Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20090078080 A1
Publication typeApplication
Application numberUS 12/086,738
PCT numberPCT/DE2006/002258
Publication dateMar 26, 2009
Filing dateDec 15, 2006
Priority dateDec 21, 2005
Also published asDE102006013399A1, EP1963692A1, US20140242277, WO2007073720A1
Publication number086738, 12086738, PCT/2006/2258, PCT/DE/2006/002258, PCT/DE/2006/02258, PCT/DE/6/002258, PCT/DE/6/02258, PCT/DE2006/002258, PCT/DE2006/02258, PCT/DE2006002258, PCT/DE200602258, PCT/DE6/002258, PCT/DE6/02258, PCT/DE6002258, PCT/DE602258, US 2009/0078080 A1, US 2009/078080 A1, US 20090078080 A1, US 20090078080A1, US 2009078080 A1, US 2009078080A1, US-A1-20090078080, US-A1-2009078080, US2009/0078080A1, US2009/078080A1, US20090078080 A1, US20090078080A1, US2009078080 A1, US2009078080A1
InventorsPeter Kemnitz, Klaus Keller
Original AssigneePeter Kemnitz, Klaus Keller
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Connecting Rod for an Internal Combustion Engine and Method for Its Production
US 20090078080 A1
Abstract
The present invention relates to a connecting rod (10) for an internal combustion engine, having a small connecting rod eye (20) for holding a piston pin and having a large connecting rod eye (30) for holding a crank pin, wherein at least one connecting rod eye (20; 30) has at least one geometric deviation from a cylindrical inner contour. It is provided according to the invention that the at least one connecting rod eye (20; 30) is formed by a bore (22; 32) with a cylindrical inner contour, that the bore (22; 32) is provided with a coating (23; 33) comprising a resin with solid lubricant particles embedded therein, and that the coating (23; 33) forms the at least one geometric deviation from the cylindrical inner contour of the at least one connecting rod eye (20; 30). The present invention also relates to a method for producing a connecting rod of the type.
Images(3)
Previous page
Next page
Claims(18)
1: Connecting rod (10) for an internal combustion engine, having a small connecting rod eye (20) for accommodating a piston pin, and a large connecting rod eye (30) for accommodating a crank journal, whereby at least one connecting rod eye (20; 30) has at least one geometric deviation from a cylindrical inside contour, wherein the at least one connecting rod eye (20; 30) is formed from a bore (22; 32) having a cylindrical inside contour, that the bore (22; 32) is provided with a coating (23; 33) comprising a resin with solid lubricant particles embedded in it, and that the coating (23; 33) forms the at least one geometric deviation from the cylindrical inside contour of the at least one connecting rod eye (20; 30).
2: Connecting rod according to claim 1, wherein the at least one geometric deviation is configured as at least one stress relief pocket and/or ovality and/or as a shaped bore.
3: Connecting rod according to claim 1, wherein at least one oil collection chamber (24; 34; 25; 35) is provided in the coating (23; 33).
4: Connecting rod according to claim 3, wherein the at least one oil collection chamber is configured as a channel (24; 34) that runs in the direction of the longitudinal axis (L).
5: Connecting rod according to claim 3, wherein the at least one oil collection chamber is configured as a channel that runs radially relative to the direction of the longitudinal axis (L), surrounding it entirely or in part.
6: Connecting rod according to claim 3, wherein the at least one oil collection chamber is configured as a pocket-shaped recess (25; 35).
7: Connecting rod according to claim 1, wherein the minimum thickness of the coating (23; 33) amounts to 5 μm to 20 μm.
8: Connecting rod according to claim 1, wherein the resin is a thermally cured resin, particularly a polyamide imide resin.
9: Connecting rod according to claim 1, wherein the coating (23; 33) contains 50 wt.-% to 60 wt.-% solid lubricant particles.
10: Connecting rod according to claim 1, wherein the solid lubricant particles consist of a material that is selected from the materials group that comprises graphite, molybdenum sulfide, tungsten disulfide, hexagonal boron nitride, and PTFE (polytetrafluoroethylene).
11: Connecting rod according to claim 1, wherein the solid lubricant particles have a particle size of 1 μm to 3 μm.
12: Method for the production of a connecting rod (10) for an internal combustion engine, having a small connecting rod eye (20) for accommodating a piston pin, and a large connecting rod eye (30) for accommodating a crank journal, whereby at least one connecting rod eye (20; 30) has at least one geometric deviation from a cylindrical inside contour, wherein first, a bore (22; 32) having a cylindrical inside contour is produced, and subsequently, a coating agent comprising a resin with solid lubricant particles embedded in it is applied to the inside surface of this bore, by means of a coating tool (40), so that the resulting coating (23; 33) forms the at least one geometric deviation from the cylindrical inside contour of the at least one connecting rod eye (20; 30).
13: Method according to claim 12, wherein the at least one geometric deviation is configured by means of varying the amount of the coating agent given off by the coating tool (40) and/or by means of varying the advance of the coating tool (40).
14: Method according to claim 12, wherein the coating agent is applied to the inside surface of the bore (22; 32) with a surface roughness of Ra (average roughness value) 0.8 μm.
15: Method according to claim 12, wherein the coating agent is applied by means of rotation atomization from a rotating nozzle (44) introduced into the bore (22; 32).
16: Method according to claim 15, wherein the rotation atomization is carried out at a rotation speed of the nozzle (44) of 14,000 to 18,000 rotations per minute.
17: Method according to claim 12, wherein the inside surface of the bore (22; 32) is pre-heated before and/or during application of the coating agent, preferably up to a temperature of 50 C. to 80 C.
18: Method according to claim 12, wherein a thermally curing coating agent is used, which is subjected to heat treatment immediately after completing the application, preferably at a temperature of 200 C.
Description

