US20090209902A1 - Kit for adminstering a therapeutic agent into tissue - Google Patents

Kit for adminstering a therapeutic agent into tissue Download PDF

Info

Publication number
US20090209902A1
US20090209902A1 US12/431,062 US43106209A US2009209902A1 US 20090209902 A1 US20090209902 A1 US 20090209902A1 US 43106209 A US43106209 A US 43106209A US 2009209902 A1 US2009209902 A1 US 2009209902A1
Authority
US
United States
Prior art keywords
ozone
kit
therapeutic agent
oxygen
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/431,062
Inventor
Mario Muto
Kieran P. Murphy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramatec Inc
Original Assignee
ACTIVE-O LLC
Ceramatec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACTIVE-O LLC, Ceramatec Inc filed Critical ACTIVE-O LLC
Priority to US12/431,062 priority Critical patent/US20090209902A1/en
Publication of US20090209902A1 publication Critical patent/US20090209902A1/en
Assigned to CERAMATEC, INC. reassignment CERAMATEC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUTO, MARIO, MURPHY, KIERAN P
Assigned to ACTIVE-O, LLC reassignment ACTIVE-O, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MURPHY, KIERAN, MUTO, MARIO
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3478Endoscopic needles, e.g. for infusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/40Peroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3114Filling or refilling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3128Incorporating one-way valves, e.g. pressure-relief or non-return valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0216Ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1003Spinal column
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/065Guide needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31511Piston or piston-rod constructions, e.g. connection of piston with piston-rod

