Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20090212639 A1
Publication typeApplication
Application numberUS 12/391,714
Publication dateAug 27, 2009
Filing dateFeb 24, 2009
Priority dateFeb 25, 2008
Also published asCA2716626A1, EP2248140A2, EP2248243A1, EP2248243A4, US8421407, US20090212638, US20130234481, WO2009108958A1, WO2009117744A2, WO2009117744A3
Publication number12391714, 391714, US 2009/0212639 A1, US 2009/212639 A1, US 20090212639 A1, US 20090212639A1, US 2009212639 A1, US 2009212639A1, US-A1-20090212639, US-A1-2009212639, US2009/0212639A1, US2009/212639A1, US20090212639 A1, US20090212639A1, US2009212639 A1, US2009212639A1
InventorsLeroy Johnson
Original AssigneeL & P Property Management Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Inductively coupled consoles
US 20090212639 A1
Abstract
Inductively coupled consoles and vehicle consoles with integrated primary coils, and apparatuses for charging, supporting, and securing portable computers with integrated primary coils are provided. Power is inductively coupled from a primary coil to a device containing a secondary coil, such as a PDA, cellular phone, rechargeable flashlight, remote control, power tool, or laptop computer. Primary coils may be integrated into consoles to charge devices containing secondary coils placed in the consoles. Primary coils may similarly be integrated into vehicle consoles. Inductively coupled consoles may be configured to receive and hold devices containing secondary coils. Primary coils may also be integrated into an apparatus for charging, supporting, and securing a portable computer. Integrated primary coils may provide varying amounts of power.
Images(4)
Previous page
Next page
Claims(20)
1. An inductively coupled console, comprising:
a console; and
one or more primary coils integrated into the console,
wherein each primary coil is connected to a power source, and
wherein each primary coil is capable of inductively coupling power to a device containing a secondary coil.
2. The inductively coupled console of claim 1, further comprising indicators that show the charging area for each primary coil.
3. The inductively coupled console of claim 1, wherein the one or more primary coils is a combination of primary coils selected from the group consisting of low power primary coil, medium power primary coil, and high power primary coil.
4. The inductively coupled console of claim 1, wherein the console is installed in seating furniture.
5. The inductively coupled console of claim 4, wherein the console is configured to charge one or more remote controls.
6. The inductively coupled console of claim 1, wherein the console is configured to receive and hold one or more devices containing secondary coils.
7. The inductively coupled console of claim 1,
wherein a plurality of primary coils are integrated into the console, and
wherein the plurality of primary coils are controlled by a single circuit.
8. An inductively coupled vehicle console, comprising:
a vehicle console capable of storing one or more devices containing one or more secondary coils; and
one or more primary coils integrated into the vehicle console,
wherein each primary coil is connected to a power source, and
wherein each primary coil is capable of inductively powering a device containing a secondary coil.
9. The inductively coupled vehicle console of claim 8, further comprising indicators that show the charging area for each primary coil.
10. The inductively coupled vehicle console of claim 8, wherein the one or more primary coils is a combination of primary coils selected from the group consisting of low power primary coil, medium power primary coil, and high power primary coil.
11. The inductively coupled vehicle console of claim 8, wherein the console is installed between seats in a vehicle.
12. The inductively coupled vehicle console of claim 8, wherein the console is installed in the front control unit of a vehicle.
13. The inductively coupled vehicle console of claim 8, wherein the console is configured to receive and hold one or more devices containing secondary coils.
14. The inductively coupled vehicle console of claim 8, further comprising means for securing devices containing secondary coils in the console.
15. The inductively coupled vehicle console of claim 8,
wherein a plurality of primary coils are integrated into the vehicle console, and
wherein the plurality of primary coils are controlled by a single circuit.
16. An apparatus for charging, securing, and supporting a portable computer, comprising:
one or more surfaces capable of supporting a portable computer;
one or more primary coils integrated into the surfaces,
wherein each primary coil is connected to a power source, and
wherein each primary coil is capable of inductively coupling power to a portable computer containing a secondary coil;
means for securing the portable computer to the one or more surfaces; and
means for attaching the one or more surfaces to a structure.
17. The apparatus of claim 16, wherein the structure is a vehicle.
18. The apparatus of claim 17, wherein the apparatus is configured such that the computer may be used by a person seated in the driver's seat of the vehicle.
19. The apparatus of claim 16, further comprising one or more additional primary coils integrated into the surfaces, wherein the additional primary coils are configured to charge secondary-coil-containing devices other than portable computers.
20. The apparatus of claim 16,
wherein a plurality of primary coils are integrated into the one or more surfaces, and
wherein the plurality of primary coils are controlled by a single circuit.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional applications 61/031,132, filed Feb. 25, 2008, and 61/142,557, filed Jan. 5, 2009, both of which are hereby incorporated by reference.