The present invention relates to a connecting rod for an internal combustion engine, having a small connecting rod eye for accommodating a piston pin, and a large connecting rod eye for accommodating a crank journal, whereby at least one connecting rod eye has at least one geometric deviation from a cylindrical inside contour. The present invention furthermore relates to a method for the production of such a connecting rod.

The connecting rod connects the piston of an internal combustion engine with the crankshaft. In this connection, the small connecting rod eye accommodates the piston pin, while the large connecting rod eye surrounds a crank journal. The small and the large connecting rod eye are provided with slide bearing surfaces, for example in the form of slide bearing layers. The slide bearing surfaces of these components are subject to very great mechanical stress. In particular, the piston pin can bend as a result of the tremendous forces that act on the piston during the oscillating movement of the piston. As a result, the connecting pin eyes are subject to great stress. Therefore, ways are being sought to relieve stress on the connecting rod eyes. This is done, for example, by means of local geometric changes in the usually cylindrical connecting rod eye, which reduce the mechanical stress. Such geometric changes can be, for example, stress relief pockets, oval, conical or spherical bores. This principle is already known for pin boss bores, see, for example, WO 96/07841 A1. Such geometric changes have been produced by means of complicated precision machining of the connecting rod eyes until now.

Connecting rods having connecting rod eyes with slide bearing surfaces are known from the German patent application 10 2004 059 490.2. The slide bearing surfaces are coated with a self-lubricating coating made of a resin with solid lubricant particles embedded in it.

It is the task of the present invention to make available a connecting rod in which at least one connecting rod eye can be provided with local geometric deviations in particularly simple manner.

The solution consists in a connecting rod having the characteristics of claim 1 and a method having the characteristics of claim 12. According to the invention, it is provided that at least one connecting rod eye is formed from a bore having a cylindrical inside contour, that the bore is provided with a coating comprising a resin with solid lubricant particles embedded in it, and that the coating forms the at least one geometric deviation from the cylindrical inside contour of the connecting rod eye. The method according to the invention is characterized in that first, a bore having a cylindrical inside contour is produced, and subsequently, a coating agent comprising a resin with solid lubricant particles embedded in it is applied to the inside surface of this bore, by means of a coating tool, so that the resulting coating forms the at least one geometric deviation from the cylindrical inside contour of the at least one connecting rod eye.