Definitions

  • the present invention relates generally to a method, apparatus and kit for administering a therapeutic agent into tissue and in particular, for the administration of a therapeutic agent such as medical ozone.
  • Back joint disc or tendon pain is a common and potentially debilitating ailment that affects an estimated 80% of the worldwide population at least once in a lifetime.
  • the cause of the pain can be attributed to a degenerated intervertebral disc that has further deteriorated into a condition known as disc herniation. This occurs when the disc nucleus pulposus extrudes through a tear or fissure in the outer lining of the disk, thereby exerting pressure on spinal nerves.
  • the compression caused by the herniated nucleus leads to inflammation and is directly responsible for the pain felt down the leg (also referred to as sciatica).
  • Available treatments for this type of back pain vary according to the severity of the hernia.
  • inflammation can develop between two surfaces the are involved in allowing joint function, such as a tendon and the sheath or lubricated tube in which that tendon moves.
  • Inflammation such as bursitis in the knee shoulder hip, or other anatomic bursa may benefit from ozone therapy, this includes epicondylitis, and other tendonitis and bursitis, including the wrist, hand and the tendon sheaths of the hand and wrist. Inflammation can occur at a site where a tendon or a ligament insert to bone or pass through a sheath from trauma, tension, over use or disease.
  • Inflammation can develop through pathologies of any joint, and these may again include the inflammatory arthropatic conditions of rheumatoid arthritis, psoriatic arthritis and the like, or osteoarthritis.
  • Joints that may be involved in these processes that are amenable to ozone injection include the synovial joints such as the, temperomandibular joint, the hip joint, knee joint, ankle joint, elbow joint or sacro-iliac joint.
  • Vertebral facet and sacro-iliac joints may also benefit, inflammatory involvement of joints in the hand, wrist and feet with rheumatoid arthritis, osteoarthritis or a repetitive injury through sports or occupational such as carpal tunnel syndrome.
  • ibuprofen a combination of anti-inflammatory agents such as ibuprofen, or more powerful drugs such as steroids or chemotherapy such as methotrexate. It is a common medical practice to inject steroid medications or lidocaine directly into the inflamed tissue or joint. This is often done repeatedly. These drugs can be associated with side effects of infection and even death from gastric ulcer bleeding or immunosuppression and infection. We believe that ozone therapy whether as a liquid or a gas would have advantages over the current practice.
  • Lavage of a surgical space prior to placement of a permanent surgical implant such as a hip or knee prosthesis, or pacemaker or treatment of an infected joint can be facilitated by the use of medical ozone as a sterilizing substance.
  • a colostomy stoma can be created such that the adhesive disk is infused with ozone as a liquid or gas to aid in healing and inhibit infection.
  • the post surgical recovery from stemotomy after cardiac surgery is often complicated wound infection. Placement of a resorbable catheter in the wound that could be irrigated with ozone liquid or gas would aid healing. Indeed any wound could have a resorbable multisided hole catheter placed in it to allow ozone be injected through it. This would have anti-infective, analgesic and promote wound healing properties. This would shorten recovery time and decrease complication rates after surgery.
  • Enhanced liquid ozone could be applied to the wound/surgical site healing at a site of high probability of infection such an abdominal incision/wound after appendectomy, or urgent colectomy with colostomy or after percutaneous endoscopic cholecystectomy.
  • Endoscopic procedural infusion of ozone and trans catheter infusion of ozone can be used to inhibit the complications endoscopic medical intervention or image guided or non-image guided catheter based intervention for example in endoscopic evaluation of the pancreatic duct.
  • Dental injection of liquid or gas ozone may augment the preparation and repair of dental cavities, and aid in reduction of root canal inflammation or periodontal disease.
  • kits for intervention in inflammatory and degenerative disease that are disposable, or reusable, but aid in creating sterile, stable, ozone rapidly on demand.
  • the generation of ozone from sterile water would allow storage of injector/generators in all medical dental and veterinary facilities.
  • kits for administering therapeutic gas mixture into soft tissue wherein said gas mixture includes ozone.
  • the kit can comprise of the following items:
  • An example of a local anesthetic is, but not limited to, Lidocaine HCl
  • nonionic x-ray dye is, but not limited to, Omnipaque 300M.
  • An example of a post-operative dressing is, but not limited to, Povidone gel.
  • Any suitable source of ozone can be used such as an ozone generator, the AOS-1M Medical Ozonator or AOS-LMS Stainless Medical Ozonator for example, or a disposable injector filled with ozone.
  • a method for the treatment of pain caused by a herniated disc comprising of first identifying the herniated disk using an imaging technique and subsequently injecting a known volume of medical ozone into the disc and paraspinous soft tissues in a sterile manner and environment.
  • an apparatus for administering a therapeutic agent comprising a therapeutic agent generator and a scavenger connected to the generator via a first valve for capturing the therapeutic agent.
  • the therapeutic agent administrator is connectable to the generator via at least one additional valve such that when the valves are in a first position the generator communicates with the administrator for filling the administrator with the agent. When the valves are in a second position the administrator retains the agent therein upon disconnection from the generator, and the scavenger captures any excess agent intermediate the administrator and the generator.
  • the agent can be ozone in a gaseous mixture or dissolved in a liquid.
  • the generator can be a medical ozone generator.
  • the medical ozone can be a ratio of oxygen (O2) and ozone (O3).
  • the ratio of ozone in micro grams to oxygen in milliliters can be about 1 ⁇ g/ml, or about 10 ⁇ g/ml, or about 20 ⁇ g/ml, or about 30 ⁇ g/ml, or about 40 ⁇ g/ml, or about 50 ⁇ g/ml.
  • the ratio of ozone in micro grams to oxygen in milliliters can be between about 1 ⁇ g/ml and about 90 ⁇ g/ml.
  • the ratio of ozone to oxygen can be between about 10 ⁇ g/ml and about 80 ⁇ g/ml.
  • the ratio of ozone to oxygen can be between about 20 ⁇ g/ml and about 70 ⁇ g/ml.
  • the ratio of ozone to oxygen can be between about 10 ⁇ g/ml and about 34 ⁇ g/ml. More preferably, the ratio of ozone to oxygen can be between about 27 ⁇ g/ml to about 28 ⁇ g/ml.
  • the administrator can be a syringe.
  • Another aspect of the invention provides a method of treating the pain caused by a herniated disc comprising identifying the herniated disk and injecting medical ozone into the disc and paraspinous soft tissues.
  • a syringe for self-contained generation and administration of a therapeutic agent comprising a barrel for holding the agent, and a plunger for insertion into a first end of the barrel and expressing the agent from a second end of the barrel.
  • the syringe also includes a power supply integrally mounted coaxially with the plunger.
  • the syringe also includes a therapeutic agent generator integrally mounted coaxially with the plunger and in communication with the barrel through a channel in the plunger. The generator is connected to the power supply and mounted coaxially with the plunger.
  • the syringe also includes a switch connected to the power supply such that when the switch is activated the therapeutic agent generator generates the therapeutic agent and fills the barrel therewith.
  • the ozone can be generated either as a liquid or a gas, in a syringe type structure where the electronics are housed in the area normally occupied by the plunger of the syringe and the anode is in the syringe.
  • the syringes can be any desired volumes, such as those ranging from 1 cc to 60 cc, more preferably 1 cc to 10 ccs.
  • the syringes are typically made of polyethylene to resist the corrosive effect of ozone even in the short time it in contact with the plastic.
  • an implantable apparatus for self-contained generation and administration of a therapeutic agent comprising: a chamber for holding the agent and a catheter for connecting the chamber to an area for administration of the agent.
  • the apparatus also includes a power supply and a therapeutic agent generator in communication with the chamber, the generator connected to the power supply.
  • the apparatus also includes a switch activateable externally by a patient implanted with the apparatus. The switch is connected to the power supply such that when the switch is activated the therapeutic agent generator generates the therapeutic agent and fills chamber therewith.
  • Another aspect of the invention provides a method of treating pain caused by a herniated disc comprising of the following steps:
  • FIG. 1 shows an apparatus for administering a gas into a tissue in accordance with an embodiment of the invention
  • FIG. 2 shows the hip area of a patient where a therapeutic agent can be administered
  • FIG. 3 shows the spinal disc area of a patient where a therapeutic agent can be administered
  • FIG. 4 shows a normal spinal disc
  • FIG. 5 shows a herniated spinal disc where a therapeutic agent can be administered
  • FIG. 6 shows an apparatus for administering a gas into a tissue in accordance with another embodiment of the invention.
  • FIG. 7 shows the administrator of FIG. 6 with the needle placed thereon
  • FIG. 8 shows an apparatus for administering a gas into a tissue in accordance with another embodiment of the invention.
  • FIG. 9 shows an apparatus for administering a therapeutic agent into a hip region in accordance with another embodiment of the invention.
  • FIG. 10 shows the apparatus of FIG. 9 in greater detail
  • FIG. 11 shows an infusion wire through which a therapeutic agent can be administered
  • FIG. 12 shows the infusion wire being passed through a needle towards the centre of a herniated disc
  • FIG. 13 shows the infusion wire being placed in centre of a herniated disc with the needle having been removed
  • FIG. 14 shows the infusion wire of FIG. 11 in greater detail
  • FIG. 15 shows an apparatus for administering a therapeutic agent into a tissue in accordance with another embodiment of the invention.
  • apparatus 20 comprises an ozone generator 24 that connects to a charcoal scavenger 28 and an ozone administrator 32 .
  • Generator 24 can be based on any known medical ozone generator.
  • Generator 24 connects to scavenger 28 and administrator 32 via a network of flexible tubing and valves for selectively directing the flow of gas there between. More specifically, a first segment of tubing 36 connects generator 24 to a three-way valve 40 . A second segment of tubing 44 connects valve 40 to scavenger 28 .
  • a third segment of tubing 48 connects valve 40 to another valve 52 , which in turn connects to administrator 32 .
  • the tubing is made of any suitable material, such as silicon of the known medical type, and has a diameter and wall thickness to withstand the pressure of ozone gas being carried there through.
  • the valves also known as stopcocks, are also of the known medical type and have fittings complementary to the various portions of tubing.
  • Administrator 32 is comprised of a syringe 56 , a three-way valve 60 , and a needle 64 .
  • Syringe 56 is typically made of polyethylene to resist the corrosive effect of ozone, but other materials will occur to those of skill in the art.
  • Three-way valve 60 is releasably connectable directly to valve 52 , providing a selective pathway between syringe 56 and generator 24 and/or scavenger 28 .
  • Valve 40 has a first position wherein generator 24 communicates only with tubing 48 .
  • Valve 52 has a first position wherein tubing 48 communicates with administrator 32 .
  • Valve 60 has a first position wherein syringe 56 communicates only with tubing 48 .
  • generator 24 is in communication with syringe 56 , and thus when generator 24 is “on”, syringe 56 will be filled with ozone.
  • Valve 40 has a second position wherein tubing 44 communicates with both tubing 36 and 48 .
  • Valve 52 has a second position wherein tubing 48 is effectively capped, preventing communication between administrator 32 and tubing 48 .
  • scavenger 28 is of the charcoal type, but any type of scavenger for capturing excess ozone can be used.
  • generator 24 is turned “off” after filling syringe 56 as described above, then when valves 40 and 52 are each moved from their respective first position to their respective second position then any excess ozone still present in tubing 48 and 36 will be captured by scavenger 28 and thereby reduce and/or substantially eliminate the unwanted escape of ozone into the atmosphere where it may harm the operator or other individuals proximal to apparatus 20 .
  • Valve 60 also has a second position wherein syringe 56 is prevented from communicating with either valve 52 (or the open fitting on valve 60 that connects to valve 52 ), or with needle 64 .
  • valve 60 will also be placed in its second position to retain the ozone within syringe 56 once administrator 32 is disconnected from valve 52 .
  • valve 60 also has a third position that places syringe 56 in communication with needle 64 .
  • valve 60 when charged, valve 60 can be placed in the second position to prevent ozone from escaping from syringe 56 .
  • Administrator 32 can then be disconnected from the remainder of apparatus 20 and then needle 64 can be inserted into tissue (or other target area) where the ozone is to be administered.
  • needle 64 is shown inserted into a hip 68 .
  • valve 60 is placed in the third position, allowing syringe 56 to communicate with needle 64 .
  • syringe 56 is depressed, and the ozone gas therein is expressed out of needle 64 into hip tissue, thereby providing localized pain relief around hip 68 .
  • Such administration of ozone can be helpful to relieve pain after some types of hip surgeries, such as hip replacement, or after bone is harvested from the pelvis to use as a bone graft material.
  • FIG. 2 depicts pain relief being provided to hip 68
  • FIG. 3 depicts the provision of pain relief to a spinal disc 72 .
  • a normal disc is shown in cross section at 72 n .
  • Disc 72 n has an outer annulus fibrosus 76 n , an inner annulus fibrosus 80 n , a transition zone 84 n , and a nucleus pulposus 88 n .
  • disk 72 is also shown in cross section, wherein nucleus pulposus 88 is protruding, and thereby a cause of pain.
  • the administration of ozone into the protruding nucleus pulposus 88 using administrator 32 via needle 64 pain can be relieved and/or substantially eliminated at least temporarily.
  • administrator 32 can then be reconnected to the remainder of apparatus 20 , and the appropriate valves 40 , 50 , and 62 adjusted to either allow any remaining ozone to be expressed from administrator 32 for capture by scavenger 28 , or to refill syringe 56 .
  • Apparatus 20 a includes many similar components to apparatus 20 , and like components are indicated with like references but followed by the suffix “a”.
  • administrator 132 a includes certain differences from administrator 32 . Specifically, administrator 132 a has a two way valve 160 a , one end of which connects to syringe 132 a , the other end of which has a fitting to allow administrator 132 a to be connected to either valve 52 a , as shown in FIG. 6 , or to needle 164 a as shown in FIG. 7 .
  • valves 52 a and 160 a can be placed in an open position so that syringe 132 a communicates with generator 24 a .
  • generator 24 a is “on”, syringe 132 a will be filled with ozone.
  • valves 52 a and 160 a can be placed in the closed position, and valve 40 a can be turned so that once apparatus 160 a is disconnected from valve 52 a , any ozone remaining in tubes 48 a , 36 a or elsewhere in that remaining portion of apparatus 24 a can be captured by scavenger 28 a.
  • valve 160 a can then be selectively opened or closed to allow the administration of ozone to tissue, in much the same manner as previously described in relation to FIGS. 2 and 3 .
  • Apparatus 20 b is a self-contained, portable version of apparatuses 20 and 20 a .
  • apparatus 20 b includes a needle 164 b and a two-way valve 160 b that are substantially the same as needle 164 a and valve 160 a as described above.
  • Apparatus 20 b also includes a syringe 132 b comprising a barrel 156 b (or other chamber) and a plunger 192 b (or other means to express the contents of the chamber).
  • Plunger 192 b is configured as a normal plunger on a syringe, but also includes a miniature ozone generator 196 b mounted on the shaft of plunger 192 b .
  • ozone generator 196 b is connected to a power supply 200 b and an on-off switch 204 b that is disposed on the exterior tip of the shaft of plunger 192 b .
  • a small channel 208 b joins generator 196 b to the opposite tip of the shaft of plunger 192 b , such that when plunger 192 b is disposed in barrel 156 b , generator 196 b is in communication with the interior of barrel 156 b .
  • switch 204 b can be activated and thereby cause ozone to be generated and fill barrel 156 b .
  • ozone can be generated in either gaseous or liquid form.
  • switch 204 b While switch 204 b is activated, it is generally desired to have valve 160 b placed in the closed position to prevent ozone from flowing from barrel 156 b into needle 164 b . Once a sufficient or otherwise desired amount of ozone has been generated and filled barrel 156 b , switch 204 b is turned “off” to discontinue generation of ozone, and then apparatus 20 b is used in much the same manner as administrator 32 as described above in relation to FIGS. 2 and 3 .
  • the ozone generator 196 b can be provided in a variety of sizes, capable of delivering a range of ozone volumes, for example from about one cc to about five cc, but could be made to generate volumes of ozone liquid or gas form of about 0.1 cc to about one liter.
  • Apparatus 20 c is a self-contained, implantable version of apparatuses 20 , 20 a and 20 b . As shown in FIG. 9 , apparatus 20 c is implanted subcutaneously proximal to hip 68 . In a present embodiment, apparatus 20 c includes a separate, external switchable power supply 212 c that is disposed just above the skin of the patient and is thereby activatable on demand by the patient. Power supply 212 c connects to a miniature ozone generator 196 c disposed percutaneously.
  • generator 196 c is connected to an oxygen source 220 c , such that when power supply 212 c is “on”, generator 196 c will interact with source 220 c of either oxygen or sterile water, to generate ozone in either in liquid or gaseous form, inside a cavity 224 c .
  • cavity 224 c is connected to a catheter 228 c , which interconnects with cavity 224 c with the tissue inside hip 68 to which the ozone is being administered to relieve pain associated therewith.
  • power supply 212 c can be disposed subcutaneously, and a wireless switching means can be disposed on the outside of the patient, such as a magnetic switch or other types of wireless means for activating or deactivating the ozone generator.
  • a wireless switching means can be disposed on the outside of the patient, such as a magnetic switch or other types of wireless means for activating or deactivating the ozone generator.
  • an infusion wire 232 d is passed through needle 168 d until it coils inside nucleus pulposus 88 (or other tissue area for treatment.) Since infusion wire 232 d is perforated along its length, as shown in FIG. 14 , once a desired or sufficient amount of wire 232 d has been inserted into nucleus pulposus 88 , an ozone source can be connected to the opposite end of the infusion wire 232 d and injected into nucleus pulposus 88 via the infusion wire. Due to the perforations along infusion wire 232 d , ozone is dispersed more readily into nucleus pulposus 88 .
  • FIG. 15 shows a syringe 132 e connected to a valve 160 e via tubing 232 e.
  • kits of parts for performing an injection of medical ozone for the treatment of a herniated disc or the like includes a sterile tray with a number of compartments to hold:
  • there is a method consisting of first introducing the patient into the computer tomography (“CT”) scanner and performing a diagnostic CT scan in order to identify the herniated disc such as disc 72 .
  • CT computer tomography
  • the CT gantry is subsequently draped and readied, the skin is prepared and local anesthetic is applied to the skin and adjacent soft tissue.
  • a 16-18 G needle is pinned down to the disc level and a 22 G needle is inserted into the disc.
  • a discogram is performed to check symptoms by injection of x-ray dye.
  • the ozone apparatus (in the form of any of the previously described apparatus or such other apparatus as may now occur to those of skill in the art) is subsequently switched on and the ozone/oxygen concentration chosen.
  • the ratio of ozone/oxygen mixtures to choose from are about 0 ⁇ g/ml, about 10 g/ml, about 20 ⁇ g/ml, about 30 ⁇ g/ml, about 40 ⁇ g/ml or about 50 ⁇ g/ml
  • a presently preferred range is between about 10 ⁇ g/ml and about 34 ⁇ g/ml, but more preferably about 27 ⁇ g/ml to about 28 ⁇ g/ml.
  • other gases or therapeutic agents can be used, such as pure oxygen if found to be therapeutically effective or desirable.
  • the syringe is fitted with a disposable filtered attachment which is itself attached to 20-30 cm of non-compliant tubing fitted with a 3-way to cock on one end and a one-way stop cock on the other, such as that shown in FIG. 15 .
  • Ozone gas is then aspirated into the 10-cc syringe (can also use a calibrated cardiac syringe) via the disposable filtered adapter and the connecting tubing such that the entire dead space is filled with a known concentration of ozone.
  • the total volume of dead space should be known so appropriate amounts of ozone are actually injected to the desired area.
  • CT fluoro imaging or the like can be subsequently used to inject the ozone into the disc and paraspinous soft tissues.
  • An infusion wire with a stiff stylet could be used, as previously described.
  • a stop cock on the connecting tubing is closed. All of the leftover ozone is injected into the charcoal scavenger or a pure oxygen tube/bottle attached to the connecting tubing via a Luer lock. Steroids are then injected through the coaxial outer large needle. Finally, all needles are removed, the skin is appropriately dressed and a bandage is used to cover the perforated skin.
  • joints, tendons, ligaments are other areas that can be treated.
  • Another example includes irrigating a wound site, such as a colostomy, with ozone to reduce pain at the wound site.
  • an implantable device could put into the teeth (or other dental area) of a patient, similar to apparatus 20 c to reduce pain in the dental region.
  • irrigate a subcutaneous pouch for holding a pacemaker or the like for sterilization and/or treatment of pain and/or decrease of inflammation and such other advantage corresponding to the therapeutic agent as will occur to those of skill in the art.

Abstract

An apparatus for administering a therapeutic agent is provided. The apparatus, in an embodiment, includes an ozone generator connected to a scavenger and an ozone administrator via network of tubing and valves. When activated and the valves placed in the proper position, the ozone generator will fill the ozone administrator with ozone. The ozone generator can then be turned off and the valves moved so that the administrator can be disconnected from the remainder of the apparatus. The administrator is typically in the form of a syringe and needle. Once the syringe and needle is filled with ozone, the needle can be inserted into a tissue and the ozone expressed therefrom into the tissue. Various other apparatuses and methods are also contemplated.

