Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20090093793 A1
Publication typeApplication
Application numberUS 12/244,688
Publication dateApr 9, 2009
Filing dateOct 2, 2008
Priority dateOct 2, 2007
Also published asCN101868273A, EP2195052A2, US20090093792, US20130331791, US20140174223, WO2009044401A2, WO2009044401A3
Publication number12244688, 244688, US 2009/0093793 A1, US 2009/093793 A1, US 20090093793 A1, US 20090093793A1, US 2009093793 A1, US 2009093793A1, US-A1-20090093793, US-A1-2009093793, US2009/0093793A1, US2009/093793A1, US20090093793 A1, US20090093793A1, US2009093793 A1, US2009093793A1
InventorsYossi Gross, Oz Cabiri, John Paproski, Moshe Barkan
Original AssigneeYossi Gross, Oz Cabiri, John Paproski, Moshe Barkan
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
External drug pump
US 20090093793 A1
Abstract
Apparatus is described for administering a substance to a subject. A vial contains the substance, an inner surface of the vial being shaped to define a protrusion therefrom. A stopper within the vial is slidably coupled to the vial. A first threaded element is (a) rotatable and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element. A second threaded element is threadedly coupled to the first threaded element. The protrusion impedes rotation of the second threaded element with respect to the vial. The distal end of the second threaded element remains proximal to a distal end of the stopper during rotation of the first threaded element. The first threaded element, by rotating, linearly advances the stopper and the second threaded element toward a distal end of the vial. Other embodiments are also described.
Images(11)
Previous page
Next page
Claims(20)
1. Apparatus for administering a substance to a subject, comprising:
a vial that contains the substance, an inner surface of the vial being shaped to define a protrusion therefrom;
a stopper within the vial, slidably coupled to the vial;
a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and
a second threaded element that is threadedly coupled to the first threaded element,
the protrusion impeding rotation of at least a distal end of the second threaded element with respect to the vial,
the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
the first threaded element, by rotating, linearly advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial.
2. Apparatus for administering a substance to a subject, comprising:
a vial that contains the substance, a proximal end of the vial being shaped to define two or more flanges;
a stopper within the vial, slidably coupled to the vial;
a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and
a second threaded element that is threadedly coupled to the first threaded element,
at least a distal end of the second threaded element substantially non-rotatable with respect to the vial,
the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
the first threaded element, by rotating, linearly advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial.
3. Apparatus for administering a substance to a subject, comprising:
a vial that contains the substance;
a proximal stopper within the vial, slidably coupled to the vial;
a dividing stopper within the vial, slidably coupled to the vial;
the vial comprising a distal compartment and a proximal compartment, the distal compartment containing a first medication and the proximal compartment containing a second medication, the dividing stopper reversibly inhibiting fluid communication between the distal compartment and the proximal compartment,
a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and
a second threaded element that is threadedly coupled to the first threaded element,
at least a distal end of the second threaded element substantially non-rotatable with respect to the vial,
the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
the first threaded element, by rotating,
linearly advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, and
causing mixing of the first medication and the second medication by advancing the dividing stopper toward the distal end of the vial.
4. Apparatus for administering a substance to a subject, comprising:
a vial that contains the substance;
a proximal stopper within the vial, slidably coupled to the vial;
a dividing stopper within the vial, slidably coupled to the vial;
the vial comprising a distal compartment and a proximal compartment, the distal compartment containing a medication and the proximal compartment containing a flush solution, the dividing stopper reversibly inhibiting fluid communication between the distal compartment and the proximal compartment,
a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and
a second threaded element that is threadedly coupled to the first threaded element,
at least a distal end of the second threaded element substantially non-rotatable with respect to the vial,
the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
the first threaded element, by rotating, (a) administering the medication to the subject, and (b) flushing the medication from the vial with the flushing solution, by advancing the dividing stopper toward the distal end of the vial.
5. Apparatus for administering a substance to a subject, comprising:
a vial that comprises a cyclic olefin polymer and that contains the substance;
a stopper within the vial, slidably coupled to the vial;
a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and
a second threaded element that is threadedly coupled to the first threaded element,
at least a distal end of the second threaded element substantially non-rotatable with respect to the vial,
the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
the first threaded element, by rotating, linearly advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial.
6. The apparatus according to claim 5, wherein the substance includes a monoclonal antibody, and wherein the vial contains the monoclonal antibody.
7. The apparatus according to claim 5, further comprising a fluoropolymer, wherein the stopper is coated with the fluoropolymer.
8. The apparatus according to claim 5, wherein an inner surface of the vial is shaped to define a protrusion therefrom, the protrusion impeding rotation of the second threaded element.
9. The apparatus according to claim 5, wherein a proximal end of the vial is shaped to define two or more flanges.
10. The apparatus according to claim 5,
further comprising a dividing stopper within the vial, slidably coupled to the vial;
wherein the vial comprises a distal compartment and a proximal compartment, the distal compartment containing a first medication and the proximal compartment containing a second medication, the dividing stopper reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and
wherein the first threaded element, by rotating, causes mixing of the first medication and the second medication by advancing the dividing stopper toward the distal end of the vial.
11. The apparatus according to claim 5,
further comprising a dividing stopper within the vial, slidably coupled to the vial;
wherein the vial comprises a distal compartment and a proximal compartment, the distal compartment containing a medication and the proximal compartment containing a flush solution, the dividing stopper reversibly inhibiting fluid communication between the distal compartment and the proximal compartment; and
wherein the first threaded element, by rotating, is configured by advancing the dividing stopper toward the distal end of the vial:
to administer the medication to the subject, and
to flush the medication from the vial with the flushing solution.
12. A method, comprising:
providing:
a vial having a protrusion from an inner surface thereof, containing a substance, and sealed by a stopper, and
first and second threaded elements for placement within the vial, the first and second threaded elements being threadedly coupled to each other, a distal end of the second threaded element being for coupling to the stopper;
inserting the vial into a housing base, the threaded elements having been inserted into the vial, and the distal end of the second threaded element having been coupled to the stopper;
pushing the substance out of the vial by advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, the advancing being performed by:
rotating the first threaded element with respect to the vial,
impeding proximal linear motion of the first threaded element with respect to the vial during rotation of the first threaded element, and
impeding rotational motion of at least the distal end of the second threaded element with respect to the vial using the protrusion from the inner surface of the vial; and
maintaining the distal end of the second threaded element proximal to a distal end of the stopper at all times during the rotating of the first threaded element.
13. A method, comprising:
providing:
a vial that contains a substance, and is sealed by a stopper, and
first and second threaded elements for placement within the vial, the first and second threaded elements being threadedly coupled to each other, a distal end of the second threaded element being for coupling to the stopper;
inserting the vial into a housing base, the threaded elements having been inserted into the vial, and the distal end of the second threaded element having been coupled to the stopper;
pushing the substance out of the vial by advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, the advancing being performed by:
rotating the first threaded element with respect to the vial,
impeding proximal linear motion of the first threaded element with respect to the vial during rotation of the first threaded element, and
impeding rotational motion of at least the distal end of the second threaded element with respect to the vial; and
maintaining the distal end of the second threaded element proximal to a distal end of the stopper at all times during the rotating of the first threaded element
wherein the vial includes a vial having a distal compartment and a proximal compartment,
the distal compartment containing a first medication and the proximal compartment containing a second medication,
a dividing stopper within the vial reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and
wherein pushing the substance out of the vial comprises mixing the first medication and the second medication by advancing the dividing stopper toward the distal end of the vial by rotating the first threaded element.
14. A method, comprising:
providing:
a vial that contains a substance, and is sealed by a stopper, and
first and second threaded elements for placement within the vial, the first and second threaded elements being threadedly coupled to each other, a distal end of the second threaded element being for coupling to the stopper;
inserting the vial into a housing base, the threaded elements having been inserted into the vial, and the distal end of the second threaded element having been coupled to the stopper;
pushing the substance out of the vial by advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, the advancing being performed by:
rotating the first threaded element with respect to the vial,
impeding proximal linear motion of the first threaded element with respect to the vial during rotation of the first threaded element, and
impeding rotational motion of at least the distal end of the second threaded element with respect to the vial; and
maintaining the distal end of the second threaded element proximal to a distal end of the stopper at all times during the rotating of the first threaded element;
wherein the vial includes a vial having a distal compartment and a proximal compartment,
the distal compartment containing a medication and the proximal compartment containing a flushing solution,
a dividing stopper within the vial reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and
wherein pushing the substance out of the vial comprises:
pushing the medication out of the vial; and
flushing the medication from the vial with the flushing solution, by advancing the dividing stopper toward the distal end of the vial by rotating the first threaded element.
15. A method, comprising:
providing
a vial that comprises a cyclic olefin polymer, that contains a substance, and is sealed by a stopper, and
first and second threaded elements for placement within the vial, the first and second threaded elements being threadedly coupled to each other, a distal end of the second threaded element being for coupling to the stopper;
inserting the vial into a housing base, the threaded elements having been inserted into the vial, and the distal end of the second threaded element having been coupled to the stopper;
pushing the substance out of the vial by advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, the advancing being performed by:
rotating the first threaded element with respect to the vial,
impeding proximal linear motion of the first threaded element with respect to the vial during rotation of the first threaded element, and
impeding rotational motion of at least the distal end of the second threaded element with respect to the vial; and
maintaining the distal end of the second threaded element proximal to a distal end of the stopper at all times during the rotating of the first threaded element.
16. The method according to claim 15, wherein the substance includes a monoclonal antibody, and wherein pushing the substance out of the vial comprises administering the monoclonal antibody to a subject.
17. The method according to claim 15, wherein providing the vial comprises providing a stopper that is coated with a fluoropolymer.
18. The method according to claim 15, wherein impeding rotational motion of at least the distal end of the second threaded element with respect to the vial comprises impeding rotational motion of at least the distal end of the second threaded element with respect to the vial using a protrusion from an inner surface of the vial.
19. The method according to claim 15,
wherein the vial includes a vial having a distal compartment and a proximal compartment,
the distal compartment containing a first medication and the proximal compartment containing a second medication,
a dividing stopper within the vial reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and
wherein pushing the substance out of the vial comprises mixing the first medication and the second medication by advancing the dividing stopper toward the distal end of the vial by rotating the first threaded element.
20. The method according to claim 15,
wherein the vial includes a vial having a distal compartment and a proximal compartment,
the distal compartment containing a medication and the proximal compartment containing a flushing solution,
a dividing stopper within the vial reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and
wherein pushing the substance out of the vial comprises:
pushing the medication out of the vial, and
flushing the medication from the vial with the flushing solution,
by advancing the dividing stopper toward the distal end of the vial by rotating the first threaded element.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is related to U.S. Provisional Patent Application 60/997,459 to Gross et al., filed Oct. 2, 2007, entitled, “External drug pump,” which is incorporated herein by reference.

The present application is related to a US patent application, entitled, “External drug pump,” to Gross et al., filed on even date herewith, which is incorporated herein by reference.

The present application is related to a PCT Application, entitled, “External drug pump,” to Gross et al., filed on even date herewith, which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention generally relates to external medical apparatus. Specifically, the present invention relates to external drug pumps.

BACKGROUND OF THE INVENTION

External drug pumps are typically used to deliver to patients substances which contain large molecules which cannot be digested when administered orally. They are commonly used to infuse a basal rate of insulin to subjects suffering from diabetes, as an alternative to insulin injections by an insulin syringe or an insulin pen. Typically, the pump is adhered to the abdomen of the patient and delivers the substance to the patient via a cannula that is inserted into the patient's skin.

U.S. Pat. No. 6,656,159 to Flaherty, describes a device for delivering fluid, such as insulin for example, to a patient. The device includes an exit port assembly, a syringe-like reservoir including a side wall extending towards an outlet connected to the exit port assembly. A threaded lead screw is received in the reservoir and a plunger has an outer periphery linearly slideable along the side wall of the reservoir and an inner periphery threadedly received on the lead screw. The plunger is non-rotatable with respect to the side wall such that rotating the lead screw is described as causing the plunger to advance within the reservoir and force fluid through the outlet. The device also includes a dispenser having a return element for causing rotation of the lead screw, and a shape memory element. A changeable length of the shape memory element decreasing from an uncharged length to a charged length is described as resetting the return element.

U.S. Pat. No. 6,699,218 to Flaherty, describes a device for delivering fluid to a patient, including a passageway having a proximal fluid transport tube, a distal fluid transport tube, and a tubular expansion member coupling the fluid transport tubes. A penetrating member is positioned within the expansion member for axial movement between the fluid transport tubes, and has a sharpened distal tip. The device also includes a dispenser for causing fluid from a reservoir to flow to the proximal fluid transport tube, a housing containing the dispenser and the passageway and including an exit port receiving the distal fluid transport tube, and a connecting member secured to the penetrating member. The connecting member is movable by a user from an exterior of the housing and arranged such that movement causes the penetrating member to move between an extended position for subcutaneously inserting the distal fluid transport tube into a patient, and a retracted position.

U.S. Pat. No. 6,485,461 to Mason, describes a disposable device which is described as accurately and reliably delivering an infusable liquid to a patient. The infusion device includes a housing which defines a bladder chamber. A compressible bladder is disposed in the bladder chamber and is compressed by the housing upon filling the bladder with an infusable liquid to create a pressurized bladder. The infusion devices further includes a delivery system for subcutaneously delivering the infusable liquid to a body. The delivery system includes a collapsible member that supports an injection needle and a cannula. The injection needle is used to insert the cannula into the skin of the body being treated. The cannula is in communication with the bladder during delivery of the infusable liquid. The housing includes microfluidic passageways that allow communication between fluid in the bladder and the cannula.

U.S. Pat. No. 5,851,197 to Marano, describes an injector for automatic placement of a subcutaneous infusion set or the like used for delivering a selected medication to a patient. The injector comprises a spring-loaded plunger having a head for receiving and supporting an infusion set in a position for placement of an insertion needle and related cannula through the skin of a patient at a selected insertion site. The plunger head includes a safety lock mechanism described as engaging and retaining the infusion set during spring-loaded advancement with a controlled force and speed toward the patient's skin to transcutaneously place the insertion needle and cannula. When the plunger head reaches a fully advanced position, with the infusion set placed on the patient, the infusion set is releasable from the safety lock mechanism with minimal force to permit quick and easy separation of the injector.

U.S. Pat. No. 6,960,192 to Flaherty, describes a device for delivering fluid to a person that includes a reservoir for containing a fluid to be delivered to the person; a fluid transport device for dispensing fluid from the reservoir to the person, the fluid transport device including a proximal end in fluid communication with the reservoir and a distal end having a penetrating member for piercing the skin of the person to facilitate the delivery of fluid to the person through the fluid transport device; a housing containing the reservoir and the fluid transport device, the housing including an exit port for receiving the distal end of the fluid transport device upon injection of the distal end into the person and means for securing a first wall of the housing to the skin of the person; and an injection activation device including a driving mechanism contacting the fluid transport device for driving the penetrating member from a first position within the housing, through the exit port to a second position, external to the housing and into the skin of the person.

U.S. Pat. No. 5,643,218 to Lynn et al., describes a syringe for the sequential withdrawal of a first liquid and a second liquid. The syringe has a barrel, a proximal piston moveable along the barrel to define a variable volume chamber intermediate the piston and the end of the barrel, and a distal chamber divider piston for separating the variable volume chamber into primary and secondary reservoirs. A flow channel is defined along the syringe for providing flow connection between the primary and secondary reservoirs. An element links the two pistons so that as the proximal piston is moved away from the distal piston, the first liquid enters the first reservoir and thereafter the second liquid enters the secondary reservoir.

Daikyo Crystal Zenith® polymer, manufactured by Daikyo Seiko, Ltd., and used by Daikyo Seiko, Ltd. to manufacture vials, is described as being durable, non-flaking, highly transparent, very low in extractable ions, compatible with a wide pH range, and resistant to high heat.

Copaxone® (glatiramer acetate), manufactured by Teva Pharmaceutical Industries Ltd, is a drug described as helping patients who suffer from relapsing-remitting multiple sclerosis.

The following patent and patent application may be of interest:

U.S. Pat. No. 6,749,587 to Flaherty

US Patent Application Publication 2007/0118405 to Campbell

SUMMARY OF THE INVENTION

In some embodiments of the invention, a vial is provided that contains a substance to be administered to a subject. The vial is sealed by a stopper, and has therein first and second threaded elements (e.g., a screw and a nut) that are threadedly coupled to each other. The first threaded element is rotatable with respect to the vial, and is linearly immobile with respect to the vial during rotation of the first threaded element. The first threaded element, by rotating, is configured to linearly advance the stopper and at least the distal end of the second threaded element toward the distal end of the vial, without substantially rotating the second threaded element and the stopper. The distal end of the second threaded element defines a coupling portion that couples the second threaded element to the stopper.

In some embodiments, the stopper impedes rotation of the second threaded element, for example, friction between the stopper and the inside of the vial impedes rotation of the second threaded element. Alternatively or additionally, the vial is shaped such that the vial impedes rotation of the second threaded element.

For some applications, the threaded elements are used in conjunction with a standard, commercially-available vial and/or stopper.

Typically, the distal end of the first threaded element is configured to remain proximal to the stopper, or proximal to a distal end of the stopper, and the proximal end of the second threaded element is configured to remain proximal to the distal end of the stopper at all times during the rotating of the first threaded element.

Typically, the apparatus comprises a housing base, the vial and the threaded elements being configured to be inserted into or otherwise coupled to the housing base. For some applications, a portion of the housing base is configured to automatically displace the threaded elements and the stopper toward a distal end of the vial during the insertion into the housing base.

In some embodiments, the subject couples a housing top to the housing base after the vial is inserted into the housing base. The housing top typically contains a motor and a cog, the motor configured to rotate the cog and the cog configured to rotate the first threaded element. For some applications, a control unit administers a basal rate of the substance to the subject by controlling the motor. Alternatively or additionally, the control unit is configured to receive an input and to administer a bolus of the substance to the subject responsively to the input. Further alternatively or additionally, the control unit controls the administering of the substance to the subject in response to the detection by a sensor of one or more physiological parameters of the subject.

For some applications, the substance is administered to the subject via a cannula. Typically, the cannula surrounds a needle. The cannula is inserted into the subject's skin by piercing the subject's skin with the needle and inserting the needle. The needle is typically retracted from the subject's skin following the piercing and the cannula remains inserted in the subject's skin for the duration of the time that the substance is administered to the subject.

In some applications, the apparatus comprises a skin-piercing activation mechanism. Piercing the subject's skin comprises rapidly piercing the subject's skin by displacing a force-receiving element of an activation mechanism. The application of a force to the activation mechanism that exceeds a threshold force displaces the force-receiving element. For example, the subject may press a button coupled to the housing base or top, and, upon application of force that exceeds the threshold force, the needle is suddenly released, and rapidly pierces the skin.

It is noted that the use of two separate portions, the housing top and the housing base, facilitates easier sterilization of components that should be sterilized—particularly the tissue-contacting components of the housing base. The housing top, which typically comprises the battery, motor, and associated electronics, is not typically sterilized.

Additionally, for added convenience of use by the subject, the housing top may be easily removed prior to showering. Alternatively or additionally, all of the components in the housing top are waterproof, such that the housing top may remain coupled to the housing bottom while the subject showers.

In some embodiments, the vial comprises (for example, the vial may be composed of) a cyclic olefin polymer, such as Crystal Zenith®.

There is therefore provided, in accordance with an embodiment of the present invention, apparatus for administering a substance to a subject, including:

a vial that contains the substance, an inner surface of the vial being shaped to define a protrusion therefrom;

a stopper within the vial, slidably coupled to the vial;

a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and

a second threaded element that is threadedly coupled to the first threaded element,

    • the protrusion impeding rotation of at least a distal end of the second threaded element with respect to the vial,
    • the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
    • the first threaded element, by rotating, linearly advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial.

There is further provided, in accordance with an embodiment of the present invention, apparatus for administering a substance to a subject, including:

a vial that contains the substance, a proximal end of the vial being shaped to define two or more flanges;

a stopper within the vial, slidably coupled to the vial;

a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and

a second threaded element that is threadedly coupled to the first threaded element,

    • at least a distal end of the second threaded element substantially non-rotatable with respect to the vial,
    • the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
    • the first threaded element, by rotating, linearly advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial.

There is additionally provided, in accordance with an embodiment of the present invention, apparatus for administering a substance to a subject, including:

a vial that contains the substance;

a proximal stopper within the vial, slidably coupled to the vial;

a dividing stopper within the vial, slidably coupled to the vial;

the vial including a distal compartment and a proximal compartment, the distal compartment containing a first medication and the proximal compartment containing a second medication, the dividing stopper reversibly inhibiting fluid communication between the distal compartment and the proximal compartment,

a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and

a second threaded element that is threadedly coupled to the first threaded element,

    • at least a distal end of the second threaded element substantially non-rotatable with respect to the vial,
    • the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
    • the first threaded element, by rotating,
      • linearly advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, and
      • causing mixing of the first medication and the second medication by advancing the dividing stopper toward the distal end of the vial.

There is further provided, in accordance with an embodiment of the present invention, apparatus for administering a substance to a subject, including:

a vial that contains the substance;

a proximal stopper within the vial, slidably coupled to the vial;

a dividing stopper within the vial, slidably coupled to the vial;

the vial including a distal compartment and a proximal compartment, the distal compartment containing a medication and the proximal compartment containing a flush solution, the dividing stopper reversibly inhibiting fluid communication between the distal compartment and the proximal compartment,

a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and

a second threaded element that is threadedly coupled to the first threaded element,

    • at least a distal end of the second threaded element substantially non-rotatable with respect to the vial,
    • the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
    • the first threaded element, by rotating, (a) administering the medication to the subject, and (b) flushing the medication from the vial with the flushing solution, by advancing the dividing stopper toward the distal end of the vial.

There is additionally provided, in accordance with an embodiment of the present invention, apparatus for administering a substance to a subject, including:

a vial that includes a cyclic olefin polymer and that contains the substance;

a stopper within the vial, slidably coupled to the vial;

a first threaded element (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element; and

a second threaded element that is threadedly coupled to the first threaded element,

    • at least a distal end of the second threaded element substantially non-rotatable with respect to the vial,
    • the distal end of the second threaded element remaining proximal to a distal end of the stopper at all times during rotation of the first threaded element, and
    • the first threaded element, by rotating, linearly advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial.

In an embodiment, the substance includes a monoclonal antibody, and the vial contains the monoclonal antibody.

In an embodiment, the apparatus further includes a fluoropolymer, and the stopper is coated with the fluoropolymer.

In an embodiment, an inner surface of the vial is shaped to define a protrusion therefrom, the protrusion impeding rotation of the second threaded element.

In an embodiment, a proximal end of the vial is shaped to define two or more flanges.

In an embodiment,

the apparatus further includes a dividing stopper within the vial, slidably coupled to the vial;

the vial includes a distal compartment and a proximal compartment, the distal compartment containing a first medication and the proximal compartment containing a second medication, the dividing stopper reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and

the first threaded element, by rotating, causes mixing of the first medication and the second medication by advancing the dividing stopper toward the distal end of the vial.

In an embodiment,

the apparatus further includes a dividing stopper within the vial, slidably coupled to the vial;

the vial includes a distal compartment and a proximal compartment, the distal compartment containing a medication and the proximal compartment containing a flush solution, the dividing stopper reversibly inhibiting fluid communication between the distal compartment and the proximal compartment; and

the first threaded element, by rotating, is configured by advancing the dividing stopper toward the distal end of the vial:

    • to administer the medication to the subject, and
    • to flush the medication from the vial with the flushing solution.

There is additionally provided, in accordance with an embodiment of the present invention, a method, including:

providing:

    • a vial having a protrusion from an inner surface thereof, containing a substance, and sealed by a stopper, and
    • first and second threaded elements for placement within the vial, the first and second threaded elements being threadedly coupled to each other, a distal end of the second threaded element being for coupling to the stopper;

inserting the vial into a housing base, the threaded elements having been inserted into the vial, and the distal end of the second threaded element having been coupled to the stopper;

pushing the substance out of the vial by advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, the advancing being performed by:

    • rotating the first threaded element with respect to the vial,
    • impeding proximal linear motion of the first threaded element with respect to the vial during rotation of the first threaded element, and
    • impeding rotational motion of at least the distal end of the second threaded element with respect to the vial using the protrusion from the inner surface of the vial; and

maintaining the distal end of the second threaded element proximal to a distal end of the stopper at all times during the rotating of the first threaded element.

There is further provided, in accordance with an embodiment of the present invention, a method, including:

providing:

    • a vial that contains a substance, and is sealed by a stopper, and
    • first and second threaded elements for placement within the vial, the first and second threaded elements being threadedly coupled to each other, a distal end of the second threaded element being for coupling to the stopper;

inserting the vial into a housing base, the threaded elements having been inserted into the vial, and the distal end of the second threaded element having been coupled to the stopper;

pushing the substance out of the vial by advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, the advancing being performed by:

    • rotating the first threaded element with respect to the vial,
    • impeding proximal linear motion of the first threaded element with respect to the vial during rotation of the first threaded element, and
    • impeding rotational motion of at least the distal end of the second threaded element with respect to the vial; and

maintaining the distal end of the second threaded element proximal to a distal end of the stopper at all times during the rotating of the first threaded element

    • wherein the vial includes a vial having a distal compartment and a proximal compartment,
    • the distal compartment containing a first medication and the proximal compartment containing a second medication,
    • a dividing stopper within the vial reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and
    • wherein pushing the substance out of the vial includes mixing the first medication and the second medication by advancing the dividing stopper toward the distal end of the vial by rotating the first threaded element.

There is additionally provided, in accordance with an embodiment of the present invention, a method, including:

providing:

    • a vial that contains a substance, and is sealed by a stopper, and
    • first and second threaded elements for placement within the vial, the first and second threaded elements being threadedly coupled to each other, a distal end of the second threaded element being for coupling to the stopper;

inserting the vial into a housing base, the threaded elements having been inserted into the vial, and the distal end of the second threaded element having been coupled to the stopper;

pushing the substance out of the vial by advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, the advancing being performed by:

    • rotating the first threaded element with respect to the vial,
    • impeding proximal linear motion of the first threaded element with respect to the vial during rotation of the first threaded element, and
    • impeding rotational motion of at least the distal end of the second threaded element with respect to the vial; and

maintaining the distal end of the second threaded element proximal to a distal end of the stopper at all times during the rotating of the first threaded element;

    • wherein the vial includes a vial having a distal compartment and a proximal compartment,
    • the distal compartment containing a medication and the proximal compartment containing a flushing solution,
    • a dividing stopper within the vial reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and
    • wherein pushing the substance out of the vial includes:
      • pushing the medication out of the vial; and
      • flushing the medication from the vial with the flushing solution, by advancing the dividing stopper toward the distal end of the vial by rotating the first threaded element.

There is additionally provided, in accordance with an embodiment of the present invention, a method, including:

providing

    • a vial that includes a cyclic olefin polymer, that contains a substance, and is sealed by a stopper, and
    • first and second threaded elements for placement within the vial, the first and second threaded elements being threadedly coupled to each other, a distal end of the second threaded element being for coupling to the stopper;

inserting the vial into a housing base, the threaded elements having been inserted into the vial, and the distal end of the second threaded element having been coupled to the stopper;

pushing the substance out of the vial by advancing the stopper and at least the distal end of the second threaded element toward a distal end of the vial, the advancing being performed by:

    • rotating the first threaded element with respect to the vial,
    • impeding proximal linear motion of the first threaded element with respect to the vial during rotation of the first threaded element, and
    • impeding rotational motion of at least the distal end of the second threaded element with respect to the vial; and

maintaining the distal end of the second threaded element proximal to a distal end of the stopper at all times during the rotating of the first threaded element.

In an embodiment, the substance includes a monoclonal antibody, and wherein pushing the substance out of the vial includes administering the monoclonal antibody to a subject.

In an embodiment, providing the vial includes providing a stopper that is coated with a fluoropolymer.

In an embodiment, impeding rotational motion of at least the distal end of the second threaded element with respect to the vial includes impeding rotational motion of at least the distal end of the second threaded element with respect to the vial using a protrusion from an inner surface of the vial.

In an embodiment,

the vial includes a vial having a distal compartment and a proximal compartment,

    • the distal compartment containing a first medication and the proximal compartment containing a second medication,
    • a dividing stopper within the vial reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and

pushing the substance out of the vial includes mixing the first medication and the second medication by advancing the dividing stopper toward the distal end of the vial by rotating the first threaded element.

In an embodiment,

the vial includes a vial having a distal compartment and a proximal compartment,

    • the distal compartment containing a medication and the proximal compartment containing a flushing solution,
    • a dividing stopper within the vial reversibly inhibiting fluid communication between the distal compartment and the proximal compartment, and pushing the substance out of the vial includes:
    • pushing the medication out of the vial, and
    • flushing the medication from the vial with the flushing solution,
    • by advancing the dividing stopper toward the distal end of the vial by rotating the first threaded element.

The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic illustration of apparatus for administering a substance to a subject, in accordance with an embodiment of the present invention;

FIG. 1B is a schematic illustration of the apparatus of FIG. 1A on a subject's body, a sensor for use with the apparatus being disposed inside the subject's body, in accordance with an embodiment of the present invention;

FIG. 2 is a schematic exploded view of the apparatus of FIG. 1, in accordance with an embodiment of the present invention;

FIG. 3 is a schematic illustration of a housing base of the apparatus of FIG. 1, in accordance with an embodiment of the present invention;

FIG. 4 is a schematic illustration of a vial being inserted into the housing base of FIG. 3, in accordance with an embodiment of the present invention;

FIG. 5A is a schematic illustration of a vial inserted in the housing base, in accordance with an embodiment of the present invention;

FIG. 5B is a schematic illustration of a housing top coupled to the housing base, in accordance with an embodiment of the present invention;

FIGS. 6A-D are schematic cross-sectional illustrations, taken along line VI of FIG. 5A, of the vial at respective stages of use of the apparatus, in accordance with an embodiment of the present invention;

FIG. 6E is a force vector diagram showing the forces acting on a stopper during operation of the apparatus, in accordance with an embodiment of the present invention;

FIGS. 7A-C are schematic cross-sectional illustrations, taken along line VII of FIG. 5A, of an activation mechanism of the apparatus at respective stages of operation of the apparatus, in accordance with an embodiment of the present invention;

FIGS. 8A-B are schematic illustrations of a vial, in accordance with an embodiment of the present invention;

FIGS. 9A-B are schematic illustrations of a double-chambered vial, in accordance with an embodiment of the present invention; and

FIGS. 10A-B are schematic illustrations of a double-chambered vial, in accordance with an alternative embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Reference is now made to FIGS. 1A-B and 2, which are schematic illustrations of apparatus 20 for administering a substance, for example, insulin, to a subject, in accordance with an embodiment of the present invention. Typically, apparatus 20 comprises a vial 22 that contains the substance to be administered to a subject. Vial 22 is sealed at its proximal end by a stopper 24. A first threaded element 26 (e.g., a screw, as shown) is disposed at least in part within the vial, and a second threaded element 28 (e.g., a nut, as shown) is also disposed within the vial, threadedly coupled to the first threaded element. The distal end of the second threaded element defines a coupling portion 30 that couples the second threaded element to the stopper. The first threaded element is rotated by a rotation mechanism (e.g., motor 50), and by rotating, linearly advances the second threaded element and the stopper toward a distal end of the vial, without substantially rotating the second threaded element or the stopper.

In some embodiments, first threaded element 26 is a nut and second threaded element 28 is a screw disposed at least in part inside the nut. The nut is configured to rotate and to cause the screw and the stopper to advance toward a distal end of the vial due to the rotation of the nut. Alternatively, the first threaded element is a first screw and the second threaded element is a second screw. The first screw is configured, by rotating, to advance the second screw and the stopper toward the distal end of the vial. In general, apparatus 20 comprises a first threaded element that rotates, but is substantially immobile linearly during rotation of the first threaded element, and a second threaded element that (a) is substantially non-rotatable, (b) moves linearly toward the distal end of the vial in response to the rotation of the first threaded element, and (c) is coupled to the stopper. The first threaded element is rotated, causing the second threaded element and the stopper to advance distally.

Typically, vial 22 is inserted into a housing base 32. In some embodiments, portion 34 of the housing base is configured to impede proximal linear motion of first threaded element 26. (In the context of the present patent application and in the claims, the term “proximal” denotes a position toward an end 38 of the vial. The term “distal” denotes a position toward an end 36 of the vial, out of which the substance is administered to the subject.) In some embodiments, during rotation of first threaded element 26, stopper 24 is configured to impede rotation of second threaded element 28. Typically, friction of the stopper against the inside of the vial impedes rotational motion of the stopper, and element 28 being coupled to the stopper is similarly impeded. Thus, as first threaded element 26 is rotated, second threaded element 28 and the stopper advance linearly toward distal end 36 of the vial. In some embodiments, a standard, commercially-available vial and stopper are used as vial 22 and stopper 24. For some applications, the first and second threaded elements are standard, commercially-available threaded elements, e.g., a standard commercially-available screw and nut. Friction between the stopper and the vial impedes rotation of the stopper, while allowing distal movement of the stopper within the vial, as described in further detail hereinbelow, with reference to FIGS. 6C and 6E.

For some applications, rotation of the second threaded element is impeded by other means, for example, as described hereinbelow.

For some applications, the initial position of stopper 24 in vial 22 is in accordance with the amount of the substance that is contained within the vial and that is to be administered to the subject. The lengths of first and second threaded elements 26 and 28 are typically such that when the threaded portions of the elements are maximally overlapping (i.e., fully screwed together), and the elements are disposed within the vial, coupling portion 30 couples the second threaded element to the stopper. For example, the lengths of the screw and the nut, shown in FIG. 2, are typically such that when the screw is maximally inserted within the nut, and the screw and nut are disposed within the vial, coupling portion 30 of the nut couples the nut to the stopper. For example, if the vial contains a small amount of the substance prior to administering the substance, then stopper is disposed toward distal end 36 of the vial. In such a case, a relatively long screw/nut assembly (or screw/screw assembly) is designated to be disposed within the vial, so that coupling portion 30 couples the nut to the stopper. If, on the other hand, a large volume of the substance is contained within the vial, then a relatively short screw/nut assembly (or screw/screw assembly) is typically disposed within the vial. For some applications, screw/nut assemblies (or screw/screw assemblies) are color-coded or otherwise marked to indicate which screw/nut assembly (or screw/screw assembly) is suitable for use with which initial volume of substance.

In an alternative embodiment, first and second threaded elements 26 and 28 are placed in the vial, without being selected based on the initial volume of substance, and the elements are unscrewed from each other a suitable amount in order to facilitate the coupling of coupling portion 30 to the stopper.

Typically, a distal end 40 of the first threaded element 26 is configured to remain proximal to the stopper, or proximal to distal end 43 of the stopper, at all times during the rotating of the first threaded element. Further typically, the distal end of the second threaded element remains proximal to the distal end of the stopper at all times during the rotation of the first threaded element. The stopper typically provides a seal between a first portion of the vial, which is distal to the stopper, and a second portion of the vial, which is proximal to the stopper. In some embodiments, the sterility of the substance disposed in the first portion is maintained by the stopper providing a seal between the first portion and the second portion, threaded elements being disposed in the second portion. The first and second threaded elements assembly may be viewed as a shaft that converts the rotational motion of motor 50 to distal advancement of stopper 24. Typically, at all times during the rotating of the shaft, (a) the distal end of the shaft (i.e., the distal end of the second threaded element) is configured to remain proximal to a distal end of the stopper, and (b) the proximal end of the shaft (i.e., the proximal end of the first threaded element) is configured to remain distal to a proximal end of the rotation mechanism.

For some applications, a vial piercing mechanism 44 is movably (e.g., rotatably) coupled to housing base 32. As part of the insertion of vial 22 into the housing base, a seal 46 at distal end 36 of the vial is pierced by pressing the seal against the piercing mechanism. The substance is configured to subsequently flow through a tube 53 toward an activation mechanism 56, which is typically coupled to the housing base, and is configured to insert a cannula and/or a needle through the subject's skin and to deliver the substance via the cannula and/or the needle.

Although first and second threaded elements 26 and 28 have been described as being within vial 22 (e.g., the apparatus may be bought by the subject with the threaded elements already within the vial), in some embodiments, the threaded elements are inserted into the vial and are coupled to stopper 24 by the subject and/or by a healthcare provider. In some embodiments, vial 22 and stopper 24 are a standard, commercially-available vial and stopper, for example, the vial may be a circular barrel with a smooth inner wall. The first and second threaded elements are inserted into the vial and coupled to the stopper, and the apparatus dispenses the substance, in accordance with the techniques described hereinabove. The friction between the standard stopper and the standard vial prevent the second threaded element from rotating due to the coupling of the second threaded element to the stopper, as described hereinabove. For some applications, providing the apparatus described herein for use with standard, commercially-available vials and stoppers provides a commercial advantage.

For some applications, the threaded elements are coupled to housing base 32, and the subject and/or a healthcare provider moves the vial with respect to the housing base in order to couple the stopper to the second threaded element. For example, a standard, commercially-available vial and stopper may be moved with respect to the housing base, in order to couple the stopper to the second threaded element, the threaded elements being coupled to the housing base.

In some embodiments, a housing top 48 is coupled by the subject to housing base 32. The housing top typically comprises a motor 50 and a battery 58. (In an embodiment, the battery is coupled to housing base 32.) For some applications, a first cog 52 is coupled to housing base 32. The motor is configured to rotate the cog, and the cog is configured to rotate first threaded element 26. Typically, first cog 52 engages a second cog 54, the second cog being coupled to the proximal end of threaded element 26, and/or comprising the proximal portion of threaded element 26. In some embodiments, only a single cog is used, the single cog being coupled to and/or comprising a proximal portion of threaded element 26, and the single cog being rotated directly by the motor. Alternatively or additionally, other techniques known in the art are used for converting motion from a motor to rotational or linear motion.

For some applications, the subject reversibly couples the housing top to housing base 32. Following the termination of the delivery of the substance to the subject from vial 22, the subject and/or a healthcare provider decouples the housing top from the housing base. In some embodiments, the housing top is configured to be re-used with another housing base, and the housing base is configured to be discarded after a single use. For some applications, the housing top and the housing base comprise magnetic materials 59 that are configured to releasably couple the housing top to the housing base when the top and the base are aligned.

For some applications, a control unit 51 is coupled to motor 50. In some embodiments, the control unit administers a basal rate of the substance to the subject by controlling the motor. Alternatively or additionally, the control unit is configured to receive an input and to administer a bolus of the substance to the subject responsively to the input. For example, housing top 48 may comprise two buttons. When both buttons are pressed at the same time, the control unit is configured to administer a bolus of the drug. Alternatively, a button 80 associated with activation mechanism 56 may be configured to cause the control unit to administer a bolus of the drug, when pushed subsequent to the insertion mechanism having been activated. Further alternatively or additionally, a sensor 57 (shown in FIG. 1B) is configured to detect one or more physiological parameters of the subject. The control unit is configured to control the administering of the substance in response to the detected parameters. In some embodiments, the sensor is configured to be implanted in the subject. For some applications, the sensor transmits the detected parameters to the control unit wirelessly.

In some embodiments, vial 22 has a distal compartment which contains a powder, and a proximal compartment which contains a liquid. The distal compartment and the proximal compartment are reversibly separated by a dividing stopper 134 (shown in FIGS. 9A-B). First threaded element 26, by rotating, causes the powder and the liquid to mix by advancing the dividing stopper toward distal end 36 of the vial, as described in detail hereinbelow, with reference to FIGS. 9A-B.

Reference is now made to FIGS. 3 and 4, which are respectively a schematic illustration of housing base 32, and a schematic illustration of vial 22 being inserted into the housing base, in accordance with an embodiment of the present invention. The housing base, as shown in FIG. 3, is prepared for the insertion of vial 22. The distal end of the vial is inserted into vial piercing mechanism 44, which pierces the seal at the distal end of the vial. The vial is then lowered into the housing base. Typically, opposing resilient arms 70 support the vial upon the housing base.

In some embodiments, as vial 22 is lowered into housing base 32, first cog 52 engages second cog 54. For some applications, as the vial is lowered, portion 34 of the housing base automatically displaces first and second threaded elements 26 and 28 (and therefore stopper 24) toward distal end 36 of the vial. In some embodiments, the stopper is disposed within the vial such that before the insertion of the vial into the housing, first threaded element 26 protrudes a distance h from the proximal end of the vial. The proximal end of the first threaded element (or of second cog 54) comprises a rounded portion 74. Portion 34 of the housing base comprises an angled face 76. As rounded portion 74 slides past the angled face, the first threaded element is pushed the distance h inside the vial. As a result, the threaded elements and the stopper are displaced toward the distal end of the vial.

In some embodiments, apparatus 20 comprises alternative means of pushing threaded elements 26 and 28 inside vial 22 during the insertion of the vial into housing base 32. For example, the proximal end of first threaded element 26 may comprise an angled face and portion 34 of the housing base may comprise a rounded portion. Alternatively, both the proximal end of the first threaded element and portion 34 of the housing may comprise an angled face and/or a rounded portion.

For some applications, portion 34 of housing base 32 is configured to apply a sufficient force, in displacing threaded elements 26 and 28 and stopper 24, to overcome friction between stopper 24 and vial 22 that is due to prolonged storage of the stopper in contact with the vial. For example, the stopper may have been stored in contact with the inner surface of the vial for a period of at least one week or longer, as a result of which the stopper may have a higher effective static friction than would have existed if the stopper had been recently moved with respect to the vial. Alternatively or additionally, apparatus 20 comprises a cannula 100 and/or a needle 102 (as shown in FIGS. 7A-C), configured to be inserted in the subject's skin. Portion 34 of the housing base, by displacing the threaded elements and the stopper, is configured to expel gas through a distal end of the cannula and/or needle. In some embodiments, in addition to expelling the gas, portion 34 is configured to expel at least some of the substance therefrom, as a result of displacing the threaded elements and the stopper. Typically, the expelling of the substance from the distal end of the cannula before the cannula is inserted into the subject's skin increases the accuracy of the first dosage administered, because the initial activation of the motor essentially immediately administers the substance, without previously ejecting gas stored in the vial or conduits of apparatus 20.

Reference is now made to FIGS. 5A and 5B, which are respectively a schematic illustration of vial 22 inserted in housing base 32, and of housing top 48 coupled to housing base 32, in accordance with an embodiment of the present invention. Housing top 48 is shaped such that when it is coupled to the housing base, button 80 of activation mechanism 56 is accessible to be pressed by the subject.

Reference is now made to FIGS. 6A-E. FIGS. 6A-D are schematic cross-sectional illustrations of vial 22 at respective stages of use of apparatus 20, in accordance with an embodiment of the present invention. FIG. 6E is a force vector diagram showing the forces acting on stopper 24 during rotation of first threaded element 26, in accordance with an embodiment of the present invention.

FIG. 6A shows vial 22 before its insertion into housing base 32. First threaded element 26 (e.g., a screw, as shown) protrudes by distance h from proximal end 38 of the vial. Second threaded element 28 (e.g., a nut, as shown) is threadedly coupled to the first threaded element and is coupled to stopper 24 via coupling portion 30. For example, coupling portion 30 may be shaped to define teeth 90, which are inserted into the stopper. Or, coupling portion 30 may be a flat surface that is flush with a proximal end 42 of stopper 24, or that is otherwise in contact with the stopper.

During insertion of the vial into the housing base, the first and second threaded elements and the stopper are displaced toward distal end 36 of the vial, as shown in FIG. 6B.

First threaded element 26 rotates during administration of the substance to the subject. Rotational motion of second threaded element 28 is impeded (even if not necessarily eliminated) by stopper 24 to which the second threaded element is coupled, and/or rotational motion of the second threaded element is impeded by alternative means, for example, as described with reference to FIGS. 8A-B. Additionally, proximal linear motion of the first threaded element with respect to the vial is impeded (by portion 34 of housing base 32, not shown) during rotation of the first threaded element. The rotation of the first threaded element combined with the impeded rotation of the second threaded element results in the second threaded element and the stopper advancing toward distal end 36 of vial 22, as shown in FIGS. 6C and 6D.

Typically, due to the rotation of the first threaded element, a linear force FL and a rotational force FR act on stopper 24, as shown in FIG. 6E. A linear friction force FFL between the stopper and vial 22 acts to oppose the linear advancement of the stopper, and a rotational friction force FFR between the stopper and the vial acts to oppose rotation of the stopper. Further typically, and as described in detail in the following paragraphs, friction between the stopper and the vial acts to oppose rotation of the stopper to a greater extent than it acts to oppose linear advancement of the stopper through the vial. In particular, in this embodiment, rotation of the stopper by (for example) a full rotation is impeded to a much greater extent than forward motion of the stopper by the pitch of the threaded elements is impeded, because significantly more friction must be overcome to produce a full rotation of the stopper than would need to be overcome in order for the stopper to advance the distance of the pitch of the threaded elements. As a result, friction generally acts to impede rotation of the stopper, while allowing distal movement of the stopper within the vial.

In a more detailed analysis of this effect, it is noted that, in some embodiments, friction between the stopper and the vial has the aforementioned effect due to selection of a suitable ratio of (a) the maximal diameter D of the first threaded element (shown in FIG. 6C) to (b) the pitch P of the first threaded element. Typically, the ratio of the maximal diameter D to the pitch P is 3:1 to 30:1, for example, 6:1 to 20:1, or 8:1 to 15:1. In some embodiments, the ratio is 6:1 to 15:1, for example, 10:1. The pitch of the second threaded element is equal to the pitch of the first threaded element. Proximal linear motion of the first threaded element is impeded (as described hereinabove). Therefore, when the first threaded element rotates and the second threaded element unscrews from the first threaded element, the second threaded element must either rotate, advance distally, or both rotate and advance distally.

By way of example, the first threaded element may have a maximal diameter of 8 mm and a pitch of 1 mm (i.e., a ratio of maximal diameter to pitch of 8:1). Accordingly, the outer perimeter of the first threaded element is greater than 25 mm (pi multiplied by the maximal diameter). As the first threaded element rotates through 360 degrees, if the second threaded element were to unscrew from the first threaded element by rotating, the second threaded element would rotate through a distance of more than 25 mm, around the perimeter of the first threaded element. Accordingly, the outer surface of the stopper would rotate in contact with the inner surface of the vial through an even greater distance, such as 40 mm (since the outer diameter of the stopper is greater than that of the first threaded element, as seen, for example, in any of FIGS. 6A-D). Alternatively, if the second threaded element unscrews from the first threaded element by advancing linearly through the vial, it advances by a distance of 1 mm, i.e., by a distance that is equal to the pitch of the threaded elements. Accordingly, in the presence of significant, intentionally-generated friction, the stopper advances substantially only linearly (in contact with the inner surface of the vial) by a distance of 1 mm, while rotating only to a relatively small extent.

It is noted that in some embodiments, friction between the stopper and the vial acts to impede rotation of the stopper, while allowing distal movement of the stopper within the vial, generally irrespective of the ratio of the maximal diameter D to the pitch P of the first threaded element.

As disclosed hereinabove, in some embodiments, friction acts to impede rotation of the stopper, while allowing distal movement of the stopper within the vial, even when the apparatus disclosed herein is used in conjunction with standard, commercially-available vials, stoppers, and threaded elements.

Reference is now made to FIGS. 7A-C, which are schematic illustrations of activation mechanism 56 of apparatus 20 at respective stages of operation of the apparatus, in accordance with an embodiment of the present invention. Typically, following the insertion of vial 22 into housing base 32, and the coupling of housing top 48 to the housing base, the bottom surface of the housing base is adhered to the subject's skin (e.g., with an adhesive), as shown in FIG. 1B. Subsequently, the activation mechanism is activated.

FIG. 7A shows activation mechanism 56 before the activation mechanism has been activated. Needle 102 is disposed within the activation mechanism, and cannula 100 is disposed around the outside of the needle. When the bottom surface of housing base 32 is adhered to the subject's skin, the subject pushes button 80, which is accessible through housing top, as shown in FIG. 5B. Until the force of the pushing of the button exceeds a threshold force, friction between a protrusion 104 of a structural element 103 and force receiving element 106 prevents the button and the needle being pushed down. (Force receiving element 106 is typically a surface of a holding portion 108, described hereinbelow.) When the button is pushed by the subject with a force that exceeds the threshold force, force receiving element 106 is suddenly and rapidly pushed aside by protrusion 104. Typically, by applying sufficient force to the button to overcome the resistive force of force receiving element 106, the subject applies a level of force which is sufficient to suddenly and rapidly insert the needle and cannula into the subject's skin. FIG. 7B shows the needle and cannula having been advanced due to button 80 having been pushed with a force that exceeds the threshold force.

The pushing of button 80 with sufficient force causes structural element 103 to advance toward the subject's skin. When the structural element arrives at the end of its travel, it is held in place by holding portion 108. For example, a proximal portion of protrusion 104 may be secured by a distally-directed force applied thereto by a distal portion of force receiving element 106, constituting holding portion 108, as shown in FIG. 7B. When the subject releases button 80, as shown in FIG. 7C, a spring 110 pushes the button up, which retracts needle 102 back inside housing base 32. Cannula 100 is coupled to structural element 103, which is held in place by holding portion 108. Therefore, the cannula remains inserted in the patient's skin. The substance is administered to the subject via the cannula.

In an alternative embodiment, the substance is administered to the subject via needle 102, the needle remaining inserted in the subject's skin for the duration of the administration. In such an embodiment, apparatus 20 is typically configured to administer substantially all of the substance to the subject in less than one hour. For example, Copaxone® (or another drug) may be administered to the subject in this manner over the course of approximately one half hour.

In some embodiments, needle 102 comprises a plurality of microneedles, which are inserted into the subject's skin, and the substance is administered to the subject via the microneedles. Typically, the diameter of each of the microneedles is about 50-150 microns, e.g., about 100 microns, and the length of each of the microneedles is about 200-1000 microns.

In an embodiment, control unit 51 is configured to receive an indication, on vial 22, first threaded element 26, second threaded element 28, or another element, that indicates a characteristic of the contents of vial 22. For example, a barcode, RFID, mechanical code, or other code may indicate to the control unit the type of pharmaceutical product in the vial, the quantity of the substance, or a dosage schedule for administration of the substance. Typically, when the subject first receives the vial, stopper 24 is already in place within the vial at the correct position for initiating delivery of the substance.

Reference is now made to FIGS. 8A-B, which are schematic illustrations of respective views of vial 22, in accordance with an embodiment of the present invention. For some applications, a protrusion 120 protrudes from inner surface 122 of the vial, and second threaded element 28 is a nut that is shaped to define a groove 124 on its outer surface. As the nut advances toward the distal end of the vial, groove 124 slides along protrusion 120, preventing the nut from rotating. Alternatively or additionally, stopper 24 is shaped to define a groove on its outer surface, the groove preventing the stopper, and therefore the second threaded element, from rotating. In some embodiments, inner surface 122 of vial 22 is not round, but, for example, is square, oval, or rectangular. The outer surface of the second threaded element, and/or the stopper, is shaped similarly to the inner surface of the vial. The shapes of inner surface 122, and the outer surface of the second threaded element and/or the stopper, prevent the second threaded element from rotating.

In some embodiments, vial 22 contains (for example, the vial may be composed of) a cyclic olefin polymer, such as Crystal Zenith®. In some embodiments, manufacturing the vial using a cyclic olefin polymer facilitates the molding of protrusion 120. For some applications, stopper 24 is coated with a fluoropolymer. Typically, using a vial that contains a cyclic olefin polymer, and/or a stopper that is coated with a fluoropolymer maintains the stability of a substance that is disposed within the vial. For example, the vial may be used to administer a monoclonal antibody to the subject, and the composition of the vial, the stopper, and/or the second threaded element may maintain the stability of the monoclonal antibody.

In some embodiments, the proximal end of vial 22 is shaped to define two or more flanges 123. Typically, the flanges facilitate the filling of the vial. For example, during the filling of the vial, the vial may be placed inside a hole of a tray, and the flanges may support the vial inside the hole. In some embodiments, the flanges are configured to hold the vial in a fixed position inside housing base 32.

Reference is now made to FIGS. 9A-B, which are schematic illustrations of vial 22, in accordance with an embodiment of the present invention. In some embodiments, the vial contains a distal compartment 130, and a proximal compartment 132, a dividing stopper 134 inhibiting fluid communication between the proximal and distal compartments. In some embodiments, a powder (for example, medication that is in the form of a powder) is disposed in distal compartment 130 and a liquid (e.g. water, saline, and/or a medication) is disposed in proximal compartment 132. As second threaded element 28 is advanced distally through the vial, dividing stopper 134 is advanced distally. The advancement of the dividing stopper exposes compartment 132 to conduit 136. As second threaded element 28 is further advanced, stopper 24 causes the liquid to flow into distal compartment 130 via the conduit, in the direction of arrow 138 (as shown in FIG. 9B). The liquid and the powder then mix and, for example, may form a solution or a suspension, before being administered to the subject. In some embodiments, a first liquid medication is disposed in distal compartment 130 and a second liquid medication is disposed in proximal compartment 132. Dividing stopper 134 inhibits fluid communication between the first and second medications. As second threaded element 28 advances through the vial, the two medications mix before being administered to the subject.

Reference is now made to FIGS. 10A-B, which are schematic illustrations of vial 22, in accordance with an embodiment of the present invention. The vial contains a distal compartment 130, and a proximal compartment 132, dividing stopper 134 inhibiting fluid communication between the proximal and distal compartments. In some embodiments, a medication is disposed in the distal compartment, and a flushing solution, such as water or saline, is disposed in the proximal compartment. As second threaded element 28 is advanced distally through the vial, dividing stopper 134 is advanced distally, thereby administering to the subject the medication disposed in proximal compartment 130. When dividing stopper 134 is advanced to a position toward distal end 36 of the vial the flushing solution flows through conduit 140 (in the direction of arrow 142) and flushes the medication from the vial and/or from conduits of apparatus 20.

It is noted that the term “providing” as used herein in the specification and in the claims, in the context of providing apparatus (for example, providing a vial), includes within its scope the apparatus being provided by the user of the apparatus, and is not limited to the sale of the apparatus.

It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8394068Jul 9, 2010Mar 12, 2013Becton, Dickinson And CompanyFlush syringe assembly
US8491537Jul 9, 2010Jul 23, 2013Becton, Dickinson And CompanyFlush syringe assembly with controlled pulsatile flushing
US20130253472 *Mar 26, 2012Sep 26, 2013Medimop Medical Projects Ltd.Motion activated septum puncturing drug delivery device
WO2011034799A1Sep 12, 2010Mar 24, 2011Lamodel Ltd.Cartridge insertion assembly for drug delivery system
WO2012032411A2Sep 6, 2011Mar 15, 2012Tecpharma Licensing AgAutomatic injection device
WO2013032841A1Aug 23, 2012Mar 7, 2013Sid Technologies LlcSubcutaneous and intradermal patch infusers
Classifications
U.S. Classification604/518, 604/218, 604/89
International ClassificationA61M5/31, A61M5/315
Cooperative ClassificationA61M5/14248, A61M5/16827, A61M2205/3523, A61M2005/14252, A61M2205/3569, A61M2005/14268, A61M2005/31518, A61M2005/1426, A61M5/1723, A61M5/14566, A61M5/1413, A61M5/158, F16H25/12
European ClassificationA61M5/145B12, A61M5/142P2
Legal Events
DateCodeEventDescription
Dec 20, 2010ASAssignment
Owner name: LAMODEL LTD., ISRAEL
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CABIRI, OZ;GROSS, YOSSI;PAPROSKI, JOHN;AND OTHERS;SIGNING DATES FROM 20101122 TO 20101217;REEL/FRAME:025524/0066