With the present invention, it is possible to produce connecting rod eyes having at least one geometric deviation from the cylindrical inside contour, and having a self-lubricating coating of their inside surfaces, in one and the same work step. This means a significant saving in time and costs. The complicated and very complex cutting machining of the metallic inside surfaces of the connecting rod eyes for the purpose of introducing the at least one geometric deviation is eliminated. Furthermore, bearing bushings or bearing shells are no longer necessary to achieve sufficient lubrication and an anti-seizure effect of the connecting rod eyes. Coating can take place without prior application of an adhesion layer. The desired dimensional accuracy of the coating rod eyes is reliably achieved. The strength and therefore the useful lifetime of the bearing of piston pin and/or crank journal are significantly improved, as a result of the improved lubrication properties as compared with the previously known coatings made of metal alloys.

Advantageous further developments are evident from the dependent claims.

The at least one geometric deviation can be configured as at least one stress-relief pocket and/or ovality (for example as a heightwise or crosswise ovality) and/or as a shaped bore, as it is disclosed in WO 96/07841 A1 for pin bores, for example.

In advantageous manner, at least one oil collection chamber can be provided in the coating, in order to further improve the lubrication of the bearing. The at least one oil collection chamber can be configured as a channel that runs in the direction of the longitudinal axis, as a channel that runs radially with regard to the longitudinal axis, surrounding it entirely or in part, and/or as a pocket-shaped recess.

The minimum thickness of the coating depends on the requirements of the individual case and can amount to 5 μm to 15 μm, for example.

Preferably, the resin contained in the coating is a thermally cured resin, particularly a polyamide resin, which is very temperature-resistant and can withstand the stresses that the bearing is subject to in operation particularly well.

It has been shown that a proportion of 50 wt.-% to 60 wt.-% of solid lubricant particles in the coating has particularly good lubrication properties. In this connection, the solid lubricant particles can particularly consist of a material that is selected from the materials group that comprises graphite, molybdenum sulfide, tungsten disulfide, hexagonal boron nitride, and PTFE (polytetrafluoroethylene). In this connection, it is advantageous if the solid lubricant particles consist of only one material. In this connection, it is particularly advantageous if all the solid lubricant particles consist of the same material, or if solid lubricant particles that consist of two different materials are mixed, for example solid lubricant particles of graphite with solid lubricant particles of a metal sulfide. For particularly effective lubrication, the solid lubricant particles have a particle size of 1 μm to 3 μm.

In the case of the method according to the invention, the at least one geometric deviation can be configured by means of varying the amount of the coating agent given off by the coating tool and/or by means of varying the advance of the coating tool in the bore to be coated.

A possible alternative, of course, consists in applying the coating agent in a uniform thickness and configuring the at least one geometric deviation by means of subsequent working of the resulting coating. Of course, this is significantly more complicated than making the at least one geometric deviation directly during the coating process. However, the result, namely a connecting rod having connecting rod eyes whose coating forms the at least one geometric deviation from the cylindrical inside contour of the connecting rod eyes, is the same.

It is advantageous if the coating agent is applied to inside surfaces of the bores with a surface roughness of Ra (average roughness value) ≦0.8 μm, in order to achieve particularly good adhesion. In order to further improve the adhesion of the coating agent to the inside surface of the bore, the inside surfaces of the bores can be pre-heated before and/or during application of the coating agent, preferably up to a temperature of 50 C. to 80 C.

The coating agent can be applied by means of rotation atomization from a rotating nozzle introduced into the bore, for example. In this connection, it has proven to be particularly practical to carry the rotation atomization out at a rotation speed of the nozzle of 14,000 to 18,000 rotations per minute.

A preferred further development of the method according to the invention consists in using a thermally curing coating agent and subjecting same to heat treatment immediately after completing the application, preferably at a temperature of 200 C.

An exemplary embodiment of the invention will be described in greater detail below, using the attached drawings. These show, in a schematic representation, not to scale:

FIG. 1 a front view of an embodiment of a connecting rod according to the invention;

FIG. 2 a section along the line II-II in FIG. 1;

FIG. 3 a schematic representation of a coating tool.

FIGS. 1 and 2 show an exemplary embodiment of a connecting rod 10 according to the invention. The connecting rod 10 consists, in known manner, of steel, for example. The connecting rod 10 has a connecting rod shaft 11, a small connecting rod eye 20, and a large connecting rod eye 30. The small connecting rod eye 20 accommodates the piston pin of a piston (not shown), while the large connecting rod eye 30 accommodates a crank journal of a crankshaft (not shown).

In the exemplary embodiment, the connecting rod eyes 20, 30 are shaped bores having a defined inside contour 21, 31 that deviates from the cylinder shape, as it is disclosed, for example, in WO 96/07841 A1. This configuration serves to relieve stress on the mechanical system of piston pin, connecting rod 10, and crank journal, during operation, in order to avoid the risk of cracks around the connecting rod eyes 20, 30. Other configurations of a connecting rod eyes that serve the same purpose are, for example, bores provided with ovality (heightwise and/or crosswise) or with stress relief pockets (not shown). These configurations are already known for pin bores.

In the exemplary embodiment, the two connecting rod eyes 20, 30 are configured, according to the invention, in such a manner that they are composed of a cylindrical bore 22 and 32, respectively, and a coating 23 and 33, respectively. In this connection, the surface contour of the coating 23 or 33 is structured in such a manner that the desired inside contour 21 and 31, respectively, of the connecting rod eye 20 and 30, respectively, which deviates from the cylinder shape, is obtained. In comparable manner, ovality or a stress relief pocket can also be formed by the surface structure of the coating 23 or 33 (not shown). The coating 23 or 33 essentially consists of a resin with solid lubricant particles embedded in it, and is thus a self-lubricating coating.

In the exemplary embodiment, the coating 23 or 33 is furthermore provided with oil collection chambers in the form of a channel 24 or 34 that extends in the direction of the longitudinal axis L of the connecting rod eye 20 or 30, in each instance, from which channel pockets 25 and 35, respectively, extend radially. These oil collection chambers serve to further improve the lubrication of the bearing of piston pin or crank journal, respectively, in each instance. Of course, they can be configured for any desired application, in any desired shape and size, and can be disposed relative to one another in any desired form.

To produce a connecting rod eye 20, 30, first the cylindrical bore 22 or 32 is made in the connecting rod shaft 11, and mechanically finished in known manner. The surface roughness Ra (average roughness value) can correspond to the one indicated in DE 41 11 368 A1, whereby in general, the Ra values amount to 0.63 μm or less for bore diameters of less than 30 mm, and Ra values of 0.8 μm or less are achieved for bore diameters between 30 mm and 60 mm. In the exemplary embodiment, the bore diameter is selected, before coating, in such a manner that the piston pin or the crank journal, respectively, has a diametral play of 10 μm to 40 μm in the finished connecting rod eye 20 or 30, respectively. The cylindrical bore 22 or 32 should be cleaned in such a manner that chips, other particles, machining oils and the like are completely removed. The inside surface of the cylindrical bore 22 or 32 can also be phosphatized.

If additional oil collection chambers, for example in the form of channels 24, 34 or pockets 25, 35, are supposed to be provided, corresponding cover templates are affixed in the cylindrical bore 22 or 32 before coating takes place, in known manner. The cover templates prevent coating of the covered regions of the cylindrical bore 22 or 32. As an alternative, the finished coating 23 or 33 can subsequently be worked, and can be provided with oil collection chambers in this way.

The coating agent selected in the exemplary embodiment is formed from a thermally curable resin with solid lubricant particles of one or more of the materials graphite, molybdenum sulfide, tungsten disulfide, hexagonal boron nitride, and PTFE embedded in it. In the exemplary embodiment, the resin is a very temperature-resistant polyamide imide, and the solid lubricant is a mixture of molybdenum sulfide and graphite particles having a particle size of 1 μm to 3 μm. In the exemplary embodiment, the amount of the solid lubricant is selected in such a manner that the finished coating contains about 50 to 60 wt.-% solid lubricant particles. The viscosity of the coating agent is adjusted in such a manner that droplet formation is prevented in the case of sufficient application.

A device 40 for rotation atomization serves to apply the coating to the inside surface of the cylindrical bore 22 or 32, in the exemplary embodiment. The device 40 has a base body 41 that is connected with a nozzle body 42. The nozzle body 42 is mounted to rotate on the base body, by means of a bearing 43. The nozzle body 42 is with a nozzle 44 having an exit opening 45. The base body 41 possesses feed channels 46, 47, in each instance, which are intended for the liquid coating material and for compressed air, and end in a mixing chamber 48 for mixing and metering. An exit channel 49 extends from the mixing chamber 48, through the nozzle body 42, and opens into the exit opening 45. A baffle plate 51 is disposed perpendicular to the exit opening 45, so that a ring-shaped gap 52 having a width of 0.5 mm in the exemplary embodiment is formed between the baffle plate 51 and the nozzle body 42. The coating agent/air mixture exits through the gap 52, in the form of a spray jet 53, radially and at a distance from the nozzle body 42.

The nozzle body 42 is put into rotation by means of a drive 54, and rotates in the speed of rotation range from 14,000 to 18,000 rotations per minute in the exemplary embodiment. The coating agent/air mixture that exits from the exit opening 45 is accelerated by the centripetal forces that occur at the exit opening 45, in such a manner that it exits radially as a disk-shaped spray jet 53. Since the spray jet 53 is configured narrow in the direction of the longitudinal axis L, the inside surface of the cylindrical bore 22 or 32 that is to be coated can be sharply delimited, in the direction of the longitudinal axis L, by means of simple feed control of the coating agent/air mixture. In the exemplary embodiment, nozzles 44 having a diameter in the range between 5 and 25 mm and having depths up to 50 mm are available, so that it is possible to coat cylindrical bores 22, 32 for connecting rods of all engine types with the device 40. The diameter of the nozzle 44 is generally selected in such a manner that it approximately corresponds to half the diameter of the cylindrical bore 22 or 32.

A centrifuge device S-520 from Sprimag in Kirchheim is also suitable for carrying out the coating method.

In the exemplary embodiment, application of the coating agent/air mixture takes place onto the inside surface of the cylindrical bore 22 and/or 32, which has been pre-heated to 50 C. to 80 C. The nozzle 44 is introduced centrally into the cylindrical bore 22 or 32, from the outside to the inside. To configure the geometric deviation from the cylindrical inside contour, for example of the shaped bore shown in FIG. 2, the advance of the nozzle 44 is varied in a range of 10 to 20 mm/s, for example. In addition or as an alternative, the amount of the coating agent/air mixture exiting from the exit opening 45 of the nozzle 44 can be varied. For this purpose, it is practical that the device 40 works with computer control. When the nozzle 44 has reached the end of the cylindrical bore 22 or 32, the device 40 is turned off and retracted.

If cover templates are provided in the cylindrical bore 22 or 32 to produce oil collection chambers, the feed of the coating agent/air mixture is shut off when such a template is reached, so that residues of the spray jet are sprayed onto the cover template. When the end of the cover template has been reached, the feed of the coating agent/air mixture is achieved again.

When the coating agent has been applied, it is thermally hardened, in that the connecting rod, i.e. the connecting rod component that has the coated connecting rod eyes 20 and/or 30, is placed in an oven and held at a temperature of 200 C. between 10 and 20 minutes there, in the exemplary embodiment.

The finished coating 23 or 33 is approximately 5 μm to 20 μm thick at its thinnest point, and the diametral pin play of the piston pin or crank journal amounts to about 10 μm to 20 μm. This close play is particularly advantageous for avoiding noise development. The coating 23 or 33 furthermore guarantees that despite the close play, no seizing occurs.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3641990 *Feb 20, 1970Feb 15, 1972Richard Furneaux KinnerslyInternal combustion engine
US4567815 *Dec 4, 1984Feb 4, 1986Vilter Manufacturing CorporationConnecting rod and bearing assembly therefor
US4658500 *Apr 29, 1985Apr 21, 1987Glyco-Metall-Werke Daelen & Loos GmbhApparatus for fabricating a plain (sliding) bearing
US5447774 *Jan 13, 1993Sep 5, 1995Daido Metal Company, Ltd.Composite sliding member with high porosity sintering layer
US5525246 *Feb 22, 1994Jun 11, 1996Taiho Kogyo Co., Ltd.Aluminum bearing alloy with surface coating of solid lubricant and polyimide binder; seizure resistance
US5788380 *Mar 23, 1995Aug 4, 1998Glyco-Metall-Werke Glyco B.V. & Co. KgBearing shell and a radial plain bearing mounted in a bearing carrying body provided with a bearing cap
US6095690 *Jan 28, 1997Aug 1, 2000Glyco-Metall-Werke Glyco B.V. & Co. KgSliding bearing element with lubricating oil pockets
US6367151 *Jan 28, 2000Apr 9, 2002Volkswagen AgConnecting rod with thermally sprayed bearing layer
US6513238 *Jan 28, 2000Feb 4, 2003Volkswagen AgThermal spraying on eye bearing layer having first porosity, and second layer having higher porosity, to produce bearing surface containing micropores, removing second layer to provide finished bearing surface having first porosity
US6648513 *Mar 6, 2002Nov 18, 2003Daido Metal Company Ltd.Plain bearing
US6921205 *Mar 13, 2002Jul 26, 2005Taiho Kogyo Co., Ltd.Sliding material
US20030235355 *Apr 23, 2003Dec 25, 2003Nobutaka HiramatsuSliding member
US20060083451 *Jan 8, 2003Apr 20, 2006Kimio KawagoeSliding bearing
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8181623Jun 8, 2011May 22, 2012Mahle International GmbhPiston for an internal combustion engine
US8234785 *Sep 5, 2007Aug 7, 2012Thyssenkrupp Technologies AgMethod for producing a connecting rod
US8870462Feb 11, 2011Oct 28, 2014Mahle International GmbhBearing bush
US8893580 *Oct 16, 2012Nov 25, 2014Mahle International GmbhThermal spray coating for connecting rod small end
US20100050432 *Sep 5, 2007Mar 4, 2010Thyssenkrupp Technologies AgMethod for producing a connecting rod
US20120066888 *Mar 16, 2009Mar 22, 2012Alfing Kessler Sondermaschinen GmbhMethod for joining two components of a unit
US20130091980 *Oct 16, 2012Apr 18, 2013David DomanchukThermal spray coating for connecting rod small end
Classifications
U.S. Classification74/579.00E, 29/888.09, 123/197.3, 427/484
International ClassificationF16C7/02, F16C7/00, B05B5/04
Cooperative ClassificationF16C9/04, B05D7/22, B05D1/40, F16C33/201, F16C33/1045, F16J7/00, B05D3/0254, B05D3/0218, B05D5/08, F16C7/00, F16C7/023, F16C33/1065
European ClassificationF16C33/10L5D, F16C7/02B, F16C33/20B, F16C9/04, F16J7/00
Legal Events
DateCodeEventDescription
Jun 18, 2008ASAssignment
Owner name: MAHLE INTERNATIONAL GMBH, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KEMNITZ, PETER;KELLER, KLAUS;REEL/FRAME:021157/0958;SIGNING DATES FROM 20080604 TO 20080605