Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20090071453 A1
Publication typeApplication
Application numberUS 11/855,439
Publication dateMar 19, 2009
Filing dateSep 14, 2007
Priority dateSep 14, 2007
Also published asCN101387229A, CN101387229B, US8181636, US20090260606
Publication number11855439, 855439, US 2009/0071453 A1, US 2009/071453 A1, US 20090071453 A1, US 20090071453A1, US 2009071453 A1, US 2009071453A1, US-A1-20090071453, US-A1-2009071453, US2009/0071453A1, US2009/071453A1, US20090071453 A1, US20090071453A1, US2009071453 A1, US2009071453A1
InventorsWilliam Francis Stockhausen, Diana Dawn Brehob
Original AssigneeWilliam Francis Stockhausen, Diana Dawn Brehob
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Bi-fuel Engine Using Hydrogen
US 20090071453 A1
Abstract
A method is disclosed for making a transition from fueling an engine with hydrogen to another fuel. That other fuel may be gasoline, a gasoline and alcohol mixture, or gaseous fuels, as examples. The other fuel has the capability of providing higher BMEP than the hydrogen because of better air utilization and because the other fuel occupies less volume of the combustion chamber. Because a desirable equivalence ratio to burn hydrogen is at 0.5 or less and a desirable equivalence ratio to burn other fuel is at 1.0, when a demand for BMEP that leads to a transition change from hydrogen fuel to the other fuel, the amount of air supplied to the engine is decreased to provide more torque and vice versa. During a transition in which liquid fuel supply is initiated, it may desirable to continue to provide some hydrogen, not leaner than 0.1 hydrogen equivalence ratio.
Images(5)
Previous page
Next page
Claims(22)
1. A method to transition from a first to a second operating mode in an internal combustion engine, comprising:
decreasing air supply substantially, said decrease starting at transition initiation; decreasing an amount of a first fuel supplied to the engine at transition initiation;
initiating supply of a second fuel to the engine at transition initiation; and increasing supply of the second fuel abruptly in an amount to cause equivalence ratio to increase abruptly to 1.0 wherein the increasing is performed in response to equivalence ratio exceeding a threshold equivalence ratio.
2. The method of claim 1 wherein said first fuel is substantially 100% hydrogen and said second fuel is primarily comprised of hydrocarbons.
3. The method of claim 1, further comprising:
decreasing continually a supplied amount of said first fuel during said transition wherein at termination of said transition said first fuel is no longer being supplied to the engine; and.
4. The method of claim 1 wherein said second fuel is a liquid fuel.
5. The method of claim 1 wherein said first fuel is hydrogen and said transition is initiated in response to a demand for a torque increase when said equivalence ratio is roughly 0.5.
6. The method of claim 1 wherein said threshold equivalence ratio is about 0.85.
7. The method of claim 1 wherein said air supply is decreased by 30-60% during the transition.
8. The method of claim 1 wherein the transition is initiated in response to engine piston speed exceeding a threshold.
9. The method of claim 1 wherein said transition is initiated in response to BMEP demand exceeding a threshold.
10. A method to transition between two operating modes in an internal combustion engine, comprising:
conducting the transition in a transition initiation phase followed by a transition completion phase wherein an equivalence ratio of 1.0 is maintained during the transition initiation phase and equivalence ratio decreases during the transition completion phase;
the transition initiation phase comprising:
increasing air supply;
initiating supply of a first fuel, hydrogen, to the engine; and
decreasing supply of a second fuel to the engine; and
the transition completion phase comprising further decreasing supply of the second fuel abruptly in an amount to cause equivalence ratio to decrease abruptly to an equivalence ratio below a threshold equivalence ratio.
11. The method of claim 10 wherein said transition is initiated in response to a demand for a torque decrease below a threshold BMEP.
12-13. (canceled)
14. The method of claim 10 wherein the equivalence ratio threshold is about 0.85.
15. The method of claim 10 wherein said supply of hydrogen to the engine during the transition termination phase causes the equivalence ratio with respect to only the hydrogen fuel to be at least 0.1.
16. The method of claim 10 wherein said second fuel is a liquid fuel.
17. A method to transition from a first to a second operating mode in an internal combustion engine, comprising:
conducting the transition in a transition initiation phase followed by a transition completion phase with an equivalence ratio of 1.0 being maintained during the transition completion phase and maintaining an equivalence ratio less than a threshold equivalence ratio being maintained during the transition initiation phase wherein said threshold equivalence ratio is an equivalence ratio at which NOx production exceeds a corresponding threshold;
the transition initiation phase comprising:
decreasing air supply to the engine;
decreasing an amount of hydrogen supplied to the engine; and
initiating supply of a liquid fuel to the engine; and the transition completion phase comprising:
abruptly increasing supply of the liquid fuel; and
decreasing supply of hydrogen continually through the transition completion phase.
18. The method of claim 17 wherein said transition is initiated based on a demand for increased BMEP that causes said hydrogen equivalence ratio to exceed about 0.5.
19. The method of claim 17 wherein the equivalence ratio threshold is about 0.85.
20. The method of claim 17 wherein said transition is initiated in response to BMEP demand exceeding a threshold.
21. A method for controlling an internal combustion engine during transitions between hydrogen fuel and a hydrocarbon fuel, the method comprising:
supplying hydrocarbon fuel to the engine in an amount to produce an equivalence ratio that is either below a first threshold equivalence ratio or above a second equivalence ratio.
22. The method of claim 21 wherein the first and second equivalence ratios correspond to equivalence ratios associated with NOx production exceeding a predetermined NOx threshold.
23. The method of claim 21 wherein the first equivalence ratio threshold is about 0.85 and the second equivalence ratio threshold is 1.0.
Description
FIELD OF THE INVENTION

