US 20090112905 A1 Abstract An indexing system uses a graph-like data structure that clusters features indexes together. The minimum atomic value in the data structure is represented as a leaf node which is either a single feature index or a sequence of two or more feature indexes when a minimum sequence length is imposed. Root nodes are formed as clustered collections of leaf nodes and/or other root nodes. Context nodes are formed from root nodes that are associated with content that is being indexed. Links between a root node and other nodes each include a sequence order value that is used to maintain the sequencing order for feature indexes relative to the root node. The collection of nodes forms a graph-like data structure, where each context node is indexed according to the sequenced pattern of feature indexes. Clusters can be split, merged, and promoted to increase the efficiency in searching the data structure.
Claims(25) 1. A computing device that is arranged to manage a quantum indexed graph-like data structure, the computing device comprising:
a processing unit that is arranged to execute instructions to manage the quantum indexed graph-like data structure; and a system memory that is arranged to store the instructions for execution by the processing unit, wherein the executable instructions are arranged for:
extracting a first ordered set of atomic values from a sequence that is associated with a new content;
creating a new context node for the quantum indexed graph-like data structure;
associating the new context node with the new content;
identifying common nodes in the quantum indexed graph-like data structure, wherein each common node includes a second ordered set of atomic values that match at least a portion of the first ordered set of atomic values;
linking the new context node to all identified common nodes;
creating new leaf nodes for any portion of the first ordered set of atomic values that are not identified with common nodes;
linking the new context node to all new leaf nodes;
assigning sequence order values to all links from the new context node based on the first ordered set of atomic values; and
adding the new context node to the quantum indexed graph-like data structure such that the content is indexed according to the first ordered set of atomic values.
2. The computing device of 3. The computing device of 4. The computing device of 5. The computing device of 6. The computing device of 7. The computing device of 8. The computing device of 9. The computing device of 10. The computing device of 11. The computing device of 12. The computing device of 13. The computing device of ^{MaxLength}−2^{Overlaps}.14. The computing device of 15. The computing device of ^{2}(1−4/S)], where m is the length of the query term, n is the number of indexed feature sets, and S is the size of the set of atomic values.16. The computing device of 17. The computing device of 18. The computing device of 19. A computer implemented method for managing a quantum indexed graph-like data structure, the method comprising:
extracting a first ordered set of atomic values from a sequence of feature indexes that is associated with a new content; creating a new context node for the quantum indexed graph-like data structure; associating the new context node with the new content; identifying common nodes in the quantum indexed graph-like data structure, wherein each common node includes a second ordered set of atomic values that match at least a portion of the first ordered set of atomic values; linking the new context node to all identified common nodes; creating new leaf nodes for any portion of the first ordered set of atomic values that are not identified with common nodes; linking the new context node to all new leaf nodes; assigning sequence order values to all links from the new context node based on the first ordered set of atomic values; and adding the new context node to the quantum indexed graph-like data structure such that the content is indexed according to the first ordered set of atomic values. 20. The computer implemented method of 21. The computer implemented method of 22. The computer implemented method of 23. The computing implemented method of 24. The computing implemented method of 25. A tangible computer-readable medium having computer-executable instructions for managing a quantum-indexed graph-like data structure, comprising:
extracting a first ordered set of atomic values from a sequence of feature indexes that is associated with a new content, where each atomic value corresponds to one or more feature indexes that occur in sequence based on a minimum sequence length; creating a new context node for the quantum indexed graph-like data structure; associating the new context node with the new content; identifying common nodes in the quantum indexed graph-like data structure, wherein each common node includes a second ordered set of atomic values that match at least a portion of the first ordered set of atomic values; linking the new context node to all identified common nodes; creating new leaf nodes for any portion of the first ordered set of atomic values that are not identified with common nodes; linking the new context node to all new leaf nodes; assigning sequence order values to all links from the new context node based on the first ordered set of atomic