BACKGROUND

One of the problems associated with many of the electronic devices so common in today's world is the necessity for the cords and cables associated with the various electronic devices. Rechargeable cordless devices are a common alternative. These devices still require charging and the associated cords and cables to accommodate this charging.

Technology has been developed to address these limitations by providing an inductively coupled power circuit. This circuit dynamically seeks resonance and optimizes power transfer from a primary coil to a secondary device with a secondary coil. This power transfer can occur under multiple, varying load conditions. By using this circuit, the primary supply circuit adapts its operation to match the needs of the secondary devices being supplied with power. The circuit also allows the primary supply circuit to supply power to multiple secondary devices simultaneously.

SUMMARY

Intelligent, inductively coupled power circuits have been developed to transfer power from a source to a device without the need for a wired connection. Primary coils inductively couple power to secondary coils integrated into devices such as laptop computers, PDAs, cell phones, and power tools. Embodiments of the present invention incorporate this inductive coupling technology into consoles and apparatuses for charging, supporting, and securing portable computers.

In one embodiment, primary coils are integrated into a console. Primary coils of low, medium, and high power can be integrated into the console in any position, number, and combination. The inductively coupled console may be installed in furniture seating.

In another embodiment, primary coils are integrated into a vehicle console. Primary coils of low, medium, and high power can be integrated into the vehicle console in any position, number, and combination. The vehicle console may be configured to receive and hold devices containing secondary coils, such as a PDA, cell phone, and rechargeable flashlight. The vehicle console could be installed between seats, in the front dashboard control unit, or elsewhere in a vehicle.

In yet another embodiment, an apparatus for charging, supporting, and securing a portable computer is provided. One or more primary coils are integrated into one or more surfaces. Primary coils of low, medium, and high power can be integrated into the surface in any position, number, and combination. The apparatus includes means of securing the portable computer to the surface and means of attaching the surface to the interior of a vehicle.

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described in detail below with reference to the attached drawing figures, wherein:

FIG. 1 is a perspective view of an inductively coupled vehicle console;

FIG. 2 is a perspective view of an inductively coupled console installed in seating furniture;

FIG. 3 is a perspective view of a laptop computer and an apparatus for securing and inductively charging the laptop computer;

FIG. 4 is a perspective view of the apparatus for securing and inductively charging a laptop computer shown in FIG. 3; and

FIG. 5 is an exploded perspective view of the laptop computer and apparatus for securing and inductively charging the laptop computer of FIG. 3.

DETAILED DESCRIPTION

Embodiments of the present invention are described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, the inventor has contemplated that the claimed subject matter might also be embodied in other ways.

As noted in the background section, technology has been developed that provides an intelligent, inductively coupled power circuit. This circuit dynamically seeks resonance and optimizes power transfer from a primary coil to a secondary coil in a secondary device. The circuit allows the primary coil to determine and provide the power needs of the secondary device. By using this circuit, the primary supply circuit adapts its operation to match the needs of the secondary devices being supplied with power. The circuit also allows the primary supply circuit to supply power to multiple secondary devices simultaneously. Examples of the circuit and the operation of the circuit are contained in the following U.S. patents, all of which are hereby incorporated by reference: U.S. Pat. Nos. 6,436,299; 6,673,250; 6,731,071; 6,806,649; 6,812,645; 6,831,417; 6,917,163; 6,975,198; 7,116,200; 7,118,240; 7,126,450; and 7,132,918.

Inductively coupled power circuits may be used to power and recharge cordless devices, including cell phones, PDAs, flashlights, laptop computers, and power tools. Each cordless device could have a secondary coil. The primary coil required to create the inductively coupled power circuit could be integrated into a console, vehicle console, or apparatus for securing, supporting, and charging a portable computer. An inductively coupled console could be configured to receive and hold devices containing secondary coils. Alternatively, embodiments of an inductively coupled console may include a substantially flat surface with integrated primary coils that is integrated into furniture seating. Consoles may generally be installed near any type of seating or in an office or room environment. In a vehicle, an inductively coupled console may be installed between seats, as a center console in the front dashboard control unit, or anywhere else in the vehicle.

Primary coils may be low, medium, or high power. Low power primary coils provide up to about approximately 20 watts of power. Medium power primary coils provide between about approximately 20 and 100 watts of power. High power primary coils provide greater than about approximately 100 watts of power. Any number and combination of primary coils may be integrated into an inductively coupled console or surface of an apparatus for charging, securing, and supporting a portable computer.

FIG. 1 illustrates a center console 10 for a vehicle and is preferably located in the front seat between the driver's side and the passenger's side of the vehicle. Console 10 is typically provided with dedicated communications device 12, which could be a radio, CB, navigation device, cassette player, or compact disc player. Below communications device 12 is holding area 14 for devices containing secondary coils, such as a cell phone or PDA 16 and flashlight 18. Other devices could of course be housed within holding area 14, limited only by the physical dimensions of holding area 14 and the devices housed.

With continued reference to FIG. 1, holding area 14 has one or more primary coils installed behind, beneath, above, or below that inductively couple power to secondary coils contained in devices. Console 10 is provided with small indicator lights 19 that illuminate when a device is receiving power inductively coupled from a primary coil. In embodiments with multiple primary coils installed, all of the multiple primary coils may be controlled by a single control circuit. Holding area 14 can be completely sealed due to the inductive nature of the power circuit, and so can alternatively be used as a general purpose holding area or cup holder when not in use as a charging area.

With continued reference to FIG. 1, console 10 is configured to receive and hold PDA 16 and flashlight 18. This could be accomplished by a friction fit, strap restraints, buckles, compartments, clips, or other means of securing devices in holding area 14. For embodiments installed in a vehicle, this will ensure devices remain in place during transit. Additionally, in embodiments of a vehicle console, the primary coils may draw power from the battery of the vehicle.

FIG. 2 illustrates theater-style seating 20 with a primary coil installed in center console 22. The individual seats in theater-style seating 20 tilt slightly toward center console 22. A person seated in theater-style seating 20 can charge a cell phone, PDA, or other handheld electronic device by placing the device on the top surface of center console 22. Additionally, remote control 24 can be charged through the primary coil such that an individual seated and using the remote control will not be inconvenienced by remote control batteries running out of power. Although FIG. 2 provides an embodiment in which an inductively coupled console is installed in theater seating, an inductively coupled console could also be installed in other seating furniture, including, but not limited to, recliner chairs, couches, sofas, loveseats, and office chairs. In embodiments with multiple primary coils installed, all of the multiple primary coils may be controlled by a single control circuit.

To facilitate proper placement, an outline of each charging area, along with logos, pictures, or other indicia, is preferably provided on the console surface. The outline may be illuminated, for example with LEDs. An indicator light may be located in the console surface for each primary coil location. More specifically, an indicator light may be embedded below the console surface and covered with a material that allows the light to pass through, such as Plexiglas. The indicator light may turn on when a device containing a secondary coil is placed over a respective primary coil and is charging.

An inductively coupled console installed in seating furniture could contain one or more depressions or compartments in which devices containing secondary coils rest or are secured, rather than a substantially flat surface on which devices rest. Such depressions or compartments could be concealed by an armrest or center armrest. For example, an armrest of a chair could open via a hinge or other mechanism to reveal an inductively coupled console that may have compartments for devices containing secondary coils.

Referring again to FIG. 2, power may be provided to console 22 through a battery or a power cord plugged into an electrical outlet. Console 22 provides the user the capability to power or recharge any number of devices equipped with the proper secondary coils. Power is provided by the primary coil or coils under the console surface in an unobtrusive fashion. Also, it should be understood that any number of recharging zones could be provided, with corresponding primaries coils located beneath them. It should be also be understood that the rechargeable devices shown are merely exemplary, and that a virtually unlimited number and variety of devices equipped with a proper secondary coil could be charged by the primary coils located in console 22.

FIGS. 3-5 illustrate a portable computer mount 32. Computer mount 22 may be attached to any structure, including, but not limited to, a vehicle, interior or exterior building wall, desk, podium, or table. Preferably, the computer mount is attached to the interior of a vehicle. FIG. 3 illustrates laptop computer 30 being held within computer mount 32. For simplicity, computer mount 32 is not shown attached to a structure. It should be understood that mount 32 is normally found within the interior of a vehicle, such as in a police car, to provide the driver access to laptop 30. Mount 32 may be positioned such that the driver is able to see and use laptop 30 while seated in the driver's seat. Mount 32 is a universal mount that allows for different sizes and shapes of laptops.

FIG. 4 provides a more detailed view of the base 34 of mount 32, and is more fully described in U.S. Pat. No. 7,032,872, the disclosure of which is hereby incorporated by reference. Base 34 provides a reliable computer mount which can secure a laptop computer in place within a vehicle. Base 34 also provides a number of different adjustment features to accommodate a variety of laptops. Base 34 also has locking and releasing features that allow the laptop to be easily removed. As best seen in FIG. 5, primary coil charging surface 36 is coupled to base 34. The primary coil is located to correspond to the battery location of the laptop, and provides power to the secondary coil in the laptop. The mount base 34 and surface 36 provide a charging station and universal mount for laptop 30. The primary coil could also be embedded in base 34 rather than integrated into charging surface 36. Additional primary coils could also be integrated into surface 36 or base 34. These additional primary coils could be configured to charge PDAs, cell phones, or other electronic devices that could also be secured to mount 32 along with laptop 30. In embodiments with multiple primary coils installed, all of the multiple primary coils may be controlled by a single control circuit.

It should be appreciated that other means for securing and supporting a portable computer, such as different mounts or a friction fit are contemplated. Means for attaching a laptop and mount to a vehicle or other structure are also contemplated. Such means include mounting brackets and support arms, which could be bolted, screwed, or otherwise attached to the vehicle or structure.

Referring again to FIG. 5, preferably the charging area for the primary coil intended to charge laptop 30 would be outlined, along with logos, pictures or other indicia, on surface 36. The outline may be illuminated, for example with LEDs. An indicator light may be located in the console surface for each primary coil location. More specifically, an indicator light may be embedded below the console surface and covered with a material that allows the light to pass through, such as Plexiglas. The indicator light may turn on when a computer containing a secondary coil is placed over a respective primary coil and is charging. Similar indicators could be present for other devices containing secondary coils, such as PDAs or cell phones, that receive power inductively coupled from additional primary coils integrated into surface 36.

If an apparatus for charging, securing, and supporting a portable computer is installed in a vehicle, the primary coils may be powered through the vehicle's battery or engine. If an apparatus is installed on or in a structure with access to an electrical outlet, for example an office building lobby wall or podium, the apparatus may be powered through a battery or a power cord plugged into an electrical outlet.

The present invention has been described in relation to particular embodiments, which are intended in all respects to be illustrative rather than restrictive. Alternative embodiments will become apparent to those of ordinary skill in the art to which the present invention pertains without departing from its scope.

From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects set forth above, together with other advantages which are obvious and inherent to the system and method. It will be understood that certain features and sub-combinations are of utility and may be employed without reference to other features and sub-combinations. This is contemplated by and is within the scope of the claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US6203088 *Jan 19, 1999Mar 20, 2001Johnson Controls Technology Company'Sliding console system
US7566984 *Sep 13, 2005Jul 28, 2009Nissan Technical Center North America, Inc.Vehicle cabin power transfer arrangement
US20040195767 *Dec 10, 2003Oct 7, 2004Mitch RandallSystems and methods for providing electric power to mobile and arbitrarily positioned devices
US20050140482 *Dec 1, 2004Jun 30, 2005Cheng Lily K.Contact-less power transfer
US20060043927 *Sep 26, 2003Mar 2, 2006Splashpower LimitedRetention of rechargeable devices
US20060061323 *Oct 28, 2003Mar 23, 2006Cheng Lily KContact-less power transfer
US20060131193 *Dec 17, 2004Jun 22, 2006Depuy Products, Inc.System for recharging medical instruments
US20070279002 *Jun 1, 2007Dec 6, 2007Afshin PartoviPower source, charging system, and inductive receiver for mobile devices
US20090212637 *Feb 20, 2009Aug 27, 2009Access Business Group International LlcMagnetic positioning for inductive coupling
US20100164458 *Aug 3, 2007Jul 1, 2010Mbda Ul LimitedInductive power system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8228026Feb 24, 2009Jul 24, 2012L & P Property Management CompanyInductively coupled shelving and storage containers
US8421407Feb 24, 2009Apr 16, 2013L & P Property Management CompanyInductively coupled work surfaces
US8482160Aug 30, 2010Jul 9, 2013L & P Property Management CompanyInductively coupled power module and circuit
US8525471Dec 16, 2010Sep 3, 2013Toyoda Gosei Co., LtdMoveable magnet and panel assembly useful in a vehicle
US8624547Dec 16, 2010Jan 7, 2014Toyoda Gosei Co, LtdRecharging or connection tray for portable electronic devices
US20110095618 *Apr 13, 2010Apr 28, 2011Schatz David AWireless energy transfer using repeater resonators
WO2011034759A2 *Sep 8, 2010Mar 24, 2011L & P Property Management CompanyInductively coupled power module and circuit
Classifications
U.S. Classification307/104
International ClassificationH01F38/00
Cooperative ClassificationH01F38/14, H02J5/005, H02J7/025, H02J7/0044
European ClassificationH02J5/00T
Legal Events
DateCodeEventDescription
Feb 24, 2009ASAssignment
Owner name: L & P PROPERTY MANAGEMENT COMPANY, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOHNSON, LEROY;REEL/FRAME:022303/0580
Effective date: 20090220