Description

    PRIORITY CLAIM
  • The present application is a divisional application of, and claims priority to and the benefit of U.S. patent application Ser. No. 10/867,215, filed Jun. 15, 2004, which claimed the benefit of and priority to U.S. Provisional Patent Application No. 60/508,300, filed Oct. 6, 2003. The contents of both of these prior applications are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates generally to a method, apparatus and kit for administering a therapeutic agent into tissue and in particular, for the administration of a therapeutic agent such as medical ozone.
  • BACKGROUND OF THE INVENTION
  • Back joint disc or tendon pain is a common and potentially debilitating ailment that affects an estimated 80% of the worldwide population at least once in a lifetime. In many instances, the cause of the pain can be attributed to a degenerated intervertebral disc that has further deteriorated into a condition known as disc herniation. This occurs when the disc nucleus pulposus extrudes through a tear or fissure in the outer lining of the disk, thereby exerting pressure on spinal nerves. The compression caused by the herniated nucleus leads to inflammation and is directly responsible for the pain felt down the leg (also referred to as sciatica). Available treatments for this type of back pain vary according to the severity of the hernia. If mild, the patient's condition can be appeased with rest and inactivity for an extended period of time. However, for patients suffering from a severe herniation or who do not respond to non-invasive treatment (pharmacological and/or physical therapy), surgical intervention is often recommended. With this invasive treatment come several disadvantages such as:
  • i) irreversibility of the procedure
  • ii) formation of scar tissue
  • iii) slower recovery time
  • iv) longer hospital stays
  • Since the late 1950s, many attempts have been made to treat sciatica and lower back pain with percutaneous procedures to avoid surgery. Well known treatments for example are percutaneous discetomy and chemonucleolysis but the cost of these procedures has kept researchers looking for another alternative. It was in 1984 that an Italian orthopedic surgeon by the name of Dr. Cesare Verga first proposed the use of ozone/oxygen mixtures to treat the pathology of a herniated disk. (See for example, http://www.cleanairassociation/com/6/ca3.htm, Ozone Therapy: New breakthrough for Back Treatment, by Gaetano Morello, M.D., the contents of which are incorporated herein by reference.)
  • Other prior art references include: Percutaneous Treatment of Herniated Lumbar Disc by Intradiscal Oxygen-Ozone Injection, M. Muto and F. Avella, Interventional Neuroradiology 4:279-286, 1998.
  • In other situations such as rheumatoid arthritis, osteoarthritis or a repetitive injury through sports or occupation, such as tennis elbow, frozen shoulder, or house maids knee, inflammation can develop between two surfaces the are involved in allowing joint function, such as a tendon and the sheath or lubricated tube in which that tendon moves. Inflammation such as bursitis in the knee shoulder hip, or other anatomic bursa may benefit from ozone therapy, this includes epicondylitis, and other tendonitis and bursitis, including the wrist, hand and the tendon sheaths of the hand and wrist. Inflammation can occur at a site where a tendon or a ligament insert to bone or pass through a sheath from trauma, tension, over use or disease.
  • Inflammation can develop through pathologies of any joint, and these may again include the inflammatory arthropatic conditions of rheumatoid arthritis, psoriatic arthritis and the like, or osteoarthritis. Joints that may be involved in these processes that are amenable to ozone injection include the synovial joints such as the, temperomandibular joint, the hip joint, knee joint, ankle joint, elbow joint or sacro-iliac joint. Vertebral facet and sacro-iliac joints may also benefit, inflammatory involvement of joints in the hand, wrist and feet with rheumatoid arthritis, osteoarthritis or a repetitive injury through sports or occupational such as carpal tunnel syndrome.
  • The inflammatory and arthritic or degenerative discussions described above are usually treated with a combination of anti-inflammatory agents such as ibuprofen, or more powerful drugs such as steroids or chemotherapy such as methotrexate. It is a common medical practice to inject steroid medications or lidocaine directly into the inflamed tissue or joint. This is often done repeatedly. These drugs can be associated with side effects of infection and even death from gastric ulcer bleeding or immunosuppression and infection. We believe that ozone therapy whether as a liquid or a gas would have advantages over the current practice.
  • Lavage of a surgical space prior to placement of a permanent surgical implant such as a hip or knee prosthesis, or pacemaker or treatment of an infected joint can be facilitated by the use of medical ozone as a sterilizing substance. Similarly a colostomy stoma can be created such that the adhesive disk is infused with ozone as a liquid or gas to aid in healing and inhibit infection. The post surgical recovery from stemotomy after cardiac surgery is often complicated wound infection. Placement of a resorbable catheter in the wound that could be irrigated with ozone liquid or gas would aid healing. Indeed any wound could have a resorbable multisided hole catheter placed in it to allow ozone be injected through it. This would have anti-infective, analgesic and promote wound healing properties. This would shorten recovery time and decrease complication rates after surgery.
  • Enhanced liquid ozone could be applied to the wound/surgical site healing at a site of high probability of infection such an abdominal incision/wound after appendectomy, or urgent colectomy with colostomy or after percutaneous endoscopic cholecystectomy.
  • Endoscopic procedural infusion of ozone and trans catheter infusion of ozone can be used to inhibit the complications endoscopic medical intervention or image guided or non-image guided catheter based intervention for example in endoscopic evaluation of the pancreatic duct.
  • Dental injection of liquid or gas ozone may augment the preparation and repair of dental cavities, and aid in reduction of root canal inflammation or periodontal disease.
  • There are veterinary applications of minimally invasive ozone administration in animals diseased with disc and degenerative syndromes. Few other options are available in that arena. Some animals are destroyed due to debilitating pain secondary to pain from disc disease, and arthritis.
  • While the full therapeutic potential of ozone continues to unfold with ongoing research, it is already clear that this form of therapy for the treatment of disc herniation has significant advantages over other surgical and percutaneous procedures. Some of these advantages include:
      • fewer clinical and neuroradiological contraindications
      • success rates greater than about 70% in the intervertebral disc
      • little or no recovery time
      • little or no side effects
      • little or no scar tissue formed
      • minimally invasive procedure in
      • effective alternative treatment for which response to conservative management, such as rest and reduced daily activity, has failed to treat
  • As the success of ozone gas therapy continues to gain recognition in the medical arena as a non-invasive alternative for the treatment of disc herniation, current methods of administering an effective dose of the ozone are solely as a gas and are far from optimum. There also lacks a sterile methodology through which the ozone can be delivered selectively to the pain-affected area, i.e. the herniated disk. The gas is unstable with a half life measured in seconds. There are no dedicated medical ozone generators that are disposable single use units. In accordance with this, there is a need for equipment especially designed for the treatment of disc herniation and other medical conditions affecting the body with medical ozone so that it can be done in an efficient and sterile manner. There is a need to develop kits for intervention in inflammatory and degenerative disease, that are disposable, or reusable, but aid in creating sterile, stable, ozone rapidly on demand. The generation of ozone from sterile water would allow storage of injector/generators in all medical dental and veterinary facilities.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide a novel apparatus and method for administering a gas into a tissue that obviates or mitigates at least one of the disadvantages of the prior art.
  • In a first aspect of the invention there is provided a kit for administering therapeutic gas mixture into soft tissue, wherein said gas mixture includes ozone. The kit can comprise of the following items:
      • Disinfectant
      • Drape
      • Skin preparation material
      • Local anaesthetics contained in vials
      • Syringes
      • Short and long needles, some with side holes
      • Gantry drape
      • Radiolucent needle holder
      • Nonionic x-ray dye-for discogram
      • Infusion wire
      • Charcoal ozone scavenger
      • Steroids contained in vials
      • A source of ozone either generated as a gas or a liquid in a disposable single use unit that is sterilizable. The ozone can be generated in the delivery system as a battery powered electronic hand held disposable device
      • The ozone generator based in the injector will be available in a variety of sizes, capable of delivering a range of ozone volumes, from 1 cc to 5 cc, but could be made to generate volumes of ozone liquid or gas form 0.1 cc to 1 liter.
      • It is probable that the commonly used volumes would be between 1 cc and 10 cc allowing for dead space in the connecting tubing/needle etc.
      • Disposable filtered attachment
      • Stop cocks
      • Non-compliant tubing
      • Post-operative dressing for skin closure
      • Adhesive bandages with gauze pad in the centre
  • An example of a local anesthetic is, but not limited to, Lidocaine HCl
  • An example of a nonionic x-ray dye is, but not limited to, Omnipaque 300M.
  • An example of a post-operative dressing is, but not limited to, Povidone gel.
  • Any suitable source of ozone can be used such as an ozone generator, the AOS-1M Medical Ozonator or AOS-LMS Stainless Medical Ozonator for example, or a disposable injector filled with ozone.
  • In another aspect of the invention, there is a method for the treatment of pain caused by a herniated disc and comprising of first identifying the herniated disk using an imaging technique and subsequently injecting a known volume of medical ozone into the disc and paraspinous soft tissues in a sterile manner and environment.
  • In another aspect of the invention, there is provided an apparatus for administering a therapeutic agent comprising a therapeutic agent generator and a scavenger connected to the generator via a first valve for capturing the therapeutic agent. The therapeutic agent administrator is connectable to the generator via at least one additional valve such that when the valves are in a first position the generator communicates with the administrator for filling the administrator with the agent. When the valves are in a second position the administrator retains the agent therein upon disconnection from the generator, and the scavenger captures any excess agent intermediate the administrator and the generator.
  • The agent can be ozone in a gaseous mixture or dissolved in a liquid. The generator can be a medical ozone generator. The medical ozone can be a ratio of oxygen (O2) and ozone (O3).
  • The ratio of ozone in micro grams to oxygen in milliliters can be about 1 μg/ml, or about 10 μg/ml, or about 20 μg/ml, or about 30 μg/ml, or about 40 μg/ml, or about 50 μg/ml.
  • The ratio of ozone in micro grams to oxygen in milliliters can be between about 1 μg/ml and about 90 μg/ml. The ratio of ozone to oxygen can be between about 10 μg/ml and about 80 μg/ml. The ratio of ozone to oxygen can be between about 20 μg/ml and about 70 μg/ml. The ratio of ozone to oxygen can be between about 10 μg/ml and about 34 μg/ml. More preferably, the ratio of ozone to oxygen can be between about 27 μg/ml to about 28 μg/ml.
  • The administrator can be a syringe.
  • Another aspect of the invention provides a method of treating the pain caused by a herniated disc comprising identifying the herniated disk and injecting medical ozone into the disc and paraspinous soft tissues.
  • Another aspect of the invention provides a syringe for self-contained generation and administration of a therapeutic agent comprising a barrel for holding the agent, and a plunger for insertion into a first end of the barrel and expressing the agent from a second end of the barrel. The syringe also includes a power supply integrally mounted coaxially with the plunger. The syringe also includes a therapeutic agent generator integrally mounted coaxially with the plunger and in communication with the barrel through a channel in the plunger. The generator is connected to the power supply and mounted coaxially with the plunger. The syringe also includes a switch connected to the power supply such that when the switch is activated the therapeutic agent generator generates the therapeutic agent and fills the barrel therewith.
  • In another aspect of the invention the ozone can be generated either as a liquid or a gas, in a syringe type structure where the electronics are housed in the area normally occupied by the plunger of the syringe and the anode is in the syringe. The syringes can be any desired volumes, such as those ranging from 1 cc to 60 cc, more preferably 1 cc to 10 ccs. The syringes are typically made of polyethylene to resist the corrosive effect of ozone even in the short time it in contact with the plastic.
  • Another aspect of the invention provides an implantable apparatus for self-contained generation and administration of a therapeutic agent comprising: a chamber for holding the agent and a catheter for connecting the chamber to an area for administration of the agent. The apparatus also includes a power supply and a therapeutic agent generator in communication with the chamber, the generator connected to the power supply. The apparatus also includes a switch activateable externally by a patient implanted with the apparatus. The switch is connected to the power supply such that when the switch is activated the therapeutic agent generator generates the therapeutic agent and fills chamber therewith.
  • Another aspect of the invention provides a method of treating pain caused by a herniated disc comprising of the following steps:
      • identifying the herniated disk with an imaging device;
      • preparation of the skin above the affected area;
      • applying local anaesthetics to the operation site;
      • inserting a needle down to the disc level at the herniated disc;
      • injecting nonionic x-ray dye down the needle;
      • performing a discogram of the disc;
      • activating an ozone generator external to the patient;
      • selecting a specific concentration of O3/O2 gas mixture on the ozone generator;
      • attaching a scavenger and a syringe to the ozone generator;
      • aspirating the O3/O2 gas mixture into the syringe;
      • injecting a predetermined volume of a fixed concentration of ozone/oxygen gas mixture into the disc and paraspinous soft tissues of the disc;
      • capturing unused ozone in the charcoal scavenger; and,
      • removing all needles;
      • dressing the operative site.
    BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred embodiments of the invention will now be discussed, by way of example only, with reference to the attached Figures, in which:
  • FIG. 1 shows an apparatus for administering a gas into a tissue in accordance with an embodiment of the invention;
  • FIG. 2 shows the hip area of a patient where a therapeutic agent can be administered;
  • FIG. 3 shows the spinal disc area of a patient where a therapeutic agent can be administered;
  • FIG. 4 shows a normal spinal disc;
  • FIG. 5 shows a herniated spinal disc where a therapeutic agent can be administered;
  • FIG. 6 shows an apparatus for administering a gas into a tissue in accordance with another embodiment of the invention;
  • FIG. 7 shows the administrator of FIG. 6 with the needle placed thereon;
  • FIG. 8 shows an apparatus for administering a gas into a tissue in accordance with another embodiment of the invention;
  • FIG. 9 shows an apparatus for administering a therapeutic agent into a hip region in accordance with another embodiment of the invention;
  • FIG. 10 shows the apparatus of FIG. 9 in greater detail;
  • FIG. 11 shows an infusion wire through which a therapeutic agent can be administered;
  • FIG. 12 shows the infusion wire being passed through a needle towards the centre of a herniated disc;
  • FIG. 13 shows the infusion wire being placed in centre of a herniated disc with the needle having been removed;
  • FIG. 14 shows the infusion wire of FIG. 11 in greater detail; and,