values; and adding the new context node to the quantum indexed graph-like data structure such that the content is indexed according to the first ordered set of atomic values. Description The present disclosure is generally related to indexing methods that may be used by databases, search engines, query and retrieval systems, context sensitive data mining, context mapping, language identification, and robotic systems. Raw baseline features are aggregated, abstracted and indexed for later retrieval or manipulation. The feature index is the quantization number for the underlying features that are represented by the abstraction. Quantum indexes are used to correlate the features to previously stored features. Most information structures impose a cost for data entry and impose semantic constraints and assumptions on the data they hold. A hierarchy is created where the information is referenced and often cross-referenced in more than one instance. In one example, a hierarchy of information is created for “toys” and “robots.” In this example, “toys” can be either categorized under “robots” or vice-versa. For such an example, a redundant reference can be created where the same information is stored twice, once for “toys” under “robots” and also once for “robots” under “toys.” The present disclosure has considered some intermediate representation (IR) techniques that can be utilized to construct a data structure from the input data. Example IR type structures can be found in: a prefix tree or TRIE, a classical string compression techniques such as Lempel-Ziv-Welch (LZW), a genomic approaches such as the so-called Basic Local Alignment Search Tool (BLAST), and dynamic time warping and longest common subsequence like approaches. However, the present disclosure recognizes and appreciates that conventional IR techniques can result in undesirable cross-references that can result in the same information being stored multiple times. The present disclosure contemplates that a graph is far more powerful than hierarchies, trees, or lists, and can provide much better efficiency and flexibility. A graph imposes no burden on data entry, and offers “pivoting” or “tree shaking”. A graph also allows the data to be characterized by statistics and probabilities—for example, the “similarity” measure of one “clique” to another, the “likelihood” of one “path” leading to another, etc. Hierarchies, trees, and lists can naturally and easily be “embedded” within a graph. A graph can serve as an ideal structure to store a set of arbitrary symbol streams (e.g. voice patterns) in a highly compressed way for later searching and retrieving. The present disclosure explores mechanisms and methods for indexing and organizing streams within a graph-like data structure. Embodiments of the present invention will be described in detail with reference to the drawings, where like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the invention, which is limited only by the scope of the claims attached hereto. The examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the claimed invention. Briefly stated, the present disclosure is generally related to an indexing system using a graph-like data structure that clusters features indexes together. The minimum atomic value in the data structure is represented as a leaf node which is either a single feature index or a sequence of two or more feature indexes when a minimum sequence length is imposed. Root nodes are formed as clustered collections of leaf nodes and/or other root nodes. Context nodes are formed from root nodes that are associated with content that is being indexed. Links between a root node and other nodes each include a sequence order value that is used to maintain the sequencing order for feature indexes relative to the root node. The collection of nodes forms a graph-like data structure, where each context node is indexed according to the sequenced pattern of feature indexes. Clusters can be split, merged, and promoted to increase the efficiency in searching the data structure. Although many of the examples described herein refer to a “feature index” as the smallest atomic value, or quanta, it is understood that in other examples a minimum sequence length is imposed and the smallest quanta corresponds to a sequence of feature indexes. For example, pairs of feature indexes may be used as the smallest atomic value when a minimum sequence length of two is employed. In such an example, the pairs of feature indexes are order dependent such that quanta formed by a pair of features indexes such as {a, b} is not equal to a transposition of the same feature indexes {b, a}. The present disclosure is generally related to indexing methods that may be used by databases, search engines, query and retrieval systems, context sensitive data mining, context mapping, language identification, image recognition, and robotic systems. Raw baseline features from an input signal are aggregated, abstracted and indexed for later retrieval or manipulation. The feature index is the quantization number for the underlying features that are represented by an abstraction. Trajectories are used to signify how the features evolve over time. A highly optimized set of operations can be used to manipulate the quantized feature indexes, where the operations can be fine tuned independent from