a, a first embodiment of the present invention comprises a biosensor circuit 1 consisting of a three terminal electrochemical cell, differential amplifiers and a current-to-voltage converter, with a feedback voltage signal path formed between the working electrode WE and the reference electrode RE. The three terminal electrochemical cell is formed using the counter electrode CE, the reference electrode RE and the working electrode WE. The counter electrode CE is connected to a first voltage supply rail 2 connected to a bias voltage V BIAS 3. A first resistor 4 is connected between the counter electrode CE and a reference electrode RE and represents an electrolyte comprising at least one target biological molecule. In a similar manner to that illustrated in FIG. 2, the reference electrode RE is disposed upon an insulator (not shown in FIG. 5) in close proximity to a working electrode WE, which is disposed upon a bioreceptive layer modeled in FIG. 5 a by a parallel resistor and capacitor arrangement 6.
  • The reference electrode RE is connected to a potentiostat circuit 5. The reference electrode RE, which draws very little or zero current, is connected to a non-inverting input terminal 8 of a first differential amplifier (or difference amplifier) DA1 with a gain of unity. The inverting input terminal of the first differential amplifier DA1 is connected to a second voltage supply rail 18 for providing a cyclic voltage VSCAN. The output terminal 34 of the first differential amplifier DA1 is connected to a non-inverting input terminal of a first operational amplifier OA1 configured as a current-voltage converter.
  • The inverting input of the first operational amplifier OA1 is connected to the working electrode WE. The output terminal of the first operational amplifier OA1 is connected to a first terminal of a second resistor 26 configured as a feedback resistor in the current-voltage converter. The second terminal of the second resistor 26 is connected to a fourth node 28 located between the working electrode WE and the inverting input of the first operational amplifier OA1.
  • The output terminal of the first operational amplifier OA1 is also connected to an inverting input terminal of a second differential amplifier DA2. The non-inverting input terminal of the second differential amplifier DA2 is connected to the output terminal 34 of the first differential amplifier DA1 and a non-inverting input terminal of the first operational amplifier OA1. An output terminal of the second differential amplifier is connected to an output stage (not shown in FIG. 5).
  • Referring to FIG. 5 b, the potentiostat circuit 5 is represented as a schematic block diagram having inputs: VSCAN, the voltage of the reference electrode RE and the current i drawn by the working electrode WE. The potentiostat also comprises an output terminal in order to generate an output voltage, VOUT.
  • Referring to FIG. 6, a second embodiment of the present invention comprises of a biosensor circuit 1, consisting of a three terminal electrochemical cell, differential amplifiers and a current-to-voltage converter, with a feedback voltage signal path formed between the working electrode WE and the reference electrode RE. The three terminal electrochemical cell is formed using the counter electrode CE, the reference electrode RE and the working electrode WE. The counter electrode CE is connected to the first voltage supply rail 2 connected to a bias voltage V BIAS 3 equal to the system ground. A first resistor 4 is connected between the counter electrode CE and a reference electrode RE and represents an electrolyte comprising at least one target biological molecule. In a similar manner to that illustrated in FIG. 2, the reference electrode RE is disposed upon an insulator (not shown in FIG. 6) in close proximity to a working electrode WE, which is disposed upon a bioreceptive layer represented in FIG. 6 by a parallel resistor and capacitor arrangement 6.
  • The reference electrode RE and working electrode WE are connected to a potentiostat circuit 5. The reference electrode RE is connected to the non-inverting input of the differential amplifier DA1 comprising operational amplifiers A1, A2 and A5, and first, second, third and fourth impedance loads. The non-inverting input of the first differential amplifier DA1 is formed by the non-inverting input of an operational amplifier A1 with a high open-loop gain. The operational amplifier A1 is configured to operate as a unity gain voltage follower by connecting its inverting input to its output terminal. It is preferable to provide an operational amplifier A5, identical to the operational amplifier A1, with the output of the operational connected to the inverting input to compensate the input offset voltage of the operational amplifier A1. The non-inverting input of the operational amplifier A5 forms the inverting input of the first differential amplifier DA1 and is connected to a supply rail node 18 that provides a cyclic voltage VSCAN. The non-inverting input 12 of the operational amplifier A2 is connected to the first terminal of the first impedance load 10 and the first terminal of the second impedance load 14. The second terminal of the first impedance load is connected to the output terminal of the operational amplifier A1. The second terminal of the second impedance load is connected to the system ground 16. The inverting input 22 of the operational amplifier A2 is connected to the first terminal of the third impedance load 20 and the first terminal of the fourth impedance load 24. The second terminal of the third impedance load 20 is connected to the output terminal of the operational amplifier A5, effectively connected to the scanning voltage VSCAN at node 18. The second terminal of the fourth impedance load is connected to the output terminal of the operational amplifier A2. It is preferable to provide the same values for the first to the fourth impedance loads and obtain a voltage V2 equals VRE−VSCAN at node 34.
  • The inverting input 28 of the operational amplifier A3 with a very high open-loop gain is connected to the working electrode WE. A feedback resistor R FB 26 is connected between the inverting input 28 and the output terminal 29 of the operational amplifier A3, forming a current-to-voltage converter. The high open-loop gain of A3 forces the voltages at the inverting and non-inverting inputs to be equal. As a result, the local voltage difference between the reference electrode RE and working electrode WE, VRE−VWE≈V SCAN, induces a current i caused by the redox reaction at the bioreceptor interface. This current i flows from the working electrode 28, through the feedback resistor R FB 26 to node 29 and generate a voltage at node 29 equals VWE-i RFB.
  • The second differential amplifier DA2 comprises an operational amplifier A4 with its non-inverting input 40 connected to the first terminal of the fifth impedance load 32 and the first terminal of the sixth impedance load 36. The second terminal of the fifth impedance load 32 is connected to node 34 that forms the non-inverting input of the operational amplifier OA1. The second terminal of the sixth impedance load 36 is connected to the system ground 38. The inverting input 44 of the operational amplifier A4 is connected to the first terminal of the seventh impedance load 30 and the first terminal of the eighth impedance load 42. The second terminal of the seventh impedance load 30 is connected to node 29 that forms the output of the operational amplifier OA1. The second terminal of the eighth impedance load 42 connects to the output of the operational amplifier A4. It is preferable to provide all impedance loads equal in value and obtain an output voltage at the operational amplifier A4 equal to i RFB.
  • The implementation of DA1 and DA2 are not limited to the example embodiment shown in FIG. 6. Both differential amplifiers DA1 and DA2 are required to provide an output equal to the difference of their inputs with unity gain. The differential amplifier DA1 is required to draw minimal current from the reference electrode RE and the differential amplifier DA2 is required to provide sufficient output current for the subsequent stage. To simplify the design, DA1 consists of DA2 with additional operational amplifiers A1 and A5 configured as voltage followers at both inverting and non-inverting inputs to minimise the input current. Operational amplifier A5 is optional, but its presence is preferable because a matched pair of A1 and A5 will allow the cancellation of their inherited offset voltages and hence minimize the output error at operational amplifier A2 configured as differential amplifiers.
  • Referring to FIG. 7, a third embodiment of the present invention is the same as the second embodiment, except that all impedance loads are implemented with capacitive loads. It is preferable to have all capacitive loads equal to C.
  • Referring to FIG. 8 a, a multi-channel biosensor circuit 1 is arranged for sequential readout according to an embodiment of the present invention and comprises an array of counter electrodes CE, reference electrodes RE, working electrodes WE, electrolytes and bioreceptor layers.
  • The counter electrodes CE are connected to a first voltage supply rail 2 connected to ground or a DC voltage source 3. Each counter electrode CE is connected to a first terminal of a first resistor 4 having a second terminal connected to the reference electrode RE. The first resistor 4 represents the electrolyte comprising at least one target biological molecule. In a similar manner to that illustrated in FIG. 3, the reference electrode RE is disposed upon an insulator (not shown in FIG. 8 a) in close proximity to a working electrode WE, which is disposed adjacent a bioreceptor layer represented in FIG. 8 a by a parallel resistor and capacitor arrangement 6.
  • Each reference electrode RE is connected to a first terminal of a respective first transistor 50 having a gate terminal connected to a shift register 52 and a second terminal connected a first input terminal of a potentiostat circuit 5. Each working electrode WE is connected to a first terminal of a respective second transistor 54 having a gate terminal connected to the shift register 52 and a third terminal connected to a second input terminal of the potentiostat circuit 5. The potentiostat circuit 5 has a third input terminal connected to a second voltage supply rail 18 to receive a voltage VSCAN, which is also applied to an input terminal of the shift register 52. The potentiostat circuit 5 comprises an output terminal for outputting a generated voltage VOUT.
  • Referring to FIG. 8 b, a multi-channel biosensor circuit l is arranged for simultaneous readout according to a third embodiment of the present invention and comprises an array of counter electrodes CE, reference electrodes RE, working electrodes WE, electrolytes, bioreceptor layers and potentiostat circuits 5.
  • The counter electrodes CE are connected to a first voltage supply rail 2 connected to ground or a DC voltage source 3. Each counter electrode CE is connected to a first terminal of a first resistor 4 having a second terminal connected to the reference electrode RE. The first resistor 4 represents the electrolyte comprising at least one target biological molecule. In a similar manner to that illustrated in FIG. 3, the reference electrode RE is disposed upon an insulator 30 (not shown in FIG. 8 b) in close proximity to a working electrode WE, which is disposed adjacent a bioreceptor layer represented in FIG. 8 b by a parallel resistor and capacitor arrangement 6.
  • Each reference electrode RE is connected to a first input terminal of a respective Nth potentiostat circuit 5 and each working electrode is connected to a second input terminal of the respective Nth potentiostat circuit 5. Each Nth potentiostat circuit 5 comprises a third input terminal to receive a voltage VSCAN and an output terminal for outputting a generated voltage VOUT.
  • In operation of the multi-channel biosensor circuit 1 according to this embodiment of the present invention, the counter electrode CE is held at a fixed, ground potential. The circuit is completed by an analyte or electrolyte represented by the resistor 4, and a bioreceptor layer represented as the parallel resistor and capacitor arrangement 6. As current flows through the electrochemical cell, the reference electrode RE is self-adjusted to a voltage VRE. Without drawing any current, this voltage is detected by the non-inverting input terminal of the first amplifier A1 which is configured as a voltage follower, and copied to its output terminal in order to avoid upsetting the operation of the electrochemical cell. The output voltage is then applied to the non-inverting input terminal of the second amplifier A2 (in FIGS. 6 and 7).
  • A cyclic scanning voltage VSCAN is applied to the inverting input terminal of the second amplifier A2. The second amplifier A2 and its corresponding impedance loads 10, 14, 20 and 24, form a differential amplifier with unity gain, giving an output voltage V2=(VRE−VSCAN), which is applied to the non-inverting input terminal of the third amplifier A3.
  • The voltage of the working electrode WE is controlled and adjusted by the output voltage V2 of the second amplifier A2 by applying the Virtual Earth Theory to the third amplifier A3. Due to a high open-loop gain in the third amplifier A3, and the use of a second resistor 26 for negative feedback, the voltages at the inverting and non-inverting inputs of the third amplifier A3 are effectively equal. Therefore, the voltage of the working electrode WE equal to V2=(VRE−VSCAN). The current drawn at the working electrode WE is converted to an output voltage=(V2- i RFB) by the third amplifier A3 configured as a current-voltage converter. This output voltage is applied to the inverting input 29 of the differential amplifier formed by the fourth amplifier A4 and corresponding impedance loads 30, 32, 42 and 36. The non-inverting input of this differential amplifier, node 34, is connected to the output of the second amplifier A2. As a result, the output voltage VOUT, given by VOUT=i RFB is generated.
  • Of course, it will be understood that the embodiment illustrated in FIG. 5 operates in a corresponding manner.
  • In operation of the multi-channel biosensor of FIG. 8 a employed for sequential readout in the present invention, the circuit of FIG. 8 a is characterised by the presence of the shift register 52, the plurality of switching transistors 50, 54 and also the potentiostat circuit 5. The counter electrode CE can be at a fixed ground potential or at an arbitrary DC voltage. The potentiostat circuit 5 described above with reference to FIGS. 5 to 7 is represented by a block diagram having inputs VSCAN, the voltage of the reference electrode VRE and the current i drawn by the working electrode WE in order to generate an output voltage, VOUT.
  • In order to sequentially readout an individual cell, the reference electrode RE and the working electrode WE of the individual cell are selected by the shift register 52 by applying a signal to the gate terminal of the respective first and second transistors 50, 54. A voltage the same as the voltage of the reference electrode VRE is established at the surface of the bioreceptor layer and the voltage of the working electrode VWE can be controlled such that VRE−VWE=VSCAN through the virtual earth of the operational amplifier (OA1 or A3) responsible for current-to-voltage conversion, as discussed above in connection with the description of FIGS. 5 to 7. Successive individual cells can be sequentially selected by the shift register 50.
  • In operation of the multi-channel biosensor of FIG. 8 b employed for simultaneous readout in the present invention, the circuit of FIG. 8 b is characterised by the presence of N-number of potentiostat circuits 5. The common counter electrodes 2 are held at a fixed ground potential or at an arbitrary DC voltage 3. Since each potentiostat circuit 5 comprises an individual, closed feedback loop, the output voltage VOUT can be read out for each cell simultaneously. The arrangement enables the dropping of a biosensor circuit 1 within a testing vessel comprising an analyte and subsequently the reading out of the generated output voltages VOUT for each of the potentiostat circuits simultaneously. Chemical crosstalk of reaction materials between adjacent cells can be prevented by providing sufficient physical spacing.
  • The foregoing description has been given by way of example only and it will be appreciated by a person skilled in the art that modifications can be made without departing from the scope of the present invention.
  • The voltage VSCAN applied to each potentiostat 5 illustrated in FIG. 8 b can be applied separately to each potentiostat 5 thereby enabling a different value of VSCAN to be applied to each potentiostat 5, as shown in FIG. 8 c.
  • In addition, FIG. 5 is a simplified schematic of the potentiostat circuit 5 and reset switches may be used where appropriate. One counter electrode can be employed for the potentiostat circuits 5 illustrated in FIGS. 8 a to 8 c. The biosensor circuit 1 of FIGS. 8 a to 8 c can be located on a single chip or substrate and since the cell area is large, space remains to incorporate additional circuits to include auto-zero amplifiers, peak detection and discrimination and digitisation means.
  • The shape of the input voltage VSCAN is not limited to a triangular waveform. It can be of sawtooth waveform, sinusoidal waveform, square waveform, or pulses including varying mark-space ratios. The input voltage VSCAN is not limited to a cyclic AC voltage. VSCAN can be a constant voltage applied to a DC differential amplifier in place of the second amplifier A2. In this embodiment, the first capacitor 10, the second capacitor 14, the third capacitor 20 and the fourth capacitor 24 are replaced by resistors or other impedance loads as is known in the art. A DC differential amplifier can also be used in place of the fourth amplifier A4.

Claims (11)

1. A potentiostat circuit, comprising:
a first differential amplifier which is configured to receive a scanning voltage at a first input terminal and a voltage of a reference electrode at a second input terminal, and generate an output voltage at an output terminal to be reflected at a working electrode, a feedback loop of the potentiostat circuit being closed between the reference electrode and the working electrode.
2. The potentiostat circuit according to claim 1, the output voltage of the first differential amplifier being applied to a first input terminal of a first operational amplifier having a negative feedback between an output terminal and a second input terminal, and the working electrode being connected to the second input terminal of the first operational amplifier and held at the voltage of the first input terminal of the first operational amplifier.
3. The potentiostat circuit according to claim 2, the first input terminal being a non-inverting input terminal and the second input terminal is an inverting input terminal.
4. The potentiostat circuit according to claim 2, further comprising:
a second differential amplifier having a first input terminal connected to the output terminal of the first operational amplifier; and
a second input terminal connected to the first input terminal of the first operational amplifier.
5. The potentiostat circuit according to claim 4,
the first input terminal of the second differential amplifier being an inverting input terminal and
the second input terminal of the second differential amplifier being a non-inverting input terminal.
6. The potentiostat circuit according to claim 1, further comprising:
a second operational amplifier having a first input terminal connected to the reference electrode; and
an output terminal connected to the second input terminal of the first differential amplifier.
7. A single-channel biosensor circuit comprising:
a counter electrode,
a reference electrode,
a working electrode, and
a potentiostat circuit according to claim 1.
8. A multi-channel biosensor circuit including a potentiostat circuit according to claim 1, further comprising:
an array of counter electrodes, reference electrodes and working electrodes, each reference electrode in the array of reference electrodes being connected to a respective first terminal of a first switch; and
each working electrode in the array of working electrodes being connected to a respective first terminal of a second switch,
the first switch and the second switch each having a second terminal being connected to the potentiostat circuit, wherein
outputs of a shift register unit are connected to a gate terminal of each respective first switch and each respective second switch and thereby adapted to select a counter electrode, reference electrode and working electrode in the array of for sequential readout by the potentiostat circuit.
9. A multi-channel biosensor circuit, comprising: an array of biosensor circuits including the single-channel biosensor circuit according to claim 7, each biosensor circuit of the array of biosensor circuits being configured to read out simultaneously.
10. The multi-channel biosensor circuit according to claim 9, an input line being shared by each respective first differential amplifier of each respective potentiostat circuit for receiving the scanning voltage.
11. The multi-channel biosensor circuit according to claim 9, each first differential amplifier of each respective potentiostat circuit being connected to a respective input line for receiving the scanning voltage.
US12/068,634 2007-02-09 2008-02-08 Potentiostat circuit Active 2030-12-07 US8133369B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0702545A GB2446415A (en) 2007-02-09 2007-02-09 Potentiostat
GB0702545.5 2007-02-09

Publications (2)

Publication Number Publication Date
US20080223719A1 true US20080223719A1 (en) 2008-09-18
US8133369B2 US8133369B2 (en) 2012-03-13

Family

ID=37899057

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/068,634 Active 2030-12-07 US8133369B2 (en) 2007-02-09 2008-02-08 Potentiostat circuit

Country Status (3)

Country Link
US (1) US8133369B2 (en)
JP (1) JP4710914B2 (en)
GB (1) GB2446415A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032319A1 (en) * 2008-08-06 2010-02-11 Jun Okada Diagnostic cassette for electrochemical measuring apparatus and method of diagnosing electrochemical measuring apparatus
US20110089957A1 (en) * 2009-10-16 2011-04-21 Microchips, Inc. Multi-channel potentiostat for biosensor arrays
US20120205258A1 (en) * 2011-02-11 2012-08-16 Noble Bradley L Digital potentiostat circuit and system
US20130038318A1 (en) * 2011-08-09 2013-02-14 Brother Kogyo Kabushiki Kaisha Ac voltage detecting circuit and image forming apparatus having the same
US20160123921A1 (en) * 2014-10-31 2016-05-05 Zansors, Llc Multichannel potentiostat analyzer system and methods
WO2016144266A1 (en) * 2015-03-11 2016-09-15 Agency For Science, Technology And Research Method and circuit for providing an accurate voltage for electrochemical sensing
US20190154625A1 (en) * 2017-11-17 2019-05-23 ProbiusDx All-electronic high-throughput analyte detection system
US11536691B2 (en) * 2016-08-10 2022-12-27 Arizona Board Of Regents On Behalf Of The University Of Arizona Portable instrument for field ready electrochemical experimentation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2637799T3 (en) 2011-11-15 2017-10-17 Ashwin-Ushas Corporation, Inc. Electrochromic device with complementary polymers
WO2013107757A1 (en) * 2012-01-18 2013-07-25 Roche Diagnostics Gmbh Amplifier circuitry for a combined ac/dc signal of an electrochemical sensing electrode
US9285336B2 (en) 2012-08-09 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Sensing platform for quantum transduction of chemical information
US9207515B2 (en) 2013-03-15 2015-12-08 Ashwin-Ushas Corporation, Inc. Variable-emittance electrochromic devices and methods of preparing the same
US10101293B2 (en) 2013-08-09 2018-10-16 The Board Of Trustees Of The Leland Stanford Junio Sensing platform for transduction of information
CZ2014672A3 (en) * 2014-09-30 2015-08-12 Vysoké Učení Technické V Brně Potentiostat
US9632059B2 (en) 2015-09-03 2017-04-25 Ashwin-Ushas Corporation, Inc. Potentiostat/galvanostat with digital interface
US9482880B1 (en) 2015-09-15 2016-11-01 Ashwin-Ushas Corporation, Inc. Electrochromic eyewear
WO2017189854A1 (en) * 2016-04-28 2017-11-02 The Board Of Trustees Of The Leland Stanford Junior University Mesoscale system feedback-induced dissipation and noise suppression
CN110609064A (en) * 2018-06-14 2019-12-24 深圳碳森科技有限公司 Differential impedance potential type biosensor and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498039A (en) * 1979-06-18 1985-02-05 International Business Machines Corporation Instrument for use with an electrochemical cell
US5198771A (en) * 1991-09-03 1993-03-30 Transducer Research, Inc. Potentiostatic apparatus and methods
US6428684B1 (en) * 2000-08-02 2002-08-06 Industrial Scientific Corporation Method and apparatus for diagnosing the condition of a gas sensor
US20040063152A1 (en) * 2000-11-24 2004-04-01 Walter Gumbrecht Method for electrochemical analysis, corresponding configurations and the use thereof
US20050247559A1 (en) * 2002-06-24 2005-11-10 Infineon Technologies Ag Biosensors array and method for operating a biosensor array
US7090764B2 (en) * 2002-01-15 2006-08-15 Agamatrix, Inc. Method and apparatus for processing electrochemical signals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263446B2 (en) * 1992-09-07 2002-03-04 東亜ディーケーケー株式会社 Electrode ion concentration meter
JP3275865B2 (en) * 1999-01-13 2002-04-22 日本電気株式会社 Chemical sensor
JP4398953B2 (en) * 2000-09-29 2010-01-13 株式会社東芝 Nucleic acid detection sensor
JP2006284205A (en) * 2005-03-31 2006-10-19 Sony Corp Detecting means of interaction between matter, sensor chip having detecting means, and control method of interaction between matter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498039A (en) * 1979-06-18 1985-02-05 International Business Machines Corporation Instrument for use with an electrochemical cell
US5198771A (en) * 1991-09-03 1993-03-30 Transducer Research, Inc. Potentiostatic apparatus and methods
US6428684B1 (en) * 2000-08-02 2002-08-06 Industrial Scientific Corporation Method and apparatus for diagnosing the condition of a gas sensor
US20040063152A1 (en) * 2000-11-24 2004-04-01 Walter Gumbrecht Method for electrochemical analysis, corresponding configurations and the use thereof
US7090764B2 (en) * 2002-01-15 2006-08-15 Agamatrix, Inc. Method and apparatus for processing electrochemical signals
US20050247559A1 (en) * 2002-06-24 2005-11-10 Infineon Technologies Ag Biosensors array and method for operating a biosensor array

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032319A1 (en) * 2008-08-06 2010-02-11 Jun Okada Diagnostic cassette for electrochemical measuring apparatus and method of diagnosing electrochemical measuring apparatus
US20110089957A1 (en) * 2009-10-16 2011-04-21 Microchips, Inc. Multi-channel potentiostat for biosensor arrays
US8604810B2 (en) 2009-10-16 2013-12-10 Microchips, Inc. Multi-channel potentiostat for biosensor arrays
US8845870B2 (en) * 2011-02-11 2014-09-30 Board Of Trustees Of Southern Illinois University Digital potentiostat circuit and system
US20120205258A1 (en) * 2011-02-11 2012-08-16 Noble Bradley L Digital potentiostat circuit and system
US9151784B2 (en) * 2011-08-09 2015-10-06 Brother Kogyo Kabushiki Kaisha AC voltage detecting circuit and image forming apparatus having the same
US20130038318A1 (en) * 2011-08-09 2013-02-14 Brother Kogyo Kabushiki Kaisha Ac voltage detecting circuit and image forming apparatus having the same
US20160123921A1 (en) * 2014-10-31 2016-05-05 Zansors, Llc Multichannel potentiostat analyzer system and methods
US9983167B2 (en) * 2014-10-31 2018-05-29 Zansors, Llc Multichannel potentiostat analyzer system and methods
WO2016144266A1 (en) * 2015-03-11 2016-09-15 Agency For Science, Technology And Research Method and circuit for providing an accurate voltage for electrochemical sensing
US10551344B2 (en) 2015-03-11 2020-02-04 Agency For Science, Technology And Research Method and circuit for providing an accurate voltage for electrochemical sensing
US11536691B2 (en) * 2016-08-10 2022-12-27 Arizona Board Of Regents On Behalf Of The University Of Arizona Portable instrument for field ready electrochemical experimentation
US20190154625A1 (en) * 2017-11-17 2019-05-23 ProbiusDx All-electronic high-throughput analyte detection system
US11054380B2 (en) * 2017-11-17 2021-07-06 Probiusdx, Inc. All-electronic high-throughput analyte detection system
US11921077B2 (en) 2017-11-17 2024-03-05 Probiusdx, Inc. All-electronic high-throughput analyte detection system

Also Published As

Publication number Publication date
JP4710914B2 (en) 2011-06-29
GB2446415A (en) 2008-08-13
GB0702545D0 (en) 2007-03-21
GB2446415A8 (en) 2008-08-20
JP2008197098A (en) 2008-08-28
US8133369B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
US8133369B2 (en) Potentiostat circuit
Schienle et al. A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion
US20050006234A1 (en) Semiconductor electrochemical bio-sensor array
Ramfos et al. A compact hybrid-multiplexed potentiostat for real-time electrochemical biosensing applications
Tokuda et al. A CMOS image sensor with optical and potential dual imaging function for on-chip bioscientific applications
Stagni et al. CMOS DNA sensor array with integrated A/D conversion based on label-free capacitance measurement
Yoshinobu et al. Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species
Inoue et al. LSI-based amperometric sensor for bio-imaging and multi-point biosensing
US9645106B2 (en) Monolithically integrated hybridisation sensor assembly and associated production method
Dorta-Quiñones et al. A bidirectional-current CMOS potentiostat for fast-scan cyclic voltammetry detector arrays
JP5769020B2 (en) IC chip with multiple electrodes
Manickam et al. A CMOS Electrochemical Biochip With 32$\times $32 Three-Electrode Voltammetry Pixels
KR20010092475A (en) Electrochemical Biosensor Readout Meter
Duarte-Guevara et al. Characterization of a 1024× 1024 DG-BioFET platform
Sun et al. High-density redox amplified coulostatic discharge-based biosensor array
George et al. Highly integrated surface potential sensors
Lee et al. A bio-image sensor for simultaneous detection of multi-neurotransmitters
Fischer et al. Pulsed polarization of platinum electrodes on YSZ
JP2015210233A (en) Massively parallel biomolecule detection method and apparatus
JP5176235B2 (en) Electrochemical measuring device
De Venuto et al. Design of an integrated low-noise read-out system for DNA capacitive sensors
Blanco et al. Design of a low-cost portable potentiostat for amperometric biosensors
Thewes et al. CMOS-based biosensor arrays
Frey et al. A digital cmos dna chip
Ghani et al. Evaluation of Portable Potentiostats for Electrochemical Measurements: Voltammetry and Impedance Spectroscopy

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEIKO EPSON CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAM, SIMON;REEL/FRAME:021569/0930

Effective date: 20080815

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12