  • FIG. 15 shows an apparatus for administering a therapeutic agent into a tissue in accordance with another embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to FIG. 1, an apparatus for administering a therapeutic agent, such as an ozone gas, into a tissue in accordance with an embodiment of the invention is indicated generally at 20. In a present embodiment, apparatus 20 comprises an ozone generator 24 that connects to a charcoal scavenger 28 and an ozone administrator 32. Generator 24 can be based on any known medical ozone generator. Generator 24 connects to scavenger 28 and administrator 32 via a network of flexible tubing and valves for selectively directing the flow of gas there between. More specifically, a first segment of tubing 36 connects generator 24 to a three-way valve 40. A second segment of tubing 44 connects valve 40 to scavenger 28. A third segment of tubing 48 connects valve 40 to another valve 52, which in turn connects to administrator 32. The tubing is made of any suitable material, such as silicon of the known medical type, and has a diameter and wall thickness to withstand the pressure of ozone gas being carried there through. The valves, also known as stopcocks, are also of the known medical type and have fittings complementary to the various portions of tubing.
  • Administrator 32 is comprised of a syringe 56, a three-way valve 60, and a needle 64. Syringe 56 is typically made of polyethylene to resist the corrosive effect of ozone, but other materials will occur to those of skill in the art. Three-way valve 60 is releasably connectable directly to valve 52, providing a selective pathway between syringe 56 and generator 24 and/or scavenger 28.
  • Valve 40 has a first position wherein generator 24 communicates only with tubing 48. Valve 52 has a first position wherein tubing 48 communicates with administrator 32. Valve 60 has a first position wherein syringe 56 communicates only with tubing 48. Thus, when valves 40, 52 and 60 are all in the first position, generator 24 is in communication with syringe 56, and thus when generator 24 is “on”, syringe 56 will be filled with ozone. (It is to be noted that in of the Figures attached hereto, for this embodiment subsequent embodiments, the various valves depicted therein are not intended to be shown in any specific position, and are merely illustrated to show their physical orientation in relation to the rest of the components in the apparatus.)
  • Valve 40 has a second position wherein tubing 44 communicates with both tubing 36 and 48. Valve 52 has a second position wherein tubing 48 is effectively capped, preventing communication between administrator 32 and tubing 48. When valves 40 and 52 are in the second position, any ozone generated by generator 24 is captured by scavenger 28. In a present embodiment, scavenger 28 is of the charcoal type, but any type of scavenger for capturing excess ozone can be used.
  • Once generator 24 is turned “off” after filling syringe 56 as described above, then when valves 40 and 52 are each moved from their respective first position to their respective second position then any excess ozone still present in tubing 48 and 36 will be captured by scavenger 28 and thereby reduce and/or substantially eliminate the unwanted escape of ozone into the atmosphere where it may harm the operator or other individuals proximal to apparatus 20.
  • Valve 60 also has a second position wherein syringe 56 is prevented from communicating with either valve 52 (or the open fitting on valve 60 that connects to valve 52), or with needle 64. Thus, once syringe 56 has been filled with ozone, leaving administrator 32 ‘charged’ with ozone, valve 60 will also be placed in its second position to retain the ozone within syringe 56 once administrator 32 is disconnected from valve 52.
  • Once administrator 32 is charged with ozone, it can be disconnected from the remainder of apparatus 20 so that it can be used to administer ozone to a target area. Thus, valve 60 also has a third position that places syringe 56 in communication with needle 64. Referring now to FIG. 2, when charged, valve 60 can be placed in the second position to prevent ozone from escaping from syringe 56. Administrator 32 can then be disconnected from the remainder of apparatus 20 and then needle 64 can be inserted into tissue (or other target area) where the ozone is to be administered. In FIG. 2, needle 64 is shown inserted into a hip 68. Having inserted needle 64 into hip 68, valve 60 is placed in the third position, allowing syringe 56 to communicate with needle 64. At this point syringe 56 is depressed, and the ozone gas therein is expressed out of needle 64 into hip tissue, thereby providing localized pain relief around hip 68. Such administration of ozone can be helpful to relieve pain after some types of hip surgeries, such as hip replacement, or after bone is harvested from the pelvis to use as a bone graft material.
  • Other types of localized pain relief can also be provided. While FIG. 2 depicts pain relief being provided to hip 68, FIG. 3 depicts the provision of pain relief to a spinal disc 72. By way of background, as seen in FIG. 4 a normal disc is shown in cross section at 72 n. Disc 72 n has an outer annulus fibrosus 76 n, an inner annulus fibrosus 80 n, a transition zone 84 n, and a nucleus pulposus 88 n. However, in FIG. 5, disk 72 is also shown in cross section, wherein nucleus pulposus 88 is protruding, and thereby a cause of pain. However, the administration of ozone into the protruding nucleus pulposus 88 using administrator 32 via needle 64 pain can be relieved and/or substantially eliminated at least temporarily.
  • It should now be apparent that having administered ozone from administrator 32, administrator 32 can then be reconnected to the remainder of apparatus 20, and the appropriate valves 40, 50, and 62 adjusted to either allow any remaining ozone to be expressed from administrator 32 for capture by scavenger 28, or to refill syringe 56.
  • Referring now to FIG. 6, an apparatus for administering a gas into a tissue in accordance with another embodiment of the invention is indicated generally at 20 a. Apparatus 20 a includes many similar components to apparatus 20, and like components are indicated with like references but followed by the suffix “a”. In contrast to apparatus 20, however, administrator 132 a includes certain differences from administrator 32. Specifically, administrator 132 a has a two way valve 160 a, one end of which connects to syringe 132 a, the other end of which has a fitting to allow administrator 132 a to be connected to either valve 52 a, as shown in FIG. 6, or to needle 164 a as shown in FIG. 7. When administrator 132 a is connected to valve 52 a as shown in FIG. 6, valves 52 a and 160 a can be placed in an open position so that syringe 132 a communicates with generator 24 a. When generator 24 a is “on”, syringe 132 a will be filled with ozone. Once syringe 132 a is filled with ozone, valves 52 a and 160 a can be placed in the closed position, and valve 40 a can be turned so that once apparatus 160 a is disconnected from valve 52 a, any ozone remaining in tubes 48 a, 36 a or elsewhere in that remaining portion of apparatus 24 a can be captured by scavenger 28 a.
  • Having filled syringe 132 a with ozone, and closed valve 160 a, needle 164 a can then be affixed thereto as shown in FIG. 7. Valve 160 a can then be selectively opened or closed to allow the administration of ozone to tissue, in much the same manner as previously described in relation to FIGS. 2 and 3.
  • Referring now to FIG. 8, an apparatus for administering a therapeutic agent into tissue is indicated generally at 20 b. Apparatus 20 b is a self-contained, portable version of apparatuses 20 and 20 a. Specifically, apparatus 20 b includes a needle 164 b and a two-way valve 160 b that are substantially the same as needle 164 a and valve 160 a as described above. Apparatus 20 b also includes a syringe 132 b comprising a barrel 156 b (or other chamber) and a plunger 192 b (or other means to express the contents of the chamber). Plunger 192 b is configured as a normal plunger on a syringe, but also includes a miniature ozone generator 196 b mounted on the shaft of plunger 192 b. In turn, ozone generator 196 b is connected to a power supply 200 b and an on-off switch 204 b that is disposed on the exterior tip of the shaft of plunger 192 b. A small channel 208 b joins generator 196 b to the opposite tip of the shaft of plunger 192 b, such that when plunger 192 b is disposed in barrel 156 b, generator 196 b is in communication with the interior of barrel 156 b. In this manner, switch 204 b can be activated and thereby cause ozone to be generated and fill barrel 156 b. Of particular note, in the present embodiment ozone can be generated in either gaseous or liquid form.
  • While switch 204 b is activated, it is generally desired to have valve 160 b placed in the closed position to prevent ozone from flowing from barrel 156 b into needle 164 b. Once a sufficient or otherwise desired amount of ozone has been generated and filled barrel 156 b, switch 204 b is turned “off” to discontinue generation of ozone, and then apparatus 20 b is used in much the same manner as administrator 32 as described above in relation to FIGS. 2 and 3. The ozone generator 196 b can be provided in a variety of sizes, capable of delivering a range of ozone volumes, for example from about one cc to about five cc, but could be made to generate volumes of ozone liquid or gas form of about 0.1 cc to about one liter.
  • Referring now to FIGS. 9 and 10, an apparatus for administering a therapeutic agent into tissue is indicated generally at 20 c. Apparatus 20 c is a self-contained, implantable version of apparatuses 20, 20 a and 20 b. As shown in FIG. 9, apparatus 20 c is implanted subcutaneously proximal to hip 68. In a present embodiment, apparatus 20 c includes a separate, external switchable power supply 212 c that is disposed just above the skin of the patient and is thereby activatable on demand by the patient. Power supply 212 c connects to a miniature ozone generator 196 c disposed percutaneously. In turn, generator 196 c is connected to an oxygen source 220 c, such that when power supply 212 c is “on”, generator 196 c will interact with source 220 c of either oxygen or sterile water, to generate ozone in either in liquid or gaseous form, inside a cavity 224 c. In turn, cavity 224 c is connected to a catheter 228 c, which interconnects with cavity 224 c with the tissue inside hip 68 to which the ozone is being administered to relieve pain associated therewith.
  • As a variation of apparatus 20 c, power supply 212 c can be disposed subcutaneously, and a wireless switching means can be disposed on the outside of the patient, such as a magnetic switch or other types of wireless means for activating or deactivating the ozone generator. Advantageous to this technique is that the overall use of needles is diminished, and thus beam hardening artifacts that are generated by metallic objects that can prevent proper visualization of the disc details (as might occur when doing injections by means of image guidance, and as may be done in certain other embodiments herein,) are reduced. In sum, by reducing the use of needles, visualization is improved and allows the dorsal root ganglion to be clearly seen.
  • Referring now to FIGS. 11-14, in another variation an infusion wire 232 d is passed through needle 168 d until it coils inside nucleus pulposus 88 (or other tissue area for treatment.) Since infusion wire 232 d is perforated along its length, as shown in FIG. 14, once a desired or sufficient amount of wire 232 d has been inserted into nucleus pulposus 88, an ozone source can be connected to the opposite end of the infusion wire 232 d and injected into nucleus pulposus 88 via the infusion wire. Due to the perforations along infusion wire 232 d, ozone is dispersed more readily into nucleus pulposus 88.
  • Referring now to FIG. 15, in another variation of the foregoing embodiments, it can be seen that various other configurations of how administration of the ozone are within the scope of the invention. Specifically, FIG. 15 shows a syringe 132 e connected to a valve 160 e via tubing 232 e.
  • In another embodiment of the invention, a kit of parts for performing an injection of medical ozone for the treatment of a herniated disc or the like. The kit includes a sterile tray with a number of compartments to hold:
      • a disinfectant, drape and skin preparation material,
      • lidocaine and a 10 cc syringe with a 22-G long needle,
      • nonionic x-ray dye-for discogram such as Omnipaque 300 M,
      • outer 16 or 18 G needle to act as the co-axial introducing needle,
      • 20 or 22 G needle with possible side holes for injecting the ozone into the disc,
      • outer large needle of 16-18 G for steroid injection (can also be used to inject ozone into the paraspinous soft tissue),
      • an infusion wire for even distribution of the ozone into the disc space
      • a charcoal ozone scavenger (a bottle with charcoal and 100% O2),
      • steroids and local anaesthetics contained in a vial, ready for injection,
      • a source of ozone such as a generator, examples include the AOS-1M Medical Ozonator or AOS-LMS Stainless Medical Ozonator, or a disposable injector in which then ozone can be generated filled with ozone,
      • a disposable filtered attachment for the syringe a one way stop cock attached to the ozone generator,
      • connecting, non-compliant tubing of 20-30 cm in length to reduce radiation to the operator hands during injection under image guidance.
      • a three-way stop cock linking the tubing to the charcoal ozone scavenger bottle
      • a one-way stop cock linking the tubing to the syringe via the said disposable filtered adapter,
      • pharmaceutical gel such as Povidone, and
      • adhesive bandages with a gauze pad in the center, such as Band-aid, or small dressing.
  • In another embodiment of the invention, there is a method consisting of first introducing the patient into the computer tomography (“CT”) scanner and performing a diagnostic CT scan in order to identify the herniated disc such as disc 72. The CT gantry is subsequently draped and readied, the skin is prepared and local anesthetic is applied to the skin and adjacent soft tissue. A 16-18 G needle is pinned down to the disc level and a 22 G needle is inserted into the disc. A discogram is performed to check symptoms by injection of x-ray dye. The ozone apparatus (in the form of any of the previously described apparatus or such other apparatus as may now occur to those of skill in the art) is subsequently switched on and the ozone/oxygen concentration chosen. The ratio of ozone/oxygen mixtures to choose from are about 0 μg/ml, about 10 g/ml, about 20 μg/ml, about 30 μg/ml, about 40 μg/ml or about 50 μg/ml A presently preferred range is between about 10 μg/ml and about 34 μg/ml, but more preferably about 27 μg/ml to about 28 μg/ml. In other embodiments other gases or therapeutic agents can be used, such as pure oxygen if found to be therapeutically effective or desirable.
  • As a next step, the syringe is fitted with a disposable filtered attachment which is itself attached to 20-30 cm of non-compliant tubing fitted with a 3-way to cock on one end and a one-way stop cock on the other, such as that shown in FIG. 15. Ozone gas is then aspirated into the 10-cc syringe (can also use a calibrated cardiac syringe) via the disposable filtered adapter and the connecting tubing such that the entire dead space is filled with a known concentration of ozone. The total volume of dead space should be known so appropriate amounts of ozone are actually injected to the desired area. CT fluoro imaging or the like can be subsequently used to inject the ozone into the disc and paraspinous soft tissues. An infusion wire with a stiff stylet could be used, as previously described. Once the ozone injection is completed, a stop cock on the connecting tubing is closed. All of the leftover ozone is injected into the charcoal scavenger or a pure oxygen tube/bottle attached to the connecting tubing via a Luer lock. Steroids are then injected through the coaxial outer large needle. Finally, all needles are removed, the skin is appropriately dressed and a bandage is used to cover the perforated skin.
  • In another embodiment of the invention, there is provided the combined intradiscal and periganglionic injection of medical ozone and periganglionic injection of steroids which has a cumulative effect and enhances the overall outcome of treatment.
  • While only specific combinations of the various features and components of the present invention have been discussed herein, it will be apparent to those of skill in the art that desired subsets of the disclosed features and components and/or alternative combinations of these features and components can be utilized, as desired. For example, other types of pain can be treated using the teachings herein. For example, joints, tendons, ligaments are other areas that can be treated. Another example includes irrigating a wound site, such as a colostomy, with ozone to reduce pain at the wound site. As another example, an implantable device could put into the teeth (or other dental area) of a patient, similar to apparatus 20 c to reduce pain in the dental region. As another example is to irrigate a subcutaneous pouch for holding a pacemaker or the like for sterilization and/or treatment of pain and/or decrease of inflammation and such other advantage corresponding to the therapeutic agent as will occur to those of skill in the art.
  • The above-described embodiments of the invention are intended to be examples of the present invention and alterations and modifications may be effected thereto, by those of skill in the art, without departing from the scope of the invention which is defined solely by the claims appended hereto.