the base feature set. The described indexing scheme can represent feature trajectories of different types such as scalar quantities or vector quantities. Example features are identified from the input signal, which can be a time domain varying signal. The input signal can be any variety of input signal such as, for example, audio signals, video signals, digital images, text sequences, as well as other varieties of input signals. For analog input signals that continuously vary over time, e.g. audio and video signals, the input signal can be broken into discrete digital values that form an input data stream. Each discrete digital value in the stream corresponds to a portion of the input signal at a particular point in time. For example, an audio signal can be converted (e.g., via an analog-to-digital converter) into 16-bit values that are sampled at a rate of 8 kbps. In this example, the audio signal can either be converted into digital values or encoded as digital values in some other numerical representation. A sequence of the digital values forms a digital data stream, where each successive digital value occurs at a later point in time relative to the input signal. In some instances, the input signals are already in the digital domain and conversion is not required. For example, a digital picture is comprised of an array of pixel values arranged in a series of rows and columns. Each pixel from the image may include multiple color planes (e.g., red, green and blue), as well as other characterizing features such as intensity, saturation, tone, etc. Digital values associated with each pixel can be pipelined into the digital data stream. In one example, every pixel is pipelined in succession along a row in the digital image. In another example, a subset of the pixels are pipelined in succession (e.g., every other pixel, every fifth pixel, every other row, etc.). In some examples, a sample block grouping of pixels can be pipelined in succession (e.g., a 10×10 grouping of pixels from a larger image). Once in the digital domain, features are identified from each set of digital values. In some examples, the features correspond to phonemes from human speech. In other examples, the features correspond to representative sampling of a digital image or video stream. In general, any data stream that includes a multiplicity of values occurring in succession to one another over time can be used to represent the input signal for identification of features. The features themselves can be representative of indexes to a feature mapping. For example, human speech can be represented by one of 43 speech phonemes, where each digital value in the data steam represents an index to one of the speech phonemes. Each feature can be linked to other features that occur in succession to one another in the digital data stream to form a sequence of indexes. Each feature in the sequence represents a time quantized feature (e.g., speech phonetics), where any form of arbitrary quanta can be used that maps the feature to a unique identity. The sequence of indexed features can then be clustered together to form a sequence or pattern for indexing. In some examples, the clustered sequence can be represented as a vector (e.g., strings or arrays of objects such as letters, phonemes, integers, floating point values, etc.). Digital data, which can be compressed or uncompressed, is associated with the clustered sequence. The digital data in some examples is a digital representation of a time varying input signal, but is not limited to such signals. The term SCPI represents a Self-Compacting Pattern Indexer, which is a process that forms and manages clusters of features that are identified by their quanta, where those clusters are used as an index into a graph-like data structure that identifies content. Although many of the examples described herein are examples where time varying data is mapped to a feature index stream that varies over time, any variety of arbitrary data is equally applicable (both time varying and non-time varying) to the described processes. Irrespective of the specific quanta utilized for mapping data to quantized features, the described SCPI processes and methods will create and manage a graph-like data structure for indexing those clustered features. Throughout the present disclosure, the term “content” refers to any variety of data that may be associated with a context node in the quantum indexed graph-like data structure. Content can be provided in any reasonable form that is capable of storage, including but not limited to, a digitally encoded audio signal, a digitally encoded video signal, a digitally encoded photographic image, or a file. The term “file” refers to any aggregation of data that can be stored and/or manipulated whether storable in text, binary or any other encoded compressed or uncompressed format. Example files may include web pages, executable application programs, data used by application programs, and any other reasonable. Illustrative System and/or Apparatus Front end processor block Feature quantizer block In some examples, feature quantizer block Feature index steam SCPI processing block Sequences of feature indexes are recognized by the SCPI processing methods as a group or cluster. Each feature index can be isolated into a leaf node to represent the smallest atomic value or quantum. Leaf nodes are linked to a root node, which represents the clustered sequence of all feature indexes within a context. Root nodes consist of pointers to other node, which can either be leaf nodes, or other root nodes that represent common portion of a clustered sequence. The common portion of the clustered sequence can be considered a sub-sequence for a current context node. As the graph-like data structure is updated, common sub-sequences may be formed and/or reformed through a variety of processes such as splitting and merging operations. Also, links to nodes and leafs may be updated through various other processes such as garbage collection operations, pattern promotion processes, node splitting processes, and/or node merging operations. In some examples, there is a minimum sequence length that is imposed on the overall process that is greater than one. In such examples, the leaf nodes do not represent individual feature indexes and instead they represent a sequence of two or more feature indexes that occur in a specified order. For example a sequence of feature indexes 1,2 as a leaf node does not match the leaf node resulting from a reversed sequence of feature indexes 2,1. Although many of the examples described herein refer to the simplest case where a sequence length of one is used (i.e., where there is a one-to-one mapping between feature indexes and leaf nodes), the disclosure is not so limited and all of the examples described herein are equally applicable to any arbitrary sequence length minimum. The time domain data for the example of A specific example set (P) of acoustic phonemes, which can be expressed as: P={aa, ae, ah, ao, aw, ax, ay, b, ch, d, dh, dx, eh, er, ey, f, g, hh, ih, ix, iy, jh, k, l, m, n, ng, ow, oy, p, r, s, sh, t, th, uh, uw, v, w, y, z, zh, sil}, which consists of 42 phonemes plus “sil”, which stands for inter-phone silence. Time domain data for speech can then be quantized as a sequence of phonetic symbols from the set P. A phonetic to index mapping can thus be used to characterize the speech as a 1:1 mapping that uses 43 indexes, where the indexes to phonemes (or feature indexes) can from a set of numerical indexes (e.g., numbered 0 through 42) or from a symbolical name that is associated with the identified phoneme. The time domain data for speech can thus be segmented into time windows where each segment is evaluated to identify one of the phonetics from the set P, to generate a set of feature indexes that map to different phonetics. The first phonetic “s” is mapped ( In the time domain, a sequence is formed from the first feature index to the second feature index ( As illustrated in The asterisk (*) character at root node A second graph-like data structure ( Graphs A third graph-like data structure ( The above described graph-like data structure ( A splitting process can be used to create new root nodes from a prior existing root node to accommodate the insertion of a new context node into the graph-like data structure. For example, the addition of a new context node for the sequence “mates” in graph-like data structure As illustrated in A second graph-like data structure ( A third graph-like data structure ( It is important to recognize that the “context” nodes (i.e., those marked with asterisks) consist entirely of the references they hold. This means that “*mate”, “*team”, and “*teammate” in the above example exist entirely based on shared/common sequence references. Each context node also includes an association (e.g., a pointer) with content. For example, a “context node” can be associated with additional information such as a pointer to the original digitized sound recording for a recorded audio steam (e.g., a “wav” file), a time or date stamp for the audio stream, or anything else that is relevant to the underlying data (i.e., in this example the digital data for the audio stream). Because of data structures form, an associative memory model is suitable to express the relationship between the context nodes set of feature indexes as an index to the associated stored content. Only one physical storage location is required to store the content associated with a context node. Interestingly, the network of root nodes, context nodes and leaf nodes can also serve as a form of neural network where connections between the nodes are dynamically formed based on the sequenced patterns of feature indexes that are evaluated when context nodes are created. Processing for the quantum indexing process begins at block At block Processing continues from block At decision block At block At block At decision block At block At block At decision block At decision block A splitting operation ( At block At block At block At block Processing begins at block At decision block At block At decision block At block At decision block At block At block Block The ranking of the query results can be determined based on any variety of mathematical, probability and/or statistical models. For example, a sequence may includes a set of three feature indexes, where the first two feature indexes are matched to a context node yielding a ranking of 66% since two out of the three feature indexes matched in the proper sequence order. In another example, the first and third feature indexes appear in the proper order without the second feature index in the set yielding a ranking of less than 66% since the missing term reduces the probability that a successful match has to the sequence has been found. Once all of the feature indexes have been searched, the overall ranking of the partial matches can be evaluated to find the most likely match for retrieval of content. As shown in In one example, a pattern promotion process can be implemented to track the frequency of use associated with a context node so that the most used context nodes are pushed to the top of the data structure. For example, a counter can be associated with each of the context nodes ( Another process can also be used such as a cleanup or bookkeeping process that evaluates the data structure itself. For example, a summation process ( Flow diagram Processing begins at block At decision block At block Flow diagram Processing begins at decision block At block Block Processing begins at block At decision block At block Processing flows from block The heuristic scoring process can be applied to selected feature indexes such as symbols in the case of an alphabet-type processing method. After the set of selected symbols are identified (e.g. graph traversal block At decision block At block Continuing to block Symbols from a sequence are identified at block Processing flows from decision block When a collision is detected processing flows to block Processing flows from decision block The Hash code table includes a hash code column and a flag column identifying hash codes as occupied or available. The Prefix Code Table includes a Prefix Code column and a Value field column. The Append Char Table includes a Prefix Code column and a Value field column. For the example described herein, codes Table set Table set Table set Table set Table set Table set Table set Table set For the example described below, an utterance ( For the described example a pattern matching length of 2 or 3 is utilized. The query term “scarves” is broken into 11 subsequences for pattern matching, namely: “sc”, “ca”, “ar”, “rv”, “ve”, “es”, “sca”, car”, “arv”, “rve” and “ves”, as illustrated by A heuristic scoring is done for each occurrence of a matched pattern as is illustrated by heuristic scoring table To quickly accumulate a heuristic score for a given utterance (e.g, Each matched pattern has a score based on the length of the matched run of symbols, as well as the number of recurrences of the matched run in the utterance. Overlaps in runs of symbols are scored higher than single occurrences using an exponential relationship. To quickly accumulate a heuristic score for a given utterance (e.g, IN one example, a scoring function is used as a function of the pattern match length (L) by the exponential relationship of score=2 For the described example, the first row (“sc”) has a heuristic score of 4−0=4 for the matched portion of “scarier”, the second row (“sc”) has a heuristic score of 4−0=4 for the matched portion of “scarves”, the third row (“ca”) has a heuristic score of 16−4=12 for the matched portion of “cars”, the fourth row (“ca”) has a heuristic score of 16−4=12 for the matched portion of “scarier”, the fifth row (“ca”) has a heuristic score of 16−4=12 for the matched portion of “scarves”, the sixth row (“ar”) has a heuristic score of 16−4=12 for the matched portion of “cars”, the seventh row (“ar”) has a heuristic score of 4−0=4 for the matched portion of “are”, the eighth row (“ar”) has a heuristic score of 64−16=48 for the matched portion of “scarier”, the ninth row (“ar”) has a heuristic score of 64−16=48 for the matched portion of “scarves”, the tenth row (“rv”) has a heuristic score of 256−64=192 for the matched portion of “scarves”, the eleventh row (“ve”) has a heuristic score of 1024−256=768 for the matched portion of “scarves”, the thirteenth row (“es”) has a heuristic score of 4096−3072=0 for the matched portion of “scarves”, the fourteenth row (“sca”) has a heuristic score of 0−0=0 for the matched portion of “scarier”, the fifteenth row (“sca”) has a heuristic score of 0−0=0 for the matched portion of “scarves”, the sixteenth row (“car”) has a heuristic score of 0−0=0 for the matched portion of “car”, the seventeenth row (“car”) has a heuristic score of 0−0=0 for the matched portion of “scarier”, the eighteenth row (“car”) has a heuristic score of 0−0=0 for the matched portion of “scarves”, the nineteenth row (“arv”) has a heuristic score of 0−0=0 for the matched portion of “scarves”, the twentieth row (“rve”) has a heuristic score of 0−0=0 for the matched portion of “scarves”, and the twenty-first row (“ves”) has a heuristic score of 0−0=0 for the matched portion of “scarves”. The total score for the matched portions is 4180 as illustrated by An analysis of noise floor derivations is described below for the number of substring matches found in random strings. A noise floor is relevant when trying to account for random matches in an approximate string matching scoring algorithm. It can be observed that in a scoring scheme where a substring match of length L in the query text Q and document text T is given a score of 4 A set [n] denotes the set of positive integers less than or equal to n; [n]={1,2, . . . , n}. Σ will denote a finite alphabet of symbols from which strings are constructed. The set of all strings is denoted by Σ*, and the set of strings of length n is denoted by Σ Simplified analysis can be focused on the special case where the expected number of matches of length 2 is counted for two random strings. The query string of length m can be given by Q=Q For example, if Q=abcdef and T=abdef, then X(Q,T)=3 (the strings ab, de, and ef occur in both Q and T). One goal is to compute the expected value of X over all strings Q of length m and strings T of length n. In the probabilistic setting the event space Ω is Σ
The random variable X can be decomposed into a family of indicator random variables. Let X
Substituting this term in for X(Q
Rearranging the summations yields:
This reduces the problem to one of combinatorics. By answering how many strings Q
Replacing this expression back in the last result yields:
It is observed that the number of random length two matches is proportional to the product of the length of the query and the length of the text. Again, let Q and T be two random strings of length m and n, respectively. Extending the results above, we can show that the expected number of length k matches between the two strings is Θ((m−k)(n−k)/S As an example, if Q=abcdefgh and T=defgi, I
To compute E[Score(Q,T)] over strings Q ε Σ
Rearranging the summations yields:
E[Score(Q,T)] can be bounded from below by considering the expected score generated solely by length 2 matches. In particular,
Notice that for i ε [m−1] and j ε [n−1], I
Substituting the above results for E[X(Q,T)], it is derived that 4(m−1)(n−1)/S An upper bound can also be forced on the expression. Assume that a length k match is possible at every pair of positions (i,j) ε [m]×[n], regardless of the value of k. Lemma 1 The number of pairs of strings (Q Proof: Without loss of generality, assume that i,j are such that a length k match is possible starting at those positions in Q and r, respectively. Let A be the set of pairs (Q,T) such that Q[i, i+k−1]=T[j, j+k−1]. It's clear that there are S By the previous lemma, we know that for any i, j pair
We can refine this result further by noting that whenever i=m or j=n, I
Substituting this result in the equation for E[Score (Q,T)], we have that
At this point we assume that S>4. In general this is not a necessary requirement as the family of functions {I In conclusion, we have that
It is interesting to note how tight these bounds become as S gets large. When S is large, the probability of two length k strings being equal is 1/S Application Computing device Computing device Computing device Both insert and query algorithms can be implemented as 1-pass algorithms that only visit each symbol (or feature index) position once, i.e. they are O(N) in the length of the inserted and queried strings. However, each symbol participates in all n-grams (building at insertion time and matching at query time) that it happens to be contiguous with. Queue-based processing can be used for both insert and query as illustrated by the pseudo-code. What this means is that there is a queue of things that propagates from symbol position to symbol position. At each symbol we adjust either the index (at insertion time) or the matching runs to process the queue, add new things to the queue, take out expired entries (these are the sequences that exceed MaxNGrams at insert time and the ones that stop matching at query time), and the queue moves to the next symbol position. One pass of this queue through the sequence, and we are done. The insert and query algorithms (both of which use the above queue-based mechanism) illustrated in the pseudo-code are symmetric in that they do nearly the same kinds of things to update the index, or query it for a match. The query algorithm proceeds by means of finding all matches with proper subsets. It is trivial to prove that all sequences that match on an n-gram must also match on all n−1 grams that match with the n-gram in the first n−1 symbol positions, i.e. matching prefixes. This allows the process to effectively “harvest” all nodes that fall out of the matching run at each symbol position, and add their scores to the list of results. This design, besides being easy to prove correct, is also cache friendly, because we start by caching the biggest sets of matches, and refine that by subsetting as we proceed down the query sequence. The insert and query algorithms are nearly symmetric. A systolic version for the core SCPI algorithms can be proposed. In a systolic algorithm we allow for parallel paths for data (in this case, the symbols) to enter the processing pipeline. The end effect is that once the length of the pipeline is ideally tuned for the application, then at steady state (i.e. once the pipeline is full of queued entities), then the observable throughput is the ideal/optimum of n result every time instant, where n is the pipeline depth. This gives us the capability of realizing the SCPI algorithm on custom silicon (ASIC) or FPGA to give extremely fast data processing capability. Such an algorithm could conceivably be useful in domains where large data sets and symbol sequencing operations are needed, e.g. genome sequencing, large multi-media search engines (i.e. Google-compete), etc. Additionally, because of symmetry, the same circuits could be re-used for insertion and querying, e.g. by mode switching FPGAs. The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended. Referenced by
Classifications
Legal Events
Rotate |