A method to operate an internal combustion engine which is supplied with both hydrogen fuel and another fuel is disclosed.

BACKGROUND

Because of concerns about greenhouse gases that are emitted from carbon-containing fuels, such as gasoline, diesel, and alcohol fuels, there is keen interest in fueling motor vehicles with hydrogen, which produces water upon combustion. Hydrogen-fueled internal-combustion engines suffer from a low power output compared to gasoline or diesel powered engines due to hydrogen being a gaseous fuel which takes up much of the volume in the cylinder, particularly when compared to dense fuels like gasoline or diesel fuel. Furthermore, hydrogen combustion is limited to operating at an equivalence ratio of about 0.5 or less due to increasing combustion harshness and, if it is a concern, rapidly increasing NOx emission. An equivalence ratio of one is a stoichiometric ratio meaning that the proportion of fuel to air is such that all the oxygen and fuel could burn completely. An equivalence ratio of 0.5 is a lean ratio in which the amount of air supplied is double that needed to completely consume the fuel. Such a limit in equivalence ratio results in about half the fuel delivery as could be consumed by the amount of air in the chamber, and consequently about half of the torque developed by the engine than if at a stoichiometric proportion.

Equivalence ratio is defined as the mixture's fuel to air ratio (by mass) divided by the fuel to air ratio for a stoichiometric mixture. A stoichiometric mixture has an equivalence ratio of 1.0; lean mixtures are less than 1.0; and, rich mixtures are greater than 1.0.

SUMMARY OF THE INVENTION

The inventors of the present invention have recognized that by operating on two fuels: hydrogen and gasoline, as an example, the engine could be operated on hydrogen at low torque levels and on gasoline at higher torque levels. Hydrogen combusts readily at very lean equivalence ratios and is well suited to burning robustly at very low torques with at most, a minimum of throttling. Gasoline is well suited to providing high torque because of its high energy density and ability to operate at stoichiometric. The inventors of the present invention propose a bifuel engine in which transitions are made between operating on hydrogen and another fuel.

The high torque fuel can be a hydrocarbon, such as natural gas, propane, gasoline, or alcohols, such as methanol or ethanol. Furthermore, combinations of the gaseous fuel or combinations of the liquid fuels may also be used, such as E85, a mixture of 85% ethanol with 15% gasoline. High torque fuels contain carbon, which upon combustion reacts to form carbon dioxide, a greenhouse gas. Because hydrogen produces only water as the product of combustion, it does not form a greenhouse gas. Thus, it is desirable to operate on hydrogen when possible and using the carbon containing fuels as needed to provide the desired torque.

A normalized engine torque commonly used by one skilled in the art is BMEP, brake mean effective pressure, which for 4-stroke engines is 2*P/(V*N), where P is brake power, V is displaced volume, and N is engine rpm.

A method for making a transition from a first to a second operating mode is disclosed in which the air supply is decreased, supply of a first fuel is decreased, and supply of a second fuel is initiated at the start of the transition. The first fuel is substantially 100% hydrogen and the second fuel is primarily comprised of hydrocarbons, gasoline or gasoline and alcohol mixtures, as examples. Alternatively, the second fuel is a gaseous hydrocarbon. During the transition, the amount of hydrogen is continuously decreased s that at termination of the transition, hydrogen is no longer being supplied to the engine. Concurrently, the amount of the second fuel is increased during the transition in coordination with the decrease of hydrogen. The transition is initiated when a demand for torque causes the equivalence ratio of hydrogen fuel to exceed a threshold, which threshold is approximately 0.5. The air supply decrease is accomplished by closing the engine's throttle valve with the air supply decrease being in the range of 30-60% during the transition. In one embodiment, the transition is further initiated in response to the engine piston speed exceeding a threshold. Engine piston speed is computed as 2*S*N, where S is stroke and N is engine rpm. The piston speed is not constant through the revolution; the piston speed computed here is average piston speed.

Also disclosed is a method to transition between two operating modes in an internal combustion engine in which air supply is increased substantially, supply of hydrogen is initiated and supply of a second fuel is decreased, all occurring roughly at the initiation of the transition. The transition is initiated in response to a demand for a torque decrease below a threshold BMEP: that BMEP being 3.5 to 5 bar for a naturally aspirated engine and between 6 and 8 bar for a pressure charged engine. During the transition, air supply increases in the range of 30-60%. The supply of hydrogen to the engine upon transition initiation causes the equivalence ratio with respect to only the hydrogen fuel to be at least 0.1.

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages described herein will be more fully understood by reading an example of an embodiment in which the invention is used to advantage, referred to herein as the Detailed Description, with reference to the drawings, wherein:

FIG. 1 is a schematic of an engine having two fuel supplies;

FIGS. 2 a-b show engine operating maps of BMEP and piston speed, showing operating zones for two fuels;

FIG. 3 shows an engine operating map of BMEP and catalyst temperature, showing operating zones for two fuels; and

FIGS. 4 and 5 show timelines of transitions from hydrogen to gasoline.

DETAILED DESCRIPTION

A 4-cylinder internal combustion engine 10 is shown, by way of example, in FIG. 1. Engine 10 is supplied air through intake manifold 12 and discharges spent gases through exhaust manifold 14. An intake duct upstream of the intake manifold 12 contains a throttle valve 32 which, when actuated, controls the amount of airflow to engine 10. Sensors 34 and 36 installed in intake manifold 12 measure air temperature and mass air flow (MAF), respectively. Sensor 31, located in intake manifold 14 downstream of throttle valve 32, is a manifold absolute pressure (MAP) sensor. A partially closed throttle valve 32 causes a pressure depression in intake manifold 12 compared to the pressure on the upstream side of throttle valve 32. When a pressure depression exists in intake manifold 12, exhaust gases are caused to flow through exhaust gas recirculation (EGR) duct 19, which connects exhaust manifold 14 to intake manifold 12. Within EGR duct 19 is EGR valve 18, which is actuated to control EGR flow. Hydrogen fuel is supplied to engine 10 by fuel injectors 30, injecting directly into cylinders 16, and port injectors 26 injecting a liquid fuel into intake manifold 12. This arrangement is shown by way of example and is not intended to be limiting. In other embodiments include having port injectors 26 supplying hydrogen fuel and direct injectors 30 supplying liquid fuel. Alternatively, both fuels are supplied through direct fuel injectors. In yet another embodiment both fuels are supplied by port injectors. The fuel other than hydrogen, in another embodiment, is a gaseous hydrocarbon fuel such as methane. Each cylinder 16 of engine 10 contains a spark plug 28. The crankshaft (not shown) of engine 10 is coupled to a toothed wheel 20. Sensor 22, placed proximately to toothed wheel 20, detects engine 10 rotation. Other methods for detecting crankshaft position may alternatively be employed.

In one embodiment, the engine is pressure charged by a compressor 58 in the engine intake. By increasing the density of air supplied to engine 10, more fuel can be supplied at the same equivalence ratio. By doing so, engine 10 develops more power. Compressor 58 can be a supercharger which is typically driven off the engine. Alternatively, compressor 58 is connected via a shaft with a turbine 56 disposed in the engine exhaust. Turbine 56, as shown in FIG. 1, is a variable geometry turbine; but, may be, in an alternative embodiment, a non-variable device. In another embodiment, the engine is naturally aspirated, in which embodiment elements 56 and 58 are omitted. Downstream of turbine 56 is three-way catalyst 66. Three-way catalyst 66 can alternatively be place upstream of turbine 56 for faster light-off. Alternatively, catalyst 66 is a lean NOx trap or lean NOx catalyst having the capability to reduce NOx at a lean equivalence ratio.

Two fuel tanks, 60 and 64, supply the two fuels. In the embodiment shown in FIG. 1, tank 60 contains liquid fuel and tank 64 contains hydrogen. However, as described above, the inventors of the present invention contemplate a variety of possible fuel combinations, with the appropriate fuel storage container included. In tank fuel pump 62 pressurizes liquid fuel. Fuel tank 64 is under high pressure. Typically, no pressurization is required, but a pressure regulator may be used.

It is known in the prior art to make transitions between engine operating modes. For example, in stratified charge gasoline engines, transitions between lean, stratified to premixed, stoichiometric operation are known to pose a challenge because the equivalence ratio changes from lean to rich abruptly, with the fuel remaining constant. In the present invention, the equivalence ratio also changes abruptly when switching fuels because the best combination of hydrogen operating characteristics are achieved at an equivalence ratio less than 0.5; whereas, desirable fuel and emission operating characteristics are achieved with other fuels (hydrocarbons, alcohols, etc.) at an equivalence ratio of 1.0. Fuel transitions can be accomplished in a single cycle, whereas air lags thereby causing challenges during the transitions. The present invention differs from prior art transitions in stratified charge engines because in the present invention the fuel changes as well as the equivalence ratio.

It is known in the prior art to operate bi-fuel engines in which transitions are made between two fuels, such as between gasoline and propane or between gasoline and ethanol. However, most known fuels (gaseous hydrocarbons, liquid hydrocarbons, and alcohols) have a narrow range of flammability, equivalence ratio (roughly 0.65 lean limit and 1.7 rich limit) compared with hydrogen fuel (roughly 0.10 lean limit and 3 rich limit). Because most fuels cannot combust robustly at very lean equivalence ratios, their stable, lean operation occurs in a region in which high NOx is produced. Thus, most fuels, except hydrogen, are operated at stoichiometric, i.e., equivalence ratio of 1. Because very lean mixtures of hydrogen combust robustly, the amount of NOx produced is small allowing such lean operation without a great emission concern. Even though hydrogen can be combusted in a wide range of equivalence ratios, in an internal combustion engine, it is used in the 0.15 to 0.5 equivalence ratio range because when operating richer than 0.5 equivalence ratio harsh combustion and autoignition of the hydrogen results, conditions which are to be avoided. Thus, a bi-fuel engine, in which one of the two fuels is hydrogen, when making a transition from hydrogen to gasoline, a switch from an equivalence ratio of about 0.5, or leaner, to 1.0 occurs.

In summary, the present invention distinguishes between the prior art transitions between stratified, lean operation and stoichiometric operation, as discussed above, in that both a transition in equivalence ratio and fuel type occurs. The present invention distinguishes between the prior art bi-fuel transition because when one of the fuels is hydrogen, according to the present invention, switching among combustion modes results in an increase in both fuel type and equivalence ratio; whereas, in the prior art in which neither of the two fuels is hydrogen, the equivalence ratio does not substantially change when the fuel type changes.

Gaseous fuels that are delivered by an electronic fuel injector can be turned on, off, or anywhere in between in a single cycle with the only transient issue being inventory of fuel in the intake manifold in the case of the fuel injector being located in the intake port. Liquid fuels that are supplied directly to the combustion chamber (direct injected) can be affected in a single cycle. However, liquid fuels that are supplied into the intake port (port injected) present some difficulties due to fuel films that form on port surfaces. That is, when activating injectors, some of the fuel sprayed wets manifold walls and does not enter the combustion chamber directly. When deactivating liquid, port injectors, the fuel films on the walls remaining on intake port walls are removed and are inducted into the combustion chamber; this fuel inventory takes several intake events to empty. For example, changing the amount of air being inducted into a cylinder abruptly presents an issue as it takes several engine cycles for a manifold to fill or empty. Thus, the transition from one fuel to the other takes at least several engine cycles. In one embodiment, a switch between fuels is accomplished over tens of cycles.

In one embodiment, both fuels are delivered during the transition period while the supplied air is adjusted to the new operating condition. It is known to those skilled in the art that hydrogen, when used to supplement gasoline (or other hydrocarbon fuel) facilitates combustion at a substantially leaner equivalence ratio than would be possible with gasoline alone.

In FIG. 2 a, it is shown the fuel 2 is used when the threshold BMEP is exceeded. This threshold is associated with an equivalence ratio of the hydrogen which is greater than a desirable level, e.g., 0.5. That is, to produce more than the threshold BMEP, the hydrogen equivalence ratio would exceed 0.5. In FIG. 2 b, an additional constraint is placed on hydrogen operation in that when the piston speed exceeds a certain threshold, the engine transitions to fuel 2.

When cold, the engine starts on hydrogen fuel, which presents no cold start vaporization and mixing issues such as a liquid fuel. In FIG. 3, fuel 2 is only used when both the catalyst has attained its light-off temperature and the threshold BMEP has been exceeded.

In FIG. 4, one embodiment of a transition from hydrogen to gasoline is shown in a timeline. Before the transition, hydrogen is used; after the transition, gasoline is used; and during the transition, a combination of the two fuels is used. In the top graph, a, torque is increasing. In the bottom graph, e, the equivalence ratio, Φ, is less than 0.5 prior to the transition. As discussed above, a transition from hydrogen to gasoline is desirable when the hydrogen equivalence ratio approaches 0.5; thus, the transition is initiated. In graph c, the amount of hydrogen provided increases prior to the transition to provide the increased torque of graph a. Prior to the transition, the air delivery rate, dma/dt of graph b, remains constant with the additional torque provided by increasing hydrogen. At transition initiation, the throttle is partially closed and the amount of air is decreased. Air supply decreases such that the air supplied by the end of the transition is that required to provide Φ=1.0, which is the desired equivalence ratio for all fuels, except hydrogen. One of the reasons that there is a transition period is that air delivery cannot be changed in one engine cycle. Instead, even when the throttle is opened rapidly, it takes several engine cycles for the manifold to fill and the desired amount of air to be provided to the engine. Because the air is more than desired right after the start of the transition, hydrogen supply is continued. It is known by those skilled in the art, that by supplementing a conventional fuel with hydrogen, that the conventional fuel can robustly combust at an equivalence ratio at which it is unable to do so without the presence of hydrogen. Thus, the hydrogen continues through the transition period, until the equivalence ratio achieves the desired 1.0, at which time the hydrogen supply is discontinued. Alternatively, but not shown in the Figure, the hydrogen supply could be discontinued when the equivalence ratio reaches a ratio that the conventional fuel, e.g., gasoline, can robustly combust, such as greater than 0.8. Gasoline supply is initiated at the start of the transition. However, as discussed above, because the air cannot be reduced as quickly as desired, the hydrogen is continued into the transition period to ensure the combustion. Through the transition period, the gasoline is increased and the hydrogen decreased, as well as the air decreasing, so that by the end of the transition period, the gasoline operation takes over with no hydrogen assistance.

In FIG. 5, an alternative embodiment is shown in which the initial portion of the transition is similar to that shown in FIG. 4. However, at a point during the transition, the equivalence ratio is bumped up to 1.0 and maintained at 1.0 for the remainder of the transition. This is done to avoid the high NOx region of 0.85-0.90 phi. However, during this transition period of 1.0 equivalence ratio, the hydrogen supply is continuously being decreased and the gasoline supply is increased. At the end of the transition, hydrogen supply has ceased.

In the above discussion, a hydrogen-to-gasoline transition is described. However, the reference to gasoline is provided by way of example and is not intended to be limiting. Furthermore, the transition occurring at Φ=0.5 is also by way of example. The actual transition may occur at slightly lower or higher equivalence ratios than exactly 0.5.

A transition from a higher torque to a lower torque in which gasoline (or other fuel) operation is transitioned to hydrogen operation can be accomplished in the reverse of what is shown in FIGS. 4 and 5. If the fuel other than hydrogen is a liquid fuel and is port injected, the inventory of the fuel in the intake manifold is accounted for to provide the desired fuel into the combustion chamber.

While several modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize alternative designs and embodiments for practicing the invention. The above-describe embodiments are intended to be illustrative of the invention, which may be modified within the scope of the following claims.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8001934Apr 8, 2010Aug 23, 2011Ford Global Technologies, LlcPump control for reformate fuel storage tank
US8015952Apr 8, 2010Sep 13, 2011Ford Global Technologies, LlcEngine fuel reformer monitoring
US8037850Apr 8, 2010Oct 18, 2011Ford Global Technologies, LlcMethod for operating an engine
US8041500Apr 8, 2010Oct 18, 2011Ford Global Technologies, LlcReformate control via accelerometer
US8118006Apr 8, 2010Feb 21, 2012Ford Global Technologies, LlcFuel injector diagnostic for dual fuel engine
US8146541Apr 8, 2010Apr 3, 2012Ford Global Technologies, LlcMethod for improving transient engine operation
US8191514Apr 8, 2010Jun 5, 2012Ford Global Technologies, LlcIgnition control for reformate engine
US8230826Apr 8, 2010Jul 31, 2012Ford Global Technologies, LlcSelectively storing reformate
US8245671Apr 8, 2010Aug 21, 2012Ford Global Technologies, LlcOperating an engine with reformate
US8307790Apr 8, 2010Nov 13, 2012Ford Global Technologies, LlcMethod for operating a vehicle with a fuel reformer
US8342140Apr 2, 2012Jan 1, 2013Ford Global Technologies, LlcMethod for improving transient engine operation
US8352160Jan 31, 2012Jan 8, 2013Ford Global Technologies, LlcReformate control via accelerometer
US8360015Sep 13, 2011Jan 29, 2013Ford Global Technologies, LlcEngine fuel reformer monitoring
US8364384Feb 17, 2012Jan 29, 2013Ford Global Technologies, LlcFuel injector diagnostic for dual fuel engine
US8371253Jun 29, 2011Feb 12, 2013Ford Global Technologies, LlcPump control for reformate fuel storage tank
US8402928Apr 8, 2010Mar 26, 2013Ford Global Technologies, LlcMethod for operating an engine with variable charge density
US8413643 *Jun 12, 2009Apr 9, 2013Ford Global Tehnologies, LLCMulti-fuel engine control system and method
US8464699Oct 18, 2011Jun 18, 2013Ford Global Technologies, LlcMethod for operating an engine
US8516980Sep 13, 2012Aug 27, 2013Ford Global Technologies, LlcMethod for operating a vehicle with a fuel reformer
US8539914Apr 8, 2010Sep 24, 2013Ford Global Technologies, LlcMethod for operating an engine with a fuel reformer
US8550037Jun 5, 2012Oct 8, 2013Ford Global Technology, LlcIgnition control for reformate engine
US8613263Apr 8, 2010Dec 24, 2013Ford Global Technologies, LlcMethod for operating a charge diluted engine
US8635977Jul 31, 2012Jan 28, 2014Ford Global Technologies, LlcSelectively storing reformate
US8662024Aug 21, 2012Mar 4, 2014Ford Global Technologies, LlcOperating an engine with reformate
US8919330 *Apr 10, 2014Dec 30, 2014Ethanol Boosting Systems, LlcMinimizing alcohol use in high efficiency alcohol boosted gasoline engines
US8931463Jun 7, 2010Jan 13, 2015Alset Ip S A R.L.Bi-fuel engine with increased power
US20100318277 *Jun 12, 2009Dec 16, 2010Ford Global Technologies, LlcMulti-fuel engine control system and method
US20110301826 *Jun 7, 2010Dec 8, 2011Jose Ignacio GalindoBi-fuel engine with variable air fuel ratio
US20140222319 *Apr 10, 2014Aug 7, 2014Ethanol Boosting Systems, LlcMinimizing Alcohol Use In High Efficiency Alcohol Boosted Gasoline Engines
DE112011101476B4 *Apr 8, 2011Feb 5, 2015Suzuki Motor Corp.Brennstoffzufuhrsteuervorrichtung für Brennkraftmaschine
WO2011154027A1 *Dec 30, 2010Dec 15, 2011Alset Ip S Ar.L.Bi-fuel engine with increased power
Classifications
U.S. Classification123/577, 123/575
International ClassificationF02B43/10
Cooperative ClassificationF02D19/084, F02D19/0644, F02D19/0692, F02D19/081, F02D19/061, Y02T10/36, F02D19/0689
European ClassificationF02D19/08C, F02D19/06
Legal Events
DateCodeEventDescription
Sep 14, 2007ASAssignment
Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STOCKHAUSEN, WILLIAM F;BREHOB, DIANA D;REEL/FRAME:019828/0766;SIGNING DATES FROM 20070828 TO 20070829