Claims (40)

1. A kit of parts for use in administering a therapeutic agent comprising: a disinfectant; a drape; a skin preparation material; a local anesthetic; at least one syringe; at least one of a short and a long needle for use with said syringe; a gantry drape for shielding a patient in an imaging device; a radiolucent needle holder; a therapeutic agent generator; a post-operative dressing for skin closure; and at least one adhesive bandage.
2. The kit of claim 1, further comprising a therapeutic agent administrator for administering therapeutic agent generated by the therapeutic agent generator.
3. The kit of claim 2, further comprising a scavenger for capturing excess therapeutic agent.
4. The kit of claim 3, wherein the therapeutic agent administrator, the therapeutic agent generator, and the scavenger are in operable communication with each other.
5. The kit of claim 4, wherein at least one valve is positioned between the therapeutic agent generator and the therapeutic agent administrator, such that by operation of the at least one valve, the administrator can be filled and excess therapeutic agent can be captured by the scavenger.
6. The kit of claim 1, wherein said therapeutic agent comprises ozone.
7. The kit of claim 1, wherein said therapeutic agent comprises oxygen.
8. The kit of claim 1, wherein said generator comprises a medical ozone generator.
9. The kit of claim 6, wherein said ozone comprises gaseous medical ozone comprising a ratio of ozone (O3) to oxygen (O2).
10. The kit of claim 9, wherein said ratio of ozone to oxygen comprises about 1 μg/ml.
11. The kit of claim 9, wherein said ratio of ozone to oxygen comprises about 10 μg/ml.
12. The kit of claim 9, wherein said ratio of ozone to oxygen comprises about 20 μg/ml.
13. The kit of claim 9, wherein said ratio of ozone to oxygen comprises 30 μg/ml.
14. The kit of claim 9, wherein said ratio of ozone to oxygen comprises about 40 μg/ml.
15. The kit of claim 9, wherein said ratio of ozone to oxygen comprises about 50 μg/ml.
16. The kit of claim 9, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 1 μg/ml and about 90 μg/ml.
17. The kit of claim 16, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 10 μg/ml and about 80 μg/ml.
18. The kit of claim 17, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 20 μg/ml and about 70 μg/ml.
19. The kit of claim 18, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 10 μg/ml and about 34 μg/ml.
20. The kit of claim 19, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 27 μg/ml to about 28 μg/ml.
21. The kit of claim 4, wherein two valves control the flow of therapeutic agent between the therapeutic agent generator, the scavenger and the therapeutic agent administrator.
22. The kit of claim 21, wherein a combination of closing and opening each of the valves allows passage of therapeutic agent between the therapeutic agent generator and the therapeutic administrator without allowing therapeutic agent to access the scavenger.
23. The kit of claim 21, wherein a combination of closing and opening each of the valves allows passage of therapeutic agent between the therapeutic agent in the therapeutic administrator or between the therapeutic agent generator and the therapeutic administrator to access the scavenger.
24. The kit of claim 21, wherein when said valves are in a first position said generator communicates with said administrator for filling said administrator with said agent and when said valves are in a second position said administrator retains said agent therein upon disconnection from said generator and said scavenger captures any excess agent intermediate said administrator and said generator.
25. The kit of claim 2, wherein the syringe comprises the administrator and the generator.
26. The kit of claim 25, wherein the syringe comprises:
a barrel for holding said agent;
a plunger for insertion into a first end of said barrel and expressing said agent from a second end of said barrel;
a power supply integrally mounted coaxially with said plunger;
a therapeutic agent generator integrally mounted coaxially with said plunger and in communication with said barrel through a channel in said plunger, said generator connected to said power supply and mounted coaxially with said plunger; a switch connected to said power supply such that when said switch is activated said therapeutic agent generator generates said therapeutic agent and fills said barrel therewith.
27. The kit of claim 26, wherein said agent comprises ozone.
28. The kit of claim 27, wherein said generator comprises a medical ozone generator.
29. The kit of claim 28, wherein said ozone comprises gaseous medical ozone comprising a ratio of ozone (O3) to oxygen (O2).
30. The kit of claim 29, wherein said ratio of ozone to oxygen comprises about 1 μg/ml.
31. The kit of claim 29, wherein said ratio of ozone to oxygen comprises about 10 μg/ml.
32. The kit of claim 29, wherein said ratio of ozone to oxygen comprises about 20 μg/ml.
33. The kit of claim 29, wherein said ratio of ozone to oxygen comprises about 30 μg/ml.
34. The kit of claim 29, wherein said ratio of ozone to oxygen comprises about 40 μg/ml.
35. The kit of claim 29, wherein said ratio of ozone to oxygen comprises about 50 μg/ml.
36. The kit of claim 29, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 1 μg/ml and about 90 μg/ml.
37. The kit of claim 35, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 10 μg/ml and about 80 μg/ml.
38. The kit of claim 36, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 20 μg/ml and about 70 μg/ml.
39. The kit of claim 37, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 10 μg/ml and about 34 μg/ml.
40. The kit of claim 38, wherein said ratio of ozone in micrograms to oxygen in milliliters is between about 27 μg/ml to about 28 μg/ml.
US12/431,062 2003-10-06 2009-04-28 Kit for adminstering a therapeutic agent into tissue Abandoned US20090209902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/431,062 US20090209902A1 (en) 2003-10-06 2009-04-28 Kit for adminstering a therapeutic agent into tissue

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US50830003P 2003-10-06 2003-10-06
US10/867,215 US7615030B2 (en) 2003-10-06 2004-06-15 Apparatus and method for administering a therapeutic agent into tissue
US12/431,062 US20090209902A1 (en) 2003-10-06 2009-04-28 Kit for adminstering a therapeutic agent into tissue

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/867,215 Division US7615030B2 (en) 2003-10-06 2004-06-15 Apparatus and method for administering a therapeutic agent into tissue

Publications (1)

Publication Number Publication Date
US20090209902A1 true US20090209902A1 (en) 2009-08-20

Family

ID=34396446

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/867,215 Active 2026-05-24 US7615030B2 (en) 2003-10-06 2004-06-15 Apparatus and method for administering a therapeutic agent into tissue
US12/429,736 Abandoned US20090204062A1 (en) 2003-10-06 2009-04-24 Method for administering a therapeutic agent into tissue
US12/430,740 Active US8162873B2 (en) 2003-10-06 2009-04-27 Apparatus for administering a therapeutic agent into tissue
US12/431,089 Expired - Fee Related US8066695B2 (en) 2003-10-06 2009-04-28 Implantable apparatus for administering a therapeutic agent into tissue
US12/431,062 Abandoned US20090209902A1 (en) 2003-10-06 2009-04-28 Kit for adminstering a therapeutic agent into tissue

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/867,215 Active 2026-05-24 US7615030B2 (en) 2003-10-06 2004-06-15 Apparatus and method for administering a therapeutic agent into tissue
US12/429,736 Abandoned US20090204062A1 (en) 2003-10-06 2009-04-24 Method for administering a therapeutic agent into tissue
US12/430,740 Active US8162873B2 (en) 2003-10-06 2009-04-27 Apparatus for administering a therapeutic agent into tissue
US12/431,089 Expired - Fee Related US8066695B2 (en) 2003-10-06 2009-04-28 Implantable apparatus for administering a therapeutic agent into tissue

Country Status (7)

Country Link
US (5) US7615030B2 (en)
EP (1) EP1670526B1 (en)
JP (2) JP4734248B2 (en)
AU (4) AU2004277759B2 (en)
CA (1) CA2540447C (en)
DE (3) DE602004028532D1 (en)
WO (1) WO2005032387A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070025890A1 (en) * 2004-06-15 2007-02-01 Joshi Ashok V Apparatus and method for administering a therapeutic agent into tissue
US20080167650A1 (en) * 2005-08-01 2008-07-10 Joshi Ashok V Electrochemical Probe and Method for In Situ Treatment of a Tissue
US8591472B2 (en) 2004-06-15 2013-11-26 Ceramatec, Inc. Apparatus for administering a therapeutic agent into tissue using a needle as the material treatment module
CN110201261A (en) * 2019-07-05 2019-09-06 河池市人民医院 A kind of wound treatment device

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002359576A1 (en) 2001-12-03 2003-06-17 Ekos Corporation Catheter with multiple ultrasound radiating members
EP1476210B1 (en) 2002-02-11 2008-09-24 Antares Pharma, Inc. Intradermal injector
US7314091B2 (en) * 2003-09-24 2008-01-01 Weatherford/Lamb, Inc. Cement-through, tubing retrievable safety valve
US7615030B2 (en) * 2003-10-06 2009-11-10 Active O, Llc Apparatus and method for administering a therapeutic agent into tissue
JP5216328B2 (en) 2005-01-24 2013-06-19 アンタレス ファーマ インコーポレイテッド Pre-filled needle assist syringe jet injector
WO2007131025A1 (en) 2006-05-03 2007-11-15 Antares Pharma, Inc. Injector with adjustable dosing
US8251947B2 (en) 2006-05-03 2012-08-28 Antares Pharma, Inc. Two-stage reconstituting injector
CN101495169B (en) * 2006-07-24 2012-08-08 沃尔夫冈·赫尔曼 Metering system for ozone or ozone/oxygen mixture
US8241581B2 (en) * 2006-09-27 2012-08-14 Minimus Spine, Inc. Apparatus, method and system for delivering ozone
US10182833B2 (en) 2007-01-08 2019-01-22 Ekos Corporation Power parameters for ultrasonic catheter
US9044568B2 (en) 2007-06-22 2015-06-02 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US8057748B2 (en) * 2007-10-24 2011-11-15 Minimus Spine, Inc. Syringe, system and method for delivering oxygen-ozone
US8961471B2 (en) * 2007-12-12 2015-02-24 Minimus Spine, Inc. Syringe device, system and method for delivering ozone gas
EP2268342B1 (en) 2008-03-10 2015-09-16 Antares Pharma, Inc. Injector safety device
ES2738539T3 (en) 2008-08-05 2020-01-23 Antares Pharma Inc Multi dose injector
US20100119411A1 (en) * 2008-11-11 2010-05-13 Joshi Ashok V Apparatus and method to deliver a sterile, filled syringe to a user
US20100124730A1 (en) * 2008-11-14 2010-05-20 Schemmer Jurgen H Endodontic ozone apparatus
WO2010108116A1 (en) 2009-03-20 2010-09-23 Antares Pharma, Inc. Hazardous agent injection system
AU2010269171B2 (en) * 2009-07-10 2016-07-28 Medicaltree Patent Ltd Implantable lubrication device and method of treating a human or mammal patient by means of the device
RU2590861C9 (en) * 2009-07-10 2016-10-10 Милакс Холдинг С.А. Implanted lubricating device
KR101106462B1 (en) * 2009-07-30 2012-01-25 진세훈 Syringe for highly selective dermal rejuvenation and operation method by use of the syringe
US8778378B2 (en) * 2009-12-21 2014-07-15 Orthovita, Inc. Bioactive antibacterial bone graft materials
US8968323B2 (en) 2010-11-22 2015-03-03 Warsaw Orthopedic, Inc. Bone graft injection syringe
US9162028B2 (en) 2011-01-26 2015-10-20 Sae Hoon CHIN Syringe for treating facial wrinkles and operation method using the same
EP2670473A4 (en) * 2011-02-04 2015-01-28 Merit Medical Systems Inc Gas adaptor and method of use
US9220660B2 (en) 2011-07-15 2015-12-29 Antares Pharma, Inc. Liquid-transfer adapter beveled spike
US8496619B2 (en) 2011-07-15 2013-07-30 Antares Pharma, Inc. Injection device with cammed ram assembly
KR101363531B1 (en) * 2011-12-21 2014-02-14 진세훈 Syringe for highly selective dermal rejuvenation and operation method by use of the syringe
JP6165786B2 (en) 2012-03-06 2017-07-19 アンタレス・ファーマ・インコーポレーテッド Filling syringe with release force feature
KR20150011346A (en) 2012-04-06 2015-01-30 안타레스 팔마, 인코퍼레이티드 Needle assisted jet injection administration of testosterone compositions
WO2013169800A1 (en) 2012-05-07 2013-11-14 Antares Pharma, Inc. Injection device with cammed ram assembly
KR101236403B1 (en) 2012-11-02 2013-02-22 진세훈 Syringe for highly selective dermal rejuvenation and operation method by use of the syringe
CA2900672C (en) 2013-02-11 2018-03-27 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
JP6030803B2 (en) 2013-03-11 2016-11-24 アンタレス・ファーマ・インコーポレーテッド Dose syringe with pinion system
WO2014165136A1 (en) 2013-03-12 2014-10-09 Antares Pharma, Inc. Constant volume prefilled syringes and kits thereof
KR101440838B1 (en) 2014-02-05 2014-09-23 진세훈 Syringe for highly selective dermal rejuvenation
KR101491576B1 (en) * 2014-09-02 2015-02-09 진세훈 Syringe for selective self dermal rejuvenation
USD794662S1 (en) 2014-09-22 2017-08-15 Ekos Corporation Medical device control unit display screen with graphical user interface
USD819807S1 (en) * 2014-09-22 2018-06-05 Ekos Corporation Medical device interface connector
WO2016151378A1 (en) * 2015-03-26 2016-09-29 Papa Flow Technologies S.R.L. An innovative syringe to be employed in ozone therapy treatments
EP3307388B1 (en) 2015-06-10 2022-06-22 Ekos Corporation Ultrasound catheter
CN107158507B (en) * 2017-06-02 2020-07-10 湖南中医药大学 Continuous infusion apparatus with automatic exhaust function
US11420085B2 (en) 2017-12-08 2022-08-23 Oshkosh Corporation Ozone cleaning system
US10792613B1 (en) 2019-03-11 2020-10-06 Oshkosh Corporation Cleaning device
JP7253217B1 (en) * 2023-01-13 2023-04-06 株式会社Tamax Ozone injector and ozone injector

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032723A (en) * 1934-05-05 1936-03-03 Carl E Schweser Serum injecting outfit
US4128173A (en) * 1975-10-28 1978-12-05 Harrison Lazarus Peritoneal fluid treatment apparatus, package and method
US4193397A (en) * 1977-12-01 1980-03-18 Metal Bellows Corporation Infusion apparatus and method
US4485815A (en) * 1982-08-30 1984-12-04 Kurt Amplatz Device and method for fluoroscope-monitored percutaneous puncture treatment
US4632980A (en) * 1985-04-03 1986-12-30 Immunologics Ozone decontamination of blood and blood products
US4644960A (en) * 1985-09-23 1987-02-24 Arrow International, Inc. Device for making electrical connection to an electrolyte, and system employing same
US4743199A (en) * 1984-12-19 1988-05-10 Anette Weber Method and tooth brush for the removal of plaque from teeth and gums
US4938233A (en) * 1987-08-03 1990-07-03 Techton, Inc. Radiation shield
US5052382A (en) * 1988-04-29 1991-10-01 Wainwright Basil E Apparatus for the controlled generation and administration of ozone
US5078714A (en) * 1990-03-02 1992-01-07 Jefferson Katims Method and apparatus for placement of a probe in the body and the medical procedure for guiding and locating a catheter or probe in the body
US5106589A (en) * 1990-12-11 1992-04-21 Conrad Richard H Method of controlling ozone generator
US5163904A (en) * 1991-11-12 1992-11-17 Merit Medical Systems, Inc. Syringe apparatus with attached pressure gauge
US5439452A (en) * 1994-01-31 1995-08-08 Children's Medical Ventures, Inc. Limit stop valve infusion device
US5536241A (en) * 1990-12-05 1996-07-16 The General Hospital Corporation Methods and devices for relaxing smooth muscle contractions
US5540898A (en) * 1995-05-26 1996-07-30 Vasogen Inc. Ozone generator with in-line ozone sensor
US5674195A (en) * 1995-02-06 1997-10-07 Truthan; Charles Edwin Syringe apparatus and method of mixing liquid medicants within a syringe
US5797872A (en) * 1996-04-26 1998-08-25 Nippon Ozone Co., Ltd. Method of treating domestic animals such as cows for mastitis and apparatus for injecting ozone into breasts
US5971722A (en) * 1997-09-05 1999-10-26 Baxter International Inc Electrochemical syringe pump having a sealed storage reservoir for a charge transfer medium
US6071280A (en) * 1993-11-08 2000-06-06 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US6073627A (en) * 1998-07-30 2000-06-13 Medizone International, Inc. Apparatus for the application of ozone/oxygen for the treatment of external pathogenic conditions
US6086552A (en) * 1997-05-27 2000-07-11 Vasogen, Inc. Treatment of chronic post-traumatic pain syndromes
US6110431A (en) * 1997-05-05 2000-08-29 Dunder; Ove Karl Ozone dispensing system
US6134806A (en) * 1997-07-14 2000-10-24 Dhaemers; Gregory L. Bag with air distributor and ozone generator
US6136308A (en) * 1997-09-12 2000-10-24 Vasogen Ireland Limited Treatment of stress and preconditioning against stress
US6204058B1 (en) * 1992-02-07 2001-03-20 Vasogen Ireland Limited Treatment of autoimmune diseases
US6251090B1 (en) * 1994-12-12 2001-06-26 Robert Logan Avery Intravitreal medicine delivery
US20020037235A1 (en) * 1997-10-23 2002-03-28 Khatchatrian Robert G. Ozone generator for treating clothing
US6391183B1 (en) * 1997-12-10 2002-05-21 Shinko Plant Construction Co., Ltd. Apparatus for producing ozone water and method of producing ozone water by using the same apparatus
US6399664B2 (en) * 1996-12-03 2002-06-04 Lisa Marlene Jefferys Smith Method of treating cancer, specifically leukemia, with ozone
US6413228B1 (en) * 1998-12-28 2002-07-02 Pro Duct Health, Inc. Devices, methods and systems for collecting material from a breast duct
US20020133148A1 (en) * 2001-01-11 2002-09-19 Daniel Steven A. Bone-treatment instrument and method
US20020188323A1 (en) * 2001-03-19 2002-12-12 Remon Medical Technologies Ltd. Methods, systems and devices for in vivo electrochemical production of therapeutic agents
US20030050674A1 (en) * 2001-07-06 2003-03-13 Joshi Ashok V. Device and method for wound healing and infection control
US20030084907A1 (en) * 1993-05-10 2003-05-08 Arthrocare Corporation Systems and methods for electrosurgical dissection and harvesting of tissue
US6620379B1 (en) * 1998-04-09 2003-09-16 S.P.M. Recovery Ltd. Apparatus and method of treatment of wounds, burns and immune system disorders
US20030176834A1 (en) * 2002-03-15 2003-09-18 Ernst Muhlbauer Gmbh & Co. Kg Multi-component mixing capsule, in particular for dental purposes
US6632222B1 (en) * 1993-11-08 2003-10-14 Rita Medical Systems, Inc. Tissue ablation apparatus
US20040071615A1 (en) * 1997-10-23 2004-04-15 Khatchatrian Robert G. Ozone generator
US20040092905A1 (en) * 2002-11-06 2004-05-13 Sidam Di Azzolini Graziano E C.S.A.S. Fluid mixing unit, particularly for mixing diagnostic or medical fluids along biomedical lines
US20040133188A1 (en) * 2000-01-12 2004-07-08 Pnina Vardi Implantable device
US6800064B2 (en) * 2002-01-18 2004-10-05 Che-Peng Liang Disinfecting method for wound without using liquid disinfectant and the device thereof
US20040245087A1 (en) * 2001-09-10 2004-12-09 Hag-Joo Lee Water discharge in a dielectric barrier discharge system to generate an ozonated water
US20040254525A1 (en) * 2003-04-08 2004-12-16 Uber Arthur E. Fluid delivery systems, devices and methods for delivery of hazardous fluids
US20050010069A1 (en) * 2001-12-11 2005-01-13 Fitchett Colin Stanley Oil ozonolysis
US20050023371A1 (en) * 2000-08-24 2005-02-03 Joshi Ashok V. Device employing gas generating cell for facilitating controlled release of fluid into ambient environment
US6875018B2 (en) * 2001-03-28 2005-04-05 Curozone Ireland Limited Use of ozone for the treatment of root canals
US20050074501A1 (en) * 2003-10-06 2005-04-07 Kieran Murphy Apparatus and method for administering a therapeutic agent into tissue
US6912417B1 (en) * 2002-04-05 2005-06-28 Ichor Medical Systmes, Inc. Method and apparatus for delivery of therapeutic agents
US20050203503A1 (en) * 1993-11-08 2005-09-15 Rita Medical Systems, Inc. Infusion array ablation apparatus
US20050277912A1 (en) * 2003-07-16 2005-12-15 Sasha John Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations
US20060095026A1 (en) * 1995-06-07 2006-05-04 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US20060166088A1 (en) * 2005-01-26 2006-07-27 Hokanson Karl E Electrode connector tabs
US20060251551A1 (en) * 2005-05-09 2006-11-09 Brian Johnson Apparatus and method for ozone gas distribution
US20070025890A1 (en) * 2004-06-15 2007-02-01 Joshi Ashok V Apparatus and method for administering a therapeutic agent into tissue
US20070154363A1 (en) * 2004-06-15 2007-07-05 Joshi Ashok V Apparatus and Method For Treating and Dispensing a Material Into Tissue
US7244354B2 (en) * 2001-01-12 2007-07-17 Alab, Llc Ozone irrigator
US20080004615A1 (en) * 2000-05-12 2008-01-03 Arthrocare Corporation Systems and methods for electrosurgical spine surgery
US20080167650A1 (en) * 2005-08-01 2008-07-10 Joshi Ashok V Electrochemical Probe and Method for In Situ Treatment of a Tissue

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB261970A (en) * 1926-03-17 1926-12-02 Masahiko Okawa A device for the hypodermic injection of ozone
DE2543284A1 (en) 1975-09-27 1977-03-31 Walter Otto Fichtmueller Oxygen-ozone mixture filling unit for injection syringes - has top and bottom syringe centring devices preventing leakage or breakage
JPH03139364A (en) * 1989-10-25 1991-06-13 Mihama Seisakusho:Kk Treatment device using ozone gas
US5578005A (en) 1993-08-06 1996-11-26 River Medical, Inc. Apparatus and methods for multiple fluid infusion
JPH08979A (en) * 1994-06-23 1996-01-09 Japan Storage Battery Co Ltd Fluid feeding tool
US5649914A (en) * 1994-12-22 1997-07-22 Kimberly-Clark Corporation Toilet training aid
JP3954122B2 (en) * 1995-11-24 2007-08-08 株式会社東芝 Puncture needle holder
JP3022323B2 (en) * 1996-04-26 2000-03-21 緒方 篤哉 Cow breast ozone infusion device
US6740120B1 (en) * 1996-08-13 2004-05-25 James B. Grimes Bone prosthesis and method of Access
IL119835A0 (en) 1996-09-12 1997-03-18 Rid Riskin Devices Ltd Medical apparatus and method for treating diseases in humans and animals
JP4508309B2 (en) * 1998-02-27 2010-07-21 株式会社林原生物化学研究所 Antitumor action enhancer
JP3333149B2 (en) * 1999-07-05 2002-10-07 アルプス電気株式会社 Gas dissolved water production apparatus, gas dissolved water production method, and cleaning apparatus
TR200002030A2 (en) * 2000-07-11 2001-11-21 Yedi̇med Sağlik Ürünleri̇ Sanayi̇ Pazarlama Ve Diş Overshoes and production process providing continuous hygiene.
JP4823443B2 (en) * 2000-07-14 2011-11-24 日機装株式会社 Implantable artificial pancreas device
WO2002076533A1 (en) 2001-03-27 2002-10-03 Alessandro Giannessi Magnetically operated, subcutaneously implantable drug infusion device
WO2002096387A1 (en) * 2001-05-25 2002-12-05 Medtronic, Inc. Implantable medical device with controllable gaseous agent release system
AR050812A1 (en) * 2001-06-01 2006-11-29 Stenti Haydee Alba A CHARACTERIZED PHARMACOLOGICAL SOLUTION BECAUSE IT INCLUDES DMSO (DIMETILSULFOXIDE), OXYGEN AND VEGETABLE OILS AND USES IN THE MANUFACTURE OF MEDICINES

Patent Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032723A (en) * 1934-05-05 1936-03-03 Carl E Schweser Serum injecting outfit
US4128173A (en) * 1975-10-28 1978-12-05 Harrison Lazarus Peritoneal fluid treatment apparatus, package and method
US4193397A (en) * 1977-12-01 1980-03-18 Metal Bellows Corporation Infusion apparatus and method
US4485815A (en) * 1982-08-30 1984-12-04 Kurt Amplatz Device and method for fluoroscope-monitored percutaneous puncture treatment
US4743199A (en) * 1984-12-19 1988-05-10 Anette Weber Method and tooth brush for the removal of plaque from teeth and gums
US4632980B1 (en) * 1985-04-03 1990-06-26 Medizone Int Inc
US4632980A (en) * 1985-04-03 1986-12-30 Immunologics Ozone decontamination of blood and blood products
US4644960A (en) * 1985-09-23 1987-02-24 Arrow International, Inc. Device for making electrical connection to an electrolyte, and system employing same
US4938233A (en) * 1987-08-03 1990-07-03 Techton, Inc. Radiation shield
US5052382A (en) * 1988-04-29 1991-10-01 Wainwright Basil E Apparatus for the controlled generation and administration of ozone
US5078714A (en) * 1990-03-02 1992-01-07 Jefferson Katims Method and apparatus for placement of a probe in the body and the medical procedure for guiding and locating a catheter or probe in the body
US5536241A (en) * 1990-12-05 1996-07-16 The General Hospital Corporation Methods and devices for relaxing smooth muscle contractions
US5106589A (en) * 1990-12-11 1992-04-21 Conrad Richard H Method of controlling ozone generator
US5163904A (en) * 1991-11-12 1992-11-17 Merit Medical Systems, Inc. Syringe apparatus with attached pressure gauge
US6204058B1 (en) * 1992-02-07 2001-03-20 Vasogen Ireland Limited Treatment of autoimmune diseases
US20030084907A1 (en) * 1993-05-10 2003-05-08 Arthrocare Corporation Systems and methods for electrosurgical dissection and harvesting of tissue
US6071280A (en) * 1993-11-08 2000-06-06 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US20050203503A1 (en) * 1993-11-08 2005-09-15 Rita Medical Systems, Inc. Infusion array ablation apparatus
US6632222B1 (en) * 1993-11-08 2003-10-14 Rita Medical Systems, Inc. Tissue ablation apparatus
US5439452A (en) * 1994-01-31 1995-08-08 Children's Medical Ventures, Inc. Limit stop valve infusion device
US6251090B1 (en) * 1994-12-12 2001-06-26 Robert Logan Avery Intravitreal medicine delivery
US5674195A (en) * 1995-02-06 1997-10-07 Truthan; Charles Edwin Syringe apparatus and method of mixing liquid medicants within a syringe
US5540898A (en) * 1995-05-26 1996-07-30 Vasogen Inc. Ozone generator with in-line ozone sensor
US20080009847A1 (en) * 1995-06-07 2008-01-10 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US20060095026A1 (en) * 1995-06-07 2006-05-04 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US5797872A (en) * 1996-04-26 1998-08-25 Nippon Ozone Co., Ltd. Method of treating domestic animals such as cows for mastitis and apparatus for injecting ozone into breasts
US6399664B2 (en) * 1996-12-03 2002-06-04 Lisa Marlene Jefferys Smith Method of treating cancer, specifically leukemia, with ozone
US6110431A (en) * 1997-05-05 2000-08-29 Dunder; Ove Karl Ozone dispensing system
US6086552A (en) * 1997-05-27 2000-07-11 Vasogen, Inc. Treatment of chronic post-traumatic pain syndromes
US6134806A (en) * 1997-07-14 2000-10-24 Dhaemers; Gregory L. Bag with air distributor and ozone generator
US5971722A (en) * 1997-09-05 1999-10-26 Baxter International Inc Electrochemical syringe pump having a sealed storage reservoir for a charge transfer medium
US6136308A (en) * 1997-09-12 2000-10-24 Vasogen Ireland Limited Treatment of stress and preconditioning against stress
US20020037235A1 (en) * 1997-10-23 2002-03-28 Khatchatrian Robert G. Ozone generator for treating clothing
US20040071615A1 (en) * 1997-10-23 2004-04-15 Khatchatrian Robert G. Ozone generator
US6391183B1 (en) * 1997-12-10 2002-05-21 Shinko Plant Construction Co., Ltd. Apparatus for producing ozone water and method of producing ozone water by using the same apparatus
US6620379B1 (en) * 1998-04-09 2003-09-16 S.P.M. Recovery Ltd. Apparatus and method of treatment of wounds, burns and immune system disorders
US6073627A (en) * 1998-07-30 2000-06-13 Medizone International, Inc. Apparatus for the application of ozone/oxygen for the treatment of external pathogenic conditions
US6413228B1 (en) * 1998-12-28 2002-07-02 Pro Duct Health, Inc. Devices, methods and systems for collecting material from a breast duct
US20040133188A1 (en) * 2000-01-12 2004-07-08 Pnina Vardi Implantable device
US20080004615A1 (en) * 2000-05-12 2008-01-03 Arthrocare Corporation Systems and methods for electrosurgical spine surgery
US20050023371A1 (en) * 2000-08-24 2005-02-03 Joshi Ashok V. Device employing gas generating cell for facilitating controlled release of fluid into ambient environment
US20020133148A1 (en) * 2001-01-11 2002-09-19 Daniel Steven A. Bone-treatment instrument and method
US7244354B2 (en) * 2001-01-12 2007-07-17 Alab, Llc Ozone irrigator
US20020188323A1 (en) * 2001-03-19 2002-12-12 Remon Medical Technologies Ltd. Methods, systems and devices for in vivo electrochemical production of therapeutic agents
US6875018B2 (en) * 2001-03-28 2005-04-05 Curozone Ireland Limited Use of ozone for the treatment of root canals
US6810288B2 (en) * 2001-07-06 2004-10-26 Ceramatec, Inc. Device and method for wound healing and infection control
US20030050674A1 (en) * 2001-07-06 2003-03-13 Joshi Ashok V. Device and method for wound healing and infection control
US20040245087A1 (en) * 2001-09-10 2004-12-09 Hag-Joo Lee Water discharge in a dielectric barrier discharge system to generate an ozonated water
US20050010069A1 (en) * 2001-12-11 2005-01-13 Fitchett Colin Stanley Oil ozonolysis
US6800064B2 (en) * 2002-01-18 2004-10-05 Che-Peng Liang Disinfecting method for wound without using liquid disinfectant and the device thereof
US20030176834A1 (en) * 2002-03-15 2003-09-18 Ernst Muhlbauer Gmbh & Co. Kg Multi-component mixing capsule, in particular for dental purposes
US6912417B1 (en) * 2002-04-05 2005-06-28 Ichor Medical Systmes, Inc. Method and apparatus for delivery of therapeutic agents
US20040092905A1 (en) * 2002-11-06 2004-05-13 Sidam Di Azzolini Graziano E C.S.A.S. Fluid mixing unit, particularly for mixing diagnostic or medical fluids along biomedical lines
US20040254525A1 (en) * 2003-04-08 2004-12-16 Uber Arthur E. Fluid delivery systems, devices and methods for delivery of hazardous fluids
US20050277912A1 (en) * 2003-07-16 2005-12-15 Sasha John Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations
US20090204062A1 (en) * 2003-10-06 2009-08-13 Mario Muto Method for administering a therapeutic agent into tissue
US20050074501A1 (en) * 2003-10-06 2005-04-07 Kieran Murphy Apparatus and method for administering a therapeutic agent into tissue
US8162873B2 (en) * 2003-10-06 2012-04-24 Ceramatec, Inc. Apparatus for administering a therapeutic agent into tissue
US8066695B2 (en) * 2003-10-06 2011-11-29 Ceramatec, Inc. Implantable apparatus for administering a therapeutic agent into tissue
US7615030B2 (en) * 2003-10-06 2009-11-10 Active O, Llc Apparatus and method for administering a therapeutic agent into tissue
US8066659B2 (en) * 2004-06-15 2011-11-29 Ceramatec, Inc. Apparatus and method for treating and dispensing a material into tissue
US20070154363A1 (en) * 2004-06-15 2007-07-05 Joshi Ashok V Apparatus and Method For Treating and Dispensing a Material Into Tissue
US20100312171A1 (en) * 2004-06-15 2010-12-09 Joshi Ashok V Apparatus and method for administering a therapeutic agent into tissue
US20100307928A1 (en) * 2004-06-15 2010-12-09 Joshi Ashok V Apparatus and method for administering a therapeutic agent into tissue
US20070025890A1 (en) * 2004-06-15 2007-02-01 Joshi Ashok V Apparatus and method for administering a therapeutic agent into tissue
US20120022438A1 (en) * 2004-06-15 2012-01-26 Joshi Ashok V Apparatus for administering a therapeutic agent into tissue using a needle as the material treatment moduel
US20120022437A1 (en) * 2004-06-15 2012-01-26 Ashok Joshi Apparatus and method for treating and dispensing a material into tissue
US20060166088A1 (en) * 2005-01-26 2006-07-27 Hokanson Karl E Electrode connector tabs
US20060251551A1 (en) * 2005-05-09 2006-11-09 Brian Johnson Apparatus and method for ozone gas distribution
US20080167650A1 (en) * 2005-08-01 2008-07-10 Joshi Ashok V Electrochemical Probe and Method for In Situ Treatment of a Tissue
US20120150173A1 (en) * 2005-08-01 2012-06-14 Joshi Ashok V Method for in situ treatment of a tissue

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREULA, COSMA F., et al., "Minimall'y Inva'sive Oxygen-Ozone Therapy for Lumbar Disk Herniation", American Journal of Neuroradiology 24, (2003),996- 1000 *
MUTO, MARIO et al., "Percutaneous Treatment of Herniated Lumbar Disc By Intradiscal Oxygen-Ozone Injection', Interventional Neuroradioloqy 4:279-286, (1_998).,279-2_86 ..... *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070025890A1 (en) * 2004-06-15 2007-02-01 Joshi Ashok V Apparatus and method for administering a therapeutic agent into tissue
US20100312171A1 (en) * 2004-06-15 2010-12-09 Joshi Ashok V Apparatus and method for administering a therapeutic agent into tissue
US20100307928A1 (en) * 2004-06-15 2010-12-09 Joshi Ashok V Apparatus and method for administering a therapeutic agent into tissue
US8591472B2 (en) 2004-06-15 2013-11-26 Ceramatec, Inc. Apparatus for administering a therapeutic agent into tissue using a needle as the material treatment module
US8777889B2 (en) 2004-06-15 2014-07-15 Ceramatec, Inc. Apparatus and method for administering a therapeutic agent into tissue
US8986520B2 (en) 2004-06-15 2015-03-24 Ceramatec, Inc. Apparatus administering a therapeutic agent into tissue
US20080167650A1 (en) * 2005-08-01 2008-07-10 Joshi Ashok V Electrochemical Probe and Method for In Situ Treatment of a Tissue
US8353906B2 (en) 2005-08-01 2013-01-15 Ceramatec, Inc. Electrochemical probe and method for in situ treatment of a tissue
CN110201261A (en) * 2019-07-05 2019-09-06 河池市人民医院 A kind of wound treatment device

Also Published As

Publication number Publication date
US20090209901A1 (en) 2009-08-20
AU2010206008A1 (en) 2010-08-26
US7615030B2 (en) 2009-11-10
US20050074501A1 (en) 2005-04-07
AU2010204469B2 (en) 2011-08-25
AU2004277759A1 (en) 2005-04-14
AU2010204467B2 (en) 2012-08-23
JP4734248B2 (en) 2011-07-27
DE602004028532D1 (en) 2010-09-16
CA2540447C (en) 2010-07-20
US8066695B2 (en) 2011-11-29
DE602004013027D1 (en) 2008-05-21
US20090254021A1 (en) 2009-10-08
WO2005032387A2 (en) 2005-04-14
US20090204062A1 (en) 2009-08-13
WO2005032387A3 (en) 2005-10-13
CA2540447A1 (en) 2005-04-14
EP1670526A2 (en) 2006-06-21
AU2010204467A1 (en) 2010-08-19
DE602004029210D1 (en) 2010-10-28
AU2004277759B2 (en) 2010-06-10
US8162873B2 (en) 2012-04-24
JP2011067648A (en) 2011-04-07
AU2010204469A1 (en) 2010-08-19
JP2007507272A (en) 2007-03-29
AU2010206008B2 (en) 2011-05-19
EP1670526B1 (en) 2008-04-09
DE602004013027T2 (en) 2009-05-14
JP5055417B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
US8162873B2 (en) Apparatus for administering a therapeutic agent into tissue
US8986520B2 (en) Apparatus administering a therapeutic agent into tissue
US7223227B2 (en) Spinal disc therapy system
EP1946788B1 (en) Syringe for administering a therapeutic agent into tissue
RU2701363C1 (en) Method for postoperative prolonged anesthesia in hip joint endoprosthesis replacement surgery
ECKER et al. Salmonella osteomyelitis of the tibia treated by a muscle pedicle and delayed bone grafting: A case report

Legal Events

Date Code Title Description
AS Assignment

Owner name: CERAMATEC, INC., UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUTO, MARIO;MURPHY, KIERAN P;SIGNING DATES FROM 20081217 TO 20090112;REEL/FRAME:026556/0727

AS Assignment

Owner name: ACTIVE-O, LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURPHY, KIERAN;MUTO, MARIO;REEL/FRAME:026561/0711

Effective date: 20050930

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION