US20090024243A1 - Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process - Google Patents

Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process Download PDF

Info

Publication number
US20090024243A1
US20090024243A1 US12/217,317 US21731708A US2009024243A1 US 20090024243 A1 US20090024243 A1 US 20090024243A1 US 21731708 A US21731708 A US 21731708A US 2009024243 A1 US2009024243 A1 US 2009024243A1
Authority
US
United States
Prior art keywords
molten pool
height
laser
image
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/217,317
Inventor
Jeong-Hun Suh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSSTEK Inc
Original Assignee
INSSTEK Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSSTEK Inc filed Critical INSSTEK Inc
Priority to US12/217,317 priority Critical patent/US20090024243A1/en
Publication of US20090024243A1 publication Critical patent/US20090024243A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45164Laser refurbish with laser beam and metal powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method of real-time monitoring and controlling the height of a cladding layer using image photographing and image processing technology in laser cladding and direct metal manufacturing.
  • Laser-aided direct metal manufacturing is defined as rapid near-net shaping that can rapidly manufacture 3D products and tools necessary for the manufacture of the products with functional materials (for example, metal, alloy, ceramic or the like) on the basis of the digital data of 3D subjects stored in computers, and falls under “direct metal tooling”.
  • functional materials for example, metal, alloy, ceramic or the like
  • the digital data of 3D subjects includes 3D Computer Aided Design (CAD) data, medical Computer Tomography (CT) and Magnetic Resonance Imaging (MRI) data, and digital data measured by 3D object digitizing systems, and the tools denote trial and mass-production molds and dies necessary for the manufacture of products.
  • CAD Computer Aided Design
  • CT medical Computer Tomography
  • MRI Magnetic Resonance Imaging
  • MIM Materials Incress Manufacturing
  • a 3D object is comprised of 2D surfaces, and each of the 2D surfaces is comprised of 1D lines. Accordingly, a 3D shape can be manufactured by stacking 2D surfaces one on top of another. This technique is called MIM process. As shown in FIG. 1 , the 3D shape is manufactured through additive materials deposition for building shapes, differently from the conventional manufacturing processes in which a bulk material is cut or a molten metal is poured to a mold and solidified in the mold.
  • the 2D surfaces are physically formed through laser cladding.
  • the laser cladding is a technology of forming a cladding layer 205 on the surface of a specimen in such a way that a local molten pool 203 is formed by irradiating a laser beam 202 on the surface 201 of a specimen and, at the same time, a cladding material (for example, metal, alloy, ceramic or the like) in the form of powder is fed to the molten pool 203 from the outside.
  • a cladding material for example, metal, alloy, ceramic or the like
  • 3D functional metallic products or tools in the laser-aided direct metal manufacturing, can be rapidly shaped in such a way that 2D sectional information is calculated from 3D CAD data and cladding layers each having shape, thickness and/or height corresponding to the 2D sectional information are sequentially formed.
  • the 2D sectional information used in the process of shaping is made by slicing 3D CAD data into data of a uniform thickness and/or a uniform height or into 2D data of a variable thickness, which is utilized as shaping information.
  • a cladding layer of precise shape, height and/or thickness corresponding to the 2D sectional information can be formed through the laser cladding process.
  • a technology of controlling the height of a cladding layer is a key technology in implementation of the laser-aided direct metal manufacturing technology.
  • a cladding layer is formed by interpolation-transferring a metallic substrate (hereinafter, referred to as “a specimen”) around a fixed laser beam along x and y-axes or a laser beam around a fixed specimen.
  • a specimen a metallic substrate
  • the laser beam can be transferred together with the specimen, and a three or more-axis transfer system or robot can be utilized to increase the degree of freedom of manufacturing.
  • the shape of the cladding layer corresponding to the 2D sectional information mainly depends on a tool path calculated from the sectional information and the precision of a transfer system, and can be relatively easily materialized.
  • the height of the laser cladding layer is affected by a large number of process parameters, such as a laser power, the mode and size of a laser beam, the traverse speed of a specimen, the characteristics of cladding powder, powder feeding rate, the falling speed of powder, the overlapping factor of cladding beads, the kinds or amounts of various auxiliary gases supplied, etc.
  • environmental factors such as the variation of temperature on the surface of a specimen caused by heat accumulation, the conditions of the surface of a specimen and a laser generator, can affect the height of the cladding layer formed.
  • U.S. Pat. No. 6,122,564 discloses a feedback apparatus and method that is comprised of an optical detection device using a phototransistor and an electron circuit for the purpose of controlling the height of a cladding layer.
  • the optical detection device is positioned near a molten pool formed on the surface of a specimen by the irradiation of a laser beam and the optical axis of the optical detection device is arranged toward a target height so as to detect light (light of an infrared wavelength) irradiated from the molten pool when the molten pool reaches the target height.
  • the optical detection device is comprised of a narrow band-pass filter, a camera lens, a phototransistor or photoelectron sensor.
  • a mask having an aperture whose center passes through the optical axis is positioned in front of the phototransistor.
  • the phototransistor can detect the light.
  • the molten pool does not reach the target height, light irradiated from the molten pool is blocked by the mask, so the phototransistor cannot detect any light.
  • a cladding layer (a 5 , molten pool) reaches a target value through the light detection of the phototransistor.
  • the phototransistor experiences a voltage drop phenomenon when being exposed to light.
  • an electric circuit is constructed such that an analog voltage signal transmitted to a laser generator is controlled using an electric signal generated, and a laser power is controlled by allowing laser beam to be On or Off according to the detection of light by the phototransistor.
  • the optical detection device determines the same if the height of the molten pool is greater or less than a target value of the cladding layer. At this time, there occurs a problem that a normal laser power is generated. In particular, when at a certain position the height of the cladding layer is partially greater than the target value, the optical detection device determines that the height of the cladding layer does not reach the target value, and generates a normal laser power.
  • the cladding layer at this position is coated to be rather thicker or higher and the repeated performance of the laser cladding at this position causes the problem to be worse, thus deteriorating the precision of shaping.
  • the laser-aided direct metal manufacturing when a 3D shape is formed using 2D sectional information of a uniform thickness and/or height, there occurs no problem with the mechanical structure of the optical detection device. However, when the 3D shape is formed using 2D sectional information of a variable thickness and/or height, there occurs a problem that the optical detection device should be arranged and corrected whenever the height of the cladding layer is varied.
  • a laser power control method is a laser beam On/Off method in which the duration time of a laser pulse is controlled, so it is difficult to apply the technology to a continuous wave laser generator.
  • an object of the present invention is to provide a method and apparatus that, in laser cladding and laser-aided direct metal manufacturing, is capable of measuring the position and height of a molten pool in real time using high-speed image photographing and image processing, and desirably controlling the height of a cladding layer by controlling process parameters.
  • Another object of the present invention is to provide a laser power calibration method, which is capable of obtaining a laser power, which is the most important process parameter, regardless of the state of a laser.
  • Another object of the present invention is to provide a method and apparatus, in which the actual position and height of a molten pool are measured in real time, so that a process parameter can be controlled to allow the height of a cladding layer to precisely coincide with the target value of the cladding layer, a shaping operation can be performed without rearranging or correcting an image monitoring device when a 3D shape is formed using 2D sectional information including a variable thickness, the method and apparatus of the present invention can be applied to pulse and continuous wave lasers, and the image of an actual cladding process can be observed through a monitor in the process of shaping.
  • Still another object of the present invention is to provide a method and apparatus, which is advantageous in that the method and apparatus can be applied to laser surface modification, such as laser surface alloying and laser cladding, and laser multi-layer cladding in which a cladding layer of 2 mm or more is formed through repeated laser cladding, as well as laser-aided direct metal manufacturing.
  • laser surface modification such as laser surface alloying and laser cladding
  • laser multi-layer cladding in which a cladding layer of 2 mm or more is formed through repeated laser cladding, as well as laser-aided direct metal manufacturing.
  • the present invention provides a method for monitoring and controlling a height of a cladding layer in laser cladding and laser-aided direct metal manufacturing, comprising the steps of monitoring and measuring a position and a height of a molten pool in real time using image photographing and image processing and controlling process parameters in real time.
  • the present invention provides an apparatus for monitoring and controlling a height of a cladding layer in real time using image photographing and image processing in laser cladding and laser-aided direct metal manufacturing, comprising: a laser generator for forming a molten pool on a surface of a specimen by irradiation of a laser beam; a beam transmitting apparatus for transmitting the laser beam generated by the laser beam generator; a beam condensing apparatus for condensing the beam transmitted through the beam transmitting apparatus; a cladding material feeder for feeding cladding materials to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed by the beam condensing apparatus; a transfer system for keeping a focal distance of the laser beam constant in the process of cladding with the beam condensing apparatus positioned in a z-axis direction, and freely transferring a specimen along a tool path around the laser beam to allow the laser cladding to be performed with the specimen fixed on an x and y-axe
  • FIG. 1 is an illustration of Materials Incress Manufacturing (MIM);
  • FIG. 2 is an illustration of laser cladding
  • FIG. 3 is an illustration of laser-aided direct metal manufacturing
  • FIG. 4 is a schematic view of a laser-aided direct metal manufacturing system
  • FIG. 5 is an enlarged view of a region of the system in which a concentric powder-feeding nozzle and an image photographing apparatus are arranged;
  • FIG. 6 is an enlarged view of the image photographing apparatus
  • FIGS. 7 , 7 (A) and 7 (B) are diagrams showing a second principle by which an image of a molten pool is observed by the image photographing apparatus, FIG. 7(A) being a schematic view of the molten pool observed in the optical axis of a laser beam, FIG. 7(B) being a view of the molten pool observed in a monitor;
  • FIG. 8 is a schematic diagram showing a first principle by which an image of the molten pool is observed by the image photographing apparatus
  • FIGS. 9(A) to (D) are views showing variations in the image of the molten pool according to the transfer direction of a specimen or laser beam, FIG. 9(A) being a view taken when the molten pool is directed toward the image photographing apparatus, FIG. 9(B) is a view taken when the molten pool is oppositely directed toward the image photographing apparatus, FIGS. 9(C) and (D) being views taken when the specimen or laser beam are transferred in a direction perpendicular to the optical axis of the image photographing apparatus;
  • FIG. 10 is a schematic diagram showing how the images of the molten pool are monitored according to variations in the height of the molten pool;
  • FIGS. 11(A) to (C) are graphs showing relations among a laser power, the height of a cladding layer and a laser power type
  • FIG. 12 is a photograph showing simple metal parts manufactured by the method and apparatus of the present invention.
  • FIG. 13 is a photograph showing a mobile phone mold part manufactured by the method and apparatus of the present invention.
  • FIG. 14 is a photograph showing an impeller part manufactured by the laser-aided direct metal manufacturing technology of the present invention.
  • FIG. 15 is a photograph showing a partial part of automobile fender mold remodeled and manufactured by the method and apparatus of the present invention.
  • FIG. 4 is a schematic view showing a laser-aided direct metal manufacturing system.
  • the laser-aided direct metal manufacturing system of the present invention includes image photographing and processing apparatuses 407 and 408 for controlling the height of a cladding layer in real time, and a Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) 409 for calculating 2D section information from 3D CAD data, calculating a tool path corresponding to the 2D section information and transmitting the tool path to a control system 403 .
  • CAD Computer-Aided Design
  • CAM Computer-Aided Manufacturing
  • a laser generator 401 is preferably an industrial CO 2 laser, but may be any laser of any wavelength that can make a molten pool on the surface of a metal specimen through the irradiation of laser beams, like a Nd-YAG or high power diode laser.
  • the laser beam generated by the laser generator is transmitted through a beam transmission apparatus 405 to a beam condensing apparatus 406 .
  • a laser beam can be transmitted through an optical fiber.
  • the beam condensing apparatus 406 is made by combining optical parts such as lenses, mirrors or the like, and functions to condense a laser beam to fit the laser cladding.
  • a concentric powder-feeding nozzle 414 is situated under the beam condensing apparatus 406 to feed powder fed from a cladding material feeder 404 , preferably a powder-feeding system, to a molten pool.
  • the cladding material is preferably in the form of powder, but may also be in the form of a rod or ribbon.
  • the cladding material in the form of powder concentric powder-feeding and lateral powder-feeding nozzles are used and distinguished according to the directions of supply of powder on the basis of the laser beam.
  • the concentric powder-feeding does not restrict a tool path because it allows metallic powder to be uniformly fed to a molten pool in all directions, and is suitable for laser-aided direct metal manufacturing.
  • the lateral powder-feeding allows metallic powder to be fed to a molten pool in the direction of one side of a laser beam.
  • the lateral powder-feeding can reduce the ratio of powder loss to the maximum of 5%, and is suitable to form a relatively thick cladding bead of more than 1 mm in thickness.
  • the lateral-powder-feeding restricts a tool path used in a shaping operation due to an anisotropy in which the shape and height of a bead are varied in a cladding direction (the transfer direction of a specimen or laser beam).
  • the transfer system (work table) 402 keeps a focal distance of the laser beam constant in the process of cladding with the beam condensing apparatus 406 positioned in a z-axis direction, and freely transfers the specimen along a tool path around the laser beam to allow the laser cladding to be performed with the specimen fixed on an x and y-axes table.
  • a transfer system in which a laser beam is transferred around a fixed specimen or a laser beam and a specimen are transferred at the same time, as well as the above-described transfer system 402 .
  • a three or more-axis transfer system or robot can be employed.
  • a gas control system 412 functions to control a variety of gases used in the laser cladding.
  • Reference numerals 410 and 411 designate a cooling apparatus and an outdoor unit, respectively.
  • a control system 403 is comprised of a Personal Computer-Numeric Control (PC-NC) system and various input and output devices.
  • the control system 403 controls and monitors in real time all apparatuses constituting the laser-aided direct metal manufacturing system of the present invention and including the laser generator 401 , the transfer system 402 , the cladding material feeder 404 , the gas control system 412 and the cooling apparatus 410 .
  • control system 403 serves to perform a laser cladding operation on the basis of shaping information received from the CAD/CAM apparatus 409 and control in real time cladding process parameters to allow the height of a cladding layer to reach a target value on the basis of information on the height of a molten pool received from the image processing apparatus 408 .
  • control system may be comprised of a general numeric control system in place of the PC-NC system.
  • FIG. 5 is an enlarged view of a region of the system in which the concentric powder-feeding nozzle 414 and the image photographing apparatus 407 are arranged.
  • a laser beam 202 and a powder stream 204 supplied to the molten pool 203 are not shown for ease of illustration.
  • the molten pool 203 is formed on the local area of a specimen to which the laser beam 202 is irradiated regardless of the transfer of the specimen 200 or laser beam.
  • the image photographing apparatus 407 is situated to form an angle of 90 ⁇ ° with the optical axis 501 of the laser beam and to allow the optical axis 502 of the image photographing apparatus 407 to pass through a region to which a laser beam is irradiated, so the image of the molten pool (for example, variations in height) can be photographed.
  • FIG. 6 is an enlarged view of the image photographing apparatus 407 .
  • the image photographing apparatus 407 includes a Neutral Density (ND) filter 603 , a filter mounting fixture 604 , a lens 602 and a Charge Coupled Device (CCD) camera 601 .
  • ND Neutral Density
  • CCD Charge Coupled Device
  • the ND filter 603 functions to reduce the amount of light reflected by the molten pool 203 and incident upon the ND filter 603 and to protect the lens 602 from sputters generated in the laser cladding process.
  • the ND filter 603 is mounted in front of the lens 602 , that is, the filter mounting fixture 604 .
  • a cooling line 605 through which cooling water is supplied, is disposed around the circumferential surface of the filter mounting fixture 604 so as to prevent the ND filter 603 and the lens 602 from being damaged by radiant heat emitted from the molten pool 203 .
  • the lens 602 functions to transmit the image of the molten pool 203 to the CCD camera 601 .
  • the lens 602 may be comprised of a general camera lens, but is preferably comprised of a telecentric lens of fixed magnification so as to minimize the distortion of the image of the molten pool 203 .
  • a high-speed, black and white CCD camera that can obtain images of 50 frames/second in progressive scan mode.
  • This CCD camera 601 obtains the image of the molten pool 203 every 20 msec and transmits image information to the image processing apparatus 408 .
  • a high-speed CCD camera of 150 frames/sec or more can be employed.
  • the image photographing apparatus 407 transmits image information of the molten pool 203 to the image processing apparatus 408 every 20 msec. And the image processing apparatus 408 calculates the physical position and height of the molten pool using an image processing technique, and transmits calculated data to the control system 403 in real time.
  • the image processing apparatus 408 is comprised of Frame Grabber, which is an image processing-only board, and a personal computer.
  • Software for the image processing (calculation of the height of a molten pool) is programmed using Visual C++ programming language.
  • the software requires 5 msec at its maximum to receive one piece of image information from the image photographing apparatus 407 and calculate the position and height of the molten pool. If the Frame Grabber equipped with a digital signal processor is employed, the processing speed of calculation can be considerably increased. Additionally, the software allows image signals received from the image photographing apparatus 407 to be displayed on a monitor in real time, so in the laser cladding operation, a user can observe a molten pool in real time.
  • a cladding layer having a certain height is formed behind the molten pool 203 along a path through which the laser beam 202 is transferred. Additionally, the molten pool 203 , which is formed by the irradiation of the laser beam 202 , is inclined with respect to a specimen surface 201 at a certain angle. Meanwhile, the shape of the molten pool 203 can be different according to the beam mode and sectional shape of the condensed laser beam 202 . However, in the general laser cladding, the shape of the molten pool 203 can be assumed to be circular.
  • FIG. 7(A) is a view showing a molten pool observed in the optical axis of a laser beam.
  • the image photographing apparatus 407 photographs the molten pool 203 while being inclined with respect to the specimen surface 201 at an angle of ⁇ .
  • the image of the molten pool 203 is formed on an image plane 701 of a CCD camera as shown in FIG. 7 , and the circular molten pool 203 is monitored as an ellipse whose axis b′ parallel with cladding and transfer directions is rather short due to a difference in optical path.
  • the molten pool 203 is not situated on a view field plane 702 of a CCD camera, so the image of the molten pool formed on an image plane 701 of a CCD camera has somewhat different lengths b 1 and b 2 around the optical axis 502 of the image photographing apparatus 407 .
  • the difference is slight, so it is disregarded in the image processing process.
  • a difference (b 1 ′ ⁇ b 2 ′) in length observed at the image photographing apparatus 407 is about 2 ⁇ m (2/1,000 mm), which is a relatively small value.
  • the image of the molten pool 203 is observed as different shapes according to the transfer direction of the specimen or laser beam.
  • FIGS. 9(A) to (D) are views showing variations in the shape of the molten pool. These variations are caused by the fact that the molten pool 203 is monitored by the image photographing apparatus 407 in a lateral direction and is directed toward the image photographing apparatus 407 according to the transfer direction of the specimen or laser beam.
  • FIG. 9(A) is an image of the molten pool 203 , which is observed when the molten pool 203 is directed toward the optical axis of the image photographing apparatus and observed as an ellipse vertically and relatively swollen.
  • FIG. 9(A) is an image of the molten pool 203 , which is observed when the molten pool 203 is directed toward the optical axis of the image photographing apparatus and observed as an ellipse vertically and relatively swollen.
  • FIG. 9(A) is an image of the molten pool 203 , which is observed when the molten pool 203 is directed toward the optical axis of the image photographing apparatus and
  • FIGS. 9(B) is an image of the molten pool 203 , which is observed when the molten pool 203 is oppositely directed toward the optical axis 502 of the image photographing apparatus 407 and monitored as an ellipse vertically and relatively flattened.
  • FIGS. 9(C) and 9(D) are images of the molten pool 203 , which are observed when the specimen or laser is transferred in a direction perpendicular to the optical axis 502 of the photographing apparatus 407 and monitored as an ellipse inclined to the right and left and vertically and relatively flattened.
  • the problem that the images of the molten pool 203 are observed to be different from another can be solved by installing one or more image photographing apparatuses in addition to the existing image photographing apparatus. In the measurement of the height of the molten pool 203 , desirable results can be obtained using only a single image photographing apparatus.
  • the molten pool 203 is monitored as images each having a certain area through the image photographing apparatus 407 as shown in FIG. 9 .
  • pixels representing the height of the molten pool have to be determined in the images.
  • the centers of mass of images obtained through the photographing apparatus 407 are calculated, and the pixels, in particular, the row of the pixels, are determined as the height of the molten pool.
  • the pixels in particular, the row of the pixels, are determined as the height of the molten pool.
  • FIG. 10 is a schematic diagram showing how the images of the molten pool are monitored according to variations in the height of the molten pool.
  • the images of the molten pool are observed at different positions on a monitor (or the image plane of the CCD camera) owing to variations in the height of the molten pool.
  • the actual physical height of a certain pixel absolute height
  • the variation value of an actual height per pixel are known in the images of the molten pool
  • the actual physical height can be calculated on the basis of the image of the molten pool.
  • the above-described value is corrected using a standard specimen for which the height of a cladding layer is known.
  • a correction module is included in software in charge of image processing.
  • the image processing apparatus 408 calculates the position and height of the molten pool using the above-described principal, and the calculated values are transmitted to the control system 403 in the form of ASCII data in real time.
  • the control system 403 controls process parameters in real time so as to form a cladding layer having a shape and a thickness (height) corresponding to 2D sectional information on the basis of sectional shaping information received in real time from the CAD/CAM apparatus 409 and the height data of the molten pool received in real time from the image processing apparatus 408 .
  • the process parameters affecting the height of the cladding layer includes laser power, the size and mode of a laser beam, the traverse speed of the specimen (or laser beam) (interaction time), a powder-feeding rate, etc.
  • the laser power affects the height of the cladding layer most.
  • the height H of the cladding layer has a proportional relationship with a laser power P, in which the height H increases linearly with the laser power P.
  • PID Proportion-Integral-Derivation
  • fuzzy control see Fuzzy Logic Control, Jeung-nam Byeon, Hongreung Science Publishing Co., 1997), etc.
  • a relatively simple control method is employed, as shown in FIG. 11 .
  • the above-described control method allows the height of the molten pool to reach the target value of the cladding layer, in such a way that a laser beam of an output greater than a normal laser output by P-P t is allowed to be irradiated on the specimen if the height H of the molten pool is less than the target value (target height) H t of the cladding layer, while a laser beam of an output less than a normal laser output by P-P t is allowed to be irradiated on the specimen if the height H of the molten pool is greater than the target value (target height) H t of the cladding layer.
  • the laser power is controlled with the heights of the molten pool classified into groups each having a range.
  • the control of the height of the cladding layer was successfully performed.
  • the laser power is controlled as one of the control parameters, it is possible to control other process parameters such as the powder-feeding rate and the traverse speed of the specimen (or laser beam) in a similar way in real time.
  • the height of the laser cladding layer is increased. Accordingly, as in the laser power, it is possible to control the height of the cladding layer, in such a way that the powder-feeding rate is increased if the height of the molten pool is less than the target height of the cladding layer, while the powder-feeding rate is decreased or the feeding of powder is stopped if the height of the molten pool is greater than the target height of the cladding layer.
  • the traverse speed of the specimen (or laser beam) is different from the laser power or the powder-feeding rate in that the height of the cladding layer is decreased according to an increase in the traverse speed of the specimen (or laser beam) while the height of the cladding layer is increased according to a decrease in the traverse speed of the specimen (or laser beam). Accordingly, the height of the cladding layer can be controlled to reach the target value of the cladding value, in such a way that the traverse speed of the specimen (or laser beam) is increased if the height of the molten pool is greater than the target value, while the traverse speed of the specimen (or laser beam) is decreased if the height of the molten pool is less than the target value.
  • the lasers are controlled by an analog voltage signal between 0 to 10 V (or 12 V). For example, 0 V allows the laser power to be 0, while an analog voltage signal of 10 V allows the maximum power to be generated. Additionally, when an analog voltage signal between 0 to 10 V is applied, a laser power between 0 and the maximum power is generated. In most lasers, response time to an analog voltage signal is less than 1 msec. For the CO 2 laser generator 401 employed in the present invention, response time is about 60 ⁇ sec (60/1,000,000 sec).
  • the control system 403 is designed to process an analog voltage signal to a 16 bit digital signal, which generates an effect in which an analog voltage signal is processed while being divided at 32,768 stages.
  • the control system 403 receives data on the height of the molten pool from the image processing apparatus 408 every 20 msec, compares the data with shaping information transmitted from the CAD/CAM apparatus 409 , and determines a laser power value required to allow the height of the molten pool to reach a target value.
  • the value determined as described above is digital data, so the value is converted into an analog signal through a D/A converter and inputted to the laser generator 401 .
  • the laser generator 401 is designed to generate a laser power corresponding to an analog digital voltage signal inputted.
  • a laser power can be somewhat different according to the condition of a laser, such as laser gas, the degree of cooling, the degree of contamination of a laser resonator, the degree of vacuum, the states of various optical parts (such as a rear mirror and an output coupler), etc.
  • the laser power calibration method which can achieve a desired laser power regardless of the state of the laser, is developed and applied.
  • a closed loop is formed between the laser generator 401 and the control system 403 , and an analog signal value is predetermined so that the control system 403 achieves a desired laser power just before a laser cladding or laser-aided direct metal manufacturing process using a PID control method.
  • the desired laser power is a target value.
  • the digital signal value which allows a laser power value fed-back from the laser to reach the target value, is determined by varying a digital value at 32,768 stages corresponding to 0 to 10V according to PID values.
  • the control system 403 controls the laser power using corrected analog signal values, so it is not affected by the state of the laser in the process of laser cladding or laser-aided direct metal manufacturing.
  • FIG. 12 is a photograph showing simple metal parts manufactured by the method and apparatus of the present invention.
  • a substrate having used in this manufacturing was stainless steel (SUS 316), and a cladding material was a chromium-molybdenum hot-work die steel, H-13 tool steel (SKD 61), which is an alloy being commonly used as a material of die casting mold.
  • SUS 316 stainless steel
  • H-13 tool steel H-13 tool steel
  • a fine structure of 100% can be obtained by the method of the present invention, and the mechanical characteristics of the product were similar or superior to those of wrought materials.
  • FIG. 13 is a photograph showing a mobile phone mold part manufactured by the method and apparatus of the present invention.
  • a thickness of 250 ⁇ m was sliced using 3D CAD data, which was used as shaping information.
  • the size of a laser beam was about 0.8 mm
  • the speed of laser cladding was 0.85 m/min.
  • the substrate was made of stainless steel (SUS 316), and a cladding material was H-13 tool steel.
  • the laser shaping time required for manufacturing the mold was 15 hours and 37 minutes.
  • FIG. 14 is a photograph showing an impeller part manufactured by the laser-aided direct metal manufacturing technology of the present invention.
  • the material of a substrate and a cladding was H-13 tool steel.
  • the other conditions are the same as those of application 2.
  • the laser shaping time required for manufacturing the mold was 12 hours and 8 minutes.
  • FIG. 15 is a photograph showing an automobile fender mold part that is partially cut away and remodeled through the correction of 3D CAD data.
  • the material of the mold was FCD 550, and a material used in the remodeling was H-13 tool steel (SKD 61).
  • the laser shaping time required for manufacturing the mold was 1 hour and 43 minutes.
  • the present invention provides a method and apparatus for laser cladding and laser-aided direct metal manufacturing, which is capable of measuring the position and height of a molten pool in real time using high-speed image photographing and image processing, and desirably controlling the height of a cladding layer by controlling process parameters.
  • the laser-aided direct metal manufacturing is physically implemented.
  • the laser-aided direct metal manufacturing of the present invention is a rapid manufacturing technology that can rapidly manufacture 3D products or a variety of tools for manufacturing such 3D products using functional materials required by the products or tools on the basis of 3D CAD data.
  • This technology allows functional metal prototypes, trial and mass-production molds, finished products of complicate shape and various tools to be rapidly manufactured in comparison with conventional manufacturing technologies such as CNC cutting, casting, and other manufacturing machinery, etc.
  • This technology is applicable to the restoration, remodeling and repairing of molds using reverse engineering.
  • the method and apparatus of the present invention can be applied to laser surface modification, such as laser surface alloying and laser cladding, and laser multi-layer cladding in which a cladding layer of 2 mm or more is formed through repeated laser cladding, as well as laser-aided direct metal manufacturing.
  • laser surface modification such as laser surface alloying and laser cladding
  • laser multi-layer cladding in which a cladding layer of 2 mm or more is formed through repeated laser cladding
  • laser-aided direct metal manufacturing laser-aided direct metal manufacturing
  • the method and apparatus for real-time monitoring and controlling the height of a cladding layer using image photographing and image processing in laser cladding and laser-aided direct metal manufacturing are not restricted to the above-described examples, but can be easily modified by those skilled in the art.

Abstract

The object of this invention is to provide a method and system for real-time monitoring and controlling the height of a deposit by using image photographing and image processing technology in a laser cladding and laser-aided direct metal manufacturing process. This invention also provides a method of controlling the intensity of laser power, which is one of the most important process variables, regardless of the operational condition of a laser power unit (401). The method and system of this invention controls the height of a deposit (205) by real-time monitoring the position and the height of a melt pool (203) and controlling the process variables using the image photographing and image processing technology in such a laser cladding and laser-aided direct metal manufacturing process based on a laser surface modification technology, such as laser surface alloying and laser cladding, or a laser-aided direct metal manufacturing technology.

Description

    TECHNICAL FIELD
  • The present invention relates to a method of real-time monitoring and controlling the height of a cladding layer using image photographing and image processing technology in laser cladding and direct metal manufacturing.
  • BACKGROUND ART
  • Laser-aided direct metal manufacturing is defined as rapid near-net shaping that can rapidly manufacture 3D products and tools necessary for the manufacture of the products with functional materials (for example, metal, alloy, ceramic or the like) on the basis of the digital data of 3D subjects stored in computers, and falls under “direct metal tooling”.
  • The digital data of 3D subjects includes 3D Computer Aided Design (CAD) data, medical Computer Tomography (CT) and Magnetic Resonance Imaging (MRI) data, and digital data measured by 3D object digitizing systems, and the tools denote trial and mass-production molds and dies necessary for the manufacture of products.
  • Those techniques allow functional metal prototypes, trial and mass-production molds, finished products of complicate shape and various tools to be rapidly manufactured in comparison with conventional manufacturing techniques such as Computerized Numerical Control (CNC) cutting, casting, and other manufacturing machinery, etc. Those techniques are applicable to the restoration, remodeling and repairing of molds and dies using reverse engineering technology.
  • The underlying concept of those techniques, in which physical shapes can be generated from CAD data, is similar to that of general printers. The direct metal manufacturing allows 3D physical shapes to be generated by forming functional material in 3D space at the precise positions, much as printers print documents by applying carbon or ink on the 2D surface of paper at precise positions using document data files stored in computers.
  • Since it is difficult to generate 3D shapes from CAD data through conventional manufacturing processes in which a material is cut or a molten material is poured into and solidified in a mold, Materials Incress Manufacturing (MIM) has to be employed.
  • Basically, a 3D object is comprised of 2D surfaces, and each of the 2D surfaces is comprised of 1D lines. Accordingly, a 3D shape can be manufactured by stacking 2D surfaces one on top of another. This technique is called MIM process. As shown in FIG. 1, the 3D shape is manufactured through additive materials deposition for building shapes, differently from the conventional manufacturing processes in which a bulk material is cut or a molten metal is poured to a mold and solidified in the mold.
  • In the laser-aided direct metal manufacturing technology, the 2D surfaces are physically formed through laser cladding.
  • As shown in FIG. 2, the laser cladding is a technology of forming a cladding layer 205 on the surface of a specimen in such a way that a local molten pool 203 is formed by irradiating a laser beam 202 on the surface 201 of a specimen and, at the same time, a cladding material (for example, metal, alloy, ceramic or the like) in the form of powder is fed to the molten pool 203 from the outside. Referring to FIG. 3, in the laser-aided direct metal manufacturing, 3D functional metallic products or tools can be rapidly shaped in such a way that 2D sectional information is calculated from 3D CAD data and cladding layers each having shape, thickness and/or height corresponding to the 2D sectional information are sequentially formed.
  • The 2D sectional information used in the process of shaping is made by slicing 3D CAD data into data of a uniform thickness and/or a uniform height or into 2D data of a variable thickness, which is utilized as shaping information. In order to physically materialize a precise 3D shape corresponding to CAD data by using the sectional data, a cladding layer of precise shape, height and/or thickness corresponding to the 2D sectional information can be formed through the laser cladding process.
  • The above process considerably affects the dimensional precision of a 3D product. In particular, a technology of controlling the height of a cladding layer is a key technology in implementation of the laser-aided direct metal manufacturing technology.
  • In the laser-aided direct metal manufacturing technology, as in the laser cladding technology shown in FIG. 2, a cladding layer is formed by interpolation-transferring a metallic substrate (hereinafter, referred to as “a specimen”) around a fixed laser beam along x and y-axes or a laser beam around a fixed specimen. Alternatively, the laser beam can be transferred together with the specimen, and a three or more-axis transfer system or robot can be utilized to increase the degree of freedom of manufacturing.
  • In the process of shaping, the shape of the cladding layer corresponding to the 2D sectional information mainly depends on a tool path calculated from the sectional information and the precision of a transfer system, and can be relatively easily materialized. However, the height of the laser cladding layer is affected by a large number of process parameters, such as a laser power, the mode and size of a laser beam, the traverse speed of a specimen, the characteristics of cladding powder, powder feeding rate, the falling speed of powder, the overlapping factor of cladding beads, the kinds or amounts of various auxiliary gases supplied, etc. Additionally, environmental factors, such as the variation of temperature on the surface of a specimen caused by heat accumulation, the conditions of the surface of a specimen and a laser generator, can affect the height of the cladding layer formed.
  • Accordingly, in order to obtain the height of the cladding layer corresponding to 2D sectional information, there is technical difficulty that process parameters affecting the height of the cladding layer should be controlled while the position of a molten pool is monitored in real time.
  • U.S. Pat. No. 6,122,564 discloses a feedback apparatus and method that is comprised of an optical detection device using a phototransistor and an electron circuit for the purpose of controlling the height of a cladding layer. In this method, the optical detection device is positioned near a molten pool formed on the surface of a specimen by the irradiation of a laser beam and the optical axis of the optical detection device is arranged toward a target height so as to detect light (light of an infrared wavelength) irradiated from the molten pool when the molten pool reaches the target height. The optical detection device is comprised of a narrow band-pass filter, a camera lens, a phototransistor or photoelectron sensor. In order to allow light (infrared light) to be detected by the phototransistor only when the molten pool reaches a height at which the molten pool meets the optical axis, a mask having an aperture whose center passes through the optical axis is positioned in front of the phototransistor.
  • As a result, when the molten pool reaches a target height (the height of a cladding layer reaches the target value), part of light having only an infrared light wavelength passes through the narrow band-pass filter and can pass through the aperture of the mask, so the phototransistor can detect the light. However, when the molten pool does not reach the target height, light irradiated from the molten pool is blocked by the mask, so the phototransistor cannot detect any light.
  • In this method, it is determined whether the height of a cladding layer (a 5, molten pool) reaches a target value through the light detection of the phototransistor. The phototransistor experiences a voltage drop phenomenon when being exposed to light. In this case, an electric circuit is constructed such that an analog voltage signal transmitted to a laser generator is controlled using an electric signal generated, and a laser power is controlled by allowing laser beam to be On or Off according to the detection of light by the phototransistor.
  • However, in U.S. Pat. No. 6,122,564, the optical detection device determines the same if the height of the molten pool is greater or less than a target value of the cladding layer. At this time, there occurs a problem that a normal laser power is generated. In particular, when at a certain position the height of the cladding layer is partially greater than the target value, the optical detection device determines that the height of the cladding layer does not reach the target value, and generates a normal laser power.
  • Accordingly, the cladding layer at this position is coated to be rather thicker or higher and the repeated performance of the laser cladding at this position causes the problem to be worse, thus deteriorating the precision of shaping. Additionally, in the laser-aided direct metal manufacturing, when a 3D shape is formed using 2D sectional information of a uniform thickness and/or height, there occurs no problem with the mechanical structure of the optical detection device. However, when the 3D shape is formed using 2D sectional information of a variable thickness and/or height, there occurs a problem that the optical detection device should be arranged and corrected whenever the height of the cladding layer is varied.
  • In addition, a laser power control method is a laser beam On/Off method in which the duration time of a laser pulse is controlled, so it is difficult to apply the technology to a continuous wave laser generator.
  • DISCLOSURE OF THE INVENTION
  • Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a method and apparatus that, in laser cladding and laser-aided direct metal manufacturing, is capable of measuring the position and height of a molten pool in real time using high-speed image photographing and image processing, and desirably controlling the height of a cladding layer by controlling process parameters.
  • Another object of the present invention is to provide a laser power calibration method, which is capable of obtaining a laser power, which is the most important process parameter, regardless of the state of a laser.
  • Another object of the present invention is to provide a method and apparatus, in which the actual position and height of a molten pool are measured in real time, so that a process parameter can be controlled to allow the height of a cladding layer to precisely coincide with the target value of the cladding layer, a shaping operation can be performed without rearranging or correcting an image monitoring device when a 3D shape is formed using 2D sectional information including a variable thickness, the method and apparatus of the present invention can be applied to pulse and continuous wave lasers, and the image of an actual cladding process can be observed through a monitor in the process of shaping.
  • Still another object of the present invention is to provide a method and apparatus, which is advantageous in that the method and apparatus can be applied to laser surface modification, such as laser surface alloying and laser cladding, and laser multi-layer cladding in which a cladding layer of 2 mm or more is formed through repeated laser cladding, as well as laser-aided direct metal manufacturing.
  • In order to accomplish the above object, the present invention provides a method for monitoring and controlling a height of a cladding layer in laser cladding and laser-aided direct metal manufacturing, comprising the steps of monitoring and measuring a position and a height of a molten pool in real time using image photographing and image processing and controlling process parameters in real time.
  • In addition, the present invention provides an apparatus for monitoring and controlling a height of a cladding layer in real time using image photographing and image processing in laser cladding and laser-aided direct metal manufacturing, comprising: a laser generator for forming a molten pool on a surface of a specimen by irradiation of a laser beam; a beam transmitting apparatus for transmitting the laser beam generated by the laser beam generator; a beam condensing apparatus for condensing the beam transmitted through the beam transmitting apparatus; a cladding material feeder for feeding cladding materials to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed by the beam condensing apparatus; a transfer system for keeping a focal distance of the laser beam constant in the process of cladding with the beam condensing apparatus positioned in a z-axis direction, and freely transferring a specimen along a tool path around the laser beam to allow the laser cladding to be performed with the specimen fixed on an x and y-axes table; a CAD/CAM apparatus for generating shaping information such as the tool path on the basis of 3D CAD data and transmitting the shaping information; an image photographing apparatus for obtaining an image of the molten pool in real time and transmitting the image of the molten pool; an image processing apparatus for receiving the image of the molten pool, calculating a position and a height of the molten pool on the basis of the image of the molten pool, and transmitting the calculated values; and a control system for controlling and monitoring the elements, receiving the shaping information from the CAD/CAM apparatus and performing the laser cladding, and receiving information about the molten pool and controlling a process parameter in real time to allow the position and height of the cladding layer to reach target values.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is an illustration of Materials Incress Manufacturing (MIM);
  • FIG. 2 is an illustration of laser cladding;
  • FIG. 3 is an illustration of laser-aided direct metal manufacturing;
  • FIG. 4 is a schematic view of a laser-aided direct metal manufacturing system;
  • FIG. 5 is an enlarged view of a region of the system in which a concentric powder-feeding nozzle and an image photographing apparatus are arranged;
  • FIG. 6 is an enlarged view of the image photographing apparatus;
  • FIGS. 7, 7(A) and 7(B) are diagrams showing a second principle by which an image of a molten pool is observed by the image photographing apparatus, FIG. 7(A) being a schematic view of the molten pool observed in the optical axis of a laser beam, FIG. 7(B) being a view of the molten pool observed in a monitor;
  • FIG. 8 is a schematic diagram showing a first principle by which an image of the molten pool is observed by the image photographing apparatus;
  • FIGS. 9(A) to (D) are views showing variations in the image of the molten pool according to the transfer direction of a specimen or laser beam, FIG. 9(A) being a view taken when the molten pool is directed toward the image photographing apparatus, FIG. 9(B) is a view taken when the molten pool is oppositely directed toward the image photographing apparatus, FIGS. 9(C) and (D) being views taken when the specimen or laser beam are transferred in a direction perpendicular to the optical axis of the image photographing apparatus;
  • FIG. 10 is a schematic diagram showing how the images of the molten pool are monitored according to variations in the height of the molten pool;
  • FIGS. 11(A) to (C) are graphs showing relations among a laser power, the height of a cladding layer and a laser power type;
  • FIG. 12 is a photograph showing simple metal parts manufactured by the method and apparatus of the present invention;
  • FIG. 13 is a photograph showing a mobile phone mold part manufactured by the method and apparatus of the present invention;
  • FIG. 14 is a photograph showing an impeller part manufactured by the laser-aided direct metal manufacturing technology of the present invention; and
  • FIG. 15 is a photograph showing a partial part of automobile fender mold remodeled and manufactured by the method and apparatus of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, a method of real-time monitoring and controlling the height of a cladding layer using image photographing and image processing in laser cladding and direct metal manufacturing in accordance with an embodiment of the present invention is described in detail.
  • FIG. 4 is a schematic view showing a laser-aided direct metal manufacturing system. The laser-aided direct metal manufacturing system of the present invention includes image photographing and processing apparatuses 407 and 408 for controlling the height of a cladding layer in real time, and a Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) 409 for calculating 2D section information from 3D CAD data, calculating a tool path corresponding to the 2D section information and transmitting the tool path to a control system 403.
  • A laser generator 401 is preferably an industrial CO2 laser, but may be any laser of any wavelength that can make a molten pool on the surface of a metal specimen through the irradiation of laser beams, like a Nd-YAG or high power diode laser. The laser beam generated by the laser generator is transmitted through a beam transmission apparatus 405 to a beam condensing apparatus 406. When the Nd-YAG laser or the like is employed; a laser beam can be transmitted through an optical fiber.
  • The beam condensing apparatus 406 is made by combining optical parts such as lenses, mirrors or the like, and functions to condense a laser beam to fit the laser cladding. A concentric powder-feeding nozzle 414 is situated under the beam condensing apparatus 406 to feed powder fed from a cladding material feeder 404, preferably a powder-feeding system, to a molten pool.
  • Meanwhile, the cladding material is preferably in the form of powder, but may also be in the form of a rod or ribbon. When the cladding material in the form of powder is used, concentric powder-feeding and lateral powder-feeding nozzles are used and distinguished according to the directions of supply of powder on the basis of the laser beam.
  • The concentric powder-feeding does not restrict a tool path because it allows metallic powder to be uniformly fed to a molten pool in all directions, and is suitable for laser-aided direct metal manufacturing.
  • On the other hand, the lateral powder-feeding allows metallic powder to be fed to a molten pool in the direction of one side of a laser beam. The lateral powder-feeding can reduce the ratio of powder loss to the maximum of 5%, and is suitable to form a relatively thick cladding bead of more than 1 mm in thickness. However, the lateral-powder-feeding restricts a tool path used in a shaping operation due to an anisotropy in which the shape and height of a bead are varied in a cladding direction (the transfer direction of a specimen or laser beam).
  • Meanwhile, the transfer system (work table) 402 keeps a focal distance of the laser beam constant in the process of cladding with the beam condensing apparatus 406 positioned in a z-axis direction, and freely transfers the specimen along a tool path around the laser beam to allow the laser cladding to be performed with the specimen fixed on an x and y-axes table.
  • In the laser-aided direct metal manufacturing and general laser cladding processes, there can be employed a transfer system in which a laser beam is transferred around a fixed specimen or a laser beam and a specimen are transferred at the same time, as well as the above-described transfer system 402. Additionally, in order to increase the degree of freedom of manufacturing, a three or more-axis transfer system or robot can be employed.
  • A gas control system 412 functions to control a variety of gases used in the laser cladding. Reference numerals 410 and 411 designate a cooling apparatus and an outdoor unit, respectively.
  • A control system 403 is comprised of a Personal Computer-Numeric Control (PC-NC) system and various input and output devices. The control system 403 controls and monitors in real time all apparatuses constituting the laser-aided direct metal manufacturing system of the present invention and including the laser generator 401, the transfer system 402, the cladding material feeder 404, the gas control system 412 and the cooling apparatus 410.
  • In particular, the control system 403 serves to perform a laser cladding operation on the basis of shaping information received from the CAD/CAM apparatus 409 and control in real time cladding process parameters to allow the height of a cladding layer to reach a target value on the basis of information on the height of a molten pool received from the image processing apparatus 408. Alternatively, the control system may be comprised of a general numeric control system in place of the PC-NC system.
  • FIG. 5 is an enlarged view of a region of the system in which the concentric powder-feeding nozzle 414 and the image photographing apparatus 407 are arranged. In this drawing, a laser beam 202 and a powder stream 204 supplied to the molten pool 203 are not shown for ease of illustration.
  • As shown in FIG. 2, in a laser cladding process, the molten pool 203 is formed on the local area of a specimen to which the laser beam 202 is irradiated regardless of the transfer of the specimen 200 or laser beam. Accordingly, as shown in FIG. 5, the image photographing apparatus 407 is situated to form an angle of 90−θ° with the optical axis 501 of the laser beam and to allow the optical axis 502 of the image photographing apparatus 407 to pass through a region to which a laser beam is irradiated, so the image of the molten pool (for example, variations in height) can be photographed.
  • FIG. 6 is an enlarged view of the image photographing apparatus 407. The image photographing apparatus 407 includes a Neutral Density (ND) filter 603, a filter mounting fixture 604, a lens 602 and a Charge Coupled Device (CCD) camera 601.
  • The ND filter 603 functions to reduce the amount of light reflected by the molten pool 203 and incident upon the ND filter 603 and to protect the lens 602 from sputters generated in the laser cladding process. The ND filter 603 is mounted in front of the lens 602, that is, the filter mounting fixture 604. A cooling line 605, through which cooling water is supplied, is disposed around the circumferential surface of the filter mounting fixture 604 so as to prevent the ND filter 603 and the lens 602 from being damaged by radiant heat emitted from the molten pool 203.
  • The lens 602 functions to transmit the image of the molten pool 203 to the CCD camera 601. The lens 602 may be comprised of a general camera lens, but is preferably comprised of a telecentric lens of fixed magnification so as to minimize the distortion of the image of the molten pool 203.
  • In this embodiment, in order to obtain the image of the molten pool 203 in real time, there is employed a high-speed, black and white CCD camera that can obtain images of 50 frames/second in progressive scan mode. This CCD camera 601 obtains the image of the molten pool 203 every 20 msec and transmits image information to the image processing apparatus 408. In order to obtain the images of the molten pool 203 at a higher speed, a high-speed CCD camera of 150 frames/sec or more can be employed.
  • The image photographing apparatus 407 transmits image information of the molten pool 203 to the image processing apparatus 408 every 20 msec. And the image processing apparatus 408 calculates the physical position and height of the molten pool using an image processing technique, and transmits calculated data to the control system 403 in real time.
  • The image processing apparatus 408 is comprised of Frame Grabber, which is an image processing-only board, and a personal computer. Software for the image processing (calculation of the height of a molten pool) is programmed using Visual C++ programming language.
  • The software requires 5 msec at its maximum to receive one piece of image information from the image photographing apparatus 407 and calculate the position and height of the molten pool. If the Frame Grabber equipped with a digital signal processor is employed, the processing speed of calculation can be considerably increased. Additionally, the software allows image signals received from the image photographing apparatus 407 to be displayed on a monitor in real time, so in the laser cladding operation, a user can observe a molten pool in real time.
  • The principle of calculating the position and height of a molten pool on the basis of the image of the molten pool using the image processing is described below.
  • Referring to FIGS. 2 and 5, in the laser cladding process, a cladding layer having a certain height is formed behind the molten pool 203 along a path through which the laser beam 202 is transferred. Additionally, the molten pool 203, which is formed by the irradiation of the laser beam 202, is inclined with respect to a specimen surface 201 at a certain angle. Meanwhile, the shape of the molten pool 203 can be different according to the beam mode and sectional shape of the condensed laser beam 202. However, in the general laser cladding, the shape of the molten pool 203 can be assumed to be circular.
  • FIG. 7(A) is a view showing a molten pool observed in the optical axis of a laser beam. As depicted in FIG. 5, the image photographing apparatus 407 photographs the molten pool 203 while being inclined with respect to the specimen surface 201 at an angle of θ.
  • When the molten pool 203 is directed toward the image photographing apparatus 407, the image of the molten pool 203 is formed on an image plane 701 of a CCD camera as shown in FIG. 7, and the circular molten pool 203 is monitored as an ellipse whose axis b′ parallel with cladding and transfer directions is rather short due to a difference in optical path.
  • As illustrated in FIG. 8, the molten pool 203 is not situated on a view field plane 702 of a CCD camera, so the image of the molten pool formed on an image plane 701 of a CCD camera has somewhat different lengths b1 and b2 around the optical axis 502 of the image photographing apparatus 407. However, the difference is slight, so it is disregarded in the image processing process. When the size of the molten pool is assumed to be 1 mm, a difference (b1′−b2′) in length observed at the image photographing apparatus 407 is about 2 μm (2/1,000 mm), which is a relatively small value.
  • The image of the molten pool 203 is observed as different shapes according to the transfer direction of the specimen or laser beam.
  • FIGS. 9(A) to (D) are views showing variations in the shape of the molten pool. These variations are caused by the fact that the molten pool 203 is monitored by the image photographing apparatus 407 in a lateral direction and is directed toward the image photographing apparatus 407 according to the transfer direction of the specimen or laser beam. FIG. 9(A) is an image of the molten pool 203, which is observed when the molten pool 203 is directed toward the optical axis of the image photographing apparatus and observed as an ellipse vertically and relatively swollen. FIG. 9(B) is an image of the molten pool 203, which is observed when the molten pool 203 is oppositely directed toward the optical axis 502 of the image photographing apparatus 407 and monitored as an ellipse vertically and relatively flattened. FIGS. 9(C) and 9(D) are images of the molten pool 203, which are observed when the specimen or laser is transferred in a direction perpendicular to the optical axis 502 of the photographing apparatus 407 and monitored as an ellipse inclined to the right and left and vertically and relatively flattened.
  • The problem that the images of the molten pool 203 are observed to be different from another can be solved by installing one or more image photographing apparatuses in addition to the existing image photographing apparatus. In the measurement of the height of the molten pool 203, desirable results can be obtained using only a single image photographing apparatus.
  • The molten pool 203 is monitored as images each having a certain area through the image photographing apparatus 407 as shown in FIG. 9. In order to obtain the height of the molten pool on the basis of such image information using the image processing method, pixels representing the height of the molten pool have to be determined in the images.
  • In this invention, the centers of mass of images obtained through the photographing apparatus 407 are calculated, and the pixels, in particular, the row of the pixels, are determined as the height of the molten pool. In addition, there can be employed a variety of methods, in which a pixel corresponding to the longest row representing the image of the molten pool is determined as the height of the molten pool, or the center of an actual molten pool is obtained on the assumption that the molten pool takes a circular shape and a pixel corresponding to the center is determined in the image.
  • FIG. 10 is a schematic diagram showing how the images of the molten pool are monitored according to variations in the height of the molten pool. The images of the molten pool are observed at different positions on a monitor (or the image plane of the CCD camera) owing to variations in the height of the molten pool.
  • Accordingly, if the actual physical height of a certain pixel (absolute height) and the variation value of an actual height per pixel are known in the images of the molten pool, the actual physical height can be calculated on the basis of the image of the molten pool. In this invention, the above-described value is corrected using a standard specimen for which the height of a cladding layer is known. A correction module is included in software in charge of image processing.
  • The image processing apparatus 408 calculates the position and height of the molten pool using the above-described principal, and the calculated values are transmitted to the control system 403 in the form of ASCII data in real time. The control system 403 controls process parameters in real time so as to form a cladding layer having a shape and a thickness (height) corresponding to 2D sectional information on the basis of sectional shaping information received in real time from the CAD/CAM apparatus 409 and the height data of the molten pool received in real time from the image processing apparatus 408.
  • The process parameters affecting the height of the cladding layer includes laser power, the size and mode of a laser beam, the traverse speed of the specimen (or laser beam) (interaction time), a powder-feeding rate, etc. Of the above-described process parameters, the laser power affects the height of the cladding layer most.
  • The height H of the cladding layer has a proportional relationship with a laser power P, in which the height H increases linearly with the laser power P. When such a relationship is utilized, it is possible to freely adjust the height of the cladding layer through the real-time control of the laser power. In this case, the control of the laser power can be implemented through a variety of control methods, such as Proportion-Integral-Derivation (PID) control (see Modern Control Engineering, Katsuhiko Ogata, Prentice-Hall, 1990, pp. 592-605), fuzzy control (see Fuzzy Logic Control, Jeung-nam Byeon, Hongreung Science Publishing Co., 1997), etc. However, in this embodiment, a relatively simple control method is employed, as shown in FIG. 11.
  • As shown FIG. 11(B), the above-described control method allows the height of the molten pool to reach the target value of the cladding layer, in such a way that a laser beam of an output greater than a normal laser output by P-Pt is allowed to be irradiated on the specimen if the height H of the molten pool is less than the target value (target height) Ht of the cladding layer, while a laser beam of an output less than a normal laser output by P-Pt is allowed to be irradiated on the specimen if the height H of the molten pool is greater than the target value (target height) Ht of the cladding layer.
  • As shown in FIG. 11(C), in the actual laser power control, the laser power is controlled with the heights of the molten pool classified into groups each having a range. The control of the height of the cladding layer was successfully performed. Although in the present invention the laser power is controlled as one of the control parameters, it is possible to control other process parameters such as the powder-feeding rate and the traverse speed of the specimen (or laser beam) in a similar way in real time.
  • In general, as the powder-feeding rate is increased, the height of the laser cladding layer is increased. Accordingly, as in the laser power, it is possible to control the height of the cladding layer, in such a way that the powder-feeding rate is increased if the height of the molten pool is less than the target height of the cladding layer, while the powder-feeding rate is decreased or the feeding of powder is stopped if the height of the molten pool is greater than the target height of the cladding layer. The traverse speed of the specimen (or laser beam) is different from the laser power or the powder-feeding rate in that the height of the cladding layer is decreased according to an increase in the traverse speed of the specimen (or laser beam) while the height of the cladding layer is increased according to a decrease in the traverse speed of the specimen (or laser beam). Accordingly, the height of the cladding layer can be controlled to reach the target value of the cladding value, in such a way that the traverse speed of the specimen (or laser beam) is increased if the height of the molten pool is greater than the target value, while the traverse speed of the specimen (or laser beam) is decreased if the height of the molten pool is less than the target value.
  • Most lasers are controlled by an analog voltage signal between 0 to 10 V (or 12 V). For example, 0 V allows the laser power to be 0, while an analog voltage signal of 10 V allows the maximum power to be generated. Additionally, when an analog voltage signal between 0 to 10 V is applied, a laser power between 0 and the maximum power is generated. In most lasers, response time to an analog voltage signal is less than 1 msec. For the CO2 laser generator 401 employed in the present invention, response time is about 60 μsec (60/1,000,000 sec). The control system 403 is designed to process an analog voltage signal to a 16 bit digital signal, which generates an effect in which an analog voltage signal is processed while being divided at 32,768 stages.
  • The control system 403 receives data on the height of the molten pool from the image processing apparatus 408 every 20 msec, compares the data with shaping information transmitted from the CAD/CAM apparatus 409, and determines a laser power value required to allow the height of the molten pool to reach a target value. The value determined as described above is digital data, so the value is converted into an analog signal through a D/A converter and inputted to the laser generator 401.
  • The laser generator 401 is designed to generate a laser power corresponding to an analog digital voltage signal inputted. However, although the same analog voltage signals is inputted to the laser generator, a laser power can be somewhat different according to the condition of a laser, such as laser gas, the degree of cooling, the degree of contamination of a laser resonator, the degree of vacuum, the states of various optical parts (such as a rear mirror and an output coupler), etc.
  • As a result, in the present invention, the laser power calibration method, which can achieve a desired laser power regardless of the state of the laser, is developed and applied. In this method, a closed loop is formed between the laser generator 401 and the control system 403, and an analog signal value is predetermined so that the control system 403 achieves a desired laser power just before a laser cladding or laser-aided direct metal manufacturing process using a PID control method.
  • In the process of the above calibration, the desired laser power is a target value. Additionally, the digital signal value, which allows a laser power value fed-back from the laser to reach the target value, is determined by varying a digital value at 32,768 stages corresponding to 0 to 10V according to PID values.
  • When the number of laser power values used in the laser cladding or laser-aided direct metal manufacturing is ten, digital signals for achieving the laser outputs are determined in the above-described method.
  • The control system 403 controls the laser power using corrected analog signal values, so it is not affected by the state of the laser in the process of laser cladding or laser-aided direct metal manufacturing.
  • The following application examples relates to samples manufactured by the laser-aided direct metal manufacturing technology completed by the method and system of the present invention.
  • APPLICATION EXAMPLE 1
  • FIG. 12 is a photograph showing simple metal parts manufactured by the method and apparatus of the present invention. A substrate having used in this manufacturing was stainless steel (SUS 316), and a cladding material was a chromium-molybdenum hot-work die steel, H-13 tool steel (SKD 61), which is an alloy being commonly used as a material of die casting mold. A fine structure of 100% can be obtained by the method of the present invention, and the mechanical characteristics of the product were similar or superior to those of wrought materials.
  • APPLICATION EXAMPLE 2
  • FIG. 13 is a photograph showing a mobile phone mold part manufactured by the method and apparatus of the present invention. In this application example 2, a thickness of 250 μm was sliced using 3D CAD data, which was used as shaping information. In this case, the size of a laser beam was about 0.8 mm, and the speed of laser cladding was 0.85 m/min. The substrate was made of stainless steel (SUS 316), and a cladding material was H-13 tool steel. The laser shaping time required for manufacturing the mold was 15 hours and 37 minutes.
  • APPLICATION EXAMPLE 3
  • FIG. 14 is a photograph showing an impeller part manufactured by the laser-aided direct metal manufacturing technology of the present invention. The material of a substrate and a cladding was H-13 tool steel. The other conditions are the same as those of application 2. The laser shaping time required for manufacturing the mold was 12 hours and 8 minutes.
  • APPLICATION EXAMPLE 4
  • The principal characteristic of the laser-aided direct metal manufacturing is to directly manufacture a 3D shape using 3D CAD data. This characteristic allows a product having a 3D shape to be rapidly manufactured, and enables the restoration, remodeling and repairing of an existing product or mold by correcting CAD data or using reverse engineering. FIG. 15 is a photograph showing an automobile fender mold part that is partially cut away and remodeled through the correction of 3D CAD data. The material of the mold was FCD 550, and a material used in the remodeling was H-13 tool steel (SKD 61). The laser shaping time required for manufacturing the mold was 1 hour and 43 minutes.
  • INDUSTRIAL APPLICABILITY
  • As described above, the present invention provides a method and apparatus for laser cladding and laser-aided direct metal manufacturing, which is capable of measuring the position and height of a molten pool in real time using high-speed image photographing and image processing, and desirably controlling the height of a cladding layer by controlling process parameters. In particular, the laser-aided direct metal manufacturing is physically implemented.
  • Additionally, the laser-aided direct metal manufacturing of the present invention is a rapid manufacturing technology that can rapidly manufacture 3D products or a variety of tools for manufacturing such 3D products using functional materials required by the products or tools on the basis of 3D CAD data. This technology allows functional metal prototypes, trial and mass-production molds, finished products of complicate shape and various tools to be rapidly manufactured in comparison with conventional manufacturing technologies such as CNC cutting, casting, and other manufacturing machinery, etc. This technology is applicable to the restoration, remodeling and repairing of molds using reverse engineering.
  • Additionally, the method and apparatus of the present invention can be applied to laser surface modification, such as laser surface alloying and laser cladding, and laser multi-layer cladding in which a cladding layer of 2 mm or more is formed through repeated laser cladding, as well as laser-aided direct metal manufacturing. In these processes, the method and system of the present invention allow a cladding layer of a uniform thickness to be formed, so the precision of a laser operation is improved and the costs of post-processing can be reduced.
  • The method and apparatus for real-time monitoring and controlling the height of a cladding layer using image photographing and image processing in laser cladding and laser-aided direct metal manufacturing are not restricted to the above-described examples, but can be easily modified by those skilled in the art.

Claims (49)

1-24. (canceled)
25. A system for monitoring and controlling the height of a cladding layer in real time using image photographing and image processing in laser cladding and laser-aided direct metal manufacturing, comprising:
a laser generator for forming a molten pool on a surface of a specimen by irradiation of a laser beam;
a beam transmitting apparatus for transmitting the laser beam generated by the laser beam generator;
a beam condensing apparatus for condensing the beam transmitted through the beam transmitting apparatus;
a cladding material feeder for feeding a cladding material to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed by the beam condensing apparatus;
a transfer system for keeping a focal distance of the laser beam constant in the process of cladding with the beam condensing apparatus positioned in a z-axis direction, and freely transferring a specimen along a tool path around the laser beam to allow the laser cladding to be performed with the specimen fixed on an x and y-axes table;
a Computer Aided Design/Computer Aided manufacturing (CAD/CAM) apparatus for generating shaping information such as the tool path on the basis of 3D CAD data and transmitting the shaping information;
an image photographing apparatus for obtaining an image of the molten pool in real time;
an image processing apparatus comprising a computer readable medium containing instructions to cause the image processing apparatus to determine a pixel representing height of the molten pool using the image of the molten pool obtained through the photographing to calculate an actual position and height of the molten pool in real time by using an actual physical height of a certain pixel and a variation value of the actual height per pixel corrected by using a standard specimen for which the height of a cladding layer is known; and
a control system comprising a computer readable medium containing instructions to cause the control system to control at least one process parameter affecting the height of the cladding layer in real time to control the height of the cladding layer to reach a target value by increasing a thickness of the cladding layer if the actual height of the molten pool is less than the target height value and by decreasing the thickness of the cladding layer whenever the actual height of the molten pool is greater than the target height value, to form a cladding layer having a shape and a thickness corresponding to 2D sectional information derived from the shaping information from the CAD/CAM apparatus, and thereby to correct overshooting of the actual height at all heights above the target height.
26. The system according to claim 25, wherein the cladding material, which is fed to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed in the beam condensing apparatus, is provided in the form of powder, a wire or ribbon.
27. The system according to claim 26, further comprising a powder-feeding nozzle for simultaneously supplying the cladding material powder supplied from the cladding material feeder to both the laser beam and the molten pool formed on the surface of the specimen if the cladding material is provided in the form of the powder.
28. The system according to claim 25, wherein the laser is one of CO2, Nd-YAG, and high-power diode laser.
29. The system according to claim 28, wherein an optical fiber is employed if the laser is Nd-YAG laser.
30. The system according to claim 25, wherein the image photographing apparatus includes a Neutral Density (ND) filter, a filter mounting fixture, a lens, and a Charge-Coupled Device (CCD) camera.
31. The system according to claim 25, wherein the image photographing apparatus includes a Neutral Density (ND) filter, a filter mounting fixture, a lens, and an infrared (IR) camera for rapidly obtaining the image of the molten pool.
32. The system according to claim 25, wherein the image photographing apparatus is positioned on an optical axis of the laser beam to observe the molten pool at an angle of 90−θ°.
33. The system according to claim 25, wherein the image photographing apparatus comprises plural image photographing sub-apparatuses so as to prevent the image of the molten pool from being observed to be different according to a transfer direction of a specimen or laser beam.
34. The system according to claim 25, wherein the system is applied to restoration, remodeling and repairing of a metallic product or mold.
35. The system according to claim 25, wherein the pixel representing the height of the molten pool is the mass center of the image of the molten pool.
36. The system according to claim 25, wherein the pixel representing the height of the molten pool is determined by one of methods in which pixels corresponding to the longest row representing the image of the molten pool are selected as the height of the molten pool, or the center of an actual molten pool is obtained on the basis of a circular or an ellipse shape of the molten pool and pixels corresponding to the center are determined in the images.
37. A system for monitoring and controlling a height of a cladding layer in real time using image photographing and image processing in laser cladding and laser-aided direct metal manufacturing, comprising:
a laser generator for forming a molten pool on a surface of a specimen by irradiation of a laser beam;
a beam transmitting apparatus for transmitting the laser beam generated by the laser beam generator;
a beam condensing apparatus for condensing the beam transmitted through the beam transmitting apparatus;
a cladding material feeder for feeding cladding materials to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed by the beam condensing apparatus;
a transfer system for freely transferring a laser beam around a specimen fixed on an x and y-axes table to allow the laser cladding to be performed;
a Computer Aided Design/Computer Aided manufacturing (CAD/CAM) apparatus for generating shaping information such as a tool path on the basis of 3D CAD data and transmitting the shaping information;
an image photographing apparatus for obtaining an image of the molten pool in real time;
an image processing apparatus comprising a computer readable medium containing instructions to cause the image processing apparatus to determine a pixel representing height of the molten pool using the image of the molten pool obtained through the photographing to calculate an actual position and height of the molten pool in real time by using an actual physical height of a certain pixel and a variation value of the actual height per pixel corrected by using a standard specimen for which the height of a cladding layer is known; and
a control system comprising a computer readable medium containing instructions to cause the control system to control at least one process parameter affecting the height of the cladding layer in real time to control the height of the cladding layer to reach a target value by increasing a thickness of the cladding layer if the actual height of the molten pool is less than the target height value and by decreasing the thickness of the cladding layer whenever the actual height of the molten pool is greater than the target height value, to form a cladding layer having a shape and a thickness corresponding to 2D sectional information derived from the shaping information from the CAD/CAM apparatus, and thereby to correct overshooting of the actual height at all heights above the target height.
38. The system according to claim 37, wherein the cladding material, which is fed to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed in the beam condensing apparatus, is provided in the form of powder, a wire or ribbon.
39. The system according to claim 38, further comprising a powder-feeding nozzle for simultaneously supplying the cladding material powder supplied from the cladding material feeder to both the laser beam and the molten pool formed on the surface of the specimen if the cladding material is provided in the form of the powder.
40. The system according to claim 37, wherein the laser is one of CO2, Nd-YAG, and high-power diode laser.
41. The system according to claim 40, wherein an optical fiber is employed if the laser is Nd-YAG laser.
42. The system according to claim 37, wherein the image photographing apparatus includes a Neutral Density (ND) filter, a filter mounting fixture, a lens, and a Charge-Coupled Device (CCD) camera.
43. The system according to claim 37, wherein the image photographing apparatus includes a Neutral Density (ND) filter, a filter mounting fixture, a lens, and an infrared (IR) camera for rapidly obtaining the image of the molten pool.
44. The system according to claim 37, wherein the image photographing apparatus is positioned on an optical axis of the laser beam to observe the molten pool at an angle of 90−θ°.
45. The system according to claim 37, wherein the image photographing apparatus comprises plural image photographing sub-apparatuses so as to prevent the image of the molten pool from being observed to be different according to a transfer direction of a specimen or laser beam.
46. The system according to claim 37, wherein the system is applied to restoration, remodeling and repairing of a metallic product or mold.
47. The system according to claim 37, wherein the pixel representing the height of the molten pool is the mass center of the image of the molten pool.
48. The system according to claim 37, wherein the pixel representing the height of the molten pool is determined by one of methods in which pixels corresponding to the longest row representing the image of the molten pool are selected as the height of the molten pool, or the center of an actual molten pool is obtained on the basis of a circular or an ellipse shape of the molten pool and pixels corresponding to the center are determined in the images.
49. A system for monitoring and controlling the height of a cladding layer in real time using image photographing and image processing in laser cladding and laser-aided direct metal manufacturing, comprising:
a laser generator for forming a molten pool on a surface of a specimen by irradiation of a laser beam;
a beam transmitting apparatus for transmitting the laser beam generated by the laser beam generator;
a beam condensing apparatus for condensing the beam transmitted through the beam transmitting apparatus;
a cladding material feeder for feeding cladding materials to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed by the beam condensing apparatus;
a transfer system for keeping a focal distance of the laser beam constant in the process of cladding with the beam condensing apparatus positioned in a z-axis direction, and freely transferring both a specimen and the laser beam along a tool path around the laser beam to allow the laser cladding to be performed with the specimen fixed on an x and y-axes table;
a Computer Aided Design/Computer Aided manufacturing (CAD/CAM) apparatus for generating shaping information such as the tool path on the basis of 3D CAD data and transmitting the shaping information;
an image photographing apparatus for obtaining an image of the molten pool in real time;
an image processing apparatus comprising a computer readable medium containing instructions to cause the image processing apparatus to determine a pixel representing height of the molten pool using the image of the molten pool obtained through the photographing to calculate an actual position and height of the molten pool in real time by using an actual physical height of a certain pixel and a variation value of the actual height per pixel corrected by using a standard specimen for which the height of a cladding layer is known; and
a control system comprising a computer readable medium containing instructions to cause the control system to control at least one process parameter affecting the height of the cladding layer in real time to control the height of the cladding layer to reach a target value by increasing a thickness of the cladding layer if the actual height of the molten pool is less than the target height value and by decreasing the thickness of the cladding layer whenever the actual height of the molten pool is greater than the target height value, to form a cladding layer having a shape and a thickness corresponding to 2D sectional information derived from the shaping information from the CAD/CAM apparatus, and thereby to correct overshooting of the actual height at all heights above the target height.
50. The system according to claim 49, wherein the cladding material, which is fed to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed in the beam condensing apparatus, is provided in the form of powder, a wire or ribbon.
51. The system according to claim 50, further comprising a powder-feeding nozzle for simultaneously supplying the cladding material powder supplied from the cladding material feeder to both the laser beam and the molten pool formed on the surface of the specimen if the cladding material is provided in the form of the powder.
52. The system according to claim 49, wherein the laser is one of CO2, Nd-YAG, and high-power diode laser.
53. The system according to claim 52, wherein an optical fiber is employed if the laser is Nd-YAG laser.
54. The system according to claim 49, wherein the image photographing apparatus includes a Neutral Density (ND) filter, a filter mounting fixture, a lens, and a Charge-Coupled Device (CCD) camera.
55. The system according to claim 49, wherein the image photographing apparatus includes a Neutral Density (ND) filter, a filter mounting fixture, a lens, and an infrared (IR) camera for rapidly obtaining the image of the molten pool.
56. The system according to claim 49, wherein the image photographing apparatus is positioned on an optical axis of the laser beam to observe the molten pool at an angle of 90−θ°.
57. The system according to claim 49, wherein the image photographing apparatus comprises plural image photographing sub-apparatuses so as to prevent the image of the molten pool from being observed to be different according to a transfer direction of a specimen or laser beam.
58. The system according to claim 49, wherein the system is applied to restoration, remodeling and repairing of a metallic product or mold.
59. The system according to claim 49, wherein the pixel representing the height of the molten pool is the mass center of the image of the molten pool.
60. The system according to claim 49, wherein the pixel representing the height of the molten pool is determined by one of methods in which pixels corresponding to the longest row representing the image of the molten pool are selected as the height of the molten pool, or the center of an actual molten pool is obtained on the basis of a circular or an ellipse shape of the molten pool and pixels corresponding to the center are determined in the images.
61. A system for monitoring and controlling the height of a cladding layer in real time using image photographing and image processing in laser cladding and laser-aided direct metal manufacturing, comprising:
a laser generator for forming a molten pool on a surface of a specimen by irradiation of a laser beam;
a beam transmitting apparatus for transmitting the laser beam generated by the laser beam generator;
a beam condensing apparatus for condensing the beam transmitted through the beam transmitting apparatus;
a cladding material feeder for feeding a cladding material to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed by the beam condensing apparatus;
a transfer system using a three or more-axis transfer system or robot to increase a degree of freedom for performing laser cladding;
a Computer Aided Design/Computer Aided manufacturing (CAD/CAM) apparatus for generating shaping information such as the tool path on the basis of 3D CAD data and transmitting the shaping information;
an image photographing apparatus for obtaining an image of the molten pool in real time;
an image processing apparatus comprising a computer readable medium containing instructions to cause the image processing apparatus to determine a pixel representing height of the molten pool using the image of the molten pool obtained through the photographing to calculate an actual position and height of the molten pool in real time by using an actual physical height of a certain pixel and a variation value of the actual height per pixel corrected by using a standard specimen for which the height of a cladding layer is known; and
a control system comprising a computer readable medium containing instructions to cause the control system to control at least one process parameter affecting the height of the cladding layer in real time to control the height of the cladding layer to reach a target value by increasing a thickness of the cladding layer if the actual height of the molten pool is less than the target height value and by decreasing the thickness of the cladding layer whenever the actual height of the molten pool is greater than the target height value, to form a cladding layer having a shape and a thickness corresponding to 2D sectional information derived from the shaping information from the CAD/CAM apparatus, and thereby to correct overshooting of the actual height at all heights above the target height.
62. The system according to claim 61, wherein the cladding material, which is fed to the molten pool formed on the surface of the specimen by the irradiation of the laser beam condensed in the beam condensing apparatus, is provided in the form of powder, a wire or ribbon.
63. The system according to claim 62, further comprising a powder-feeding nozzle for simultaneously supplying the cladding material powder supplied from the cladding material feeder to both the laser beam and the molten pool formed on the surface of the specimen if the cladding material is provided in the form of the powder.
64. The system according to claim 61, wherein the laser is one of CO2, Nd-YAG, and high-power diode laser.
65. The system according to claim 64, wherein an optical fiber is employed if the laser is Nd-YAG laser.
66. The system according to claim 61, wherein the image photographing apparatus includes a Neutral Density (ND) filter, a filter mounting fixture, a lens, and a Charge-Coupled Device (CCD) camera.
67. The system according to claim 61, wherein the image photographing apparatus includes a Neutral Density (ND) filter, a filter mounting fixture, a lens, and an infrared (IR) camera for rapidly obtaining the image of the molten pool.
68. The system according to claim 61, wherein the image photographing apparatus is positioned on an optical axis of the laser beam to observe the molten pool at an angle of 90−θ°.
69. The system according to claim 61, wherein the image photographing apparatus comprises plural image photographing sub-apparatuses so as to prevent the image of the molten pool from being observed to be different according to a transfer direction of a specimen or laser beam.
70. The system according to claim 61, wherein the system is applied to restoration, remodeling and repairing of a metallic product or mold.
71. The system according to claim 61, wherein the pixel representing the height of the molten pool is the mass center of the image of the molten pool.
72. The system according to claim 61, wherein the pixel representing the height of the molten pool is determined by one of methods in which pixels corresponding to the longest row representing the image of the molten pool are selected as the height of the molten pool, or the center of an actual molten pool is obtained on the basis of a circular or an ellipse shape of the molten pool and pixels corresponding to the center are determined in the images.
US12/217,317 2001-11-17 2008-07-03 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process Abandoned US20090024243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/217,317 US20090024243A1 (en) 2001-11-17 2008-07-03 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/495,185 US7423236B2 (en) 2001-11-17 2001-11-17 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process
PCT/KR2001/001970 WO2003042895A1 (en) 2001-11-17 2001-11-17 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process
US12/217,317 US20090024243A1 (en) 2001-11-17 2008-07-03 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2001/001970 Continuation WO2003042895A1 (en) 2001-11-17 2001-11-17 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process
US10/495,185 Continuation US7423236B2 (en) 2001-11-17 2001-11-17 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process

Publications (1)

Publication Number Publication Date
US20090024243A1 true US20090024243A1 (en) 2009-01-22

Family

ID=19198481

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/495,185 Expired - Lifetime US7423236B2 (en) 2001-11-17 2001-11-17 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process
US12/217,317 Abandoned US20090024243A1 (en) 2001-11-17 2008-07-03 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/495,185 Expired - Lifetime US7423236B2 (en) 2001-11-17 2001-11-17 Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process

Country Status (6)

Country Link
US (2) US7423236B2 (en)
JP (1) JP4556160B2 (en)
CN (1) CN100552685C (en)
CA (1) CA2467221C (en)
IL (2) IL161794A0 (en)
WO (1) WO2003042895A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150024233A1 (en) * 2013-07-19 2015-01-22 The Boeing Company Quality control of additive manufactured parts
US20150061170A1 (en) * 2013-09-02 2015-03-05 Thomas Engel Method and arrangement for producing a workpiece by using additive manufacturing techniques
US9169567B2 (en) 2012-03-30 2015-10-27 General Electric Company Components having tab members
JP2015535746A (en) * 2012-09-12 2015-12-17 シーメンス エナジー インコーポレイテッド Method for automated superalloy laser cladding with three-dimensional imaging weld path control
US20160193790A1 (en) * 2015-01-06 2016-07-07 Rolls-Royce Corporation Neuro-fuzzy logic for controlling material addition processes
US9587632B2 (en) 2012-03-30 2017-03-07 General Electric Company Thermally-controlled component and thermal control process
US9671030B2 (en) 2012-03-30 2017-06-06 General Electric Company Metallic seal assembly, turbine component, and method of regulating airflow in turbo-machinery
WO2020114833A1 (en) * 2018-12-04 2020-06-11 Trumpf Laser- Und Systemtechnik Gmbh Controlled powder deposit welding method
US11629412B2 (en) 2020-12-16 2023-04-18 Rolls-Royce Corporation Cold spray deposited masking layer

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482576B1 (en) * 2000-08-08 2002-11-19 Micron Technology, Inc. Surface smoothing of stereolithographically formed 3-D objects
US6607689B1 (en) 2000-08-29 2003-08-19 Micron Technology, Inc. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
KR101056487B1 (en) * 2002-08-28 2011-08-11 더 피.오.엠. 그룹 Components for Multi-Layer DMDM Process Geometric Independent Real-Time Closed-Loop Weld Pool Temperature Control System
US20040148048A1 (en) * 2002-11-11 2004-07-29 Farnworth Warren M. Methods for recognizing features as one or more objects are being fabricated by programmed material consolidation techniques
US7009137B2 (en) * 2003-03-27 2006-03-07 Honeywell International, Inc. Laser powder fusion repair of Z-notches with nickel based superalloy powder
US20050058837A1 (en) * 2003-09-16 2005-03-17 Farnworth Warren M. Processes for facilitating removal of stereolithographically fabricated objects from platens of stereolithographic fabrication equipment, object release elements for effecting such processes, systems and fabrication processes employing the object release elements, and objects which have been fabricated using the object release elements
US20050172894A1 (en) * 2004-02-10 2005-08-11 Farnworth Warren M. Selective deposition system and method for initiating deposition at a defined starting surface
US7216009B2 (en) * 2004-06-14 2007-05-08 Micron Technology, Inc. Machine vision systems for use with programmable material consolidation system and associated methods and structures
US7951412B2 (en) * 2006-06-07 2011-05-31 Medicinelodge Inc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces
WO2007147221A1 (en) * 2006-06-20 2007-12-27 Katholieke Universiteit Leuven Procedure and apparatus for in-situ monitoring and feedback control of selective laser powder processing
US20080288318A1 (en) * 2007-04-17 2008-11-20 Smart Tram Corp. Smart tram system and method for using
US20080314878A1 (en) * 2007-06-22 2008-12-25 General Electric Company Apparatus and method for controlling a machining system
US8076607B2 (en) * 2007-06-27 2011-12-13 Ross Technology Corporation Method and apparatus for depositing raised features at select locations on a substrate to produce a slip-resistant surface
US8699667B2 (en) * 2007-10-02 2014-04-15 General Electric Company Apparatus for x-ray generation and method of making same
US9352420B2 (en) 2007-10-10 2016-05-31 Ronald Peter Whitfield Laser cladding device with an improved zozzle
US8800480B2 (en) 2007-10-10 2014-08-12 Ronald Peter Whitfield Laser cladding device with an improved nozzle
US8117985B2 (en) 2007-10-10 2012-02-21 Ronald Peter Whitfield Laser cladding device with an improved nozzle
NL2001869C2 (en) * 2008-08-01 2010-02-02 Stichting Materials Innovation Cylinder head with valve seat and method for manufacturing them.
EP2424707B2 (en) 2009-04-28 2021-09-29 BAE Systems PLC Additive layer fabrication method
EP2319641B1 (en) 2009-10-30 2017-07-19 Ansaldo Energia IP UK Limited Method to apply multiple materials with selective laser melting on a 3D article
US8546724B2 (en) * 2010-01-26 2013-10-01 King Fahd University Of Petroleum & Minerals Apparatus and method for controlling laser cutting through surface plasma monitoring
DE202010010771U1 (en) 2010-07-28 2011-11-14 Cl Schutzrechtsverwaltungs Gmbh Laser melting apparatus for producing a three-dimensional component
JP5672480B2 (en) * 2010-08-30 2015-02-18 スズキ株式会社 Apparatus and method for determining shape of terminal end of bead
CN102117045A (en) * 2011-01-07 2011-07-06 西安交通大学 Device and method for carrying out online measurement to height of a molten pool by utilizing optical method
CN102768023B (en) * 2011-05-06 2015-06-10 清华大学 System and method for measuring casting pouring and mold filling
JP2013119098A (en) * 2011-12-07 2013-06-17 Hitachi Ltd Laser beam build-up welding device and laser beam build-up welding method
US9272365B2 (en) 2012-09-12 2016-03-01 Siemens Energy, Inc. Superalloy laser cladding with surface topology energy transfer compensation
US9289854B2 (en) 2012-09-12 2016-03-22 Siemens Energy, Inc. Automated superalloy laser cladding with 3D imaging weld path control
JP6064519B2 (en) * 2012-10-29 2017-01-25 三星ダイヤモンド工業株式会社 Laser processing apparatus and processing condition setting method for patterned substrate
CN103100792B (en) * 2013-03-12 2015-04-22 合肥知常光电科技有限公司 Laser preprocessing and restoring method and device having on-line detection function and used for optical elements
EP2981402B1 (en) 2013-04-04 2021-06-02 Global Filtration Systems, A DBA of Gulf Filtration Systems Inc. Method for forming three-dimensional objects using linear solidification with travel axis correction and power control
CN103276391B (en) * 2013-06-05 2016-04-27 上海电气电站设备有限公司 The manufacture method of a kind of final blades are water-fast erosion resisting coating
US10821508B2 (en) 2013-08-15 2020-11-03 General Electric Company System and methods for enhancing the build parameters of a component
CN103983203B (en) * 2014-05-29 2017-12-15 苏州大学 A kind of laser melting coating molten bath defocus measuring device and its measuring method
JP6840540B2 (en) 2014-11-14 2021-03-10 株式会社ニコン Modeling equipment
CN111687415A (en) 2014-11-14 2020-09-22 株式会社尼康 Molding apparatus and molding method
CN105043991A (en) * 2015-06-08 2015-11-11 山东雅百特科技有限公司 Intelligent metal structure monitoring system
US10889098B2 (en) * 2016-04-15 2021-01-12 Machine Tool Technologies Research Foundation Method, data processing device, and machine tool for generating dimensional tool paths and control signals for material dispositioning
US11325207B2 (en) * 2017-01-20 2022-05-10 General Electric Company Systems and methods for additive manufacturing
WO2018200628A1 (en) * 2017-04-25 2018-11-01 W. Mark Bielawski System for selective laser sintering
CN107377529B (en) * 2017-06-27 2023-08-01 武汉锐科光纤激光技术股份有限公司 Laser cleaning control system
US10163248B1 (en) * 2017-08-02 2018-12-25 Microtek International Inc. Image processing method and scanning system using the same
US10710307B2 (en) * 2017-08-11 2020-07-14 Applied Materials, Inc. Temperature control for additive manufacturing
GB201804215D0 (en) * 2018-03-16 2018-05-02 Rolls Royce Plc Applying a cladding layer to a component
CN109128824A (en) * 2018-04-28 2019-01-04 山东雷石智能制造股份有限公司 A kind of five axis hybrid process equipment and processing method of the increase and decrease material one based on Dynamic parameter adjustment
DE102018213675A1 (en) * 2018-08-14 2020-02-20 Eos Gmbh Electro Optical Systems Additive manufacturing device and associated additive manufacturing process
WO2020095454A1 (en) * 2018-11-09 2020-05-14 三菱電機株式会社 Layering/molding device
US20220088683A1 (en) * 2019-02-11 2022-03-24 The Regents Of The University Of Michigan Method of online stress measurement residual during laser additive manufacturing
JP2020190226A (en) * 2019-05-22 2020-11-26 株式会社荏原製作所 Pump, method for repairing pump and information processing device
DE112019007607T5 (en) * 2019-08-07 2022-05-05 Mitsubishi Electric Corporation ADDITIVE MANUFACTURING DEVICE, ADDITIVE MANUFACTURING METHOD AND ADDITIVE MANUFACTURING PROGRAM
US11225027B2 (en) 2019-10-29 2022-01-18 Applied Materials, Inc. Melt pool monitoring in multi-laser systems
WO2021095096A1 (en) * 2019-11-11 2021-05-20 三菱電機株式会社 Additive fabrication device
CN112981388B (en) * 2019-12-13 2023-04-11 上海智殷自动化科技有限公司 Robot laser cladding process treatment method
WO2021150248A1 (en) * 2020-01-24 2021-07-29 Hewlett-Packard Development Company, L.P. Energy source setting
CN111266577B (en) * 2020-02-11 2021-10-01 山东水利职业学院 3D printing quality computer online monitoring method
CN111428341B (en) * 2020-02-24 2024-01-09 季华实验室 Laser cladding method, device and computer readable storage medium
JP2021159922A (en) * 2020-03-30 2021-10-11 三菱重工工作機械株式会社 Three-dimensional lamination apparatus, control method, and program
EP3900857A1 (en) * 2020-04-21 2021-10-27 Siemens Aktiengesellschaft Determination of a radiation intensity and / or a wavelength of a process light
JP7047864B2 (en) * 2020-06-22 2022-04-05 株式会社ニコン Modeling equipment and modeling method
CN111798477B (en) * 2020-06-23 2023-08-04 西安航天精密机电研究所 Molten pool monitoring method based on visual technology
CN111800611B (en) * 2020-07-02 2021-12-31 上海新研工业设备股份有限公司 On-line stream inoculation machine detection device and detection method and application
CN111843215B (en) * 2020-07-03 2021-11-09 武汉大学 Electric arc additive manufacturing method, equipment and product of high-strength aluminum alloy component
CN112643058A (en) * 2020-12-01 2021-04-13 上海航天设备制造总厂有限公司 Laser deposition forming process monitoring device and double closed-loop control method
CN113981434B (en) * 2021-09-06 2023-12-08 武汉科技大学 Device and method for adaptively regulating and controlling laser cladding forming angle of circular inclined thin-wall part
CN113909501B (en) * 2021-09-23 2023-07-25 沈阳精合数控科技开发有限公司 Thickness monitoring device and adjusting method of laser deposition layer and laser deposition equipment
CN114226757B (en) * 2021-12-14 2023-04-11 上海交通大学 Laser DED manufacturing control system and method fusing temperature and image information
CN114985766B (en) * 2022-03-16 2023-06-27 南京辉锐光电科技有限公司 Part machining method and part machining system
US20230349299A1 (en) * 2022-04-28 2023-11-02 Hamilton Sundstrand Corporation Additively manufactures multi-metallic adaptive or abradable rotor tip seals
CN115383140B (en) * 2022-08-24 2024-02-23 上海交通大学 System and method for monitoring deposition state of blue laser melting deposition aluminum alloy material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764655A (en) * 1987-08-31 1988-08-16 General Electric Company Real-time laser beam diameter determination in a laser-materials processing system
US5517420A (en) * 1993-10-22 1996-05-14 Powerlasers Ltd. Method and apparatus for real-time control of laser processing of materials
US5715270A (en) * 1996-09-27 1998-02-03 Mcdonnell Douglas Corporation High efficiency, high power direct diode laser systems and methods therefor
US5895581A (en) * 1997-04-03 1999-04-20 J.G. Systems Inc. Laser imaging of printed circuit patterns without using phototools
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
US6144008A (en) * 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US6518541B1 (en) * 1999-11-16 2003-02-11 Joseph K. Kelly Duty cycle stabilization in direct metal deposition (DMD) systems
US6925346B1 (en) * 1998-06-30 2005-08-02 Jyoti Mazumder Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition
US6940037B1 (en) * 2003-08-25 2005-09-06 Southern Methodist University System and method for controlling welding parameters in welding-based deposition processes
US7043330B2 (en) * 2002-10-31 2006-05-09 Ehsan Toyserkani System and method for closed-loop control of laser cladding by powder injection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104692A (en) * 1985-11-01 1987-05-15 Fuji Electric Corp Res & Dev Ltd Laser beam device
JPH04210886A (en) * 1990-08-03 1992-07-31 Komatsu Ltd Laser beam cladding method
JP3142401B2 (en) * 1992-10-16 2001-03-07 トヨタ自動車株式会社 Laser clad processing abnormality judgment method
JPH081361A (en) * 1994-06-17 1996-01-09 Ishikawajima Harima Heavy Ind Co Ltd Laser beam cladding device and its method for controlling position of irradiation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764655A (en) * 1987-08-31 1988-08-16 General Electric Company Real-time laser beam diameter determination in a laser-materials processing system
US5517420A (en) * 1993-10-22 1996-05-14 Powerlasers Ltd. Method and apparatus for real-time control of laser processing of materials
US5659479A (en) * 1993-10-22 1997-08-19 Powerlasers Ltd. Method and apparatus for real-time control of laser processing of materials
US5715270A (en) * 1996-09-27 1998-02-03 Mcdonnell Douglas Corporation High efficiency, high power direct diode laser systems and methods therefor
US6144008A (en) * 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US5895581A (en) * 1997-04-03 1999-04-20 J.G. Systems Inc. Laser imaging of printed circuit patterns without using phototools
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
US6925346B1 (en) * 1998-06-30 2005-08-02 Jyoti Mazumder Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition
US6518541B1 (en) * 1999-11-16 2003-02-11 Joseph K. Kelly Duty cycle stabilization in direct metal deposition (DMD) systems
US7043330B2 (en) * 2002-10-31 2006-05-09 Ehsan Toyserkani System and method for closed-loop control of laser cladding by powder injection
US6940037B1 (en) * 2003-08-25 2005-09-06 Southern Methodist University System and method for controlling welding parameters in welding-based deposition processes

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9587632B2 (en) 2012-03-30 2017-03-07 General Electric Company Thermally-controlled component and thermal control process
US9671030B2 (en) 2012-03-30 2017-06-06 General Electric Company Metallic seal assembly, turbine component, and method of regulating airflow in turbo-machinery
US9169567B2 (en) 2012-03-30 2015-10-27 General Electric Company Components having tab members
JP2015535746A (en) * 2012-09-12 2015-12-17 シーメンス エナジー インコーポレイテッド Method for automated superalloy laser cladding with three-dimensional imaging weld path control
US20150024233A1 (en) * 2013-07-19 2015-01-22 The Boeing Company Quality control of additive manufactured parts
US10183329B2 (en) * 2013-07-19 2019-01-22 The Boeing Company Quality control of additive manufactured parts
US20150061170A1 (en) * 2013-09-02 2015-03-05 Thomas Engel Method and arrangement for producing a workpiece by using additive manufacturing techniques
US10220566B2 (en) * 2013-09-02 2019-03-05 Carl Zeiss Industrielle Messtechnik Gmbh Method and arrangement for producing a workpiece by using additive manufacturing techniques
US10532513B2 (en) 2013-09-02 2020-01-14 Carl Zeiss Industrielle Messtechnik Gmbh Method and arrangement for producing a workpiece by using additive manufacturing techniques
US11104064B2 (en) 2013-09-02 2021-08-31 Carl Zeiss Industrielle Messtechnik Gmbh Method and arrangement for producing a workpiece by using additive manufacturing techniques
US11813791B2 (en) 2013-09-02 2023-11-14 Carl Zeiss Industrielle Messtechnik Gmbh Method and system for producing a workpiece using additive manufacturing techniques
US20160193790A1 (en) * 2015-01-06 2016-07-07 Rolls-Royce Corporation Neuro-fuzzy logic for controlling material addition processes
US10406760B2 (en) * 2015-01-06 2019-09-10 Rolls-Royce Corporation Neuro-fuzzy logic for controlling material addition processes
WO2020114833A1 (en) * 2018-12-04 2020-06-11 Trumpf Laser- Und Systemtechnik Gmbh Controlled powder deposit welding method
US11629412B2 (en) 2020-12-16 2023-04-18 Rolls-Royce Corporation Cold spray deposited masking layer

Also Published As

Publication number Publication date
CN100552685C (en) 2009-10-21
CA2467221C (en) 2010-07-20
CA2467221A1 (en) 2003-05-22
US20040251242A1 (en) 2004-12-16
US7423236B2 (en) 2008-09-09
JP2005509523A (en) 2005-04-14
WO2003042895A1 (en) 2003-05-22
JP4556160B2 (en) 2010-10-06
CN1582451A (en) 2005-02-16
IL161794A (en) 2010-03-28
IL161794A0 (en) 2005-11-20

Similar Documents

Publication Publication Date Title
US7423236B2 (en) Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process
US6605795B1 (en) Control system for depositing powder to a molten puddle
CN106984813B (en) A kind of melt-processed process coaxial monitoring method and device in selective laser
AU754346B2 (en) Apparatus and methods for laser cladding
KR100419369B1 (en) Real-time Monitoring and Controlling Method of a Height of Deposit in Laser Cladding and Laser-aided Direct Metal Manufacturing by using Image Photographing and Image Processing and System thereof
US10831180B2 (en) Multivariate statistical process control of laser powder bed additive manufacturing
KR101056487B1 (en) Components for Multi-Layer DMDM Process Geometric Independent Real-Time Closed-Loop Weld Pool Temperature Control System
CA2504368C (en) System and method for closed-loop control of laser cladding by powder injection
CN101694582B (en) Method and system for monitoring and controlling deposition height in real time
US6410105B1 (en) Production of overhang, undercut, and cavity structures using direct metal depostion
JP6923268B2 (en) Error detection method in molten pool monitoring system and addition manufacturing process
Hu et al. Improving solid freeform fabrication by laser-based additive manufacturing
CN207026479U (en) A kind of melt-processed process coaxial monitoring device in selective laser
KR102051265B1 (en) Apparatus for manufacturing amorphous metal using 3d printer and amorphous metal
JP6921920B2 (en) Error detection method in molten pool monitoring system and multi-laser addition manufacturing process
CN113172240A (en) 3D printing system and method based on selective laser melting
Boddu et al. System integration and real-time control architecture of a laser aided manufacturing process
Musti DSP processor based vision processing and system integration for control of laser aided manufacturing process (LAMP)
Xing et al. Intelligent Metal Powder Laser Forming System
Hu et al. Solid freeform fabrication of metal parts by 3d laser cladding
Kmecko et al. Machine Vision Based Control of Gas Tungsten Arc Welding for Rapid Prototyping 578

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION