US20080285248A1 - High-speed router with backplane using tuned-impedance thru-holes and vias - Google Patents

High-speed router with backplane using tuned-impedance thru-holes and vias Download PDF

Info

Publication number
US20080285248A1
US20080285248A1 US12/011,298 US1129808A US2008285248A1 US 20080285248 A1 US20080285248 A1 US 20080285248A1 US 1129808 A US1129808 A US 1129808A US 2008285248 A1 US2008285248 A1 US 2008285248A1
Authority
US
United States
Prior art keywords
backplane
card
thru
signaling
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/011,298
Inventor
Joel R. Goergen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Force10 Networks Inc
Original Assignee
Force10 Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Force10 Networks Inc filed Critical Force10 Networks Inc
Priority to US12/011,298 priority Critical patent/US20080285248A1/en
Assigned to FORCE10 NETWORKS, INC. reassignment FORCE10 NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOERGEN, JOEL R.
Publication of US20080285248A1 publication Critical patent/US20080285248A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0251Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance related to vias or transitions between vias and transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • H05K1/116Lands, clearance holes or other lay-out details concerning the surrounding of a via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0245Lay-out of balanced signal pairs, e.g. differential lines or twisted lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/044Details of backplane or midplane for mounting orthogonal PCBs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09454Inner lands, i.e. lands around via or plated through-hole in internal layer of multilayer PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09636Details of adjacent, not connected vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers

Definitions

  • This invention relates generally to backplanes, and more specifically to backplane wiring systems for highly interconnected, high-speed modular digital communications systems such as routers and switches.
  • a backplane generally comprises a printed circuit board having a number of card connection slots or bays. Each slot or bay comprises, e.g., one or more modular signal connectors or card edge connectors, mounted on the backplane. A removable circuit board or “card” can be plugged into the connector(s) of each slot. Each removable circuit board contains drivers and receivers necessary for communication of signals across the backplane with corresponding drivers and receivers on other removable circuit boards.
  • One or more layers of conductive traces are formed on and/or in the backplane.
  • the traces connect to individual signal connection points at the various slots to form data lines and control lines.
  • the preferred embodiments described in the '622 application incorporate a number of unconventional design features, such as a high layer count (and large overall thickness), thick power planes, and an exotic dielectric material. While these backplanes are capable of throughputs measurable in Terabits/second and high-wattage, low-noise power distribution, the features used to obtain this extreme performance tend to drive up cost.
  • the router described in the prior application uses only a fraction of the available backplane card slots and massive bandwidth. It has now been recognized that a need exists for a smaller, simpler, and more economic backplane that retains most of the desirable qualities of the full-feature backplane. Consequently, some of the embodiments described herein seek to support the same line, switch fabric, and RPM card types as described for the full-feature backplane, but in a backplane (and router) form factor with significantly decreased complexity.
  • the maximum number of line cards supported has been reduced from fourteen to seven, and the maximum signaling speed has been reduced to 3.125 Gbps. This allows for a different layout with shorter longest-trace lengths, smaller differential pairs, thinner power planes, and a much thinner board with significantly fewer signal layers (four vs. fourteen layers for the larger board). It has also been discovered that, at least for 3.125 Gbps operation, this embodiment can be fabricated entirely using FR4 insulating material instead of more exotic materials such as N6000.
  • FIG. 1 contains a block diagram of a high-speed router
  • FIG. 2 illustrates one possible path for traffic entering a router at one line card and exiting the router at another line card
  • FIG. 3 shows the external layout for a router backplane circuit board according to an embodiment described in the '622 application
  • FIG. 4 shows the complete material stack in cross-section for the router backplane shown in FIG. 3 ;
  • FIG. 5 illustrates a signal thru-hole and a ground hole in cross-section for the router backplane shown in FIG. 3 ;
  • FIG. 6 shows the external layout for a router backplane circuit board according to an embodiment of the present invention
  • FIG. 7 shows the complete material stack in cross-section for the embodiment shown in FIG. 6 ;
  • FIG. 8 shows a signal thru-hole and layer-swapping via in cross-section for the embodiment shown in FIG. 6 ;
  • FIG. 9 shows an exemplary cluster of layer-swapped differential pairs superimposed on one power plane layer.
  • high speed signaling refers to signaling on a differential signal pair at a data rate greater than about 2.5 Gbps.
  • a high-speed signaling layer or high-speed differential trace plane contains high-speed differential signal trace pairs, but may also contain lower speed and/or single-ended traces.
  • a core dielectric layer is one that is cured and plated prior to assembly of a circuit board.
  • a b-stage dielectric layer is one that is cured during assembly of cores into the circuit board.
  • Differential signaling (or balanced signaling) is a mode of signal transmission, using two conductors, in which each conductor carries a signal of equal magnitude, but opposite polarity.
  • Single-ended signaling is a mode of signal transmission where one conductor carries a signal with respect to a common ground.
  • the impedance of a differential trace is more differential than single-ended if the impedance between that trace and its differentially paired trace is less than the impedance between that trace and ground.
  • FIG. 1 shows a high-level block diagram for a router 20 .
  • Line cards 30 , 40 , 50 , and 60 provide physical ports to the device.
  • line cards 30 and 40 can each provide up to 24 Gigabit Ethernet ports 22 into router 20 .
  • Line card 50 provides two 10-Gigabit Ethernet ports 52
  • line card 60 provides an OC-192 POS (Packet-Over-Sonet) port 62 .
  • many backplanes provide slots to accommodate many more cards, e.g., up to fourteen line cards in one '622 application embodiment (illustrated in FIG. 3 ) and up to seven line cards in one embodiment described for the present invention.
  • the user can configure device 20 to accommodate different traffic capacities, traffic models, and physical port mixes by the appropriate selection of numbers and types of line cards.
  • Switching fabric 70 switches each routed data packet from that packet's ingress port/line card to that packet's egress port/line card.
  • Switching fabric 70 connects to each line card through two full duplex switching fabric port connections (see, e.g., port connections 44 , 46 to line card 40 ).
  • Switching fabric 70 can be reconfigured rapidly on an epoch-by-epoch basis (an epoch is a defined time slice). For instance, at one epoch, fabric 70 may be switching packets from ingress port 44 to egress port 54 and from ingress port 46 to egress port 66 , and at the next epoch, fabric 70 could be switching packets from ingress port 44 to egress port 64 .
  • ingress ports and egress ports are paired to utilize as many switching ports as possible without unduly delaying a particular set of packets.
  • the switching fabric functionality is distributed among nine identical switch fabric cards that connect to slots SF 0 to SF 8 .
  • Eight switch fabric cards are ganged to actively switch packet data in parallel (the ninth provides redundancy).
  • a full-duplex switching fabric “port” actually comprises 18 differential pairs connected to a line card—one transmit pair from the line card to each switch fabric card, and one receive pair from each switch fabric card to the line card.
  • Route processing module (RPM) 80 resides on an RPM card.
  • RPM 80 has several duties.
  • RPM 80 is responsible for overall system operation, i.e., recognizing and booting new line cards, identifying faulty line cards, packet route discovery, and sharing routing table information with the line cards.
  • RPM 80 also provides a user interface (not shown) to allow a system operator to configure the system and view system parameters.
  • RPM 80 generally communicates with the line cards over control bus 90 . As compared to the switching fabric ports, the control bus can be a relatively low-speed channel.
  • Another duty of RPM 80 is scheduling switching fabric 70 . In a preferred implementation, RPM 80 reconfigures switching fabric 70 every epoch.
  • RPM 80 uses scheduling bus 92 to communicate to switching fabric 70 —as well as to line cards 30 , 40 , 50 , 60 —the switching fabric configuration for the upcoming epochs.
  • RPM 80 attempts to schedule as many fabric ports as possible during each epoch, and to ensure that data is handled promptly and fairly.
  • the scheduling bus can be a relatively low-speed channel.
  • RPM 80 also maintains its own switching fabric port connection 82 , allowing it to receive and transmit packets external to the router using any of the line card physical ports. In the backplane design of FIG. 3 , provision is also made for a second RPM card connected to router 20 to provide failover capability.
  • FIG. 2 shows an exemplary data path taken by part of a packet as it traverses router 20 .
  • FIG. 2 depicts three cards that would be inserted in a typical system—an ingress line card 30 , an egress line card 50 , and a switch fabric card 70 a . Note that a fully functional system would usually contain at least seven additional switch fabric cards and at least one functioning RPM card, but these have been omitted from FIG. 2 for clarity.
  • Cards 30 , 50 , and 70 a are shown connected to a backplane 100 using board connectors and sockets, of which the numbered connectors 35 , 55 , 75 and numbered sockets 37 , 57 , 77 are typical.
  • the board connectors are press-fit onto their respective cards, and the matching sockets are press-fit onto the backplane.
  • a card then can be connected to the backplane by mating the connectors with the sockets at a desired card slot.
  • Other connectors (such as connector 39 ) located at each slot perform functions such as supplying power to a card.
  • the number of integrated circuits and division of circuitry functions on a card can be varied in many ways. In FIG.
  • line card circuitry is illustrated in one possible configuration: an ingress circuit ( 31 and 51 ) for processing packets received at the line card, an egress circuit ( 32 and 52 ) for processing packets to be transmitted by the line card, and a serdes (serializer/deserializers 33 and 53 ) for passing packets between the ingress/egress circuits and the switch fabric cards.
  • Switch fabric card circuitry is illustrated in one possible configuration also: a switch 71 in communication with a serdes 73 to pass packet data between switch 71 and the line cards.
  • FIG. 2 An incoming packet PacketIn is received at a port on line card 30 .
  • Ingress circuit 31 processes the packet, determines that the appropriate router egress port is on line card 50 , and queues the packet in a queue corresponding to line card 50 .
  • one data path of switch 71 is configured (along with the corresponding switches on the other switch fabric cards, not shown) to switch data from line card 30 to line card 50 .
  • serdes 33 receives the exemplary packet's data from the queue, serializes it, and transmits a portion of that data to each switch fabric card.
  • Serdes 33 transmits the portion of that data bound for switching fabric card 70 a over a physical path comprising connector 35 , socket 37 , differential pair 34 a in backplane 100 , socket 77 , and connector 75 .
  • Serdes 73 receives that data, de-serializes it, and passes it to switch 71 .
  • Switch 71 switches the data to an appropriate channel for line card 50 , and then passes the data back to serdes 73 .
  • Serdes 73 reserializes and transmits the data over a physical path comprising connector 75 , socket 77 , differential pair 56 a in backplane 100 , socket 55 , and connector 57 .
  • Serdes 53 combines the serial data received from the switch fabric cards and passes the de-serialized data to egress circuit 52 .
  • Egress circuit 52 performs additional packet processing, and queues the packet for transmission out the appropriate egress port as PacketOut.
  • FIG. 3 shows a detailed backplane-plating layout for a router 20 and backplane 100 as described in FIGS. 1 and 2 .
  • a top panel region of backplane 100 has connector regions (“slots”) for sixteen cards.
  • the outboard seven slots on each end are each configured to accept a line card (slots LC 0 to LC 6 and LC 7 to LC 13 ).
  • the middlemost two slots are each configured to accept a route-processing module (slots RPM 0 and RPM 1 ).
  • Each slot has three upper connector regions (e.g., regions JL 4 U 0 , JL 4 U 1 , and JL 4 U 2 for slot LC 4 ) used to distribute power and ground signals to a card.
  • each line card slot has three high-speed connector regions (e.g., regions JLC 4 A, JLC 4 B, and JLC 4 C for slot LC 4 ).
  • the RPM slots serve more card connections than the line card slots, and therefore use a larger high-speed connector region.
  • the high-speed connector regions are laid out to accept HS3 press-fit sockets, available from Tyco Electronics Corporation (formerly AMP Incorporated).
  • a bottom panel region of backplane 100 contains connector regions or slots for nine cards. Each of these slots in configured to accept a switch fabric card (slots SF 0 to SF 8 ). Each slot has two lower connector regions (e.g., regions JSF 8 U 0 and JSF 8 U 1 for slot LC 8 ) used to distribute power and ground signals to a switch fabric card. Above these, each switch fabric card slot has three high-speed connector regions (e.g., regions JSF 8 A, JSF 8 B, and JSF 8 C for slot SF 8 ).
  • the bottom panel region also contains connector regions for connecting power and ground to the backplane.
  • Two 48-volt power distribution layers are embedded in backplane 100 , an “A” power distribution layer and a “B” power distribution layer.
  • two large multi-thru-hole regions 48 VA and 48 VA RTN allow for connection of “A” power supply and return leads to one power supply, and a third large region CGND allows for connection of a common ground.
  • Similar connections for a “B” power distribution layer to a second power supply exist at the lower right of backplane 100 .
  • the material stack of FIG. 4 has 34 conductive layers L 01 to L 34 separated by appropriate insulating layers. For each conductive layer, FIG. 4 labels that layer with a layer thickness in mils and an identifier for the layer.
  • Layers labeled “GND” are digital ground plane layers.
  • Layers labeled “HSn” are the high-speed signaling layers, where n represents the layer number.
  • Layers labeled “Signal xn” and “Signal yn” are the low-speed signaling layers.
  • the two “A 48V” layers are the supply (“dc”) and return (“rtn”) for one power supply, and the two “B 48V” layers are the supply and return for the other power supply.
  • the layer is accompanied by a description of whether the layer is a core or a b-stage layer, which lamination stage is applicable for a b-stage layer (unmarked b-stage layers are cured in lamination cycle 2 ), and the final thickness of the layer in mils.
  • the dielectric layers use a dielectric with significantly lower loss at multi-Gbps signaling rates than conventional FR4 dielectric systems.
  • One such material is a thermosetting allylated polyphenylene ether (APPE, e.g., the “N6000-21” product family line available from Park/Nelco).
  • Each high-speed layer (with its differential signaling traces) is formed approximately equally spaced from and between two digital ground planes, e.g., high-speed layer HS 1 is formed on layer L 03 , between ground planes at L 02 and L 04 .
  • low-speed signaling layers L 13 and L 14 are isolated from the remaining stack by two digital grounds (L 12 and L 15 )
  • low-speed signaling layers L 21 and L 22 are isolated by two digital grounds (L 20 and L 23 )
  • the four power distribution layers L 15 to L 19 are isolated from the remaining stack by two digital grounds (L 15 and L 20 ) at the center of the material stack.
  • the two power supply planes are placed between the two power return planes to provide yet one more layer of isolation. The result is a material stack that provides clean power distribution and good isolation for the high-speed signals.
  • the complete material stack is relatively thick compared to prior art boards, i.e., approximately 300 mils including 34 conductive layers.
  • FIG. 5 illustrates, in cross-section, a backplane signaling thru-hole 170 and a ground thru-hole 180 in an embodiment of the '622 application backplane.
  • the digital ground layers are used for stub impedance control at the thru-holes.
  • Several ground plane layers (L 08 , L 15 , L 20 , and L 27 ) are fitted with nonfunctional pads (e.g., pad 172 ) at the location of signaling thru-hole 170 . These pads adjust the impedance of the stubs formed by the thru-holes, reducing reflections and thereby improving the quality of the signals passing through the backplane.
  • FR4 dielectric sheets for the low-speed and DC layers (between digital ground layer L 12 and digital ground layer L 23 ) and a high-speed dielectric such as N6000 for the outer layers.
  • N6000 for all dielectric layers, but creates two sub-assemblies, comprising layers L 16 and L 17 and layers L 18 and L 19 with surrounding glass sheets. The two sub-assemblies are then integrated with the remaining layers during a final curing step.
  • FIG. 6 illustrates the general layout for one backplane 200 according to an embodiment of the present invention.
  • Backplane 200 accepts the same line, switch fabric, and RPM cards as backplane 100 .
  • switch fabric slots SF 0 through SF 8
  • this arrangement is attractive for several reasons. First, it reduces longest differential pair trace lengths over the design used in backplane 100 . Second, it allows a reduction in the number of differential pairs that must be routed through the connector blocks of the switch fabric cards, since in general those line cards that connect to the left side of the switch fabric card connector regions are positioned to the left of all switch fabric cards, and vice versa for the line cards that connect to the right side of the switch fabric card connector regions. Third, since in this embodiment the switch fabric cards are roughly one-third the height of the line cards, this arrangement efficiently utilizes the full height required for the line cards. Finally, the stacked arrangement allows for efficient cooling airflow to all switch fabric cards.
  • line card slots are positioned to the left of the switch fabric slots on backplane 200 , and three line card slots are positioned to the right of the switch fabric slots. It is noted that the line card slots are not numbered consecutively, but according to the switch fabric port that serves those cards. Since the switch fabric card slots are pin-compatible with the card slots of FIG. 3 , which supports twice as many line cards, not all switch fabric ports are needed in this embodiment. Those line card slots to the left of the switch fabric card slots are numbered LC 0 , LC 2 , LC 3 , and LC 5 . Thus switch fabric ports LC 1 and LC 4 are skipped, making more routing room available in the congested areas around the switch fabric card slots. A similar consideration results in the selection of line card slots LC 7 , LC 9 , and LC 12 to populate the area to the right of the switch fabric card slots.
  • RPM card slots RPM 0 and RPM 1 , are positioned to the right of line card slots LC 7 , LC 9 , and LC 12 . These slots are kept adjacent and to one side since the RPMs communicate with each other and with the other cards at lower rates, but only use one pair of high-speed ports each.
  • power connectors PS 0 to PS 3 are arranged along the far right edge of backplane 200 .
  • Two power connectors connect an A power supply to two A power planes, and the other two power connectors connect a B power supply to two B power planes.
  • This arrangement allows router power supplies to be mounted immediately to the right of the backplane, with short connections to the backplane in relative isolation from the EMI generated by the high-speed circuitry.
  • the power connectors are placed on backplane 200 in an area largely devoid of signal traces and isolated from the high-speed cards, further improving noise isolation for the power distribution system.
  • a fan tray connector FT is arranged near the top of backplane 200 to provide power and control signals to cooling fans for the router.
  • backplane 200 can employ a slot (not shown) on the power planes to help isolate electrical noise generated by the fan trays from the remainder of the power distribution paths.
  • FIG. 7 illustrates a cross-section for the material stack used to fabricate backplane 200 .
  • FIG. 4 uses ten high-speed signaling layers, four low-speed signaling layers, and fourteen digital ground planes
  • FIG. 7 uses only four high-speed signaling layers (which include all low-speed signaling as well) and six digital ground planes.
  • 2-ounce copper for the power planes, as opposed to the 4-ounce copper used in FIG. 4 .
  • the combination of a smaller number of layers, much thinner power planes, and the use of FR4 throughout allows for the use of standard lamination steps in fabricating backplane 200 .
  • Backplane 200 supports the same number of switch fabric and RPM cards, and half as many line cards as backplane 100 , using 70% less signaling layers. To achieve this, layer-swapping vias and a smaller differential pair configuration are used.
  • FIG. 8 illustrates a backplane cross-section 210 , taken through an exemplary thru-hole 220 and a via 230 connected to that thru-hole.
  • Thru-hole 220 has a finished (i.e., plated) opening with a 24-mil diameter.
  • nonfunctional conductive pads 222 , 224 , 226 , and 228 located respectively at digital ground layers L 02 , L 04 , L 13 , and L 15 , are aligned with thru-hole 220 .
  • the nonfunctional pads are electrically connected to thru-hole 220 .
  • Nonfunctional conductive pads 222 , 224 , 226 , 228 are each separated from their respective ground plane layers by a clearance—in this embodiment, a 10-mil clearance is selected.
  • the nonfunctional pad diameter, clearance, and selection of which layers will include nonfunctional pads all affect the impedance characteristics of the thru-hole.
  • the minimum pad diameter may be constrained by drill accuracy.
  • pads 222 , 224 , 226 , and 228 have a pad diameter of 40 mils.
  • ground planes without non-conductive pads are setback from thru-hole 220 the same distance as the other ground planes (a 60-mil opening, with roughly a 17-mil clearance), such that their capacitive coupling to thru-hole 220 is substantially less than ground planes L 02 , L 04 , L 13 , and L 15 .
  • Cross-section 210 shows two exemplary signal traces, trace 240 on signal layer HS 1 and trace 250 on signal layer HS 3 .
  • Trace 240 connects to thru-hole 220 .
  • Trace 250 connects to another thru-hole (not shown).
  • Trace 240 and trace 250 transfer a signal from thru-hole 220 to the off-figure thru-hole because they are joined by via 230 .
  • vias were avoided due to the substantial signal degradation they caused. But in the present application, with a much thinner material stack, it has been found that a small-diameter via with nonfunctional pads on selected ground planes can transfer a signal from one high-speed signal layer to another with little degradation.
  • Via 230 has a finished drill diameter of approximately 13.5 mils, and is drilled through four nonfunctional pads 232 , 234 , 236 , and 238 .
  • the nonfunctional pads are located respectively on ground plane layers L 02 , L 04 , L 13 , and L 15 . Although these are the same layers containing nonfunctional pads in thru-hole 220 , there is no requirement that the pad layers match up between thru-hole and via, or even that the thru-hole have nonfunctional pads at all. The beneficial effects of nonfunctional pads in vias can be enjoyed regardless of thru-hole configuration.
  • Nonfunctional pads 232 , 234 , 236 , and 238 have a 26-mil diameter, such that each pad protrudes from its via a shorter distance (approximately five mils) than, e.g., pad 222 protrudes from its thru-hole (approximately seven mils).
  • the smaller the hole diameter the smaller the impedance effects that require compensation.
  • the clearance from each nonfunctional pad to the adjacent ground plane is approximately 10 mils in this example.
  • the power layers (L 07 , L 08 , L 09 , and L 10 ) are set back from both thru-hole 220 and via 230 significantly further than the digital ground planes and signal traces (e.g., trace 242 ).
  • 135-mil clearances are used between power planes and vias, and 150-mil clearances are used between power planes and thru-holes. More generally, a power-plane clearance at least three times the digital ground plane clearance can be used.
  • High-speed signaling across backplane 200 preferably utilizes differential trace pairs.
  • One aspect of the present invention therefore involves the routing layout of differential trace pairs within the high-speed signaling layers and thru vias such as via 230 .
  • certain trace pitches are preferable as they allow a desired relationship (approximately equal, or marginally more differential than single-ended) between single-ended and differential trace impedance.
  • one preferred geometry shown in FIG. 9 ) uses 6-mil traces on 14-mil spacing, and achieves a differential impedance of about 98 ohms.
  • FIG. 9 shows a partial routing layout 300 for a segment of backplane 200 .
  • This particular segment contains vias for ten pairs of layer-swapped differential pairs.
  • all ten differential pairs are swapped from HS 1 to either HS 3 or HS 4 .
  • Power plane configuration in this backplane segment is shown as well to illustrate the significantly larger clearance (e.g., clearance 330 ) afforded the vias on a power plane layer.
  • This section is instructional as it illustrates several arrangements used to run differential pairs into and out of a pair of differential vias.
  • a 14-mil trace spacing cannot be maintained at the vias, as the signal pads and nonfunctional pads each have a 26-mil diameter. Accordingly, a somewhat larger spacing must exist at the vias.
  • the via pair is separated such that their individual clearances 314 and 316 just meet, i.e., a 46-mil center-to-center via spacing in this example.
  • Differential pair 310 , 312 approaches vias 302 , 304 such that trace 310 runs substantially straight in to via 302 .
  • Trace 312 parallels trace 310 to a point at which it must veer off at a 45-degree angle to run substantially straight in to via 304 .
  • Differential pair 340 , 342 illustrates a rotated via pair arrangement that allows both traces to run straight in to their respective vias.
  • differential pair 350 , 352 illustrates yet another arrangement wherein the centerline of the pair runs substantially straight at the midpoint between two vias, with each trace turning 45 degrees towards its respective via, at an appropriate point, to run into that via.
  • a process for fabricating an embodiment of the invention will now be described.
  • a first step in the fabrication of the backplane is the makeup of plated and patterned core sheets.
  • a preferred core sheet consists of two sheets of 50.2% resin content 2113 FR-4, which are laminated together under laminating conditions as recommended by the manufacturer to cure them. Once bonded and cured, these two sheets form a core dielectric layer about 7.0 mils thick.
  • the core is plated with one-ounce copper on both sides.
  • the copper on one side is patterned using an etch-compensated process to produce one of the desired layers of high-speed differential pairs; the copper on the other side is patterned using a similar process to produce the adjacent digital ground plane.
  • four differently patterned copper-plated cores form the four signal layers that will be assembled in the finished product.
  • the patterned cores are processed through an oxide treatment process that roughens the outer surfaces of the copper plating, as well as cleans them, to enhance copper-to-b-stage adhesion during the lamination cycles.
  • the parameters of this process are controlled to produce a copper surface roughness similar to that found at the plating-to-core-dielectric boundary. It is believed that adjusting the top-surface and bottom-surface trace roughness to be approximately equal prevents additional mode group separation, as the current traveling along the top and bottom of the traces will incur similar delays due to surface roughness.
  • each power core is plated with two-ounce copper on both sides.
  • a digital ground plane is patterned on one side and one of the power return planes is patterned on the opposite side.
  • the “A” power supply plane is patterned on one side and the “B” power supply plane is patterned on the opposite side.
  • the backplane panel is formed by stacking and aligning the copper-patterned cores from the different signal layers with cores for the power layers, in the order depicted in FIG. 7 .
  • the traces of each core signaling layer face a ground plane layer on an adjacent core.
  • a three-sheet stack of FR-4 b-stage glass is interposed between the signaling layer and the adjacent ground plane layer.
  • the outer two sheets are 65% resin content 1080 glass, and the inner sheet is 75% resin content 106 glass.
  • two sheets of 65% resin content 1080 FR-4 glass are used for the remaining core-to-core interfaces.
  • the material stack is placed in a booking press.
  • the entire stack is booked under laminating conditions as recommended by the manufacturer.
  • the thru-holes and vias are drilled in the backplane, and the entire assembly is plated with one-ounce copper.
  • the pads are then patterned, and a protective mask is added to complete the board. Connectors are then press-fit to the appropriate locations of the board to complete the backplane assembly.
  • each signaling layer shares a core with a ground plane layer that uses a great deal of the copper originally plated on the core. Because of this disparity in copper coverage, it has been found that the patterned cores tend to curl, making them difficult to work with. Further, it has been found that during the booking process, the signaling traces tended to migrate slightly towards the edges of the board, resulting in misalignment in the final panel.
  • thieving in the signaling layer masks.
  • thieving consists of a pattern of unconnected copper mesas in areas of the board that are trace-free and via-free.
  • a thieving-free buffer area generally about 200 mils wide, is maintained between thieved areas and signal traces. Thieving also helps in maintaining a consistent dielectric thickness across the board, which provides a benefit of better impedance uniformity.

Abstract

A high-speed router backplane is disclosed. The router backplane uses differential signal pairs on multiple signal layers, each sandwiched between a pair of digital ground layers. To reduce routing complexity, at least some of the differential signal pairs route through a via pair, somewhere along their path, to a different signal layer. Specific via designs reduce differential signal distortion due to the via pair, allowing the backplane to operate reliably at differential signal rates in excess of 3 Gigabits per second. In particular, each via passes through nonfunctional conductive pads on selected digital ground plane layers, the pads separated from the remainder of its ground plane layer by a clearance, thereby modifying the impedance of the via and reducing reflections from the stubs created by the via.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to and is a divisional of co-owned, co-pending U.S. patent application Ser. No. 10/454,735, filed Jun. 3, 2003, which is incorporated herein by reference in their entirety.
  • BACKGROUND
  • 1. Field of the Invention
  • This invention relates generally to backplanes, and more specifically to backplane wiring systems for highly interconnected, high-speed modular digital communications systems such as routers and switches.
  • 2. Description of Related Art
  • A backplane generally comprises a printed circuit board having a number of card connection slots or bays. Each slot or bay comprises, e.g., one or more modular signal connectors or card edge connectors, mounted on the backplane. A removable circuit board or “card” can be plugged into the connector(s) of each slot. Each removable circuit board contains drivers and receivers necessary for communication of signals across the backplane with corresponding drivers and receivers on other removable circuit boards.
  • One or more layers of conductive traces are formed on and/or in the backplane. The traces connect to individual signal connection points at the various slots to form data lines and control lines.
  • In U.S. patent application Ser. No. 10/068,622 (the '622 application), entitled “Passive Transmission Line Equalization Using Circuit Board Through-Holes”, filed Feb. 5, 2002, and incorporated herein by reference, the inventor of the present application describes a high-speed router backplane design. This design is applicable to extremely high signaling speeds (it has been tested up to 10 Gbps (Gigabit-per-second) signaling rates), large panel sizes, and high overall throughputs. Many of the features of the embodiments described herein have been incorporated from this prior disclosure.
  • SUMMARY OF THE INVENTION
  • The preferred embodiments described in the '622 application incorporate a number of unconventional design features, such as a high layer count (and large overall thickness), thick power planes, and an exotic dielectric material. While these backplanes are capable of throughputs measurable in Terabits/second and high-wattage, low-noise power distribution, the features used to obtain this extreme performance tend to drive up cost.
  • In some applications, the router described in the prior application uses only a fraction of the available backplane card slots and massive bandwidth. It has now been recognized that a need exists for a smaller, simpler, and more economic backplane that retains most of the desirable qualities of the full-feature backplane. Consequently, some of the embodiments described herein seek to support the same line, switch fabric, and RPM card types as described for the full-feature backplane, but in a backplane (and router) form factor with significantly decreased complexity.
  • In one embodiment, the maximum number of line cards supported has been reduced from fourteen to seven, and the maximum signaling speed has been reduced to 3.125 Gbps. This allows for a different layout with shorter longest-trace lengths, smaller differential pairs, thinner power planes, and a much thinner board with significantly fewer signal layers (four vs. fourteen layers for the larger board). It has also been discovered that, at least for 3.125 Gbps operation, this embodiment can be fabricated entirely using FR4 insulating material instead of more exotic materials such as N6000.
  • Even with the reduction in trace count due to supporting half as many line cards, this embodiment would be considerably thicker were it not for one other significant difference from the prior design—it incorporates layer-swapping vias. It has been found that the additional signal degradation created by passing signals thru vias can be largely compensated for by the use of nonfunctional pads to alter the impedance of the vias.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The invention may be best understood by reading the disclosure with reference to the drawing, wherein:
  • FIG. 1 contains a block diagram of a high-speed router;
  • FIG. 2 illustrates one possible path for traffic entering a router at one line card and exiting the router at another line card;
  • FIG. 3 shows the external layout for a router backplane circuit board according to an embodiment described in the '622 application;
  • FIG. 4 shows the complete material stack in cross-section for the router backplane shown in FIG. 3;
  • FIG. 5 illustrates a signal thru-hole and a ground hole in cross-section for the router backplane shown in FIG. 3;
  • FIG. 6 shows the external layout for a router backplane circuit board according to an embodiment of the present invention;
  • FIG. 7 shows the complete material stack in cross-section for the embodiment shown in FIG. 6;
  • FIG. 8 shows a signal thru-hole and layer-swapping via in cross-section for the embodiment shown in FIG. 6; and
  • FIG. 9 shows an exemplary cluster of layer-swapped differential pairs superimposed on one power plane layer.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Several terms have been assigned particular meanings within the context of this disclosure. As used herein, high speed signaling refers to signaling on a differential signal pair at a data rate greater than about 2.5 Gbps. A high-speed signaling layer or high-speed differential trace plane contains high-speed differential signal trace pairs, but may also contain lower speed and/or single-ended traces. A core dielectric layer is one that is cured and plated prior to assembly of a circuit board. A b-stage dielectric layer is one that is cured during assembly of cores into the circuit board. Differential signaling (or balanced signaling) is a mode of signal transmission, using two conductors, in which each conductor carries a signal of equal magnitude, but opposite polarity. Single-ended signaling (or unbalanced signaling) is a mode of signal transmission where one conductor carries a signal with respect to a common ground. The impedance of a differential trace is more differential than single-ended if the impedance between that trace and its differentially paired trace is less than the impedance between that trace and ground.
  • Overall Router Overview
  • An appreciation for the present invention can be gained by first understanding the backplane, router, and backplane fabrication embodiments as disclosed in the '622 application. The router embodiments disclosed in the '622 application, like those disclosed in the present application, use an overall router architecture as illustrated in FIG. 1. FIG. 1 shows a high-level block diagram for a router 20. Line cards 30, 40, 50, and 60 provide physical ports to the device. For instance, line cards 30 and 40 can each provide up to 24 Gigabit Ethernet ports 22 into router 20. Line card 50 provides two 10-Gigabit Ethernet ports 52, and line card 60 provides an OC-192 POS (Packet-Over-Sonet) port 62. Although four line cards are shown, many backplanes provide slots to accommodate many more cards, e.g., up to fourteen line cards in one '622 application embodiment (illustrated in FIG. 3) and up to seven line cards in one embodiment described for the present invention. The user can configure device 20 to accommodate different traffic capacities, traffic models, and physical port mixes by the appropriate selection of numbers and types of line cards.
  • Switching fabric 70 switches each routed data packet from that packet's ingress port/line card to that packet's egress port/line card. Switching fabric 70 connects to each line card through two full duplex switching fabric port connections (see, e.g., port connections 44, 46 to line card 40). Switching fabric 70 can be reconfigured rapidly on an epoch-by-epoch basis (an epoch is a defined time slice). For instance, at one epoch, fabric 70 may be switching packets from ingress port 44 to egress port 54 and from ingress port 46 to egress port 66, and at the next epoch, fabric 70 could be switching packets from ingress port 44 to egress port 64. At any given epoch, ingress ports and egress ports are paired to utilize as many switching ports as possible without unduly delaying a particular set of packets.
  • In the backplane layout of FIG. 3, the switching fabric functionality is distributed among nine identical switch fabric cards that connect to slots SF0 to SF8. Eight switch fabric cards are ganged to actively switch packet data in parallel (the ninth provides redundancy). In this configuration, a full-duplex switching fabric “port” actually comprises 18 differential pairs connected to a line card—one transmit pair from the line card to each switch fabric card, and one receive pair from each switch fabric card to the line card.
  • Route processing module (RPM) 80 resides on an RPM card. RPM 80 has several duties. RPM 80 is responsible for overall system operation, i.e., recognizing and booting new line cards, identifying faulty line cards, packet route discovery, and sharing routing table information with the line cards. RPM 80 also provides a user interface (not shown) to allow a system operator to configure the system and view system parameters. For each of these functions, RPM 80 generally communicates with the line cards over control bus 90. As compared to the switching fabric ports, the control bus can be a relatively low-speed channel. Another duty of RPM 80 is scheduling switching fabric 70. In a preferred implementation, RPM 80 reconfigures switching fabric 70 every epoch. RPM 80 uses scheduling bus 92 to communicate to switching fabric 70—as well as to line cards 30, 40, 50, 60—the switching fabric configuration for the upcoming epochs. RPM 80 attempts to schedule as many fabric ports as possible during each epoch, and to ensure that data is handled promptly and fairly. As compared to the switching fabric ports, the scheduling bus can be a relatively low-speed channel. RPM 80 also maintains its own switching fabric port connection 82, allowing it to receive and transmit packets external to the router using any of the line card physical ports. In the backplane design of FIG. 3, provision is also made for a second RPM card connected to router 20 to provide failover capability.
  • FIG. 2 shows an exemplary data path taken by part of a packet as it traverses router 20. FIG. 2 depicts three cards that would be inserted in a typical system—an ingress line card 30, an egress line card 50, and a switch fabric card 70 a. Note that a fully functional system would usually contain at least seven additional switch fabric cards and at least one functioning RPM card, but these have been omitted from FIG. 2 for clarity.
  • Cards 30, 50, and 70 a are shown connected to a backplane 100 using board connectors and sockets, of which the numbered connectors 35, 55, 75 and numbered sockets 37, 57, 77 are typical. The board connectors are press-fit onto their respective cards, and the matching sockets are press-fit onto the backplane. A card then can be connected to the backplane by mating the connectors with the sockets at a desired card slot. Other connectors (such as connector 39) located at each slot perform functions such as supplying power to a card. The number of integrated circuits and division of circuitry functions on a card can be varied in many ways. In FIG. 2, line card circuitry is illustrated in one possible configuration: an ingress circuit (31 and 51) for processing packets received at the line card, an egress circuit (32 and 52) for processing packets to be transmitted by the line card, and a serdes (serializer/deserializers 33 and 53) for passing packets between the ingress/egress circuits and the switch fabric cards. Switch fabric card circuitry is illustrated in one possible configuration also: a switch 71 in communication with a serdes 73 to pass packet data between switch 71 and the line cards. One possible data path through router 20 is shown in FIG. 2. An incoming packet PacketIn is received at a port on line card 30. Ingress circuit 31 processes the packet, determines that the appropriate router egress port is on line card 50, and queues the packet in a queue corresponding to line card 50. At an appropriate epoch, one data path of switch 71 is configured (along with the corresponding switches on the other switch fabric cards, not shown) to switch data from line card 30 to line card 50. During that epoch, serdes 33 receives the exemplary packet's data from the queue, serializes it, and transmits a portion of that data to each switch fabric card. Serdes 33 transmits the portion of that data bound for switching fabric card 70 a over a physical path comprising connector 35, socket 37, differential pair 34 a in backplane 100, socket 77, and connector 75. Serdes 73 receives that data, de-serializes it, and passes it to switch 71. Switch 71 switches the data to an appropriate channel for line card 50, and then passes the data back to serdes 73. Serdes 73 reserializes and transmits the data over a physical path comprising connector 75, socket 77, differential pair 56 a in backplane 100, socket 55, and connector 57. Serdes 53 combines the serial data received from the switch fabric cards and passes the de-serialized data to egress circuit 52. Egress circuit 52 performs additional packet processing, and queues the packet for transmission out the appropriate egress port as PacketOut.
  • Backplane Embodiments from the '622 Application
  • FIG. 3 shows a detailed backplane-plating layout for a router 20 and backplane 100 as described in FIGS. 1 and 2. A top panel region of backplane 100 has connector regions (“slots”) for sixteen cards. The outboard seven slots on each end are each configured to accept a line card (slots LC0 to LC6 and LC7 to LC13). The middlemost two slots are each configured to accept a route-processing module (slots RPM0 and RPM1). Each slot has three upper connector regions (e.g., regions JL4U0, JL4U1, and JL4U2 for slot LC4) used to distribute power and ground signals to a card. Below these, each line card slot has three high-speed connector regions (e.g., regions JLC4A, JLC4B, and JLC4C for slot LC4). The RPM slots serve more card connections than the line card slots, and therefore use a larger high-speed connector region. In one embodiment, the high-speed connector regions are laid out to accept HS3 press-fit sockets, available from Tyco Electronics Corporation (formerly AMP Incorporated).
  • A bottom panel region of backplane 100 contains connector regions or slots for nine cards. Each of these slots in configured to accept a switch fabric card (slots SF0 to SF8). Each slot has two lower connector regions (e.g., regions JSF8U0 and JSF8U1 for slot LC8) used to distribute power and ground signals to a switch fabric card. Above these, each switch fabric card slot has three high-speed connector regions (e.g., regions JSF8A, JSF8B, and JSF8C for slot SF8).
  • The bottom panel region also contains connector regions for connecting power and ground to the backplane. Two 48-volt power distribution layers are embedded in backplane 100, an “A” power distribution layer and a “B” power distribution layer. At the lower left of backplane 100, two large multi-thru-hole regions 48VA and 48VA RTN allow for connection of “A” power supply and return leads to one power supply, and a third large region CGND allows for connection of a common ground. Similar connections for a “B” power distribution layer to a second power supply exist at the lower right of backplane 100.
  • With reference now to FIG. 4, the material “stack” used to create backplane 100 in one embodiment is illustrated in cross-section. The material stack of FIG. 4 has 34 conductive layers L01 to L34 separated by appropriate insulating layers. For each conductive layer, FIG. 4 labels that layer with a layer thickness in mils and an identifier for the layer. Layers labeled “GND” are digital ground plane layers. Layers labeled “HSn” are the high-speed signaling layers, where n represents the layer number. Layers labeled “Signal xn” and “Signal yn” are the low-speed signaling layers. The two “A 48V” layers are the supply (“dc”) and return (“rtn”) for one power supply, and the two “B 48V” layers are the supply and return for the other power supply. For each insulating layer, the layer is accompanied by a description of whether the layer is a core or a b-stage layer, which lamination stage is applicable for a b-stage layer (unmarked b-stage layers are cured in lamination cycle 2), and the final thickness of the layer in mils. To achieve high signaling speeds, the dielectric layers use a dielectric with significantly lower loss at multi-Gbps signaling rates than conventional FR4 dielectric systems. One such material is a thermosetting allylated polyphenylene ether (APPE, e.g., the “N6000-21” product family line available from Park/Nelco).
  • The arrangement of the conductive layers also enhances signaling speed and helps control EMI (electromagnetic interference). Each high-speed layer (with its differential signaling traces) is formed approximately equally spaced from and between two digital ground planes, e.g., high-speed layer HS1 is formed on layer L03, between ground planes at L02 and L04. Similarly, low-speed signaling layers L13 and L14 are isolated from the remaining stack by two digital grounds (L12 and L15), low-speed signaling layers L21 and L22 are isolated by two digital grounds (L20 and L23), and the four power distribution layers L15 to L19 are isolated from the remaining stack by two digital grounds (L15 and L20) at the center of the material stack. Further, the two power supply planes are placed between the two power return planes to provide yet one more layer of isolation. The result is a material stack that provides clean power distribution and good isolation for the high-speed signals.
  • One additional observation is that in order to provide these capabilities, the complete material stack is relatively thick compared to prior art boards, i.e., approximately 300 mils including 34 conductive layers.
  • FIG. 5 illustrates, in cross-section, a backplane signaling thru-hole 170 and a ground thru-hole 180 in an embodiment of the '622 application backplane. In addition to shielding and trace impedance control, the digital ground layers are used for stub impedance control at the thru-holes. Several ground plane layers (L08, L15, L20, and L27) are fitted with nonfunctional pads (e.g., pad 172) at the location of signaling thru-hole 170. These pads adjust the impedance of the stubs formed by the thru-holes, reducing reflections and thereby improving the quality of the signals passing through the backplane.
  • In the '622 application, several approaches are given for fabricating a backplane with such a high layer count and thick four-ounce copper embedded power planes. One approach uses FR4 dielectric sheets for the low-speed and DC layers (between digital ground layer L12 and digital ground layer L23) and a high-speed dielectric such as N6000 for the outer layers. Another approach uses, e.g., N6000 for all dielectric layers, but creates two sub-assemblies, comprising layers L16 and L17 and layers L18 and L19 with surrounding glass sheets. The two sub-assemblies are then integrated with the remaining layers during a final curing step.
  • Backplane Embodiments for the Present Invention
  • FIG. 6 illustrates the general layout for one backplane 200 according to an embodiment of the present invention. Backplane 200 accepts the same line, switch fabric, and RPM cards as backplane 100.
  • Nine switch fabric slots, SF0 through SF8, are arranged in three rows and three columns near the center of backplane 200. Although other arrangements are possible, this arrangement is attractive for several reasons. First, it reduces longest differential pair trace lengths over the design used in backplane 100. Second, it allows a reduction in the number of differential pairs that must be routed through the connector blocks of the switch fabric cards, since in general those line cards that connect to the left side of the switch fabric card connector regions are positioned to the left of all switch fabric cards, and vice versa for the line cards that connect to the right side of the switch fabric card connector regions. Third, since in this embodiment the switch fabric cards are roughly one-third the height of the line cards, this arrangement efficiently utilizes the full height required for the line cards. Finally, the stacked arrangement allows for efficient cooling airflow to all switch fabric cards.
  • Four line card slots are positioned to the left of the switch fabric slots on backplane 200, and three line card slots are positioned to the right of the switch fabric slots. It is noted that the line card slots are not numbered consecutively, but according to the switch fabric port that serves those cards. Since the switch fabric card slots are pin-compatible with the card slots of FIG. 3, which supports twice as many line cards, not all switch fabric ports are needed in this embodiment. Those line card slots to the left of the switch fabric card slots are numbered LC0, LC2, LC3, and LC5. Thus switch fabric ports LC1 and LC4 are skipped, making more routing room available in the congested areas around the switch fabric card slots. A similar consideration results in the selection of line card slots LC7, LC9, and LC12 to populate the area to the right of the switch fabric card slots.
  • Two RPM card slots, RPM0 and RPM1, are positioned to the right of line card slots LC7, LC9, and LC12. These slots are kept adjacent and to one side since the RPMs communicate with each other and with the other cards at lower rates, but only use one pair of high-speed ports each.
  • Four power connectors PS0 to PS3 are arranged along the far right edge of backplane 200. Two power connectors connect an A power supply to two A power planes, and the other two power connectors connect a B power supply to two B power planes. This arrangement allows router power supplies to be mounted immediately to the right of the backplane, with short connections to the backplane in relative isolation from the EMI generated by the high-speed circuitry. The power connectors are placed on backplane 200 in an area largely devoid of signal traces and isolated from the high-speed cards, further improving noise isolation for the power distribution system.
  • Finally, a fan tray connector FT is arranged near the top of backplane 200 to provide power and control signals to cooling fans for the router. Like backplane 100, backplane 200 can employ a slot (not shown) on the power planes to help isolate electrical noise generated by the fan trays from the remainder of the power distribution paths. The location of connector FT—far away from other power connectors—further improves isolation of the cooling fan system and electronic system components.
  • FIG. 7 illustrates a cross-section for the material stack used to fabricate backplane 200. Compared to the material stack of FIG. 4, there are many similarities, but some significant differences. The most apparent difference is quite possibly the number of layers: FIG. 4 uses ten high-speed signaling layers, four low-speed signaling layers, and fourteen digital ground planes, while FIG. 7 uses only four high-speed signaling layers (which include all low-speed signaling as well) and six digital ground planes. Also apparent is the use of 2-ounce copper for the power planes, as opposed to the 4-ounce copper used in FIG. 4. The combination of a smaller number of layers, much thinner power planes, and the use of FR4 throughout allows for the use of standard lamination steps in fabricating backplane 200.
  • Backplane 200 supports the same number of switch fabric and RPM cards, and half as many line cards as backplane 100, using 70% less signaling layers. To achieve this, layer-swapping vias and a smaller differential pair configuration are used.
  • In backplane 100, no layer-swapping vias were used. In backplane 200, layer-swapping vias are used to reduce the number of layers required to fabricate the backplane. Even at 3.125 Gbps, however, a via can significantly distort the eye pattern transmitted by a differential pair. Thus in the present invention, vias are designed so as to reduce reflections along the signal path, as compared to standard vias, as a high-speed signal passes through them. FIG. 8 illustrates a backplane cross-section 210, taken through an exemplary thru-hole 220 and a via 230 connected to that thru-hole. Thru-hole 220 has a finished (i.e., plated) opening with a 24-mil diameter. Four nonfunctional conductive pads 222, 224, 226, and 228, located respectively at digital ground layers L02, L04, L13, and L15, are aligned with thru-hole 220. Thus when thru-hole 220 is drilled through the four nonfunctional conductive pads and then plated, the nonfunctional pads are electrically connected to thru-hole 220.
  • Nonfunctional conductive pads 222, 224, 226, 228 are each separated from their respective ground plane layers by a clearance—in this embodiment, a 10-mil clearance is selected. The nonfunctional pad diameter, clearance, and selection of which layers will include nonfunctional pads all affect the impedance characteristics of the thru-hole. The minimum pad diameter, however, may be constrained by drill accuracy. In this example, pads 222, 224, 226, and 228 have a pad diameter of 40 mils. Note that the ground planes without non-conductive pads (L06 and L11) are setback from thru-hole 220 the same distance as the other ground planes (a 60-mil opening, with roughly a 17-mil clearance), such that their capacitive coupling to thru-hole 220 is substantially less than ground planes L02, L04, L13, and L15.
  • Cross-section 210 shows two exemplary signal traces, trace 240 on signal layer HS1 and trace 250 on signal layer HS3. Trace 240 connects to thru-hole 220. Trace 250 connects to another thru-hole (not shown).
  • Trace 240 and trace 250 transfer a signal from thru-hole 220 to the off-figure thru-hole because they are joined by via 230. In the '622 application, vias were avoided due to the substantial signal degradation they caused. But in the present application, with a much thinner material stack, it has been found that a small-diameter via with nonfunctional pads on selected ground planes can transfer a signal from one high-speed signal layer to another with little degradation.
  • Via 230 has a finished drill diameter of approximately 13.5 mils, and is drilled through four nonfunctional pads 232, 234, 236, and 238. The nonfunctional pads are located respectively on ground plane layers L02, L04, L13, and L15. Although these are the same layers containing nonfunctional pads in thru-hole 220, there is no requirement that the pad layers match up between thru-hole and via, or even that the thru-hole have nonfunctional pads at all. The beneficial effects of nonfunctional pads in vias can be enjoyed regardless of thru-hole configuration.
  • Nonfunctional pads 232, 234, 236, and 238 have a 26-mil diameter, such that each pad protrudes from its via a shorter distance (approximately five mils) than, e.g., pad 222 protrudes from its thru-hole (approximately seven mils). Generally, the smaller the hole diameter, the smaller the impedance effects that require compensation. The clearance from each nonfunctional pad to the adjacent ground plane is approximately 10 mils in this example. Note that the power layers (L07, L08, L09, and L10) are set back from both thru-hole 220 and via 230 significantly further than the digital ground planes and signal traces (e.g., trace 242). This is preferable as it decreases EMI between each power plane and the vias and thru-holes. In this embodiment, 135-mil clearances are used between power planes and vias, and 150-mil clearances are used between power planes and thru-holes. More generally, a power-plane clearance at least three times the digital ground plane clearance can be used.
  • Differential Pair Configuration
  • High-speed signaling across backplane 200 preferably utilizes differential trace pairs. One aspect of the present invention therefore involves the routing layout of differential trace pairs within the high-speed signaling layers and thru vias such as via 230.
  • With the approximately 7-mil spacing between each signaling trace and its adjacent digital ground planes, certain trace pitches are preferable as they allow a desired relationship (approximately equal, or marginally more differential than single-ended) between single-ended and differential trace impedance. For instance, one preferred geometry (shown in FIG. 9) uses 6-mil traces on 14-mil spacing, and achieves a differential impedance of about 98 ohms.
  • FIG. 9 shows a partial routing layout 300 for a segment of backplane 200. This particular segment contains vias for ten pairs of layer-swapped differential pairs. In layout 300, all ten differential pairs are swapped from HS1 to either HS3 or HS4. Power plane configuration in this backplane segment is shown as well to illustrate the significantly larger clearance (e.g., clearance 330) afforded the vias on a power plane layer.
  • This section is instructional as it illustrates several arrangements used to run differential pairs into and out of a pair of differential vias. A 14-mil trace spacing cannot be maintained at the vias, as the signal pads and nonfunctional pads each have a 26-mil diameter. Accordingly, a somewhat larger spacing must exist at the vias. As shown for vias 302 and 304, the via pair is separated such that their individual clearances 314 and 316 just meet, i.e., a 46-mil center-to-center via spacing in this example.
  • Several differential pair via approach paths are shown as well. Differential pair 310, 312 approaches vias 302, 304 such that trace 310 runs substantially straight in to via 302. Trace 312 parallels trace 310 to a point at which it must veer off at a 45-degree angle to run substantially straight in to via 304. Differential pair 340, 342 illustrates a rotated via pair arrangement that allows both traces to run straight in to their respective vias. And differential pair 350, 352 illustrates yet another arrangement wherein the centerline of the pair runs substantially straight at the midpoint between two vias, with each trace turning 45 degrees towards its respective via, at an appropriate point, to run into that via.
  • Board Fabrication
  • Referring back to FIG. 7, a process for fabricating an embodiment of the invention will now be described. Prior to assembly of the backplane, a first step in the fabrication of the backplane is the makeup of plated and patterned core sheets. For a high-speed layer, a preferred core sheet consists of two sheets of 50.2% resin content 2113 FR-4, which are laminated together under laminating conditions as recommended by the manufacturer to cure them. Once bonded and cured, these two sheets form a core dielectric layer about 7.0 mils thick.
  • The core is plated with one-ounce copper on both sides. The copper on one side is patterned using an etch-compensated process to produce one of the desired layers of high-speed differential pairs; the copper on the other side is patterned using a similar process to produce the adjacent digital ground plane. In one preferred embodiment, four differently patterned copper-plated cores form the four signal layers that will be assembled in the finished product. After patterning, the patterned cores are processed through an oxide treatment process that roughens the outer surfaces of the copper plating, as well as cleans them, to enhance copper-to-b-stage adhesion during the lamination cycles. Preferably, the parameters of this process are controlled to produce a copper surface roughness similar to that found at the plating-to-core-dielectric boundary. It is believed that adjusting the top-surface and bottom-surface trace roughness to be approximately equal prevents additional mode group separation, as the current traveling along the top and bottom of the traces will incur similar delays due to surface roughness.
  • The three power cores are prepared in similar fashion. The primary difference is that each power core is plated with two-ounce copper on both sides. For two of the cores, a digital ground plane is patterned on one side and one of the power return planes is patterned on the opposite side. For the remaining core, the “A” power supply plane is patterned on one side and the “B” power supply plane is patterned on the opposite side.
  • The backplane panel is formed by stacking and aligning the copper-patterned cores from the different signal layers with cores for the power layers, in the order depicted in FIG. 7. As shown in FIG. 7, the traces of each core signaling layer face a ground plane layer on an adjacent core. A three-sheet stack of FR-4 b-stage glass is interposed between the signaling layer and the adjacent ground plane layer. The outer two sheets are 65% resin content 1080 glass, and the inner sheet is 75% resin content 106 glass. For the remaining core-to-core interfaces, two sheets of 65% resin content 1080 FR-4 glass are used.
  • Once the copper-patterned cores and the b-stage sheets are stacked and aligned, the material stack is placed in a booking press. The entire stack is booked under laminating conditions as recommended by the manufacturer.
  • After the material stack is cooled, the thru-holes and vias are drilled in the backplane, and the entire assembly is plated with one-ounce copper. The pads are then patterned, and a protective mask is added to complete the board. Connectors are then press-fit to the appropriate locations of the board to complete the backplane assembly.
  • Very little of the plated copper on each signaling layer is actually needed to form the signaling traces. On the other hand, each of these layers shares a core with a ground plane layer that uses a great deal of the copper originally plated on the core. Because of this disparity in copper coverage, it has been found that the patterned cores tend to curl, making them difficult to work with. Further, it has been found that during the booking process, the signaling traces tended to migrate slightly towards the edges of the board, resulting in misalignment in the final panel.
  • To combat these problems, the preferred embodiments use “thieving” in the signaling layer masks. In the present disclosure, thieving consists of a pattern of unconnected copper mesas in areas of the board that are trace-free and via-free. A thieving-free buffer area, generally about 200 mils wide, is maintained between thieved areas and signal traces. Thieving also helps in maintaining a consistent dielectric thickness across the board, which provides a benefit of better impedance uniformity.
  • One of ordinary skill in the art will recognize that the concepts taught herein can be tailored to a particular application in many other advantageous ways. Although a backplane embodiment has been disclosed, the concepts taught herein apply equally to other interconnection arrangements such as midplanes.
  • Although the specification may refer to “an”, “one”, “another”, or “some” embodiment(s) in several locations, this does not necessarily mean that each such reference is to the same embodiment(s), or that the feature only applies to a single embodiment.

Claims (18)

1. An electrical router backplane comprising:
a first plurality of card slots, each capable of mating with the backplane electrical connector sets of a packet input/output card to couple electrical signals from that packet input/output card to a corresponding set of signaling thru-holes in the backplane;
a second plurality of card slots comprising at least three card slots, each capable of mating with the backplane electrical connector sets of a switch fabric card to couple electrical signals from that switch fabric card to a corresponding set of signaling thru-holes in the backplane; and
multiple embedded high-speed signaling layers, each sandwiched between corresponding upper and lower dielectric material layers separating that signaling layer respectively from upper and lower ground planes, each high-speed signaling layer comprising differential trace pairs connected to the signaling thru-holes, at least some trace pairs forming point-to-point connections between a pair of the signaling thru-holes and a pair of layer-swapping vias that swap the differential pair to another high-speed signaling layer, such that, collectively, the high-speed signaling layers contain at least two differential trace paths to connect each first card slot with each second card slot;
wherein each layer-swapping via passes through nonfunctional conductive pads on selected ground planes, each nonfunctional pad isolated from the remainder of its corresponding ground plane layer by a clearance.
2. The backplane of claim 1, the first plurality of card slots divided into two sub-pluralities, the second plurality of card slots located between the two sub-pluralities of first card slots.
3. The backplane of claim 2, each card slot arranged vertically, the second plurality of card slots arranged in multiple sub-pluralities, the sub-pluralities comprising the second plurality of card slots stacked vertically on the backplane.
4. The backplane of claim 3, the second plurality comprising nine card slots, arranged in three rows of three card slots each.
5. The backplane of claim 1, each layer-swapping via having a finished diameter of about 13.5 mils and four nonfunctional pads, one such pad located on each of the four outermost ground planes, each pad having a diameter of about 26 mils and a clearance of about 10 mils to the surrounding ground plane.
6. The backplane of claim 1, each differential trace pair configured with an individual trace width of approximately 6 mils and a trace height, differential trace spacing, and trace-to-ground-plane spacing related to trace width such that the impedance of a given trace is marginally more differential than single-ended.
7. The router backplane of claim 1, wherein the individual trace width is approximately 6 mils, the differential trace height is approximately 1.4 mils, the differential trace spacing is approximately 14 mils, and the trace-to-ground-plane spacing is approximately 7 to 8 mils.
8. The router backplane of claim 1, further comprising power distribution planes embedded between at least two of the ground plane layers, each card slot coupled to the power distribution planes at power thru-holes corresponding to power connectors on the cards, the power thru-holes located inboard on the backplane for each packet input/output card slot.
9. The router backplane of claim 1, further comprising a card slot for a route processing module, that card slot having substantially more signaling thru-holes than either a packet input/output card slot or a switch fabric card slot, the route processing module card slot located outboard of the packet input/output and switch fabric card slots.
10. A method of routing a differential signal path on a backplane, the method comprising:
connecting one end of the signal path to a first differential pair located on one of a plurality of high-speed signal layers, each such high-speed signal layer interposed between adjacent ground plane layers;
routing the signal path along the first differential pair to a pair of conductive vias, each conductive via passing through nonfunctional conductive pads on selected ones of the ground plane layers, each nonfunctional pad isolated from the remainder of its corresponding ground plane layer by a clearance;
routing the signal path through the conductive vias to a second differential pair located on a different one of the high-speed signal layers; and
connecting the other end of the signal path from the second differential pair.
11. The method of claim 10, the nonfunctional pad layer location, pad size, and clearance operating to reduce reflections along the signal path as a high-speed signal passes through the vias.
12. The method of claim 10, wherein the ends of the signal path further comprises first and second thru-hole pairs connected respectively to the first and second differential pairs, each thru-hole passing through nonfunctional conductive pads on selected ones of the ground plane layers, each nonfunctional pad isolated from the remainder of its corresponding ground plane layer by a clearance.
13. The method of claim 12, the thru-hole and via nonfunctional pad layer locations, pad sizes, and clearances operating to reduce reflections along the signal path as a high-speed signal passes through the vias.
14. A method of routing backplane signals to a switching fabric card connector on a backplane, wherein the switching fabric card connector accepts a switching fabric card having a block of adjacent signal connectors for N switching fabric signal channels, the method comprising:
when the backplane utilizes M switching fabric signal channels, M<N, selecting M switching fabric signal channels from the N available channels such that the switching fabric signal connections to the card connector are substantially distributed along the card connector, leaving some intermediate switching fabric signal connectors unconnected; and
routing at least some signaling traces through the card connector near the intermediate switching fabric signal connectors that remain unconnected.
15. The method of claim 14, wherein the card connector comprises an elongated region with signal connectors for some switching fabric signal channels arranged along one long side of the elongated region and signal connectors for other switching fabric signal channels arranged along the other long side of the elongated region, wherein selecting M switching fabric signal channels comprises selecting channels from each long side of the elongated region that are substantially aligned with selected channels on the other long side.
16. An electrical router backplane comprising:
a first plurality of card slots, each capable of mating with the backplane electrical connector sets of a packet input/output card to couple electrical signals from that packet input/output card to a corresponding set of signaling thru-holes in the backplane;
a second plurality of card slots comprising at least three card slots, each capable of mating with the backplane electrical connector sets of a switch fabric card to couple electrical signals from that switch fabric card to a corresponding set of signaling thru-holes in the backplane, each switch fabric card slot capable of connecting to a switch fabric card capable of supporting signaling for N switch fabric-to-packet input/output card channels; and
multiple embedded signaling layers, each comprising differential trace pairs connected to a subset of the signaling thru-holes, the differential trace pairs supporting M switch fabric-to-packet input/output card channels, M<N, that connect signaling thru-holes at the packet input/output card slots to signaling thru-holes at the switch fabric card slots;
wherein the differential trace pairs supporting the M switching fabric signal channels use a selection of the N available switch fabric channels that substantially distributes the differential trace connections along each switch fabric card slot, leaving some intermediate switching fabric card slot thru-holes unconnected.
17. The backplane of claim 16, wherein each switch fabric card slot comprises an elongated region with signaling thru-holes for some switch fabric signal channels arranged along one long side of the elongated region and signal connectors for other switching fabric signal channels arranged along the other long side of the elongated region, wherein the M switching fabric signal channels are arranged such that differential trace connections from each long side of the elongated region are substantially aligned with differential trace connections on the other long side.
18. The backplane of claim 17, wherein the first plurality of card slots is divided into two sub-pluralities, the second plurality of card slots located between the two sub-pluralities of first card slots with each long side of elongated-region signaling thru-holes facing one of the sub-pluralities of first card slots, those first card slots using switch fabric card differential trace connections on one long side of each elongated region arranged in the sub-plurality of first card slots facing that long side of each elongated region.
US12/011,298 2003-06-03 2008-01-25 High-speed router with backplane using tuned-impedance thru-holes and vias Abandoned US20080285248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/011,298 US20080285248A1 (en) 2003-06-03 2008-01-25 High-speed router with backplane using tuned-impedance thru-holes and vias

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/454,735 US7336502B1 (en) 2003-06-03 2003-06-03 High-speed router with backplane using tuned-impedance thru-holes and vias
US12/011,298 US20080285248A1 (en) 2003-06-03 2008-01-25 High-speed router with backplane using tuned-impedance thru-holes and vias

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/454,735 Division US7336502B1 (en) 2003-06-03 2003-06-03 High-speed router with backplane using tuned-impedance thru-holes and vias

Publications (1)

Publication Number Publication Date
US20080285248A1 true US20080285248A1 (en) 2008-11-20

Family

ID=39103668

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/454,735 Active 2024-07-18 US7336502B1 (en) 2003-06-03 2003-06-03 High-speed router with backplane using tuned-impedance thru-holes and vias
US12/011,298 Abandoned US20080285248A1 (en) 2003-06-03 2008-01-25 High-speed router with backplane using tuned-impedance thru-holes and vias

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/454,735 Active 2024-07-18 US7336502B1 (en) 2003-06-03 2003-06-03 High-speed router with backplane using tuned-impedance thru-holes and vias

Country Status (1)

Country Link
US (2) US7336502B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060133383A1 (en) * 2004-12-22 2006-06-22 Russell Homer Communications system with scan table identification
US20060133406A1 (en) * 2004-12-22 2006-06-22 Russell Homer Communications system with first and second scan tables
US20110170270A1 (en) * 2010-01-13 2011-07-14 Alaxala Networks Corporation Electronic device
US8625407B2 (en) * 2010-09-14 2014-01-07 Force10 Networks, Inc. Highly available virtual packet network device
US8737067B1 (en) * 2011-04-01 2014-05-27 Juniper Networks, Inc. Connectivity scheme and cooling scheme for a large rack system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905729B2 (en) * 2005-01-11 2011-03-15 Fci Board-to-board connector
TWI299646B (en) * 2006-06-06 2008-08-01 Via Tech Inc A circuit board and manufacturing method thereof
US7450396B2 (en) * 2006-09-28 2008-11-11 Intel Corporation Skew compensation by changing ground parasitic for traces
DE102006050882A1 (en) * 2006-10-27 2008-05-08 Qimonda Ag Circuit board, in particular for a memory module, memory module, memory module system, and method for producing a circuit board, in particular for a memory module
US8009438B2 (en) * 2007-03-29 2011-08-30 Hewlett-Packard Development Company, L.P. Server infrastructure having independent backplanes to distribute power and to route signals
FR2950219A1 (en) * 2009-09-11 2011-03-18 Thales Sa INTERCONNECTION FOR HIGH FREQUENCY PRINTED CIRCUIT
US8560296B2 (en) 2011-02-22 2013-10-15 Ricoh Production Print Solutions Printed circuit board via model design for high frequency performance
US9545003B2 (en) * 2012-12-28 2017-01-10 Fci Americas Technology Llc Connector footprints in printed circuit board (PCB)
JP2018107307A (en) * 2016-12-27 2018-07-05 富士通株式会社 Printed circuit board and electronic apparatus
CN106535472B (en) * 2017-01-12 2019-08-02 郑州云海信息技术有限公司 A kind of PCB and signal transmission system
CN106973492B (en) * 2017-03-07 2019-03-05 深南电路股份有限公司 A kind of PCB internal layer circuit interconnection architecture and its processing method
JP7134803B2 (en) * 2018-09-19 2022-09-12 株式会社東芝 Printed board
US20230262874A1 (en) * 2022-02-16 2023-08-17 Qualcomm Incorporated Power delivery network noise isolation in a computing device

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE426894B (en) * 1981-06-30 1983-02-14 Ericsson Telefon Ab L M IMPEDANCY COAXIAL TRANSFER FOR MICROVAG SIGNALS
US4694123A (en) 1982-01-13 1987-09-15 Elxsi Backplane power connector system
US4862161A (en) 1985-01-24 1989-08-29 Ant Nachrichtentechnik Gmbh Three-stage coupling arrangement
US4891616A (en) 1988-06-01 1990-01-02 Honeywell Inc. Parallel planar signal transmission system
US5010641A (en) 1989-06-30 1991-04-30 Unisys Corp. Method of making multilayer printed circuit board
US5311406A (en) 1991-10-30 1994-05-10 Honeywell Inc. Microstrip printed wiring board and a method for making same
US5800575A (en) 1992-04-06 1998-09-01 Zycon Corporation In situ method of forming a bypass capacitor element internally within a capacitive PCB
US5261153A (en) 1992-04-06 1993-11-16 Zycon Corporation In situ method for forming a capacitive PCB
US5397861A (en) 1992-10-21 1995-03-14 Mupac Corporation Electrical interconnection board
US5388099A (en) 1992-10-22 1995-02-07 Digital Equipment Corporation Backplane wiring for hub in packet data communications system
US5308926A (en) 1992-12-08 1994-05-03 Premisys Communications, Inc. Compact isolating backplane for routing electronic signals
US5548734A (en) 1993-03-26 1996-08-20 Intel Corporation Equal length symmetric computer bus topology
US5566083A (en) 1994-10-18 1996-10-15 The Research Foundation Of State University Of New York Method for analyzing voltage fluctuations in multilayered electronic packaging structures
US5623160A (en) 1995-09-14 1997-04-22 Liberkowski; Janusz B. Signal-routing or interconnect substrate, structure and apparatus
US5841074A (en) 1996-03-12 1998-11-24 International Business Machines Corporation Backplane power distribution system having impedance variations in the form of spaced voids
US5682298A (en) 1996-06-13 1997-10-28 Hewlett-Packard Company Balancing power distribution in a power supply system with redundant power sources
US5830374A (en) 1996-09-05 1998-11-03 International Business Machines Corporation Method for producing multi-layer circuit board and resulting article of manufacture
US6081430A (en) 1997-05-06 2000-06-27 La Rue; George Sterling High-speed backplane
US6015300A (en) 1997-08-28 2000-01-18 Ascend Communications, Inc. Electronic interconnection method and apparatus for minimizing propagation delays
US6014319A (en) 1998-05-21 2000-01-11 International Business Machines Corporation Multi-part concurrently maintainable electronic circuit card assembly
US6567518B1 (en) 1998-08-28 2003-05-20 Teltronics, Inc. Method of field programmable gate array configuration
JP3206561B2 (en) 1998-10-01 2001-09-10 日本電気株式会社 Multilayer wiring board
US6534872B1 (en) * 1998-10-13 2003-03-18 Sun Microsystems, Inc. Apparatus and system with increased signal trace routing options in printed wiring boards and integrated circuit packaging
JP4204150B2 (en) * 1998-10-16 2009-01-07 パナソニック株式会社 Multilayer circuit board
US6181004B1 (en) 1999-01-22 2001-01-30 Jerry D. Koontz Digital signal processing assembly and test method
US6388208B1 (en) * 1999-06-11 2002-05-14 Teradyne, Inc. Multi-connection via with electrically isolated segments
JP2001102755A (en) 1999-09-29 2001-04-13 Mitsubishi Electric Corp Multilayer wiring board
US6586682B2 (en) * 2000-02-23 2003-07-01 Kulicke & Soffa Holdings, Inc. Printed wiring board with controlled line impedance
US6693901B1 (en) 2000-04-06 2004-02-17 Lucent Technologies Inc. Backplane configuration without common switch fabric
US6388890B1 (en) * 2000-06-19 2002-05-14 Nortel Networks Limited Technique for reducing the number of layers in a multilayer circuit board
US6594153B1 (en) * 2000-06-27 2003-07-15 Intel Corporation Circuit package for electronic systems
US6751699B1 (en) 2000-07-07 2004-06-15 Systran Corporation Fibre channel mini-hub powered by and supported within a host computer and directly controlled over a bus of the host computer
US6528737B1 (en) * 2000-08-16 2003-03-04 Nortel Networks Limited Midplane configuration featuring surface contact connectors
JP3877132B2 (en) 2000-11-20 2007-02-07 富士通株式会社 Multilayer wiring board and semiconductor device
US7435912B1 (en) * 2002-05-14 2008-10-14 Teradata Us, Inc. Tailoring via impedance on a circuit board
JP2003332752A (en) * 2002-05-14 2003-11-21 Shinko Electric Ind Co Ltd Metal core substrate and its manufacturing method
US6977821B2 (en) * 2003-03-20 2005-12-20 3Com Corporation Backplane apparatus and board for use therewith

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060133383A1 (en) * 2004-12-22 2006-06-22 Russell Homer Communications system with scan table identification
US20060133406A1 (en) * 2004-12-22 2006-06-22 Russell Homer Communications system with first and second scan tables
US7590130B2 (en) * 2004-12-22 2009-09-15 Exar Corporation Communications system with first and second scan tables
US20110170270A1 (en) * 2010-01-13 2011-07-14 Alaxala Networks Corporation Electronic device
US8953337B2 (en) * 2010-01-13 2015-02-10 Alaxala Networks Corporation Communication apparatus with removable circuit boards
US8625407B2 (en) * 2010-09-14 2014-01-07 Force10 Networks, Inc. Highly available virtual packet network device
US8737067B1 (en) * 2011-04-01 2014-05-27 Juniper Networks, Inc. Connectivity scheme and cooling scheme for a large rack system
US9408331B2 (en) 2011-04-01 2016-08-02 Juniper Networks, Inc. Connectivity scheme and cooling scheme for a large rack system

Also Published As

Publication number Publication date
US7336502B1 (en) 2008-02-26

Similar Documents

Publication Publication Date Title
US20080285248A1 (en) High-speed router with backplane using tuned-impedance thru-holes and vias
US6988162B2 (en) High-speed router with single backplane distributing both power and signaling
US7615709B2 (en) Circuit board through-hole impedance tuning using clearance size variations
EP2179634B1 (en) High-speed router with backplane using multi-diameter drilled thru-holes and vias
US6812803B2 (en) Passive transmission line equalization using circuit-board thru-holes
US6822876B2 (en) High-speed electrical router backplane with noise-isolated power distribution
US7088711B2 (en) High-speed router backplane
US6528737B1 (en) Midplane configuration featuring surface contact connectors
US6805560B1 (en) Apparatus interconnecting circuit board and mezzanine card or cards
US7405947B1 (en) Backplane with power plane having a digital ground structure in signal regions
US20080025007A1 (en) Partially plated through-holes and achieving high connectivity in multilayer circuit boards using the same
US7123486B1 (en) Multiple component connector plane for a network device

Legal Events

Date Code Title Description
AS Assignment

Owner name: FORCE10 NETWORKS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOERGEN, JOEL R.;REEL/FRAME:020494/0883

Effective date: 20030520

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION