US20090214636A1 - Imaging and Therapeutic Method Using Monocytes - Google Patents

Imaging and Therapeutic Method Using Monocytes Download PDF

Info

Publication number
US20090214636A1
US20090214636A1 US12/391,981 US39198109A US2009214636A1 US 20090214636 A1 US20090214636 A1 US 20090214636A1 US 39198109 A US39198109 A US 39198109A US 2009214636 A1 US2009214636 A1 US 2009214636A1
Authority
US
United States
Prior art keywords
monocytes
folate
group
ligand
monocyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/391,981
Inventor
Philip S. Low
Andrew R. Hilgenbrink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/391,981 priority Critical patent/US20090214636A1/en
Publication of US20090214636A1 publication Critical patent/US20090214636A1/en
Priority to US13/793,654 priority patent/US9731035B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • A61K49/0043Fluorescein, used in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0459Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with two nitrogen atoms as the only ring hetero atoms, e.g. piperazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/24Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes

Definitions

  • This invention relates to methods for treating and diagnosing disease states mediated by monocytes. More particularly, ligands that bind to monocytes are complexed with an imaging agent for use in diagnosis or to an immunogen, a cytotoxin, or an agent for altering monocyte function for use in the treatment of monocyte-mediated disease.
  • the mammalian immune system provides a means for the recognition and elimination of foreign pathogens. While the immune system normally provides a line of defense against foreign pathogens, there are many instances where the immune response itself is involved in the progression of disease. Exemplary of diseases caused or worsened by the host's own immune response are autoimmune diseases and other diseases in which the immune response contributes to pathogenesis. For example, macrophages are generally the first cells to encounter foreign pathogens, and accordingly, they play an important role in the immune response, but activated macrophages can also contribute to the pathophysiology of disease in some instances.
  • the folate receptor is a 38 KD GPI-anchored protein that binds the vitamin folic acid with high affinity ( ⁇ 1 nM). Following receptor binding, rapid endocytosis delivers the vitamin into the cell, where it is unloaded in an endosomal compartment at low pH. Importantly, covalent conjugation of small molecules, proteins, and even liposomes to folic acid does not block the vitamin's ability to bind the folate receptor, and therefore, folate-drug conjugates can readily be delivered to and can enter cells by receptor-mediated endocytosis.
  • folate receptor is restricted to a few cell types. With the exception of kidney, choroid plexus, and placenta, normal tissues express low or nondetectable levels of the folate receptor. However, many malignant tissues, including ovarian, breast, bronchial, and brain cancers express significantly elevated levels of the receptor. In fact, it is estimated that 95% of all ovarian carcinomas overexpress the folate receptor. It has been reported that the folate receptor ⁇ , the nonepithelial isoform of the folate receptor, is expressed on activated (but not resting) synovial macrophages. Thus, folate receptors are expressed on a subset of macrophages (i.e., activated macrophages).
  • Applicants have undertaken to determine whether folate receptors are expressed on monocytes and whether monocyte targeting, using a ligand such as folate, to deliver cytotoxic or other inhibitory compounds to monocytes, is useful therapeutically. Applicants have also undertaken to determine whether an imaging agent linked to a ligand capable of binding to monocytes may be useful for diagnosing inflammatory pathologies.
  • a method for treating and diagnosing disease states mediated by monocytes is provided.
  • the monocytes are activated monocytes.
  • disease states mediated by monocytes are treated by delivering an immunogen to the monocytes, by linking the immunogen to a ligand that binds to monocytes, to redirect host immune responses to monocytes.
  • monocytes can be inactivated or killed by other methods such as by the delivery to monocytes of cytotoxins or other compounds capable of altering monocyte function.
  • ligands that bind to monocytes are conjugated with an immunogen to redirect host immune responses to the monocytes, or the ligand is conjugated to a cytotoxin for killing of monocytes.
  • Ligands that can be used in the conjugates of the present invention include those that bind to receptors expressed on monocytes (e.g., activated monocytes), such as the folate receptor, or ligands such as monoclonal antibodies directed to cell surface markers expressed on monocytes or other ligands that bind to activated monocytes.
  • ligands that bind to monocytes are conjugated to an imaging agent and the conjugate is used to diagnose diseases mediated by monocytes.
  • a method for diagnosing a disease state mediated by monocytes.
  • the method comprises the steps of isolating monocytes from a patient suffering from a monocyte-mediated disease state, contacting the monocytes with a composition comprising a conjugate or complex of the general formula
  • the group A b comprises a ligand that binds to monocytes and the group X comprises an imaging agent, and quantifying the percentage of monocytes that expresses a receptor for the ligand.
  • a b comprises a folate receptor binding ligand.
  • a b comprises a monocyte-binding antibody or antibody fragment or other ligands that bind to activated monocytes.
  • the imaging agent comprises a metal chelating moiety that binds an element that is a radionuclide.
  • the imaging agent comprises a chromophore selected from the group consisting of fluorescein, Oregon Green, rhodamine, phycoerythrin, Texas Red, and AlexaFluor 488.
  • a method for diagnosing a disease state mediated by monocytes.
  • the method comprises the steps of administering parenterally to a patient a composition comprising a conjugate or complex of the general formula
  • group A b comprises a ligand that binds to monocytes and the group X comprises an imaging agent, and quantifying the percentage of monocytes that expresses a receptor for the ligand.
  • a method for treating a disease state mediated by monocytes comprises the steps of administering to a patient suffering from a monocyte-mediated disease state an effective amount of a composition comprising a conjugate or complex of the general formula
  • group A b comprises a ligand that binds to monocytes and the group X comprises an immunogen, a cytotoxin, or a compound capable of altering monocyte function, and eliminating the monocyte-mediated disease state.
  • a compound for diagnosing or treating a disease state mediated by monocytes is provided.
  • the compound is selected from the following group of compounds:
  • FIG. 1 shows folate-fluorescein binding to human monocytes isolated from peripheral blood and left untreated or preincubated with a 100-fold excess of unlabeled folic acid to compete with folate-fluorescein for binding.
  • FIG. 2 shows folate-fluorescein (folate-FITC e.g. folate-fluorescein isothiocyanate) binding, quantified by flow cytometry, to CD11b + human monocytes (panel A) and to CD11b + human monocytes preincubated with an excess of unlabeled folic acid (panel B) to compete with folate-FITC for binding.
  • folate-FITC folate-fluorescein isothiocyanate
  • FIG. 3 shows flow cytometry analysis, using CD11b (A), CD14 (B), CD16 (C), CD69 (D), and HLA-DR (E) antibodies, of CD markers that are co-expressed with the folate receptor on human monocytes.
  • FIG. 4 shows binding of 3 H-folic acid to white blood cells from humans, dogs, rabbits, rats, mice, or to KB cells.
  • the cells were either preincubated with a 100-fold excess of unlabeled folic acid (cross-hatched bars labeled with an “xs”) or not preincubated with excess unlabeled folic acid (solid bars).
  • FIG. 5 shows folate-FITC binding, analyzed by flow cytometry, to peripheral blood monocytes from dogs (panels A and C) and horses (panels B and D) and competition of binding by unlabeled folic acid.
  • FIG. 6 shows folate-FITC (A-C) or folate-AlexaFluor 488 (D-F) binding, analyzed by flow cytometry, to peripheral blood monocytes from dogs and competition of binding by unlabeled folic acid.
  • FIG. 7 shows folate-phycoerythrin binding, analyzed by flow cytometry, to human peripheral blood monocytes and competition by unlabeled folic acid.
  • FIG. 8 shows the percentage of human peripheral blood monocytes that are folate receptor positive in healthy humans (squares) and in patients with rheumatoid arthritis (diamonds), osteoarthritis (upper group of triangles), and fibromyalgia (three triangles at lowest percentages).
  • FIG. 9 shows paw volume over time in rats after arthritis induction.
  • the rats were treated with folate-flumethasone (50 nmoles/kg/day; squares) or folate-indomethacin (100 (triangles) or 250 (diamonds) nmoles/kg/day) or were untreated (circles).
  • FIG. 10 shows the percentage of human peripheral blood monocytes that are folate receptor positive in patients with rheumatoid arthritis over the course of therapy.
  • disease states include fibromyalgia, rheumatoid arthritis, osteoarthritis, ulcerative colitis, Crohn's disease, psoriasis, osteomyelitis, multiple sclerosis, atherosclerosis, pulmonary fibrosis, sarcoidosis, systemic sclerosis, organ transplant rejection (GVHD), lupus erythematosus, Sjögren's syndrome, glomerulonephritis, inflammations of the skin (e.g., psoriasis), and chronic inflammations.
  • GVHD organ transplant rejection
  • lupus erythematosus e.g., Sjögren's syndrome
  • glomerulonephritis inflammations of the skin (e.g., psoriasis), and chronic inflammations.
  • Such disease states can be diagnosed by isolating monocytes (e.g., whole blood or peripheral blood monocytes) from a patient suffering from such disease state, contacting the monocytes with a composition comprising a conjugate of the general formula A b -X wherein the group A b comprises a ligand that binds to monocytes, and the group X comprises an imaging agent, and quantifying the percentage of monocytes expressing a receptor for the ligand.
  • monocytes e.g., whole blood or peripheral blood monocytes
  • a composition comprising a conjugate of the general formula A b -X wherein the group A b comprises a ligand that binds to monocytes, and the group X comprises an imaging agent, and quantifying the percentage of monocytes expressing a receptor for the ligand.
  • Such disease states can also be diagnosed by administering parenterally to a patient a composition comprising a conjugate or complex of the general formula A b -X where the group A b comprises a ligand that binds to monocytes and the group X comprises an imaging agent, and quantifying the percentage of monocytes that expresses a receptor for the ligand.
  • Monocyte-mediated disease states can be treated in accordance with the methods disclosed herein by administering an effective amount of a composition A b -X wherein A b comprises a ligand that binds to monocytes and wherein the group X comprises an immunogen, a cytotoxin, or a compound capable of altering monocyte function.
  • a b comprises a ligand that binds to monocytes and wherein the group X comprises an immunogen, a cytotoxin, or a compound capable of altering monocyte function.
  • Such monocyte targeting conjugates when administered to a patient suffering from a monocyte-mediated disease state, work to concentrate and associate the conjugated cytotoxin, immunogen, or compound capable of altering monocyte function with the population of monocytes to kill the monocytes or alter monocyte function.
  • the conjugate is typically administered parenterally, but can be delivered by any suitable method of administration (e.g., orally), as a composition comprising the conjugate and a pharmaceutically acceptable carrier therefor.
  • Conjugate administration is typically continued until symptoms of the disease state are reduced or eliminated, or administration is continued after this time to prevent progression or reappearance of the disease.
  • the terms “eliminated” and “eliminating” in reference to the disease state mean reducing the symptoms or eliminating the symptoms of the disease state or preventing the progression or the reoccurrence of disease.
  • the terms “elimination” and “deactivation” of the monocyte population that expresses the ligand receptor mean that this monocyte population is killed or is completely or partially inactivated which reduces the monocyte-mediated pathogenesis characteristic of the disease state being treated.
  • monocytes can directly cause disease or monocytes can augment disease states such as by stimulating other immune cells to secrete factors that mediate disease states, such as by stimulating T-cells to secrete TNF- ⁇ .
  • monocytes themselves may also harbor infections and cause disease and infected monocytes may cause other immune cells to secrete factors that cause disease such as TNF- ⁇ secretion by T-cells.
  • monocyte-mediated disease states are diagnosed in a patient by isolating monocytes from the patient, contacting the monocytes with a conjugate A b -X wherein A b comprises a ligand that binds to monocytes and X comprises an imaging agent, and quantifying the percentage of monocytes expressing the receptor for the ligand.
  • the imaging or diagnostic conjugates can be administered to the patient as a diagnostic composition comprising a conjugate and a pharmaceutically acceptable carrier and thereafter monocytes can be collected from the patient to quantify the percentage of monocytes expressing the receptor for the ligand A b .
  • the composition is typically formulated for parenteral administration and is administered to the patient in an amount effective to enable imaging of monocytes.
  • disease states can also be diagnosed by administering parenterally to a patient a composition comprising a conjugate or complex of the general formula A b -X where the group A b comprises a ligand that binds to monocytes and the group X comprises an imaging agent, and quantifying the percentage of monocytes that expresses a receptor for the ligand.
  • the imaging agent e.g., a reporter molecule
  • the imaging agent can comprise a radiolabeled compound such as a chelating moiety and an element that is a radionuclide, for example a metal cation that is a radionuclide.
  • the radionuclide is selected from the group consisting of technetium, gallium, indium, and a positron emitting radionuclide (PET imaging agent).
  • the imaging agent can comprise a chromophore such as, for example, fluorescein, rhodamine, Texas Red, phycoerythrin, Oregon Green, AlexaFluor 488 (Molecular Probes, Eugene, Oreg.), Cy3, Cy5, Cy7, and the like.
  • a chromophore such as, for example, fluorescein, rhodamine, Texas Red, phycoerythrin, Oregon Green, AlexaFluor 488 (Molecular Probes, Eugene, Oreg.), Cy3, Cy5, Cy7, and the like.
  • Diagnosis typically occurs before treatment.
  • diagnosis can also mean monitoring of the disease state before, during, or after treatment to determine the progression of the disease state.
  • the monitoring can occur before, during, or after treatment, or combinations thereof, to determine the efficacy of therapy, or to predict future episodes of disease.
  • the imaging can be performed by any suitable imaging method known in the art, such as intravital imaging.
  • the host animal afflicted with the monocyte-mediated disease state and in need of diagnosis or therapy can be a human, or in the case of veterinary applications, can be a laboratory, agricultural, domestic or wild animal.
  • the conjugates can be administered parenterally to the animal or patient suffering from the disease state, for example, intradermally, subcutaneously, intramuscularly, intraperitoneally, or intravenously.
  • the conjugates can be administered to the animal or patient by other medically useful procedures and effective doses can be administered in standard or prolonged release dosage forms, such as a slow pump.
  • the therapeutic method described herein can be used alone or in combination with other therapeutic methods recognized for the treatment of inflammatory disease states.
  • the group A b is a ligand that binds to monocytes (e.g., activated monocytes) when the conjugates are used to diagnose or treat disease states.
  • monocytes e.g., activated monocytes
  • Any of a wide number of monocyte-binding ligands can be employed.
  • Acceptable ligands include particularly folate receptor binding ligands, and analogs thereof, and antibodies or antibody fragments capable of recognizing and binding to surface moieties expressed or presented on monocytes.
  • the monocyte-binding ligand is folic acid, a folic acid analog or another folate receptor binding molecule.
  • the monocyte-binding ligand is a specific monoclonal or polyclonal antibody or an Fab or an scFv (i.e., a single chain variable region) fragment of an antibody capable of binding to monocytes.
  • the monocyte-binding ligand can be folic acid, a folic acid analog, or another folate receptor-binding molecule.
  • Analogs of folate that can be used include folinic acid, pteropolyglutamic acid, and folate receptor-binding pteridines such as tetrahydropterins, dihydrofolates, tetrahydrofolates, and their deaza and dideaza analogs.
  • the terms “deaza” and “dideaza” analogs refers to the art recognized analogs having a carbon atom substituted for one or two nitrogen atoms in the naturally occurring folic acid structure.
  • the deaza analogs include the 1-deaza, 3-deaza, 5-deaza, 8-deaza, and 10-deaza analogs.
  • the dideaza analogs include, for example, 1,5 dideaza, 5,10-dideaza, 8,10-dideaza, and 5,8-dideaza analogs.
  • the foregoing folic acid analogs are conventionally termed “folates,” reflecting their capacity to bind to folate receptors.
  • folate receptor-binding analogs include aminopterin, amethopterin (methotrexate), N 10 -methylfolate, 2-deamino-hydroxyfolate, deaza analogs such as 1-deazamethopterin or 3-deazamethopterin, and 3′,5′-dichloro-4-amino-4-deoxy-N 10 -methylpteroylglutamic acid (dichloromethotrexate).
  • vitamins can be used as the monocyte-binding ligand.
  • the vitamins that can be used in accordance with the methods described herein include niacin, pantothenic acid, folic acid, riboflavin, thiamine, biotin, vitamin B 12 , vitamins A, D, E and K, other related vitamin molecules, analogs and derivatives thereof, and combinations thereof.
  • the monocyte-binding ligand can be any ligand that binds to a receptor expressed or overexpressed on activated monocytes including CD40-, CD16-, CD14-, CD11b-, and CD62-binding ligands, 5-hydroxytryptamine, macrophage inflammatory protein 1- ⁇ , MIP-2, receptor activator of nuclear factor kB ligand antagonists, monocyte chemotactic protein 1-binding ligands, chemokine receptor 5-binding ligands, RANTES-binding ligands, chemokine receptor-binding ligands, and the like.
  • the monocyte (e.g., activated monocytes) targeted conjugates used for diagnosing or treating disease states mediated by monocytes have the formula A b -X, wherein A b is a ligand capable of binding to monocytes, and the group X comprises an imaging agent or an immunogen, cytotoxin, or a compound capable of altering monocyte function.
  • a b is a ligand capable of binding to monocytes
  • the group X comprises an imaging agent or an immunogen, cytotoxin, or a compound capable of altering monocyte function.
  • the group A b is folic acid, a folic acid analog, or another folic acid receptor binding ligand
  • these conjugates are described in detail in U.S. Pat. No. 5,688,488, the specification of which is incorporated herein by reference. That patent, as well as related U.S. Pat. Nos.
  • a method of treating disease states mediated by monocytes by administering to a patient suffering from such disease state an effective amount of a composition comprising a conjugate of the general formula A b -X wherein A b is as defined above and the group X comprises a cytotoxin, an immunogen, or a compound capable of altering monocyte function.
  • the monocytes can be activated monocytes and the group A b can be any of the ligands described above.
  • cytotoxic moieties useful for forming conjugates for use in accordance with the methods described herein are clodronate, anthrax, Pseudomonas exotoxin, typically modified so that these cytotoxic moieties do not bind to normal cells, and other toxins or cytotoxic agents including art-recognized chemotherapeutic agents such as adrenocorticoids, alkylating agents, antiandrogens, antiestrogens, androgens, estrogens, antimetabolites such as cytosine arabinoside, purine analogs, pyrimidine analogs, and methotrexate, busulfan, carboplatin, chlorambucil, cisplatin and other platinum compounds, tamoxiphen, taxol, cyclophosphamide, plant alkaloids, prednisone, hydroxyurea, teniposide, and bleomycin, nitrogen mustards, nitrosureas, vincristine, vinblastine, MEK
  • Such toxins or cytotoxic compounds can be directly conjugated to the monocyte-binding ligand, for example, folate or another folate receptor-binding ligand, or they can be formulated in liposomes or other small particles which themselves are targeted as conjugates of the monocyte-binding ligand typically by covalent linkages to component phospholipids.
  • the group X comprises a compound capable of altering a monocyte function, for example, a cytokine such as IL-10 or IL-11
  • the compound can be covalently linked to the targeting ligand A b , for example, a folate receptor-binding ligand or a monocyte-binding antibody or antibody fragment directly, or the monocyte function altering compound can be encapsulated in a liposome which is itself targeted to monocytes by pendent monocyte targeting ligands A b covalently linked to one or more liposome components.
  • conjugates A b -X where X is an immunogen or a compound capable of altering monocyte function can be administered in combination with a cytotoxic compound.
  • cytotoxic compounds listed above are among the compounds suitable for this purpose.
  • the group X in the monocyte targeted conjugate A b -X comprises an immunogen, the ligand-immunogen conjugates being effective to “label” the population of monocytes responsible for disease pathogenesis in the patient suffering from the disease for specific elimination by an endogenous immune response or by co-administered antibodies.
  • the use of ligand-immunogen conjugates in the method of treatment described herein works to enhance an immune response-mediated elimination of the monocyte population that expresses the ligand receptor. Such elimination can be effected through an endogenous immune response or by a passive immune response effected by co-administered antibodies.
  • the endogenous immune response can include a humoral response, a cell-mediated immune response, and any other immune response endogenous to the host animal, including complement-mediated cell lysis, antibody-dependent cell-mediated cytotoxicity (ADCC), antibody opsonization leading to phagocytosis, clustering of receptors upon antibody binding resulting in signaling of apoptosis, antiproliferation, or differentiation, and direct immune cell recognition of the delivered immunogen (e.g., an antigen or a hapten). It is also contemplated that the endogenous immune response may employ the secretion of cytokines that regulate such processes as the multiplication and migration of immune cells.
  • the endogenous immune response may include the participation of such immune cell types as B cells, T cells, including helper and cytotoxic T cells, macrophages, natural killer cells, neutrophils, LAK cells, and the like.
  • the humoral response can be a response induced by such processes as normally scheduled vaccination, or active immunization with a natural antigen or an unnatural antigen or hapten, e.g., fluorescein isothiocyanate (FITC), with the unnatural antigen inducing a novel immunity.
  • Active immunization involves multiple injections of the unnatural antigen or hapten scheduled outside of a normal vaccination regimen to induce the novel immunity.
  • the humoral response may also result from an innate immunity where the host animal has a natural preexisting immunity, such as an immunity to ⁇ -galactosyl groups.
  • a passive immunity may be established by administering antibodies to the host animal such as natural antibodies collected from serum or monoclonal antibodies that may or may not be genetically engineered antibodies, including humanized antibodies.
  • antibodies to the host animal such as natural antibodies collected from serum or monoclonal antibodies that may or may not be genetically engineered antibodies, including humanized antibodies.
  • the utilization of a particular amount of an antibody reagent to develop a passive immunity, and the use of a ligand-immunogen conjugate wherein the passively administered antibodies are directed to the immunogen, would provide the advantage of a standard set of reagents to be used in cases where a patient's preexisting antibody titer to potential antigens is not therapeutically useful.
  • the passively administered antibodies may be “co-administered” with the ligand-immunogen conjugate, and co-administration is defined as administration of antibodies at a time prior to, at the same time as, or at a time following administration of the ligand-immunogen conjugate.
  • the preexisting antibodies, induced antibodies, or passively administered antibodies will be redirected to the monocytes by preferential binding of the ligand-immunogen conjugates to the monocyte cell populations, and such pathogenic cells are killed by complement-mediated lysis, ADCC, antibody-dependent phagocytosis, or antibody clustering of receptors.
  • the cytotoxic process may also involve other types of immune responses, such as cell-mediated immunity.
  • Acceptable immunogens for use in preparing the conjugates used in the method of treatment described herein are immunogens that are capable of eliciting antibody production in a host animal or that have previously elicited antibody production in a host animal, resulting in a preexisting immunity, or that constitute part of the innate immune system.
  • antibodies directed against the immunogen may be administered to the host animal to establish a passive immunity.
  • Suitable immunogens for use in the invention include antigens or antigenic peptides against which a preexisting immunity has developed via normally scheduled vaccinations or prior natural exposure to such agents such as polio virus, tetanus, typhus, rubella, measles, mumps, pertussis, tuberculosis and influenza antigens, and ⁇ -galactosyl groups.
  • the ligand-immunogen conjugates will be used to redirect a previously acquired humoral or cellular immunity to a population of monocytes in the host animal for elimination of the monocytes.
  • suitable immunogens include antigens or antigenic peptides to which the host animal has developed a novel immunity through immunization against an unnatural antigen or hapten, for example, fluorescein isothiocyanate (FITC) or dinitrophenyl, and antigens against which an innate immunity exists, for example, super antigens and muramyl dipeptide.
  • FITC fluorescein isothiocyanate
  • FITC fluorescein isothiocyanate
  • dinitrophenyl for example, antigens against which an innate immunity exists, for example, super antigens and muramyl dipeptide.
  • the monocyte-binding ligands and immunogens, cytotoxic agents, compounds capable of altering monocyte function, or imaging agents, as the case may be in forming conjugates for use in accordance with the methods described herein can be conjugated by using any art-recognized method for forming a complex. This can include covalent, ionic, or hydrogen bonding of the ligand to the immunogen, either directly or indirectly via a linking group such as a divalent linker.
  • the conjugate is typically formed by covalent bonding of the ligand to the targeted entity through the formation of amide, ester or imino bonds between acid, aldehyde, hydroxy, amino, or hydrazo groups on the respective components of the complex or, for example, by the formation of disulfide bonds.
  • Methods of linking monocyte-binding ligands to immunogens, cytotoxic agents, compounds capable of altering monocyte function, or imaging agents are described in U.S. Patent Application Publication No. 2005/0002942 A1 and PCT Publication No. WO 2006/012527, each incorporated herein by reference.
  • the ligand complex can be one comprising a liposome wherein the targeted entity (that is, the imaging agent, or the immunogen, cytotoxic agent or monocyte function-altering agent) is contained within a liposome which is itself covalently linked to the monocyte-binding ligand.
  • the targeted entity that is, the imaging agent, or the immunogen, cytotoxic agent or monocyte function-altering agent
  • Other nanoparticles, dendrimers, derivatizable polymers or copolymers that can be linked to therapeutic or imaging agents useful in the treatment and diagnosis of monocyte-mediated diseases can also be used in targeted conjugates.
  • the ligand is folic acid, an analog of folic acid, or any other folate receptor binding molecule
  • the folate ligand is conjugated to the targeted entity by a procedure that utilizes trifluoroacetic anhydride to prepare ⁇ -esters of folic acid via a pteroyl azide intermediate.
  • This procedure results in the synthesis of a folate ligand, conjugated to the targeted entity only through the ⁇ -carboxy group of the glutamic acid groups of folate.
  • folic acid analogs can be coupled through the ⁇ -carboxy moiety of the glutamic acid group or both the ⁇ and ⁇ carboxylic acid entities.
  • the therapeutic methods described herein can be used to slow the progress of disease completely or partially. Alternatively, the therapeutic methods described herein can eliminate or prevent reoccurrence of the disease state.
  • the conjugates used in accordance with the methods described herein of the formula A b -X are used in one aspect to formulate therapeutic or diagnostic compositions, for administration to a patient, wherein the compositions comprise effective amounts of the conjugate and an acceptable carrier therefor. Typically such compositions are formulated for parenteral use.
  • the amount of the conjugate effective for use in accordance with the methods described herein depends on many parameters, including the nature of the disease being treated or diagnosed, the molecular weight of the conjugate, its route of administration and its tissue distribution, and the possibility of co-usage of other therapeutic or diagnostic agents.
  • the effective amount to be administered to a patient is typically based on body surface area, patient weight and physician assessment of patient condition. An effective amount can range from about to 1 ng/kg to about 1 mg/kg, more typically from about 1 ⁇ g/kg to about 500 ⁇ g/kg, and most typically from about 1 ⁇ g/kg to about 100 ⁇ g/kg.
  • the ligand conjugates can be administered as single doses, or they can be divided and administered as a multiple-dose daily regimen.
  • a staggered regimen for example, one to three days per week can be used as an alternative to daily treatment, and such an intermittent or staggered daily regimen is considered to be equivalent to every day treatment and within the scope of this disclosure.
  • the patient is treated with multiple injections of the ligand conjugate wherein the targeted entity is an immunogen or a cytotoxic agent or a compound capable of altering monocyte function to eliminate the population of pathogenic monocytes.
  • the patient is treated, for example, injected multiple times with the ligand conjugate at, for example, 12-72 hour intervals or at 48-72 hour intervals. Additional injections of the ligand conjugate can be administered to the patient at intervals of days or months after the initial injections, and the additional injections prevent recurrence of disease. Alternatively, the ligand conjugates may be administered prophylactically to prevent the occurrence of disease in patients known to be disposed to development of monocyte-mediated disease states.
  • more than one type of ligand conjugate can be used, for example, the host animal may be pre-immunized with fluorescein isothiocyanate and dinitrophenyl and subsequently treated with fluorescein isothiocyanate and dinitrophenyl linked to the same or different monocyte targeting ligands in a co-dosing protocol.
  • the ligand conjugates are administered in one aspect parenterally and most typically by intraperitoneal injections, subcutaneous injections, intramuscular injections, intravenous injections, intradermal injections, or intrathecal injections.
  • the ligand conjugates can also be delivered to a patient using an osmotic pump.
  • parenteral dosage forms include aqueous solutions of the conjugate, for example, a solution in isotonic saline, 5% glucose or other well-known pharmaceutically acceptable liquid carriers such as alcohols, glycols, esters and amides.
  • the parenteral compositions for use in accordance with this invention can be in the form of a reconstitutable lyophilizate comprising the one or more doses of the ligand conjugate.
  • the ligand conjugates can be formulated as one of any of a number of prolonged release dosage forms known in the art such as, for example, the biodegradable carbohydrate matrices described in U.S. Pat. Nos. 4,713,249; 5,266,333; and 5,417,982, the disclosures of which are incorporated herein by reference.
  • the ligand conjugates can also be administered topically such as in an ointment or a lotion, for example, for treatment of inflammations of the skin.
  • the monocytes can be activated monocytes or other monocyte populations that cause disease states.
  • the following examples are illustrative embodiments only and are not intended to be limiting.
  • Fmoc-protected amino acid derivatives trityl-protected cysteine 2-chlorotrityl resin (H-Cys(Trt)-2-ClTrt resin #04-12-2811), Fmoc-lysine(4-methyltrityl) wang resin, 2-(1H-benzotriaxol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphage (HBTU) and N-hydroxybenzotriazole were purchased from Novabiochem (La Jolla, Calif.). N 10 -trifluoroacetylpteroic acid was purchased from Sigma, St. Louis, Mo.
  • Standard Fmoc peptide chemistry was used to synthesize folate-cysteine with the cysteine attached to the ⁇ -COOH of folic acid.
  • the sequence Cys-Glu-Pteroic acid (Folate-Cys) was constructed by Fmoc chemistry with HBTU and N-hydroxybenzotriazole as the activating agents along with diisopropyethylamine as the base and 20% piperidine in dimethylformamide (DMF) for deprotection of the Fmoc groups.
  • An ⁇ -t-Boc-protected N- ⁇ -Fmoc-L-glutamic acid was linked to a trityl-protected Cys linked to a 2-Chlorotrityl resin.
  • N 10 -trifluoroacetylpteroic acid was then attached to the ⁇ -COOH of Glu.
  • the Folate-Cys was cleaved from the resin using a 92.5% trifluoroacetic acid-2.5% water-2.5% triisopropylsilane-2.5% ethanedithio solution. Diethyl ether was used to precipitate the product, and the precipitant was collected by centrifugation. The product was washed twice with diethyl ether and dried under vacuum overnight. To remove the N 10 -trifluoracetyl protecting group, the product was dissolved in a 10% ammonium hydroxide solution and stirred for 30 min at room temperature.
  • the solution was kept under a stream of nitrogen the entire time in order to prevent the cysteine from forming disulfides. After 30 minutes, hydrochloric acid was added to the solution until the compound precipitated. The product was collected by centrifugation and lyophilized. The product was analyzed and confirmed by mass spectroscopic analysis (MW 544, M + 545).
  • AlexaFluor 488 C 5 -maleimide (Molecular Probes, Eugene, Oreg.) was dissolved in dimethyl sulfoxide (DMSO) (0.5 mg in 50 ⁇ l DMSO). A 1.5 molar equivalent (0.57 mg) of Folate-Cys was added to the solution and mixed for 4 hours at room temperature.
  • Folate-Cys-AlexaFluor 488 (Folate-AlexaFluor) was purified by reverse-phase HPLC on a C18 column at a flow rate of 1 ml/min.
  • the mobile phase consisting of 10 mM NH 4 HCO 3 buffer, pH 7.0 (eluent A) and acetonitrile (eluent B), was maintained at a 99:1 A:B ratio for the first minute and then changed to 1:99 A:B in a linear gradient over the next 29 minutes.
  • Folate-Cys-AlexaFluor 488 eluted at 20 minutes.
  • the product was confirmed by mass spectroscopy and the biologic activity was confirmed by fluorescence measurement of its binding to cell surface folate receptors on folate receptor positive M109 cells in culture.
  • Texas Red C 2 -maleimide (Molecular Probes, Eugene, Oreg.) was dissolved in dimethyl sulfoxide (DMSO) (1 mg in 200 ⁇ l DMSO). A 1.4 molar equivalent (1 mg) of Folate-Cys was added to the solution and mixed for 4 hours at room temperature.
  • Folate-Cys-Texas Red (Folate-Texas Red) was purified by reverse-phase HPLC on a C18 column at a flow rate of 1 ml/min.
  • the mobile phase consisting of 10 mM NH 4 HCO 3 buffer, pH 7.0 (eluent A) and acetonitrile (eluent B), was maintained at a 99:1 A:B ratio for the first five minutes and then changed to 70:30 A:B in a linear gradient over the next 30 minutes followed by a 1:99 A:B linear gradient over the last 15 minutes.
  • Folate-Cys-Texas Red eluted as two isomer peaks at 44.5 and 45.8 minutes.
  • the product was confirmed by mass spectroscopy and the biologic activity was confirmed by fluorescence measurement of its binding to cell surface folate receptors on folate receptor positive M109 cells in culture.
  • Standard Fmoc peptide chemistry was used to synthesize a folate peptide linked to Oregon Green (Molecular Probes, Eugene, Oreg.) attached to the ⁇ -COOH of folic acid.
  • the sequence Lys-Glu-Pteroic acid (Folate-Cys) was constructed by Fmoc chemistry with HBTU and N-hydroxybenzotriazole as the activating agents along with diisopropyethylamine as the base and 20% piperidine in dimethylformamide (DMF) for deprotection of the Fmoc groups.
  • the Folate-Oregon Green was then cleaved from the resin with a 95% trifluoroacetic acid-2.5% water-2.5% triisopropylsilane solution. Diethyl ether was used to precipitate the product, and the precipitant was collected by centrifugation. The product was washed twice with diethyl ether and dried under vacuum overnight. To remove the N 10 -trifluoroacetyl protecting group, the product was dissolved in a 10% ammonium hydroxide solution and stirred for 30 min at room temperature. The product was precipitated with combined isopropanol and ether, and the precipitant was collected by centrifugation.
  • Folate-phycoerythrin was synthesized by following a procedure published by Kennedy M. D. et al. in Pharmaceutical Research, Vol. 20(5); 2003. Briefly, a 10-fold excess of folate-cysteine was added to a solution of R-phycoerythrin pyridyldisulfide (Sigma, St. Louis, Mo.) in phosphate buffered saline (PBS), pH 7.4. The solution was allowed to react overnight at 4° C. and the labeled protein (Mr ⁇ 260 kDa) was purified by gel filtration chromatography using a G-15 desalting column.
  • PBS phosphate buffered saline
  • the folate labeling was confirmed by fluorescence microscopy of M109 cells incubated with folate-phycoerythrin in the presence and absence of 100-fold excess of folic acid. After a 1-h incubation and 3 cells washes with PBS, the treated cells were intensely fluorescent, while the sample in the presence of excess folic acid showed little cellular fluorescence.
  • Folate-FITC was synthesized as described by Kennedy, M. D. et al. in Pharmaceutical Research , Vol. 20(5); 2003.
  • Standard Fmoc peptide chemistry was used to synthesize folate-aspartate-arginine-aspartate-aspartate-cysteine (Folate-Asp-Arg-Asp-Asp-Cys, Folate-D-R-D-D-C) with the amino acid spacer attached to the ⁇ -COOH of folic acid.
  • the sequence Cys-Asp-Asp-Arg-Asp-Glu-Pteroic acid was constructed by Fmoc chemistry with HBTU and N-hydroxybenzotriazole as the activating agents along with diisopropyethylamine as the base and 20% piperidine in dimethylformamide (DMF) for deprotection of the Fmoc groups.
  • Fmoc-D-Asp(OtBu)-OH was linked to a trityl-protected Cys linked to a 2-Chlorotrityl resin.
  • a second Fmoc-D-Asp(OtBu)-OH followed by Fmoc-Arg(Pbf)-OH, Fmoc-D-Asp(OtBu)-OH and Fmoc-Glu-OtBu were added successively to the resin.
  • N 10 -trifluoroacetylpteroic acid was then attached to the ⁇ -COOH of Glu.
  • the Folate-Asp-Arg-Asp-Asp-Cys was cleaved from the resin using a 92.5% trifluoroacetic acid-2.5% water-2.5% triisopropylsilane-2.5% ethanedithio solution.
  • 2-(2-Pyridyldithio)ethanol was synthesized by dissolving 1.5 equivalents of Aldrithiol (Sigma, St. Louis, Mo.) with 6 equivalents of 4-dimethylaminopyridine (DMAP) in dichloromethane (DCM). The solution was purged with nitrogen and 1 equivalent of mercaptoethanol was added dropwise to the Aldrithiol solution over the course of 15 minutes. The reaction proceeded at room temperature for 30 minutes at which time no odor of mercaptoethanol remained. The reaction was diluted 100-fold with DCM and 5 g of activated carbon was added per gram of Aldrithiol. The reaction mixture was filtered and the solvent removed.
  • DMAP 4-dimethylaminopyridine
  • the mixture was resuspended in 70:30 (Petroleum ether:Ethylacetate (EtOAc)) and purified by flash chromatography on a 60 ⁇ silica gel column. The product was monitored by thin layer chromatography and collected.
  • EtOAc Petroleum ether:Ethylacetate
  • Folate-indomethacin was synthesized following a modified method published by Kalgutkar et al. in the Journal of Med. Chem. 2000, 43; 2860-2870 where the anti-inflammatory (indomethacin) was linked through an ester bond with the 2-(2-Pyridyldithio)ethanol. Briefly, 1 equivalent of indomethacin was dissolved in DCM along with 0.08 equivalents DMAP, 1.1 equivalents 2-(2-Pyridyldithio) ethanol and 1.1 equivalents 1,3-dicyclohexyl-carbodiimide. The reaction proceeded at room temperature for 5 hours. The reaction was purified by chromatography on silica gel (EtOAc:hexanes, 20:80).
  • Folate-diclofenac was synthesized by the method described in Example 9 except that diclofenac was used in place of indomethicin.
  • n 1, 2, or 3, and where n is illustratively 2.
  • the folate glucocorticoid conjugate of prednisolone was prepared as follows. A 1.1 molar equivalent of prednisone was dissolved in tetrahydrofuran (THF). In a separate vial, a 0.7 molar equivalent of dimethylaminopyridine, 1 molar equivalent of tri(hydroxyethyl)amine and 1 molar equivalent of the linker (synthesis described in PCT Publication No. WO 2006/012527, incorporated herein by reference) were dissolved in dichloromethane. An approximately equal volume of both solutions were combined, mixed and reacted at room temperature for 4 hours.
  • THF tetrahydrofuran
  • the reaction was monitored by thin layer chromatography using 40:10:1 (Dichloromethane:Acetonitrile:Methanol).
  • the product was purified on a silica column (Silica 32-63, 60 ⁇ ) using the same ratio of solvents.
  • the recovered product was dried in preparation for conjugation to a folate-peptide.
  • the derivatized glucocorticoid was dissolved in DMSO, to which was added a 1.5 molar equivalent of either the folate-cys or folate-Asp-Arg-Asp-Asp-Cys peptide.
  • the resulting solution was reacted for 3 hours at room temperature followed by purification using a HPLC reverse-phase C18 column at a flow rate of 1 ml/min.
  • the mobile phase consisting of 10 mM NH 4 HCO 3 buffer, pH 7.0 (eluent A) and acetonitrile (eluent B), was maintained at a 99:1 A:B ratio for the first minute and then changed to 1:99 A:B in a linear gradient over the next 39 minutes.
  • the folate-glucocorticoid conjugate eluted at approximately 26 minutes.
  • the recovered final product was confirmed by mass spectrometry.
  • Folate-cys-dexamethasone was synthesized by a procedure similar to that described in Example 11 except that the glucocorticoid was dexamethasone.
  • Folate-cys-flumethasone was synthesized by a procedure similar to that described in Example 11 except that the glucocorticoid was flumethasone.
  • PBMC Peripheral Blood Mononuclear Cells
  • PBMCs were isolated from the blood samples using Ficoll-Paque Plus (Amersham Biosciences, Piscataway, N.J.) and by following the manufacture's provided protocol. Briefly, the blood sample was diluted 50:50 with a balanced salt solution (described below). 8 mL of Ficoll-Paque Plus was added to a 50 ml conical centrifuge tube. The diluted blood sample (approximately 16-20 ml) was layered on top of the Ficoll gradient. The sample was centrifuged at 400 ⁇ g for 30 minutes at room temperature.
  • the plasma layer (top clear layer) was removed using a pipette leaving the lymphocyte/monocyte layer undisturbed.
  • the hazy cell layer immediately below the plasma layer was removed, being careful to remove the entire cell interface but a minimum amount of the Ficoll layer.
  • the isolated cells were put into a sterile 50 ml conical centrifuge tube and diluted 3-fold (vol/vol) using the balanced salt solution. The resulting cell solution was gently mixed and centrifuged at 100 ⁇ g for 10 minutes at room temperature to pellet the cells.
  • the supernatant was removed and the cells were resuspended in folate deficient RPMI 1640 medium supplemented with 10% heat-inactivated FBS, penicillin (100 IU/ml) and streptomycin (100 ⁇ g/ml). Cells were seeded in microcentrifuge tubes or microscopy chambers as dictated by the experiment.
  • Solution B Concentration (g/L) NaCl 0.14M 8.19 To prepare the balanced salt solution mix 1 volume Solution A with 9 volumes Solution B.
  • Optimal labeling was most often achieved with a 1/1000-1/10,000 dilution of the manufacture's stock antibody solution.
  • the samples were washed twice with PBS to remove non-specific binding.
  • Analysis of folate conjugate binding and/or antibody binding was analyzed by confocal microscopy or by flow cytometry (FCS Calibur, BD, Franklin Lakes, N.J.). After washing 3 H-folic acid samples to remove non-specific binding, cells were dissolved in 0.25M NaOH and radioactivity was counted on a scintillation counter.
  • Compound 1 was prepared by following standard Fmoc chemistry on an acid-sensitive trityl resin loaded with Fmoc-L-Cys (Trt)-OH, as described previously (adapted to the shown peptide sequence).
  • the crude compound 1 was purified by HPLC using a VYDAC protein and peptide C18 column.
  • the HPLC-purified 1 was then reacted with tetramethylrhodamine methanethiosulfonate (Molecular Probes, Eugene, Oreg.) in DMSO to afford compound 2, in the presence of diisopropylethylamine (DIPEA).
  • DIPEA diisopropylethylamine
  • the desired product was isolated from the reaction mixture by preparative HPLC as described above.
  • the final conjugation was performed by mixing excess DIPEA with 2 (in DMSO) followed by addition of BODIPY FL NHS ester (Molecular Probes, Eugene, Oreg.).
  • Compound 3 was then isolated from this reaction
  • Fluorescence resonance energy transfer (FRET) imaging of monocytes to determine uptake of folate-linked imaging agents will be carried out using a confocal microscopy.
  • An Olympus IX-70 inverted microscopy (Olympus, USA) equipped with an Olympus FW300 scanning box and an Olympus 60X/1.2 NA water objective will be used to image the cells.
  • Separate excitation lines and emission filters will be used for each fluorochrome (BODIPY FL, 488 nm (excitation) and 520/40 nm (emission); rhodamine, 543 nm (excitation) and 600/70 nm (emission)).
  • Two laser sources with 543 nm (He—Ne) and 488 nm (Argon) wavelength can be used to excite BODIPY FL and rhodamine separately to obtain two color images when needed.
  • Confocal images can be acquired with a size of 512 ⁇ 512 pixels at 2.7 second scan time and images can be processed using FluoView (Olympus) software.
  • Liposomes were prepared following methods by Leamon et al. in Bioconjugate Chemistry 2003, 14, 738-747. Briefly, lipids and cholesterol were purchased from Avanti Polar Lipids (Alabaster, Ala.). Folate-targeted liposomes consisted of 40 mole % cholesterol, either 4 mole % or 6 mole % polyethyleneglycol (Mr ⁇ 2000)-derivatized phosphatidylethanolamine (PEG2000-PE, Nektar Ala., Huntsville, Ala.), either 0.03 mole % or 0.1 mole % folate-cysteine-PEG3400-PE and the remaining mole % was composed of egg phosphatidylcholine.
  • Mr ⁇ 2000 polyethyleneglycol
  • PEG2000-PE Nektar Ala., Huntsville, Ala.
  • folate-cysteine-PEG3400-PE the remaining mole % was composed of egg phosphatidylcholine.
  • Non-targeted liposomes were prepared identically with the absence of folate-cysteine-PEG3400-PE. Lipids in chloroform were dried to a thin film by rotary evaporation and then rehydrated in PBS containing the drug. Rehydration was accomplished by vigorous vortexing followed by 10 cycles of freezing and thawing. Liposomes were then extruded 10 times through a 50 nm pore size polycarbonate membrane using a high-pressure extruder (Lipex Biomembranes, Vancouver, Canada).
  • Pokeweed antiviral protein was purchased from Worthington Biochemical Corporation (Lakewood, N.J.). N-succinimidyl-3-[2-pyridyldithio]propionate (SPDP; Pierce, Rockford, Ill.) was dissolved in dimethylformamide (9.6 mM). While on ice, a 5 fold molar excess of SPDP ( ⁇ 170 nmoles) was added to the pokeweed solution (1 mg/ml PBS, MW-29,000). The resulting solution was gently mixed and allowed to react for 30 minutes at room temperature. The non-conjugated SPDP was removed using a centrifuge molecular weight concentrator (MWCO 10,000) (Millipore, Billerica, Mass.).
  • MWCO 10,000 centrifuge molecular weight concentrator
  • the resulting protein solution was resuspended in PBS containing 10 mM EDTA to a final volume of 1 mL.
  • Approximately a 60 fold molar excess of folate-Asp-Arg-Asp-Asp-Cys peptide (2000 nmoles) was added to the protein solution and allowed to react for 1 hour.
  • the non-reacted folate-Asp-Arg-Asp-Asp-Cys peptide was removed using the centrifuge concentrators as previously described.
  • the protein was washed twice by resuspending the protein in PBS and repeating the protein concentration by centrifugation.
  • the protein saporin was purchased from Sigma (St. Louis, Mo.). Folate-saporin was prepared following folate-protein conjugation methods published by Leamon and Low in The Journal of Biological Chemistry 1992, 267(35); 24966-24971. Briefly, folic acid was dissolved in DMSO and incubated with a 5 fold molar excess of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide for 30 minutes at room temperature. The saporin was dissolved in 100 mM KH 2 PO 4 , 100 mM boric acid, pH 8.5. A 10-fold molar excess of the “activated” vitamin was added to the protein solution and the labeling reaction was allowed to proceed for 4 hours. Unreacted material was separated from the labeled protein using a Sephadex G-25 column equilibrated in phosphate-buffered saline, pH 7.4.
  • the proteins momordin and gelonin were purchased from Sigma (St. Louis, Mo.). Folate-cys pyridyldisulfide was prepared by reacting folate-cys with Aldrithiol (Sigma, St. Louis, Mo.). Both proteins were dissolved in 0.1M HEPPS buffer, pH 8.2. A 6-fold molar excess of Trouts reagent (Aldrich St. Louis, Mo.) dissolved in DMSO (16 mM) was added to each protein solution. The solutions were allowed to react for 1 hour at room temperature. Unreacted material was separated from the protein using a Sephadex G-25 column equilibrated in 0.1M phosphate buffer, pH 7.0.
  • Liposomes were prepared following methods by Leamon et al. in Bioconjugate Chemistry 2003, 14; 738-747. Briefly, lipids and cholesterol were purchased from Avanti Polar Lipids (Alabaster, Ala.). Folate-targeted liposomes consisted of 40 mole % cholesterol, 5 mole % polyethyleneglycol (Mr ⁇ 2000)-derivatized phosphatidylethanolamine (PEG2000-PE, Nektar Ala., Huntsville, Ala.), 0.03 mole % folate-cysteine-PEG3400-PE and 54.97 mole % egg phosphatidylcholine.
  • Lipids in chloroform were dried to a thin film by rotary evaporation and then rehydrated in PBS containing either clodronate (250 mg/ml) or prednisolone phosphate (100 mg/ml). Rehydration was accomplished by vigorous vortexing followed by 10 cycles of freezing and thawing. Liposomes were then extruded 10 times through a 50 nm pore size polycarbonate membrane using a high-pressure extruder (Lipex Biomembranes, Vancouver, Canada). The liposomes were separated from unencapsulated clodronate or prednisolone phosphate by passage through a CL4B size exclusion column (Sigma, St. Louis, Mo.) in PBS. Average particle size was between 70 and 100 nm.
  • Folate-FITC binding to human monocytes and to human monocytes preincubated with a 100-fold excess of unlabeled folic acid was measured.
  • Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16.
  • folate-FITC bound to human peripheral blood monocytes in the absence of unlabeled folic acid and binding was competed in the presence of a 100-fold excess of unlabeled folic acid.
  • Folate-FITC binding to CD11b + human monocytes and to CD11b + human monocytes preincubated with a 100-fold excess of unlabeled folic acid was quantified.
  • Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16.
  • folate-FITC bound to 45.9% of human peripheral blood monocytes in the absence of unlabeled folic acid and to 2% of human peripheral blood monocytes in the presence of a 100-fold excess of unlabeled folic acid.
  • Folate-FITC binding to peripheral blood monocytes from dogs and horses was quantified for monocytes preincubated or not preincubated with a 100-fold excess of unlabeled folic acid.
  • Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16. As shown in FIG. 5 , folate receptors were detectable on peripheral blood monocytes of both dogs and horses.
  • Folate-FITC binding or folate-AlexaFluor 488 binding to peripheral blood monocytes from dogs was quantified for monocytes preincubated or not preincubated with a 100-fold excess of unlabeled folic acid.
  • Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC and folate-AlexaFluor 488 binding and flow cytometry were performed as described in Example 16.
  • folate receptors were detectable on peripheral blood monocytes of dogs using either folate-FITC or folate-AlexaFluor 488.
  • Folate-phycoerythrin binding to human peripheral blood monocytes was quantified for monocytes preincubated or not preincubated with a 100-fold excess of unlabeled folic acid.
  • Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-phycoerythrin binding and flow cytometry were performed as described in Example 16.
  • folate receptors were detectable on human peripheral blood monocytes using folate-phycoerythrin.
  • Folate-FITC binding to peripheral blood monocytes from healthy humans and from patients with rheumatoid arthritis (diamonds), osteoarthritis (upper group of triangles), and fibromyalgia (three triangles at lowest percentages) was quantified.
  • Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16.
  • folate receptors were detectable on peripheral blood monocytes of humans using folate-FITC.
  • patients with fibromyalgia appear to have lower percentages of folate-receptor expressing monocytes in peripheral blood than healthy individuals.
  • the difference may be due to differentiation of monocytes into macrophages and to the egress of activated macrophages from the circulation and localization of activated macrophages to sites of inflammation. Regardless of the reason for this difference, the results in FIG. 8 suggest that folate-imaging agent conjugates may be useful in diagnosing monocyte-mediated disease states, and that one such monocyte-mediated disease state may be fibromyalgia.
  • mice All rats were maintained on a folate-deficient diet (DYETS, Inc., Bethlehem, Pa.) for 3 weeks prior to administration of therapeutic agents in order to lower serum folate levels to physiologically relevant concentrations. Control rats were also maintained on a folate-deficient diet but were not induced to develop arthritis.
  • Example 32 The protocol described in Example 32 for arthritis induction was followed.
  • the efficacy of folate-flumethasone (50 nmoles/kg/day) and folate-indomethacin (100 or 250 nmoles/kg/day) against adjuvant-induced arthritis in rats was investigated. Rats were injected intraperitoneally with either saline (control rats) or folate-flumethasone (50 nmoles/kg/day) or folate-indomethacin (100 or 250 nmoles/kg/day) starting at day 4. Calipers were used to measure left foot dimensions on the days indicated in FIG. 9 . The sudden increase in swelling of the adjuvant-injected foot is due to influx of neutrophils which have no folate receptors.
  • Folate-FITC binding to peripheral blood monocytes from patients with rheumatoid arthritis was quantified.
  • Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16.
  • folate receptors were detectable on peripheral blood monocytes of humans by using folate-FITC.
  • Patient #1 (x-axis shows patient #) was treated with Enbrel/methotrexate, patient #2 was treated with methotrexate, patient #3 was treated with Medrol, patient #4 was treated with Methotrexate/Azulfidine/Plaquenil, Ibuprofen, prednisone, patient #5 was treated with Methotrexate/Azulfidine/Plaquenil, Celebrex, Medrol, patient #6 was treated with Methotrexate/Azulfidine/Plaquenil, Celebrex, prednisone, and patient #7 was treated with Plaquenil, Arava.
  • the percentage of folate-receptor expressing monocytes in peripheral blood of patients with arthritis decreased over the course of arthritis therapy.
  • the results in FIG. 10 indicate that folate receptor-expressing monocytes contribute to the pathogenesis of arthritis.
  • a wide variety of folate analogs and derivatives may be substituted for folate itself in forming the folate linker conjugates.
  • Those analogs and derivatives, or protected forms thereof, may be included in the synthetic protocols described herein.
  • structural modifications of the linker portion of the conjugates is contemplated herein.
  • a number of amino acid substitutions may be made to the linker portion of the conjugate, including but not limited to naturally occurring amino acids, as well as those available from conventional synthetic methods.
  • beta, gamma, and longer chain amino acids may be used in place of one or more alpha amino acids.
  • the stereochemistry of the chiral centers found in such molecules may be selected to form various mixture of optical purity of the entire molecule, or only of a subset of the chiral centers present.
  • the length of the peptide chain included in the linker may be shortened or lengthened, either by changing the number of amino acids included therein, or by including more or fewer beta, gamma, or longer chain amino acids.
  • the selection of amino acid side chains in the peptide portion may be made to increase or decrease the relative hydrophilicity of the linker portion specifically, or of the overall molecule generally.
  • the linker includes an alkylene chain, such as is found in Examples 3, 4, and 7, the alkylene may be longer or shorter, or may include branched groups, or include a cyclic portion, which may be in line or spiro relative to the alkylene chain.
  • the linker includes a beta thiol releasable fragment, such as the thioethyloxy bivalent fragment in Examples 8 through 13, it is appreciated that other intervening groups connecting the thiol end to the hydroxy or carbonate end may be used in place of the ethylene bridge, such as but not limited to optionally substituted benzyl groups, where the hydroxy end is connected at the benzyl carbon and the thiol end is connected through the ortho or para phenyl position, and vice versa.
  • a beta thiol releasable fragment such as the thioethyloxy bivalent fragment in Examples 8 through 13
  • linker may include additional releasable linkers, such as those described in U.S. Patent Application Publication No. 2005/0002942.

Abstract

The invention relates to a method of treating or diagnosing a disease state mediated by monocytes. The method utilizes a composition comprising a conjugate or complex of the general formula

Ab-X
wherein the group Ab comprises a ligand that binds to monocytes, and when the conjugate is being used for treatment of the disease state, the group X comprises an immunogen, a cytotoxin, or a compound capable of altering monocyte function, and when the conjugate is being used for diagnosing the disease state, the group X comprises an imaging agent.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 60/696,740, filed on Jul. 5, 2005, and to U.S. Provisional Application Ser. No. 60/801,636, filed on May 18, 2006, each incorporated by reference herein in its entirety.
  • FIELD OF THE INVENTION
  • This invention relates to methods for treating and diagnosing disease states mediated by monocytes. More particularly, ligands that bind to monocytes are complexed with an imaging agent for use in diagnosis or to an immunogen, a cytotoxin, or an agent for altering monocyte function for use in the treatment of monocyte-mediated disease.
  • BACKGROUND
  • The mammalian immune system provides a means for the recognition and elimination of foreign pathogens. While the immune system normally provides a line of defense against foreign pathogens, there are many instances where the immune response itself is involved in the progression of disease. Exemplary of diseases caused or worsened by the host's own immune response are autoimmune diseases and other diseases in which the immune response contributes to pathogenesis. For example, macrophages are generally the first cells to encounter foreign pathogens, and accordingly, they play an important role in the immune response, but activated macrophages can also contribute to the pathophysiology of disease in some instances.
  • The folate receptor is a 38 KD GPI-anchored protein that binds the vitamin folic acid with high affinity (<1 nM). Following receptor binding, rapid endocytosis delivers the vitamin into the cell, where it is unloaded in an endosomal compartment at low pH. Importantly, covalent conjugation of small molecules, proteins, and even liposomes to folic acid does not block the vitamin's ability to bind the folate receptor, and therefore, folate-drug conjugates can readily be delivered to and can enter cells by receptor-mediated endocytosis.
  • Because most cells use an unrelated reduced folate carrier to acquire the necessary folic acid, expression of the folate receptor is restricted to a few cell types. With the exception of kidney, choroid plexus, and placenta, normal tissues express low or nondetectable levels of the folate receptor. However, many malignant tissues, including ovarian, breast, bronchial, and brain cancers express significantly elevated levels of the receptor. In fact, it is estimated that 95% of all ovarian carcinomas overexpress the folate receptor. It has been reported that the folate receptor β, the nonepithelial isoform of the folate receptor, is expressed on activated (but not resting) synovial macrophages. Thus, folate receptors are expressed on a subset of macrophages (i.e., activated macrophages).
  • SUMMARY
  • It is unknown, however, whether folate receptors are expressed on monocytes, the precursor cells for macrophages. Thus, Applicants have undertaken to determine whether folate receptors are expressed on monocytes and whether monocyte targeting, using a ligand such as folate, to deliver cytotoxic or other inhibitory compounds to monocytes, is useful therapeutically. Applicants have also undertaken to determine whether an imaging agent linked to a ligand capable of binding to monocytes may be useful for diagnosing inflammatory pathologies.
  • A method is provided for treating and diagnosing disease states mediated by monocytes. In one embodiment, the monocytes are activated monocytes. In one embodiment, disease states mediated by monocytes are treated by delivering an immunogen to the monocytes, by linking the immunogen to a ligand that binds to monocytes, to redirect host immune responses to monocytes. In another embodiment, monocytes can be inactivated or killed by other methods such as by the delivery to monocytes of cytotoxins or other compounds capable of altering monocyte function.
  • In the embodiment where an immunogen is delivered to monocytes to inactivate or kill monocytes, ligands that bind to monocytes are conjugated with an immunogen to redirect host immune responses to the monocytes, or the ligand is conjugated to a cytotoxin for killing of monocytes. Ligands that can be used in the conjugates of the present invention include those that bind to receptors expressed on monocytes (e.g., activated monocytes), such as the folate receptor, or ligands such as monoclonal antibodies directed to cell surface markers expressed on monocytes or other ligands that bind to activated monocytes. In another embodiment, ligands that bind to monocytes are conjugated to an imaging agent and the conjugate is used to diagnose diseases mediated by monocytes.
  • In another embodiment, a method is provided for diagnosing a disease state mediated by monocytes. The method comprises the steps of isolating monocytes from a patient suffering from a monocyte-mediated disease state, contacting the monocytes with a composition comprising a conjugate or complex of the general formula

  • Ab-X
  • where the group Ab comprises a ligand that binds to monocytes and the group X comprises an imaging agent, and quantifying the percentage of monocytes that expresses a receptor for the ligand. In another embodiment, Ab comprises a folate receptor binding ligand. In yet another embodiment, Ab comprises a monocyte-binding antibody or antibody fragment or other ligands that bind to activated monocytes. In another embodiment, the imaging agent comprises a metal chelating moiety that binds an element that is a radionuclide. In still another embodiment, the imaging agent comprises a chromophore selected from the group consisting of fluorescein, Oregon Green, rhodamine, phycoerythrin, Texas Red, and AlexaFluor 488.
  • In another embodiment, a method is provided for diagnosing a disease state mediated by monocytes. The method comprises the steps of administering parenterally to a patient a composition comprising a conjugate or complex of the general formula

  • Ab-X
  • where the group Ab comprises a ligand that binds to monocytes and the group X comprises an imaging agent, and quantifying the percentage of monocytes that expresses a receptor for the ligand.
  • In another embodiment, a method is provided for treating a disease state mediated by monocytes. The method comprises the steps of administering to a patient suffering from a monocyte-mediated disease state an effective amount of a composition comprising a conjugate or complex of the general formula

  • Ab-X
  • where the group Ab comprises a ligand that binds to monocytes and the group X comprises an immunogen, a cytotoxin, or a compound capable of altering monocyte function, and eliminating the monocyte-mediated disease state.
  • In yet another embodiment, a compound for diagnosing or treating a disease state mediated by monocytes is provided. The compound is selected from the following group of compounds:
  • Figure US20090214636A1-20090827-C00001
    Figure US20090214636A1-20090827-C00002
    Figure US20090214636A1-20090827-C00003
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows folate-fluorescein binding to human monocytes isolated from peripheral blood and left untreated or preincubated with a 100-fold excess of unlabeled folic acid to compete with folate-fluorescein for binding.
  • FIG. 2 shows folate-fluorescein (folate-FITC e.g. folate-fluorescein isothiocyanate) binding, quantified by flow cytometry, to CD11b+ human monocytes (panel A) and to CD11b+ human monocytes preincubated with an excess of unlabeled folic acid (panel B) to compete with folate-FITC for binding.
  • FIG. 3 shows flow cytometry analysis, using CD11b (A), CD14 (B), CD16 (C), CD69 (D), and HLA-DR (E) antibodies, of CD markers that are co-expressed with the folate receptor on human monocytes.
  • FIG. 4 shows binding of 3H-folic acid to white blood cells from humans, dogs, rabbits, rats, mice, or to KB cells. The cells were either preincubated with a 100-fold excess of unlabeled folic acid (cross-hatched bars labeled with an “xs”) or not preincubated with excess unlabeled folic acid (solid bars).
  • FIG. 5 shows folate-FITC binding, analyzed by flow cytometry, to peripheral blood monocytes from dogs (panels A and C) and horses (panels B and D) and competition of binding by unlabeled folic acid.
  • FIG. 6 shows folate-FITC (A-C) or folate-AlexaFluor 488 (D-F) binding, analyzed by flow cytometry, to peripheral blood monocytes from dogs and competition of binding by unlabeled folic acid.
  • FIG. 7 shows folate-phycoerythrin binding, analyzed by flow cytometry, to human peripheral blood monocytes and competition by unlabeled folic acid.
  • FIG. 8 shows the percentage of human peripheral blood monocytes that are folate receptor positive in healthy humans (squares) and in patients with rheumatoid arthritis (diamonds), osteoarthritis (upper group of triangles), and fibromyalgia (three triangles at lowest percentages).
  • FIG. 9 shows paw volume over time in rats after arthritis induction. The rats were treated with folate-flumethasone (50 nmoles/kg/day; squares) or folate-indomethacin (100 (triangles) or 250 (diamonds) nmoles/kg/day) or were untreated (circles).
  • FIG. 10 shows the percentage of human peripheral blood monocytes that are folate receptor positive in patients with rheumatoid arthritis over the course of therapy.
  • DETAILED DESCRIPTION
  • Methods are provided for treating and diagnosing disease states mediated (e.g., caused or augmented) by monocytes. Exemplary disease states include fibromyalgia, rheumatoid arthritis, osteoarthritis, ulcerative colitis, Crohn's disease, psoriasis, osteomyelitis, multiple sclerosis, atherosclerosis, pulmonary fibrosis, sarcoidosis, systemic sclerosis, organ transplant rejection (GVHD), lupus erythematosus, Sjögren's syndrome, glomerulonephritis, inflammations of the skin (e.g., psoriasis), and chronic inflammations. Such disease states can be diagnosed by isolating monocytes (e.g., whole blood or peripheral blood monocytes) from a patient suffering from such disease state, contacting the monocytes with a composition comprising a conjugate of the general formula Ab-X wherein the group Ab comprises a ligand that binds to monocytes, and the group X comprises an imaging agent, and quantifying the percentage of monocytes expressing a receptor for the ligand.
  • Such disease states can also be diagnosed by administering parenterally to a patient a composition comprising a conjugate or complex of the general formula Ab-X where the group Ab comprises a ligand that binds to monocytes and the group X comprises an imaging agent, and quantifying the percentage of monocytes that expresses a receptor for the ligand.
  • Monocyte-mediated disease states can be treated in accordance with the methods disclosed herein by administering an effective amount of a composition Ab-X wherein Ab comprises a ligand that binds to monocytes and wherein the group X comprises an immunogen, a cytotoxin, or a compound capable of altering monocyte function. Such monocyte targeting conjugates, when administered to a patient suffering from a monocyte-mediated disease state, work to concentrate and associate the conjugated cytotoxin, immunogen, or compound capable of altering monocyte function with the population of monocytes to kill the monocytes or alter monocyte function. The conjugate is typically administered parenterally, but can be delivered by any suitable method of administration (e.g., orally), as a composition comprising the conjugate and a pharmaceutically acceptable carrier therefor. Conjugate administration is typically continued until symptoms of the disease state are reduced or eliminated, or administration is continued after this time to prevent progression or reappearance of the disease.
  • As used herein, the terms “eliminated” and “eliminating” in reference to the disease state, mean reducing the symptoms or eliminating the symptoms of the disease state or preventing the progression or the reoccurrence of disease.
  • As used herein, the terms “elimination” and “deactivation” of the monocyte population that expresses the ligand receptor mean that this monocyte population is killed or is completely or partially inactivated which reduces the monocyte-mediated pathogenesis characteristic of the disease state being treated.
  • As used herein, “mediated by” in reference to diseases mediated by monocytes means caused by or augmented by. For example, monocytes can directly cause disease or monocytes can augment disease states such as by stimulating other immune cells to secrete factors that mediate disease states, such as by stimulating T-cells to secrete TNF-α. Illustratively, monocytes themselves may also harbor infections and cause disease and infected monocytes may cause other immune cells to secrete factors that cause disease such as TNF-α secretion by T-cells.
  • In one embodiment, monocyte-mediated disease states are diagnosed in a patient by isolating monocytes from the patient, contacting the monocytes with a conjugate Ab-X wherein Ab comprises a ligand that binds to monocytes and X comprises an imaging agent, and quantifying the percentage of monocytes expressing the receptor for the ligand. In another embodiment, the imaging or diagnostic conjugates can be administered to the patient as a diagnostic composition comprising a conjugate and a pharmaceutically acceptable carrier and thereafter monocytes can be collected from the patient to quantify the percentage of monocytes expressing the receptor for the ligand Ab. In this embodiment, the composition is typically formulated for parenteral administration and is administered to the patient in an amount effective to enable imaging of monocytes. In another embodiment, disease states can also be diagnosed by administering parenterally to a patient a composition comprising a conjugate or complex of the general formula Ab-X where the group Ab comprises a ligand that binds to monocytes and the group X comprises an imaging agent, and quantifying the percentage of monocytes that expresses a receptor for the ligand.
  • In one embodiment, for example, the imaging agent (e.g., a reporter molecule) can comprise a radiolabeled compound such as a chelating moiety and an element that is a radionuclide, for example a metal cation that is a radionuclide. In another embodiment, the radionuclide is selected from the group consisting of technetium, gallium, indium, and a positron emitting radionuclide (PET imaging agent). In another embodiment, the imaging agent can comprise a chromophore such as, for example, fluorescein, rhodamine, Texas Red, phycoerythrin, Oregon Green, AlexaFluor 488 (Molecular Probes, Eugene, Oreg.), Cy3, Cy5, Cy7, and the like.
  • Diagnosis typically occurs before treatment. However, in the diagnostic methods described herein, the term “diagnosis” can also mean monitoring of the disease state before, during, or after treatment to determine the progression of the disease state. The monitoring can occur before, during, or after treatment, or combinations thereof, to determine the efficacy of therapy, or to predict future episodes of disease. The imaging can be performed by any suitable imaging method known in the art, such as intravital imaging.
  • The method disclosed herein can be used for both human clinical medicine and veterinary applications. Thus, the host animal afflicted with the monocyte-mediated disease state and in need of diagnosis or therapy can be a human, or in the case of veterinary applications, can be a laboratory, agricultural, domestic or wild animal. In embodiments where the conjugates are administered to the patient or animal, the conjugates can be administered parenterally to the animal or patient suffering from the disease state, for example, intradermally, subcutaneously, intramuscularly, intraperitoneally, or intravenously. Alternatively, the conjugates can be administered to the animal or patient by other medically useful procedures and effective doses can be administered in standard or prolonged release dosage forms, such as a slow pump. The therapeutic method described herein can be used alone or in combination with other therapeutic methods recognized for the treatment of inflammatory disease states.
  • In the ligand conjugates of the general formula Ab-X, the group Ab is a ligand that binds to monocytes (e.g., activated monocytes) when the conjugates are used to diagnose or treat disease states. Any of a wide number of monocyte-binding ligands can be employed. Acceptable ligands include particularly folate receptor binding ligands, and analogs thereof, and antibodies or antibody fragments capable of recognizing and binding to surface moieties expressed or presented on monocytes. In one embodiment, the monocyte-binding ligand is folic acid, a folic acid analog or another folate receptor binding molecule. In another embodiment the monocyte-binding ligand is a specific monoclonal or polyclonal antibody or an Fab or an scFv (i.e., a single chain variable region) fragment of an antibody capable of binding to monocytes.
  • In one embodiment, the monocyte-binding ligand can be folic acid, a folic acid analog, or another folate receptor-binding molecule. Analogs of folate that can be used include folinic acid, pteropolyglutamic acid, and folate receptor-binding pteridines such as tetrahydropterins, dihydrofolates, tetrahydrofolates, and their deaza and dideaza analogs. The terms “deaza” and “dideaza” analogs refers to the art recognized analogs having a carbon atom substituted for one or two nitrogen atoms in the naturally occurring folic acid structure. For example, the deaza analogs include the 1-deaza, 3-deaza, 5-deaza, 8-deaza, and 10-deaza analogs. The dideaza analogs include, for example, 1,5 dideaza, 5,10-dideaza, 8,10-dideaza, and 5,8-dideaza analogs. The foregoing folic acid analogs are conventionally termed “folates,” reflecting their capacity to bind to folate receptors. Other folate receptor-binding analogs include aminopterin, amethopterin (methotrexate), N10-methylfolate, 2-deamino-hydroxyfolate, deaza analogs such as 1-deazamethopterin or 3-deazamethopterin, and 3′,5′-dichloro-4-amino-4-deoxy-N10-methylpteroylglutamic acid (dichloromethotrexate).
  • In another embodiment, other vitamins can be used as the monocyte-binding ligand. The vitamins that can be used in accordance with the methods described herein include niacin, pantothenic acid, folic acid, riboflavin, thiamine, biotin, vitamin B12, vitamins A, D, E and K, other related vitamin molecules, analogs and derivatives thereof, and combinations thereof.
  • In other embodiments, the monocyte-binding ligand can be any ligand that binds to a receptor expressed or overexpressed on activated monocytes including CD40-, CD16-, CD14-, CD11b-, and CD62-binding ligands, 5-hydroxytryptamine, macrophage inflammatory protein 1-α, MIP-2, receptor activator of nuclear factor kB ligand antagonists, monocyte chemotactic protein 1-binding ligands, chemokine receptor 5-binding ligands, RANTES-binding ligands, chemokine receptor-binding ligands, and the like.
  • The monocyte (e.g., activated monocytes) targeted conjugates used for diagnosing or treating disease states mediated by monocytes have the formula Ab-X, wherein Ab is a ligand capable of binding to monocytes, and the group X comprises an imaging agent or an immunogen, cytotoxin, or a compound capable of altering monocyte function. In such conjugates wherein the group Ab is folic acid, a folic acid analog, or another folic acid receptor binding ligand, these conjugates are described in detail in U.S. Pat. No. 5,688,488, the specification of which is incorporated herein by reference. That patent, as well as related U.S. Pat. Nos. 5,416,016 and 5,108,921, and related U.S. Patent Application Publication No. 2005/0002942 A1, each incorporated herein by reference, describe methods and examples for preparing conjugates useful in accordance with the methods described herein. The present monocyte-targeted imaging and therapeutic agents can be prepared and used following general protocols described in those earlier patents and patent applications, and by the protocols described herein.
  • In accordance with another embodiment, there is provided a method of treating disease states mediated by monocytes by administering to a patient suffering from such disease state an effective amount of a composition comprising a conjugate of the general formula Ab-X wherein Ab is as defined above and the group X comprises a cytotoxin, an immunogen, or a compound capable of altering monocyte function. In these embodiments, the monocytes can be activated monocytes and the group Ab can be any of the ligands described above. Exemplary of cytotoxic moieties useful for forming conjugates for use in accordance with the methods described herein are clodronate, anthrax, Pseudomonas exotoxin, typically modified so that these cytotoxic moieties do not bind to normal cells, and other toxins or cytotoxic agents including art-recognized chemotherapeutic agents such as adrenocorticoids, alkylating agents, antiandrogens, antiestrogens, androgens, estrogens, antimetabolites such as cytosine arabinoside, purine analogs, pyrimidine analogs, and methotrexate, busulfan, carboplatin, chlorambucil, cisplatin and other platinum compounds, tamoxiphen, taxol, cyclophosphamide, plant alkaloids, prednisone, hydroxyurea, teniposide, and bleomycin, nitrogen mustards, nitrosureas, vincristine, vinblastine, MEK kinase inhibitors, MAP kinase pathway inhibitors, PI-3-kinase inhibitors, mitochondrial perturbants, NFκB pathway inhibitors, proteosome inhibitors, pro-apoptotic agents, glucocorticoids, such as prednisolone, flumethasone, dexamethasone, and betamethasone, indomethacin, diclofenac, proteins such as pokeweed, saporin, momordin, and gelonin, non-steroidal anti-inflammatory drugs (NSAIDs), protein synthesis inhibitors, didemnin B, verrucarin A, geldanamycin, and the like. Such toxins or cytotoxic compounds can be directly conjugated to the monocyte-binding ligand, for example, folate or another folate receptor-binding ligand, or they can be formulated in liposomes or other small particles which themselves are targeted as conjugates of the monocyte-binding ligand typically by covalent linkages to component phospholipids.
  • Similarly, when the group X comprises a compound capable of altering a monocyte function, for example, a cytokine such as IL-10 or IL-11, the compound can be covalently linked to the targeting ligand Ab, for example, a folate receptor-binding ligand or a monocyte-binding antibody or antibody fragment directly, or the monocyte function altering compound can be encapsulated in a liposome which is itself targeted to monocytes by pendent monocyte targeting ligands Ab covalently linked to one or more liposome components.
  • In another embodiment, conjugates Ab-X where X is an immunogen or a compound capable of altering monocyte function, can be administered in combination with a cytotoxic compound. The cytotoxic compounds listed above are among the compounds suitable for this purpose.
  • In another method of treatment embodiment, the group X in the monocyte targeted conjugate Ab-X, comprises an immunogen, the ligand-immunogen conjugates being effective to “label” the population of monocytes responsible for disease pathogenesis in the patient suffering from the disease for specific elimination by an endogenous immune response or by co-administered antibodies. The use of ligand-immunogen conjugates in the method of treatment described herein works to enhance an immune response-mediated elimination of the monocyte population that expresses the ligand receptor. Such elimination can be effected through an endogenous immune response or by a passive immune response effected by co-administered antibodies.
  • The methods of treatment involving the use of ligand-immunogen conjugates are described in U.S. Patent Application Publication Nos. U.S. 2001/0031252 A1 and U.S. 2002/0192157 A1, and PCT Publication No. WO 2004/100983, each incorporated herein by reference.
  • The endogenous immune response can include a humoral response, a cell-mediated immune response, and any other immune response endogenous to the host animal, including complement-mediated cell lysis, antibody-dependent cell-mediated cytotoxicity (ADCC), antibody opsonization leading to phagocytosis, clustering of receptors upon antibody binding resulting in signaling of apoptosis, antiproliferation, or differentiation, and direct immune cell recognition of the delivered immunogen (e.g., an antigen or a hapten). It is also contemplated that the endogenous immune response may employ the secretion of cytokines that regulate such processes as the multiplication and migration of immune cells. The endogenous immune response may include the participation of such immune cell types as B cells, T cells, including helper and cytotoxic T cells, macrophages, natural killer cells, neutrophils, LAK cells, and the like.
  • The humoral response can be a response induced by such processes as normally scheduled vaccination, or active immunization with a natural antigen or an unnatural antigen or hapten, e.g., fluorescein isothiocyanate (FITC), with the unnatural antigen inducing a novel immunity. Active immunization involves multiple injections of the unnatural antigen or hapten scheduled outside of a normal vaccination regimen to induce the novel immunity. The humoral response may also result from an innate immunity where the host animal has a natural preexisting immunity, such as an immunity to α-galactosyl groups.
  • Alternatively, a passive immunity may be established by administering antibodies to the host animal such as natural antibodies collected from serum or monoclonal antibodies that may or may not be genetically engineered antibodies, including humanized antibodies. The utilization of a particular amount of an antibody reagent to develop a passive immunity, and the use of a ligand-immunogen conjugate wherein the passively administered antibodies are directed to the immunogen, would provide the advantage of a standard set of reagents to be used in cases where a patient's preexisting antibody titer to potential antigens is not therapeutically useful. The passively administered antibodies may be “co-administered” with the ligand-immunogen conjugate, and co-administration is defined as administration of antibodies at a time prior to, at the same time as, or at a time following administration of the ligand-immunogen conjugate.
  • The preexisting antibodies, induced antibodies, or passively administered antibodies will be redirected to the monocytes by preferential binding of the ligand-immunogen conjugates to the monocyte cell populations, and such pathogenic cells are killed by complement-mediated lysis, ADCC, antibody-dependent phagocytosis, or antibody clustering of receptors. The cytotoxic process may also involve other types of immune responses, such as cell-mediated immunity.
  • Acceptable immunogens for use in preparing the conjugates used in the method of treatment described herein are immunogens that are capable of eliciting antibody production in a host animal or that have previously elicited antibody production in a host animal, resulting in a preexisting immunity, or that constitute part of the innate immune system. Alternatively, antibodies directed against the immunogen may be administered to the host animal to establish a passive immunity. Suitable immunogens for use in the invention include antigens or antigenic peptides against which a preexisting immunity has developed via normally scheduled vaccinations or prior natural exposure to such agents such as polio virus, tetanus, typhus, rubella, measles, mumps, pertussis, tuberculosis and influenza antigens, and α-galactosyl groups. In such cases, the ligand-immunogen conjugates will be used to redirect a previously acquired humoral or cellular immunity to a population of monocytes in the host animal for elimination of the monocytes.
  • Other suitable immunogens include antigens or antigenic peptides to which the host animal has developed a novel immunity through immunization against an unnatural antigen or hapten, for example, fluorescein isothiocyanate (FITC) or dinitrophenyl, and antigens against which an innate immunity exists, for example, super antigens and muramyl dipeptide.
  • The monocyte-binding ligands and immunogens, cytotoxic agents, compounds capable of altering monocyte function, or imaging agents, as the case may be in forming conjugates for use in accordance with the methods described herein can be conjugated by using any art-recognized method for forming a complex. This can include covalent, ionic, or hydrogen bonding of the ligand to the immunogen, either directly or indirectly via a linking group such as a divalent linker. The conjugate is typically formed by covalent bonding of the ligand to the targeted entity through the formation of amide, ester or imino bonds between acid, aldehyde, hydroxy, amino, or hydrazo groups on the respective components of the complex or, for example, by the formation of disulfide bonds. Methods of linking monocyte-binding ligands to immunogens, cytotoxic agents, compounds capable of altering monocyte function, or imaging agents are described in U.S. Patent Application Publication No. 2005/0002942 A1 and PCT Publication No. WO 2006/012527, each incorporated herein by reference.
  • Alternatively, as mentioned above, the ligand complex can be one comprising a liposome wherein the targeted entity (that is, the imaging agent, or the immunogen, cytotoxic agent or monocyte function-altering agent) is contained within a liposome which is itself covalently linked to the monocyte-binding ligand. Other nanoparticles, dendrimers, derivatizable polymers or copolymers that can be linked to therapeutic or imaging agents useful in the treatment and diagnosis of monocyte-mediated diseases can also be used in targeted conjugates.
  • In one embodiment of the invention the ligand is folic acid, an analog of folic acid, or any other folate receptor binding molecule, and the folate ligand is conjugated to the targeted entity by a procedure that utilizes trifluoroacetic anhydride to prepare γ-esters of folic acid via a pteroyl azide intermediate. This procedure results in the synthesis of a folate ligand, conjugated to the targeted entity only through the γ-carboxy group of the glutamic acid groups of folate. Alternatively, folic acid analogs can be coupled through the α-carboxy moiety of the glutamic acid group or both the α and γ carboxylic acid entities.
  • The therapeutic methods described herein can be used to slow the progress of disease completely or partially. Alternatively, the therapeutic methods described herein can eliminate or prevent reoccurrence of the disease state.
  • The conjugates used in accordance with the methods described herein of the formula Ab-X are used in one aspect to formulate therapeutic or diagnostic compositions, for administration to a patient, wherein the compositions comprise effective amounts of the conjugate and an acceptable carrier therefor. Typically such compositions are formulated for parenteral use. The amount of the conjugate effective for use in accordance with the methods described herein depends on many parameters, including the nature of the disease being treated or diagnosed, the molecular weight of the conjugate, its route of administration and its tissue distribution, and the possibility of co-usage of other therapeutic or diagnostic agents. The effective amount to be administered to a patient is typically based on body surface area, patient weight and physician assessment of patient condition. An effective amount can range from about to 1 ng/kg to about 1 mg/kg, more typically from about 1 μg/kg to about 500 μg/kg, and most typically from about 1 μg/kg to about 100 μg/kg.
  • Any effective regimen for administering the ligand conjugates can be used. For example, the ligand conjugates can be administered as single doses, or they can be divided and administered as a multiple-dose daily regimen. Further, a staggered regimen, for example, one to three days per week can be used as an alternative to daily treatment, and such an intermittent or staggered daily regimen is considered to be equivalent to every day treatment and within the scope of this disclosure. In one embodiment, the patient is treated with multiple injections of the ligand conjugate wherein the targeted entity is an immunogen or a cytotoxic agent or a compound capable of altering monocyte function to eliminate the population of pathogenic monocytes. In one embodiment, the patient is treated, for example, injected multiple times with the ligand conjugate at, for example, 12-72 hour intervals or at 48-72 hour intervals. Additional injections of the ligand conjugate can be administered to the patient at intervals of days or months after the initial injections, and the additional injections prevent recurrence of disease. Alternatively, the ligand conjugates may be administered prophylactically to prevent the occurrence of disease in patients known to be disposed to development of monocyte-mediated disease states. In one embodiment, more than one type of ligand conjugate can be used, for example, the host animal may be pre-immunized with fluorescein isothiocyanate and dinitrophenyl and subsequently treated with fluorescein isothiocyanate and dinitrophenyl linked to the same or different monocyte targeting ligands in a co-dosing protocol.
  • The ligand conjugates are administered in one aspect parenterally and most typically by intraperitoneal injections, subcutaneous injections, intramuscular injections, intravenous injections, intradermal injections, or intrathecal injections. The ligand conjugates can also be delivered to a patient using an osmotic pump. Examples of parenteral dosage forms include aqueous solutions of the conjugate, for example, a solution in isotonic saline, 5% glucose or other well-known pharmaceutically acceptable liquid carriers such as alcohols, glycols, esters and amides. The parenteral compositions for use in accordance with this invention can be in the form of a reconstitutable lyophilizate comprising the one or more doses of the ligand conjugate. In another aspect, the ligand conjugates can be formulated as one of any of a number of prolonged release dosage forms known in the art such as, for example, the biodegradable carbohydrate matrices described in U.S. Pat. Nos. 4,713,249; 5,266,333; and 5,417,982, the disclosures of which are incorporated herein by reference. The ligand conjugates can also be administered topically such as in an ointment or a lotion, for example, for treatment of inflammations of the skin.
  • In any of the embodiments discussed above, the monocytes can be activated monocytes or other monocyte populations that cause disease states. The following examples are illustrative embodiments only and are not intended to be limiting.
  • Example 1 Materials
  • Fmoc-protected amino acid derivatives, trityl-protected cysteine 2-chlorotrityl resin (H-Cys(Trt)-2-ClTrt resin #04-12-2811), Fmoc-lysine(4-methyltrityl) wang resin, 2-(1H-benzotriaxol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphage (HBTU) and N-hydroxybenzotriazole were purchased from Novabiochem (La Jolla, Calif.). N10-trifluoroacetylpteroic acid was purchased from Sigma, St. Louis, Mo. All anti-mouse and anti-human antibodies were purchased from Caltag Laboratories, Burlingame, Calif. Folate-R-Phycoerytherin, Folate-Alexa Fluor 488, Folate-Texas Red, and Folate-Fluorescein and Folate-cysteine were synthesized as described. Tritium (3H)-labeled folic acid was obtained from American Radiolabeled Chemicals (St. Louis, Mo.).
  • Example 2 Synthesis of Folate-Cysteine
  • Standard Fmoc peptide chemistry was used to synthesize folate-cysteine with the cysteine attached to the γ-COOH of folic acid. The sequence Cys-Glu-Pteroic acid (Folate-Cys) was constructed by Fmoc chemistry with HBTU and N-hydroxybenzotriazole as the activating agents along with diisopropyethylamine as the base and 20% piperidine in dimethylformamide (DMF) for deprotection of the Fmoc groups. An α-t-Boc-protected N-α-Fmoc-L-glutamic acid was linked to a trityl-protected Cys linked to a 2-Chlorotrityl resin. N10-trifluoroacetylpteroic acid was then attached to the γ-COOH of Glu. The Folate-Cys was cleaved from the resin using a 92.5% trifluoroacetic acid-2.5% water-2.5% triisopropylsilane-2.5% ethanedithio solution. Diethyl ether was used to precipitate the product, and the precipitant was collected by centrifugation. The product was washed twice with diethyl ether and dried under vacuum overnight. To remove the N10-trifluoracetyl protecting group, the product was dissolved in a 10% ammonium hydroxide solution and stirred for 30 min at room temperature. The solution was kept under a stream of nitrogen the entire time in order to prevent the cysteine from forming disulfides. After 30 minutes, hydrochloric acid was added to the solution until the compound precipitated. The product was collected by centrifugation and lyophilized. The product was analyzed and confirmed by mass spectroscopic analysis (MW 544, M+545).
  • Figure US20090214636A1-20090827-C00004
  • Example 3 Synthesis of Folate-Cys-AlexaFluor 488
  • AlexaFluor 488 C5-maleimide (Molecular Probes, Eugene, Oreg.) was dissolved in dimethyl sulfoxide (DMSO) (0.5 mg in 50 μl DMSO). A 1.5 molar equivalent (0.57 mg) of Folate-Cys was added to the solution and mixed for 4 hours at room temperature. Folate-Cys-AlexaFluor 488 (Folate-AlexaFluor) was purified by reverse-phase HPLC on a C18 column at a flow rate of 1 ml/min. The mobile phase, consisting of 10 mM NH4HCO3 buffer, pH 7.0 (eluent A) and acetonitrile (eluent B), was maintained at a 99:1 A:B ratio for the first minute and then changed to 1:99 A:B in a linear gradient over the next 29 minutes. Folate-Cys-AlexaFluor 488 eluted at 20 minutes. The product was confirmed by mass spectroscopy and the biologic activity was confirmed by fluorescence measurement of its binding to cell surface folate receptors on folate receptor positive M109 cells in culture.
  • Figure US20090214636A1-20090827-C00005
  • Example 4 Synthesis of Folate-Cys-Texas Red
  • Texas Red C2-maleimide (Molecular Probes, Eugene, Oreg.) was dissolved in dimethyl sulfoxide (DMSO) (1 mg in 200 μl DMSO). A 1.4 molar equivalent (1 mg) of Folate-Cys was added to the solution and mixed for 4 hours at room temperature. Folate-Cys-Texas Red (Folate-Texas Red) was purified by reverse-phase HPLC on a C18 column at a flow rate of 1 ml/min. The mobile phase, consisting of 10 mM NH4HCO3 buffer, pH 7.0 (eluent A) and acetonitrile (eluent B), was maintained at a 99:1 A:B ratio for the first five minutes and then changed to 70:30 A:B in a linear gradient over the next 30 minutes followed by a 1:99 A:B linear gradient over the last 15 minutes. Folate-Cys-Texas Red eluted as two isomer peaks at 44.5 and 45.8 minutes. The product was confirmed by mass spectroscopy and the biologic activity was confirmed by fluorescence measurement of its binding to cell surface folate receptors on folate receptor positive M109 cells in culture.
  • Figure US20090214636A1-20090827-C00006
  • Example 5 Synthesis of Folate-Oregon Green 514
  • Standard Fmoc peptide chemistry was used to synthesize a folate peptide linked to Oregon Green (Molecular Probes, Eugene, Oreg.) attached to the γ-COOH of folic acid. The sequence Lys-Glu-Pteroic acid (Folate-Cys) was constructed by Fmoc chemistry with HBTU and N-hydroxybenzotriazole as the activating agents along with diisopropyethylamine as the base and 20% piperidine in dimethylformamide (DMF) for deprotection of the Fmoc groups. An α-t-Boc-protected N-α-Fmoc-L-glutamic acid followed by a N10-trifluoroacetylpteroic acid was linked to a Fmoc-protected lysine wang resin containing a 4-methyltrityl protecting group on the ε-amine. The methoxytrityl protecting group on the ε-amine of lysine was removed with 1% trifluoroacetic acid in dichloromethane to allow attachment of Oregon Green (Folate-Oregon Green). A 1.5 molar equivalent of Oregon Green carboxylic acid, succinimidyl ester was reacted overnight with the peptide and then washed thoroughly from the peptide resin beads. The Folate-Oregon Green was then cleaved from the resin with a 95% trifluoroacetic acid-2.5% water-2.5% triisopropylsilane solution. Diethyl ether was used to precipitate the product, and the precipitant was collected by centrifugation. The product was washed twice with diethyl ether and dried under vacuum overnight. To remove the N10-trifluoroacetyl protecting group, the product was dissolved in a 10% ammonium hydroxide solution and stirred for 30 min at room temperature. The product was precipitated with combined isopropanol and ether, and the precipitant was collected by centrifugation.
  • Figure US20090214636A1-20090827-C00007
  • Example 6 Synthesis of Folate-R-Phycoerythrin
  • Folate-phycoerythrin was synthesized by following a procedure published by Kennedy M. D. et al. in Pharmaceutical Research, Vol. 20(5); 2003. Briefly, a 10-fold excess of folate-cysteine was added to a solution of R-phycoerythrin pyridyldisulfide (Sigma, St. Louis, Mo.) in phosphate buffered saline (PBS), pH 7.4. The solution was allowed to react overnight at 4° C. and the labeled protein (Mr ˜260 kDa) was purified by gel filtration chromatography using a G-15 desalting column. The folate labeling was confirmed by fluorescence microscopy of M109 cells incubated with folate-phycoerythrin in the presence and absence of 100-fold excess of folic acid. After a 1-h incubation and 3 cells washes with PBS, the treated cells were intensely fluorescent, while the sample in the presence of excess folic acid showed little cellular fluorescence.
  • Example 7 Synthesis of Folate-Fluorescein
  • Folate-FITC was synthesized as described by Kennedy, M. D. et al. in Pharmaceutical Research, Vol. 20(5); 2003.
  • Figure US20090214636A1-20090827-C00008
  • Example 8 Synthesis of Folate-D-R-D-D-C-Prednisolone
  • Standard Fmoc peptide chemistry was used to synthesize folate-aspartate-arginine-aspartate-aspartate-cysteine (Folate-Asp-Arg-Asp-Asp-Cys, Folate-D-R-D-D-C) with the amino acid spacer attached to the γ-COOH of folic acid. The sequence Cys-Asp-Asp-Arg-Asp-Glu-Pteroic acid (Folate-Asp-Arg-Asp-Asp-Cys) was constructed by Fmoc chemistry with HBTU and N-hydroxybenzotriazole as the activating agents along with diisopropyethylamine as the base and 20% piperidine in dimethylformamide (DMF) for deprotection of the Fmoc groups. Fmoc-D-Asp(OtBu)-OH was linked to a trityl-protected Cys linked to a 2-Chlorotrityl resin. A second Fmoc-D-Asp(OtBu)-OH followed by Fmoc-Arg(Pbf)-OH, Fmoc-D-Asp(OtBu)-OH and Fmoc-Glu-OtBu were added successively to the resin. N10-trifluoroacetylpteroic acid was then attached to the γ-COOH of Glu. The Folate-Asp-Arg-Asp-Asp-Cys was cleaved from the resin using a 92.5% trifluoroacetic acid-2.5% water-2.5% triisopropylsilane-2.5% ethanedithio solution. Diethyl ether was used to precipitate the product, and the precipitant was collected by centrifugation. The product was washed twice with diethyl ether and dried under vacuum overnight. To remove the N10-trifluoroacetyl protecting group, the product was dissolved in a 10% ammonium hydroxide solution and stirred for 30 min at room temperature. The solution was kept under a stream of nitrogen the entire time in order to prevent the cysteine from forming disulfides. After 30 minutes, hydrochloric acid was added to the solution until the compound precipitated. The product was collected by centrifugation and lyophilized. The product was analyzed and confirmed by mass spectroscopic analysis (MW 1046).
  • Figure US20090214636A1-20090827-C00009
  • Example 9 Synthesis of Folate-Indomethacin
  • Figure US20090214636A1-20090827-C00010
  • 2-(2-Pyridyldithio)ethanol was synthesized by dissolving 1.5 equivalents of Aldrithiol (Sigma, St. Louis, Mo.) with 6 equivalents of 4-dimethylaminopyridine (DMAP) in dichloromethane (DCM). The solution was purged with nitrogen and 1 equivalent of mercaptoethanol was added dropwise to the Aldrithiol solution over the course of 15 minutes. The reaction proceeded at room temperature for 30 minutes at which time no odor of mercaptoethanol remained. The reaction was diluted 100-fold with DCM and 5 g of activated carbon was added per gram of Aldrithiol. The reaction mixture was filtered and the solvent removed. The mixture was resuspended in 70:30 (Petroleum ether:Ethylacetate (EtOAc)) and purified by flash chromatography on a 60 Å silica gel column. The product was monitored by thin layer chromatography and collected.
  • Folate-indomethacin was synthesized following a modified method published by Kalgutkar et al. in the Journal of Med. Chem. 2000, 43; 2860-2870 where the anti-inflammatory (indomethacin) was linked through an ester bond with the 2-(2-Pyridyldithio)ethanol. Briefly, 1 equivalent of indomethacin was dissolved in DCM along with 0.08 equivalents DMAP, 1.1 equivalents 2-(2-Pyridyldithio) ethanol and 1.1 equivalents 1,3-dicyclohexyl-carbodiimide. The reaction proceeded at room temperature for 5 hours. The reaction was purified by chromatography on silica gel (EtOAc:hexanes, 20:80). One equivalent of the purified compound was dissolved in DMSO and to it were added 1.5 equivalents of the folate-Asp-Arg-Asp-Asp-Cys peptide. The resulting solution was reacted for 3 hours at room temperature followed by purification using a HPLC reverse-phase C18 column at a flow rate of 1 ml/min. The mobile phase, consisting of 10 mM NH4HCO3 buffer, pH 7.0 (eluent A) and acetonitrile (eluent B), was maintained at a 99:1 A:B ratio for the first five minutes and then changed to 70:30 A:B in a linear gradient over the next 30 minutes. The recovered final product was confirmed by mass spectrometry.
  • Example 10 Synthesis of Folate-Diclofenac
  • Figure US20090214636A1-20090827-C00011
  • Folate-diclofenac was synthesized by the method described in Example 9 except that diclofenac was used in place of indomethicin. In various embodiments, n=1, 2, or 3, and where n is illustratively 2.
  • Example 11 Synthesis of Folate-Cys-Prednisolone
  • The folate glucocorticoid conjugate of prednisolone was prepared as follows. A 1.1 molar equivalent of prednisone was dissolved in tetrahydrofuran (THF). In a separate vial, a 0.7 molar equivalent of dimethylaminopyridine, 1 molar equivalent of tri(hydroxyethyl)amine and 1 molar equivalent of the linker (synthesis described in PCT Publication No. WO 2006/012527, incorporated herein by reference) were dissolved in dichloromethane. An approximately equal volume of both solutions were combined, mixed and reacted at room temperature for 4 hours. The reaction was monitored by thin layer chromatography using 40:10:1 (Dichloromethane:Acetonitrile:Methanol). The product had an Rf=0.52. The product was purified on a silica column (Silica 32-63, 60 Å) using the same ratio of solvents. The recovered product was dried in preparation for conjugation to a folate-peptide. The derivatized glucocorticoid was dissolved in DMSO, to which was added a 1.5 molar equivalent of either the folate-cys or folate-Asp-Arg-Asp-Asp-Cys peptide. The resulting solution was reacted for 3 hours at room temperature followed by purification using a HPLC reverse-phase C18 column at a flow rate of 1 ml/min. The mobile phase, consisting of 10 mM NH4HCO3 buffer, pH 7.0 (eluent A) and acetonitrile (eluent B), was maintained at a 99:1 A:B ratio for the first minute and then changed to 1:99 A:B in a linear gradient over the next 39 minutes. The folate-glucocorticoid conjugate eluted at approximately 26 minutes. The recovered final product was confirmed by mass spectrometry.
  • Figure US20090214636A1-20090827-C00012
  • Example 12 Synthesis of Folate-Cys-Dexamethasone
  • Figure US20090214636A1-20090827-C00013
  • Folate-cys-dexamethasone was synthesized by a procedure similar to that described in Example 11 except that the glucocorticoid was dexamethasone.
  • Example 13 Synthesis of Folate-Cys-Flumethasone
  • Figure US20090214636A1-20090827-C00014
  • Folate-cys-flumethasone was synthesized by a procedure similar to that described in Example 11 except that the glucocorticoid was flumethasone.
  • Example 14 Isolation of Peripheral Blood Mononuclear Cells (PBMC)
  • An 8-10 ml sample of whole blood was collected in EDTA anticoagulant tubes. PBMCs were isolated from the blood samples using Ficoll-Paque Plus (Amersham Biosciences, Piscataway, N.J.) and by following the manufacture's provided protocol. Briefly, the blood sample was diluted 50:50 with a balanced salt solution (described below). 8 mL of Ficoll-Paque Plus was added to a 50 ml conical centrifuge tube. The diluted blood sample (approximately 16-20 ml) was layered on top of the Ficoll gradient. The sample was centrifuged at 400×g for 30 minutes at room temperature. Following centrifugation, the plasma layer (top clear layer) was removed using a pipette leaving the lymphocyte/monocyte layer undisturbed. The hazy cell layer immediately below the plasma layer was removed, being careful to remove the entire cell interface but a minimum amount of the Ficoll layer. The isolated cells were put into a sterile 50 ml conical centrifuge tube and diluted 3-fold (vol/vol) using the balanced salt solution. The resulting cell solution was gently mixed and centrifuged at 100×g for 10 minutes at room temperature to pellet the cells. The supernatant was removed and the cells were resuspended in folate deficient RPMI 1640 medium supplemented with 10% heat-inactivated FBS, penicillin (100 IU/ml) and streptomycin (100 μg/ml). Cells were seeded in microcentrifuge tubes or microscopy chambers as dictated by the experiment.
  • Example 15 Balanced Salt Solution Balanced Salt Solution Preparation (as Prepared by Amersham Biosciences)
  • Solution A Concentration. (g/L)
    Anhydrous D-glucose 0.1 percent 1.0
    CaCl2 × 2H2O 5.0 × 10−5M 0.0074
    MgCl2 × 6H2O 9.8 × 10−4M 0.1992
    KCl 5.4 × 10−3M 0.4026
    TRIS 0.145 M 17.565

    Dissolve in approximately 950 ml distilled water and add 10 N HCl until pH is 7.6 before adjusting the volume to 1 L.
  • Solution B Concentration (g/L)
    NaCl 0.14M 8.19

    To prepare the balanced salt solution mix 1 volume Solution A with 9 volumes Solution B.
  • Example 16 Ligand Binding
  • All binding experiments were conducted on ice or in a 4° C. cold room unless indicated otherwise. Folate conjugate and 3H-folic acid binding studies were performed by incubating cells with a 100 nM concentration of the indicated folate dye conjugate for 45 minutes. Competition samples were prepared by pre-incubating the appropriate samples with a 100-fold excess concentration of folic acid (10 μM) five minutes prior to adding the folate dye conjugate. An acidic wash to strip cell-surface bound folate conjugates was performed on indicated samples by washing the cell sample with a 150 mM NaCl solution adjusted to pH 3.5 with acetic acid. All antibody labeling was optimized by titration. Optimal labeling was most often achieved with a 1/1000-1/10,000 dilution of the manufacture's stock antibody solution. After cells were labeled with folate dye conjugates and/or antibodies, the samples were washed twice with PBS to remove non-specific binding. Analysis of folate conjugate binding and/or antibody binding was analyzed by confocal microscopy or by flow cytometry (FCS Calibur, BD, Franklin Lakes, N.J.). After washing 3H-folic acid samples to remove non-specific binding, cells were dissolved in 0.25M NaOH and radioactivity was counted on a scintillation counter.
  • Example 17 Synthesis of Folate Resonance Energy Transfer Reporter
  • Compound 1 was prepared by following standard Fmoc chemistry on an acid-sensitive trityl resin loaded with Fmoc-L-Cys (Trt)-OH, as described previously (adapted to the shown peptide sequence). The crude compound 1 was purified by HPLC using a VYDAC protein and peptide C18 column. The HPLC-purified 1 was then reacted with tetramethylrhodamine methanethiosulfonate (Molecular Probes, Eugene, Oreg.) in DMSO to afford compound 2, in the presence of diisopropylethylamine (DIPEA). The desired product was isolated from the reaction mixture by preparative HPLC as described above. The final conjugation was performed by mixing excess DIPEA with 2 (in DMSO) followed by addition of BODIPY FL NHS ester (Molecular Probes, Eugene, Oreg.). Compound 3 was then isolated from this reaction mixture by preparative HPLC.
  • Figure US20090214636A1-20090827-C00015
    Figure US20090214636A1-20090827-C00016
  • Example 18 Laser Imaging
  • Fluorescence resonance energy transfer (FRET) imaging of monocytes to determine uptake of folate-linked imaging agents will be carried out using a confocal microscopy. An Olympus IX-70 inverted microscopy (Olympus, USA) equipped with an Olympus FW300 scanning box and an Olympus 60X/1.2 NA water objective will be used to image the cells. Separate excitation lines and emission filters will be used for each fluorochrome (BODIPY FL, 488 nm (excitation) and 520/40 nm (emission); rhodamine, 543 nm (excitation) and 600/70 nm (emission)). Two laser sources with 543 nm (He—Ne) and 488 nm (Argon) wavelength can be used to excite BODIPY FL and rhodamine separately to obtain two color images when needed. Confocal images can be acquired with a size of 512×512 pixels at 2.7 second scan time and images can be processed using FluoView (Olympus) software.
  • Example 19 Liposome Preparation
  • Liposomes were prepared following methods by Leamon et al. in Bioconjugate Chemistry 2003, 14, 738-747. Briefly, lipids and cholesterol were purchased from Avanti Polar Lipids (Alabaster, Ala.). Folate-targeted liposomes consisted of 40 mole % cholesterol, either 4 mole % or 6 mole % polyethyleneglycol (Mr ˜2000)-derivatized phosphatidylethanolamine (PEG2000-PE, Nektar Ala., Huntsville, Ala.), either 0.03 mole % or 0.1 mole % folate-cysteine-PEG3400-PE and the remaining mole % was composed of egg phosphatidylcholine. Non-targeted liposomes were prepared identically with the absence of folate-cysteine-PEG3400-PE. Lipids in chloroform were dried to a thin film by rotary evaporation and then rehydrated in PBS containing the drug. Rehydration was accomplished by vigorous vortexing followed by 10 cycles of freezing and thawing. Liposomes were then extruded 10 times through a 50 nm pore size polycarbonate membrane using a high-pressure extruder (Lipex Biomembranes, Vancouver, Canada).
  • Example 20 Synthesis of Folate-Pokeweed
  • Pokeweed antiviral protein was purchased from Worthington Biochemical Corporation (Lakewood, N.J.). N-succinimidyl-3-[2-pyridyldithio]propionate (SPDP; Pierce, Rockford, Ill.) was dissolved in dimethylformamide (9.6 mM). While on ice, a 5 fold molar excess of SPDP (˜170 nmoles) was added to the pokeweed solution (1 mg/ml PBS, MW-29,000). The resulting solution was gently mixed and allowed to react for 30 minutes at room temperature. The non-conjugated SPDP was removed using a centrifuge molecular weight concentrator (MWCO 10,000) (Millipore, Billerica, Mass.). The resulting protein solution was resuspended in PBS containing 10 mM EDTA to a final volume of 1 mL. Approximately a 60 fold molar excess of folate-Asp-Arg-Asp-Asp-Cys peptide (2000 nmoles) was added to the protein solution and allowed to react for 1 hour. The non-reacted folate-Asp-Arg-Asp-Asp-Cys peptide was removed using the centrifuge concentrators as previously described. The protein was washed twice by resuspending the protein in PBS and repeating the protein concentration by centrifugation.
  • Example 21 Synthesis of Folate-Saporin
  • The protein saporin was purchased from Sigma (St. Louis, Mo.). Folate-saporin was prepared following folate-protein conjugation methods published by Leamon and Low in The Journal of Biological Chemistry 1992, 267(35); 24966-24971. Briefly, folic acid was dissolved in DMSO and incubated with a 5 fold molar excess of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide for 30 minutes at room temperature. The saporin was dissolved in 100 mM KH2PO4, 100 mM boric acid, pH 8.5. A 10-fold molar excess of the “activated” vitamin was added to the protein solution and the labeling reaction was allowed to proceed for 4 hours. Unreacted material was separated from the labeled protein using a Sephadex G-25 column equilibrated in phosphate-buffered saline, pH 7.4.
  • Example 22 Synthesis of Folate-Momordin and Folate-Gelonin
  • The proteins momordin and gelonin were purchased from Sigma (St. Louis, Mo.). Folate-cys pyridyldisulfide was prepared by reacting folate-cys with Aldrithiol (Sigma, St. Louis, Mo.). Both proteins were dissolved in 0.1M HEPPS buffer, pH 8.2. A 6-fold molar excess of Trouts reagent (Aldrich St. Louis, Mo.) dissolved in DMSO (16 mM) was added to each protein solution. The solutions were allowed to react for 1 hour at room temperature. Unreacted material was separated from the protein using a Sephadex G-25 column equilibrated in 0.1M phosphate buffer, pH 7.0. Ellmans test for the presence of free thios were positive for both proteins. While the protein solution was on ice, a 5-fold molar excess of folate-cys pyridyldisulfide dissolved in DMSO was added. The resulting solution was warmed up to room temperature and reacted for 30 minutes. Unreacted material was separated from the labeled protein using a Sephadex G-25 column equilibrated in phosphate-buffered saline, pH 7.4.
  • Example 23 Preparation of Folate-Targeted Clodronate or Prednisolone Phosphate Liposomes
  • Liposomes were prepared following methods by Leamon et al. in Bioconjugate Chemistry 2003, 14; 738-747. Briefly, lipids and cholesterol were purchased from Avanti Polar Lipids (Alabaster, Ala.). Folate-targeted liposomes consisted of 40 mole % cholesterol, 5 mole % polyethyleneglycol (Mr ˜2000)-derivatized phosphatidylethanolamine (PEG2000-PE, Nektar Ala., Huntsville, Ala.), 0.03 mole % folate-cysteine-PEG3400-PE and 54.97 mole % egg phosphatidylcholine. Lipids in chloroform were dried to a thin film by rotary evaporation and then rehydrated in PBS containing either clodronate (250 mg/ml) or prednisolone phosphate (100 mg/ml). Rehydration was accomplished by vigorous vortexing followed by 10 cycles of freezing and thawing. Liposomes were then extruded 10 times through a 50 nm pore size polycarbonate membrane using a high-pressure extruder (Lipex Biomembranes, Vancouver, Canada). The liposomes were separated from unencapsulated clodronate or prednisolone phosphate by passage through a CL4B size exclusion column (Sigma, St. Louis, Mo.) in PBS. Average particle size was between 70 and 100 nm.
  • Example 24 Folate-FITC Binding to Human Monocytes
  • Folate-FITC binding to human monocytes and to human monocytes preincubated with a 100-fold excess of unlabeled folic acid was measured. Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16. As shown in FIG. 1, folate-FITC bound to human peripheral blood monocytes in the absence of unlabeled folic acid and binding was competed in the presence of a 100-fold excess of unlabeled folic acid.
  • Example 25 Folate-FITC Binding to CD11b+ Human Monocytes
  • Folate-FITC binding to CD11b+ human monocytes and to CD11b+ human monocytes preincubated with a 100-fold excess of unlabeled folic acid was quantified. Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16. As shown in FIG. 2, folate-FITC bound to 45.9% of human peripheral blood monocytes in the absence of unlabeled folic acid and to 2% of human peripheral blood monocytes in the presence of a 100-fold excess of unlabeled folic acid.
  • Example 26 Binding to Human Monocytes of Folate-FITC and Antibodies to CD Markers
  • Folate-FITC binding and binding of antibodies to CD11b, CD14, CD16, CD69, and HLA-DR markers on human monocytes was quantified. Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC and antibody binding and flow cytometry were performed as described in Example 16. As shown in FIG. 3, CD11b, CD14, CD16, CD69, and HLA-DR markers are co-expressed with the folate receptor on human peripheral blood monocytes. It has been reported that CD14- and CD16-expressing monocytes are a population of proinflammatory monocytes (Weber et al., J. Leuk. Biol., 67:699-704 (2000) and Ziegler-Heitbrock, J. Leuk. Biol., 67:603-606 (2000)) suggesting that the folate-receptor-expressing monocytes (about 2% of total circulating white blood cells) are proinflammatory monocytes.
  • Example 27 Binding of 3H-Folic Acid to White Blood Cells
  • 3H-Folic acid binding to white blood cells was quantified as described in Example 16. White blood cells were preincubated with a 100-fold excess of unlabeled folic acid for the samples labeled “xs.” As shown in FIG. 4, folate receptors are detectable on white blood cells from dogs and mice and on KB cells.
  • Example 28 Folate-FITC Binding to Peripheral Blood Monocytes from Dogs and Horses
  • Folate-FITC binding to peripheral blood monocytes from dogs and horses was quantified for monocytes preincubated or not preincubated with a 100-fold excess of unlabeled folic acid. Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16. As shown in FIG. 5, folate receptors were detectable on peripheral blood monocytes of both dogs and horses.
  • Example 29 Folate-FITC or Folate-AlexaFluor 488 Binding to Peripheral Blood Monocytes from Dogs
  • Folate-FITC binding or folate-AlexaFluor 488 binding to peripheral blood monocytes from dogs was quantified for monocytes preincubated or not preincubated with a 100-fold excess of unlabeled folic acid. Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC and folate-AlexaFluor 488 binding and flow cytometry were performed as described in Example 16. As shown in FIG. 6, folate receptors were detectable on peripheral blood monocytes of dogs using either folate-FITC or folate-AlexaFluor 488.
  • Example 30 Folate-Phycoerythrin Binding to Human Peripheral Blood Monocytes
  • Folate-phycoerythrin binding to human peripheral blood monocytes was quantified for monocytes preincubated or not preincubated with a 100-fold excess of unlabeled folic acid. Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-phycoerythrin binding and flow cytometry were performed as described in Example 16. As shown in FIG. 7, folate receptors were detectable on human peripheral blood monocytes using folate-phycoerythrin.
  • Example 31 Folate-FITC Binding to Peripheral Blood Monocytes from Healthy Humans and Patients with Arthritis or Fibromyalgia
  • Folate-FITC binding to peripheral blood monocytes from healthy humans (squares) and from patients with rheumatoid arthritis (diamonds), osteoarthritis (upper group of triangles), and fibromyalgia (three triangles at lowest percentages) was quantified. Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16. As shown in FIG. 8, folate receptors were detectable on peripheral blood monocytes of humans using folate-FITC. In this assay, patients with fibromyalgia appear to have lower percentages of folate-receptor expressing monocytes in peripheral blood than healthy individuals. The difference may be due to differentiation of monocytes into macrophages and to the egress of activated macrophages from the circulation and localization of activated macrophages to sites of inflammation. Regardless of the reason for this difference, the results in FIG. 8 suggest that folate-imaging agent conjugates may be useful in diagnosing monocyte-mediated disease states, and that one such monocyte-mediated disease state may be fibromyalgia.
  • Example 32 Animal Model of Arthritis
  • Arthritis was induced in 150-200 g female Lewis rats (Harlan, Indianapolis, Ind.), n=2-5/dose group. Briefly, 0.5 mg of heat-killed Mycoplasma butericum, suspended in mineral oil (5 mg/ml), was injected on day 0 into the left hind foot of rats following anesthesia with ketamine and xylazine. All treated animals developed arthritis, as evidenced by dramatic swelling in the injected paw, progressive swelling in all noninjected limbs due to the systemic progression of arthritis, and radiographic analysis of affected limbs. All rats were maintained on a folate-deficient diet (DYETS, Inc., Bethlehem, Pa.) for 3 weeks prior to administration of therapeutic agents in order to lower serum folate levels to physiologically relevant concentrations. Control rats were also maintained on a folate-deficient diet but were not induced to develop arthritis.
  • Example 33 Effect of Therapeutic Agents on Adjuvant-Induced Arthritis
  • The protocol described in Example 32 for arthritis induction was followed. The efficacy of folate-flumethasone (50 nmoles/kg/day) and folate-indomethacin (100 or 250 nmoles/kg/day) against adjuvant-induced arthritis in rats was investigated. Rats were injected intraperitoneally with either saline (control rats) or folate-flumethasone (50 nmoles/kg/day) or folate-indomethacin (100 or 250 nmoles/kg/day) starting at day 4. Calipers were used to measure left foot dimensions on the days indicated in FIG. 9. The sudden increase in swelling of the adjuvant-injected foot is due to influx of neutrophils which have no folate receptors. Consequently, the therapy has no impact on this phase of paw swelling. However, the data in FIG. 9 suggests that after about 7 days folate-flumethasone and folate-indomethacin have potent therapeutic effects in this adjuvant-induced arthritis model by eliminating or inactivating monocytes as a result of binding and internalization by monocytes of folate-flumethasone or folate-indomethacin.
  • Example 34 Folate-FITC Binding to Peripheral Blood Monocytes from Patients with Arthritis
  • Folate-FITC binding to peripheral blood monocytes from patients with rheumatoid arthritis was quantified. Peripheral blood monocytes were isolated as described in Examples 14 and 15 and folate-FITC binding and flow cytometry were performed as described in Example 16. As shown in FIG. 10, folate receptors were detectable on peripheral blood monocytes of humans by using folate-FITC. Patient #1 (x-axis shows patient #) was treated with Enbrel/methotrexate, patient #2 was treated with methotrexate, patient #3 was treated with Medrol, patient #4 was treated with Methotrexate/Azulfidine/Plaquenil, Ibuprofen, prednisone, patient #5 was treated with Methotrexate/Azulfidine/Plaquenil, Celebrex, Medrol, patient #6 was treated with Methotrexate/Azulfidine/Plaquenil, Celebrex, prednisone, and patient #7 was treated with Plaquenil, Arava. In this assay, the percentage of folate-receptor expressing monocytes in peripheral blood of patients with arthritis decreased over the course of arthritis therapy. The results in FIG. 10 indicate that folate receptor-expressing monocytes contribute to the pathogenesis of arthritis.
  • The foregoing exemplified embodiments are intended to be illustrative of the invention described herein, and should not be construed as limiting. It is to be understood that several variations of those embodiments are contemplated, and are intended to be included herein.
  • Illustratively, in each of Examples 2 through 13, a wide variety of folate analogs and derivatives may be substituted for folate itself in forming the folate linker conjugates. Those analogs and derivatives, or protected forms thereof, may be included in the synthetic protocols described herein. In addition, structural modifications of the linker portion of the conjugates is contemplated herein. For example, a number of amino acid substitutions may be made to the linker portion of the conjugate, including but not limited to naturally occurring amino acids, as well as those available from conventional synthetic methods. In one aspect, beta, gamma, and longer chain amino acids may be used in place of one or more alpha amino acids. In another aspect, the stereochemistry of the chiral centers found in such molecules may be selected to form various mixture of optical purity of the entire molecule, or only of a subset of the chiral centers present. In another aspect, the length of the peptide chain included in the linker may be shortened or lengthened, either by changing the number of amino acids included therein, or by including more or fewer beta, gamma, or longer chain amino acids. In another aspect, the selection of amino acid side chains in the peptide portion may be made to increase or decrease the relative hydrophilicity of the linker portion specifically, or of the overall molecule generally.
  • Similarly, the length and shape of other chemical fragments of the linkers described herein may be modified. In one aspect, where the linker includes an alkylene chain, such as is found in Examples 3, 4, and 7, the alkylene may be longer or shorter, or may include branched groups, or include a cyclic portion, which may be in line or spiro relative to the alkylene chain. In another aspect, where the linker includes a beta thiol releasable fragment, such as the thioethyloxy bivalent fragment in Examples 8 through 13, it is appreciated that other intervening groups connecting the thiol end to the hydroxy or carbonate end may be used in place of the ethylene bridge, such as but not limited to optionally substituted benzyl groups, where the hydroxy end is connected at the benzyl carbon and the thiol end is connected through the ortho or para phenyl position, and vice versa.
  • In another illustrative embodiment, structural modifications may be made to the linker to include additional releasable linkers, such as those described in U.S. Patent Application Publication No. 2005/0002942.

Claims (21)

1. A method for diagnosing a disease state mediated by monocytes, said method comprising the steps of:
isolating monocytes from a patient suffering from a monocyte mediated disease state;
contacting the monocytes with a composition comprising a conjugate or complex of the general formula

Ab-X
where the group Ab comprises a ligand that binds to monocytes and the group X comprises an imaging agent; and
quantifying the percentage of monocytes that expresses a receptor for the ligand.
2. The method of claim 1 wherein Ab comprises a folate receptor binding ligand.
3. The method of claim 1 wherein Ab comprises a monocyte-binding antibody or antibody fragment.
4. The method of claim 1 wherein the imaging agent comprises a metal chelating moiety.
5. The method of claim 4 wherein the imaging agent further comprises a metal cation.
6. The method of claim 5 wherein the metal cation is a radionuclide.
7. The method of claim 1 wherein the imaging agent comprises a radionuclide.
8. The method of claim 7 wherein the radionuclide is selected from the group consisting of technetium, gallium, indium, and a positron emitting radionuclide.
9. The method of claim 1 wherein the imaging agent comprises a chromophore.
10. The method of claim 9 wherein the chromophore comprises a compound selected from the group consisting of fluorescein, Oregon Green, rhodamine, phycoerythrin, Texas Red, and AlexaFluor 488.
11. The method of claim 1 wherein the patient is suffering from a disease state selected from the group consisting of rheumatoid arthritis, osteoarthritis, ulcerative colitis, Crohn's disease, inflammatory lesions, infections of the skin, osteomyelitis, organ transplant rejection, pulmonary fibrosis, sarcoidosis, systemic sclerosis, lupus erythematosus, glomerulonephritis, inflammations of the skin, and any chronic inflammation.
12. A method for treating a disease state mediated by monocytes, said method comprising the steps of:
administering to a patient suffering from a monocyte-mediated disease state an effective amount of a composition comprising a conjugate or complex of the general formula

Ab-X
where the group Ab comprises a ligand that binds to monocytes and the group X comprises an immunogen, a cytotoxin, or a compound capable of altering monocyte function; and
eliminating the monocyte-mediated disease state.
13. The method of claim 12 wherein Ab comprises a folate receptor binding ligand.
14. The method of claim 12 wherein Ab comprises a monocyte-binding antibody or antibody fragment.
15. The method of claim 12 wherein the group X comprises an immunogen.
16. The method of claim 13 wherein the group X comprises an immunogen.
17. The method of claim 12 wherein the group X comprises a cytotoxin.
18. The method of claim 17 wherein the group X further comprises a liposome.
19. The method of claim 13 wherein the group X comprises a cytotoxin.
20. The method of claim 19 wherein the group X further comprises a liposome.
21.-27. (canceled)
US12/391,981 2005-07-05 2009-02-24 Imaging and Therapeutic Method Using Monocytes Abandoned US20090214636A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/391,981 US20090214636A1 (en) 2005-07-05 2009-02-24 Imaging and Therapeutic Method Using Monocytes
US13/793,654 US9731035B2 (en) 2005-07-05 2013-03-11 Method of imaging osteoarthritis using a folate conjugate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US69674005P 2005-07-05 2005-07-05
US80163606P 2006-05-18 2006-05-18
US11/481,264 US20070009434A1 (en) 2005-07-05 2006-07-05 Imaging and therapeutic method using monocytes
US12/391,981 US20090214636A1 (en) 2005-07-05 2009-02-24 Imaging and Therapeutic Method Using Monocytes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/481,264 Continuation US20070009434A1 (en) 2005-07-05 2006-07-05 Imaging and therapeutic method using monocytes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/793,654 Continuation US9731035B2 (en) 2005-07-05 2013-03-11 Method of imaging osteoarthritis using a folate conjugate

Publications (1)

Publication Number Publication Date
US20090214636A1 true US20090214636A1 (en) 2009-08-27

Family

ID=37478921

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/481,264 Abandoned US20070009434A1 (en) 2005-07-05 2006-07-05 Imaging and therapeutic method using monocytes
US12/391,981 Abandoned US20090214636A1 (en) 2005-07-05 2009-02-24 Imaging and Therapeutic Method Using Monocytes
US13/793,654 Active 2028-07-15 US9731035B2 (en) 2005-07-05 2013-03-11 Method of imaging osteoarthritis using a folate conjugate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/481,264 Abandoned US20070009434A1 (en) 2005-07-05 2006-07-05 Imaging and therapeutic method using monocytes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/793,654 Active 2028-07-15 US9731035B2 (en) 2005-07-05 2013-03-11 Method of imaging osteoarthritis using a folate conjugate

Country Status (4)

Country Link
US (3) US20070009434A1 (en)
EP (1) EP1904183B1 (en)
JP (1) JP5175723B2 (en)
WO (1) WO2007006041A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192157A1 (en) * 2001-05-02 2002-12-19 Low Philip S. Treatment and diagnosis of macrophage mediated disease
US20100173014A1 (en) * 2007-05-24 2010-07-08 Nanosolutions, Llc Methods of making and using nano scale particles
WO2011150392A1 (en) * 2010-05-28 2011-12-01 Purdue Research Foundation Delivery of therapeutic agents to inflamed tissues using folate-targeted agents
US8557966B2 (en) 2010-02-24 2013-10-15 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US8709432B2 (en) 2011-04-01 2014-04-29 Immunogen, Inc. Methods for increasing efficacy of FOLR1 cancer therapy
WO2015073678A1 (en) * 2013-11-14 2015-05-21 Endocyte, Inc. Compounds for positron emission tomography
US9200073B2 (en) 2012-08-31 2015-12-01 Immunogen, Inc. Diagnostic assays and kits for detection of folate receptor 1
US9637547B2 (en) 2013-08-30 2017-05-02 Immunogen, Inc. Monoclonal antibodies for detection of folate receptor 1
US10046054B2 (en) 2007-08-17 2018-08-14 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10172875B2 (en) 2015-09-17 2019-01-08 Immunogen, Inc. Therapeutic combinations comprising anti-FOLR1 immunoconjugates
US10398791B2 (en) 2013-10-18 2019-09-03 Deutsches Krebsforschungszentrum Labeled inhibitors of prostate specific membrane antigen (PSMA), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer
US10557128B2 (en) 2010-02-25 2020-02-11 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10898596B2 (en) 2015-01-07 2021-01-26 Endocyte, Inc. Conjugates for imaging
US10912840B2 (en) 2012-11-15 2021-02-09 Endocyte, Inc. Conjugates for treating diseases caused by PSMA expressing cells

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1389209B1 (en) * 2001-04-24 2009-04-08 Purdue Research Foundation Folate mimetics and folate-receptor binding conjugates thereof
US8043602B2 (en) 2002-02-07 2011-10-25 Endocyte, Inc. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
US8043603B2 (en) 2002-02-07 2011-10-25 Endocyte, Inc. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
US7910594B2 (en) * 2002-05-15 2011-03-22 Endocyte, Inc. Vitamin-mitomycin conjugates
EP2517730A3 (en) 2003-01-27 2013-01-02 Endocyte, Inc. Vitamin receptor binding drug delivery conjugates
WO2004110250A2 (en) * 2003-05-30 2004-12-23 Purdue Research Foundation Diagnostic method for atherosclerosis
CN101098854B (en) 2004-07-23 2012-12-05 恩多塞特公司 Bivalent linkers and conjugates thereof
EP2452695A3 (en) * 2004-12-23 2013-01-23 Purdue Research Foundation Positron emission tomography imaging method
CN101175757B (en) 2005-03-16 2012-11-14 恩多塞特公司 Synthesis and purification of pteroic acid and conjugates thereof
JP5175723B2 (en) * 2005-07-05 2013-04-03 パーデュー・リサーチ・ファウンデーション Preparation of compositions for treating monocyte-mediated diseases
EP1948240A2 (en) * 2005-08-19 2008-07-30 Endocyte, Inc. Ligand conjugates of vinca alkaloids, analogs and derivatives
CN103893779A (en) * 2005-08-19 2014-07-02 恩多塞特公司 Multi-drug ligand conjugates
US8795633B2 (en) 2005-09-23 2014-08-05 Purdue Research Foundation Multiphoton in vivo flow cytometry method and device
EP2087337A4 (en) 2006-11-03 2010-09-08 Purdue Research Foundation Ex vivo flow cytometry method and device
WO2008098112A2 (en) 2007-02-07 2008-08-14 Purdue Research Foundation Positron emission tomography imaging method
WO2008101231A2 (en) * 2007-02-16 2008-08-21 Endocyte, Inc. Methods and compositions for treating and diagnosing kidney disease
AU2008224988A1 (en) * 2007-03-14 2008-09-18 Endocyte, Inc. Binding ligand linked drug delivery conjugates of tubulysins
ES2449774T3 (en) 2007-04-11 2014-03-21 Merck & Cie A method for the preparation of folates labeled with 18F
CA2688308A1 (en) * 2007-05-25 2008-12-04 Purdue Research Foundation Method of imaging localized infections
AU2008268432B2 (en) * 2007-06-25 2015-01-15 Endocyte, Inc. Conjugates containing hydrophilic spacer linkers
US9877965B2 (en) 2007-06-25 2018-01-30 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
WO2009055562A1 (en) 2007-10-25 2009-04-30 Endocyte, Inc. Tubulysins and processes for preparing
GB0917054D0 (en) * 2009-09-29 2009-11-11 Cytoguide As Agents, uses and methods
WO2011041701A2 (en) * 2009-10-02 2011-04-07 The Brigham And Women's Hospital, Inc. Inplantable contrast agents and methods
US9770414B2 (en) * 2010-05-13 2017-09-26 Pacira Pharmaceuticals, Inc. Sustained release formulation of methotrexate as a disease-modifying antirheumatic drug (DMARD) and an anti-cancer agent
ES2770575T3 (en) 2010-10-28 2020-07-02 Pacira Pharmaceuticals Inc Sustained-release formulation of a non-steroidal anti-inflammatory drug
US9393320B2 (en) 2011-12-07 2016-07-19 Universidade Do Minho Liposomes and its production method
US10080805B2 (en) 2012-02-24 2018-09-25 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US20140080175A1 (en) 2012-03-29 2014-03-20 Endocyte, Inc. Processes for preparing tubulysin derivatives and conjugates thereof
SG11201502896XA (en) 2012-10-16 2015-05-28 Endocyte Inc Drug delivery conjugates containing unnatural amino acids and methods for using
JP6192799B2 (en) 2013-03-15 2017-09-06 パーデュー・リサーチ・ファウンデーションPurdue Research Foundation Synthesis and composition of amino acid linking groups conjugated to compounds used for targeted imaging of tumors
US10406238B2 (en) 2015-05-11 2019-09-10 Purdue Research Foundation Ligand ionophore conjugates
US20180036312A1 (en) * 2016-08-02 2018-02-08 ISI Life Sciences Inc. Novel Scaffolds for Intracellular Compound Delivery for the Detection of Cancer Cells
WO2018026965A1 (en) 2016-08-02 2018-02-08 Isi Life Sciences, Inc. Compositions and methods for detecting cancer cells in a tissue sample
JP7116728B2 (en) * 2016-11-16 2022-08-10 パーデュー・リサーチ・ファウンデイション ligand ionophore conjugate
CN109983013A (en) 2016-11-18 2019-07-05 帕西拉制药有限公司 Meloxicam zinc complexes particle multivesicular liposome preparation and preparation method thereof
US10753942B2 (en) 2017-05-15 2020-08-25 Indicator Systems International, Inc. Methods to detect remnant cancer cells
BR112022013478A2 (en) * 2020-01-07 2022-09-13 Purdue Research Foundation TARGETED STEROID COMPOUNDS
EP4274619A1 (en) * 2021-01-08 2023-11-15 Lycia Therapeutics, Inc. Bifunctional folate receptor binding compounds

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713249A (en) * 1981-11-12 1987-12-15 Schroeder Ulf Crystallized carbohydrate matrix for biologically active substances, a process of preparing said matrix, and the use thereof
US5108921A (en) * 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5266333A (en) * 1985-03-06 1993-11-30 American Cyanamid Company Water dispersible and water soluble carbohydrate polymer compositions for parenteral administration of growth hormone
US5417982A (en) * 1994-02-17 1995-05-23 Modi; Pankaj Controlled release of drugs or hormones in biodegradable polymer microspheres
US5688488A (en) * 1989-04-03 1997-11-18 Purdue Research Foundation Composition and method for tumor imaging
US20020192157A1 (en) * 2001-05-02 2002-12-19 Low Philip S. Treatment and diagnosis of macrophage mediated disease
US20030086900A1 (en) * 2001-09-28 2003-05-08 Low Philip S. Method of treatment using ligand-immunogen conjugates
US20050002942A1 (en) * 2003-01-27 2005-01-06 Vlahov Iontcho R. Vitamin receptor binding drug delivery conjugates
US20050261170A1 (en) * 2004-01-22 2005-11-24 Immunomedics, Inc. Folate conjugates and complexes
US20060204565A1 (en) * 2003-05-06 2006-09-14 Low Philip S Conjugates and use thereof
US20070003152A1 (en) * 2005-06-30 2007-01-04 Microsoft Corporation Multi-level image stack of filtered images
US20070009434A1 (en) * 2005-07-05 2007-01-11 Low Philip S Imaging and therapeutic method using monocytes

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2816110A (en) 1956-11-23 1957-12-10 Merck & Co Inc Methods for the production of substituted pteridines
US5140104A (en) 1982-03-09 1992-08-18 Cytogen Corporation Amine derivatives of folic acid analogs
US4577636A (en) 1982-11-23 1986-03-25 The Beth Israel Hospital Association Method for diagnosis of atherosclerosis
US4817601A (en) 1985-03-06 1989-04-04 C. R. Bard, Inc. Catheter system for controlled removal by radiant energy of biological obstructions
US4641650A (en) 1985-03-11 1987-02-10 Mcm Laboratories, Inc. Probe-and-fire lasers
US4718417A (en) 1985-03-22 1988-01-12 Massachusetts Institute Of Technology Visible fluorescence spectral diagnostic for laser angiosurgery
US4850351A (en) 1985-05-22 1989-07-25 C. R. Bard, Inc. Wire guided laser catheter
US4917084A (en) 1985-07-31 1990-04-17 C. R. Bard, Inc. Infrared laser catheter system
NZ217821A (en) 1985-10-10 1989-07-27 Biotech Australia Pty Ltd Oral delivery system; complex of active agent and vitamin b12 or analogue thereof
US5336506A (en) 1986-07-03 1994-08-09 Advanced Magnetics Inc. Targeting of therapeutic agents using polysaccharides
EP0273085A1 (en) 1986-12-29 1988-07-06 IntraCel Corporation A method for internalizing nucleic acids into eukaryotic cells
US4785806A (en) 1987-01-08 1988-11-22 Yale University Laser ablation process and apparatus
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
CA1340527C (en) 1988-05-31 1999-05-04 Lidia Vallarino Macrocyclic complexes of yttrium, the lanthanides and the actinides having peripheral coupling functionalities
WO1990006718A1 (en) 1988-12-21 1990-06-28 Massachusetts Institute Of Technology A method for laser induced fluorescence of tissue
US5094848A (en) 1989-06-30 1992-03-10 Neorx Corporation Cleavable diphosphate and amidated diphosphate linkers
US5753631A (en) 1990-06-15 1998-05-19 Cytel Corporation Intercellular adhesion mediators
AU8007791A (en) 1990-06-15 1992-01-07 Cytel Corporation Intercellular adhesion mediators
US5576305A (en) 1990-06-15 1996-11-19 Cytel Corporation Intercellular adhesion mediators
RU2123338C1 (en) 1990-06-15 1998-12-20 Сайтел Корпорейшн Pharmaceutical composition based on intercellular adhesion mediator (variants), method of inhibition of intercellular adhesion, method of treatment of patients with inflammatory disease, method of analysis of the test-compound with respect to its capability to inhibit intercellular adhesion, method of compound synthesis
US5219548A (en) 1990-10-01 1993-06-15 Board Of Regents, The University Of Texas System High affinity halogenated-tamoxifen derivatives and uses thereof
US5275594A (en) 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
DK0570493T3 (en) 1991-02-08 2000-06-26 Diatide Inc Technetium-99m-labeled polypeptides for imaging.
US5399338A (en) 1991-05-01 1995-03-21 University Of New Mexico Enhancement of abnormal tissue uptake of antibodies, tumor-specific agents or conjugates thereof for diagnostic imaging or therapy
US6335434B1 (en) 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US5159079A (en) 1991-12-20 1992-10-27 Eli Lilly And Company 2-piperidones as intermediates for 5-deaza-10-oxo- and 5-deaza-10-thio-5,6,7,8-tetrahydrofolic acids
US5217456A (en) 1992-02-24 1993-06-08 Pdt Cardiovascular, Inc. Device and method for intra-vascular optical radial imaging
US6096289A (en) 1992-05-06 2000-08-01 Immunomedics, Inc. Intraoperative, intravascular, and endoscopic tumor and lesion detection, biopsy and therapy
US5413778A (en) * 1992-10-05 1995-05-09 The Regents Of The University Of Michigan Labelled monocyte chemoattractant protein material and medical uses thereof
US6270766B1 (en) 1992-10-08 2001-08-07 The Kennedy Institute Of Rheumatology Anti-TNF antibodies and methotrexate in the treatment of arthritis and crohn's disease
US5759546A (en) 1994-02-04 1998-06-02 Weinberg; Andrew D. Treatment of CD4 T-cell mediated conditions
US6649143B1 (en) 1994-07-01 2003-11-18 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
FI98765C (en) 1995-01-16 1997-08-11 Erkki Soini Flow cytometric method and apparatus
US6066322A (en) 1995-03-03 2000-05-23 Millennium Pharmaceuticals, Inc. Methods for the treatment of immune disorders
US5547668A (en) 1995-05-05 1996-08-20 The Board Of Trustees Of The University Of Illinois Conjugates of folate anti-effector cell antibodies
JPH10511989A (en) 1996-04-10 1998-11-17 サングスタット メディカル コーポレイション Cell regulatory complex of specific binding pair members
RU2101703C1 (en) 1996-05-29 1998-01-10 Саратовский научно-исследовательский институт травматологии и ортопедии Method for detecting the cases of inflammatory process activity in rheumatoid arthritis patients
US6083480A (en) 1997-05-01 2000-07-04 Diatide, Inc. Calcitonin receptor binding reagents
EP1005372B1 (en) 1997-06-20 2002-01-02 Tanox Pharma B.V. Anti-cd40l immunotoxins for the treatment of diseases
JP2002503814A (en) 1998-02-12 2002-02-05 イムニベスト・コーポレイション Methods and reagents for rapid and efficient isolation of circulating cancer cells
EP1056781A1 (en) * 1998-02-17 2000-12-06 Medarex, Inc. Treating and diagnosing macrophage-mediated diseases using fc receptor ligands
US6093382A (en) 1998-05-16 2000-07-25 Bracco Research Usa Inc. Metal complexes derivatized with folate for use in diagnostic and therapeutic applications
US6589503B1 (en) 1998-06-20 2003-07-08 Washington University Membrane-permeant peptide complexes for medical imaging, diagnostics, and pharmaceutical therapy
US6507747B1 (en) 1998-12-02 2003-01-14 Board Of Regents, The University Of Texas System Method and apparatus for concomitant structural and biochemical characterization of tissue
AU2876900A (en) 1999-02-10 2000-08-29 Cell Works Inc. Class characterization of circulating cancer cells isolated from body fluids andmethods of use
US6167297A (en) 1999-05-05 2000-12-26 Benaron; David A. Detecting, localizing, and targeting internal sites in vivo using optical contrast agents
US6323313B1 (en) 1999-06-01 2001-11-27 The University Of Washington Annexin derivative with endogenous chelation sites
WO2001047552A1 (en) 1999-09-08 2001-07-05 Sloane-Kettering Institute For Cancer Research Polysialic acid-klh conjugate vaccine
IL131887A0 (en) 1999-09-14 2001-03-19 Dpharm Ltd Phospholipid prodrugs of anti-proliferative drugs
US6915154B1 (en) 1999-09-24 2005-07-05 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
US6782289B1 (en) 1999-10-08 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatus for characterizing lesions in blood vessels and other body lumens
US7067111B1 (en) 1999-10-25 2006-06-27 Board Of Regents, University Of Texas System Ethylenedicysteine (EC)-drug conjugates, compositions and methods for tissue specific disease imaging
NO314537B1 (en) 1999-12-06 2003-04-07 Anticancer Therapeutic Inv Sa Receptor binding conjugates
AU5697001A (en) 2000-03-31 2001-10-15 Purdue Research Foundation Method of treatment using ligand-immunogen conjugates
BRPI0111220B8 (en) 2000-06-02 2021-07-27 Univ Texas drug conjugates with ethylenedicysteine (ec)
US6780984B2 (en) 2000-07-17 2004-08-24 Northwestern University Method for prognosing cancer and the proteins involved
WO2002067761A2 (en) 2001-02-23 2002-09-06 Bristol-Myers Squibb Pharma Company Labeled macrophage scavenger receptor antagonists for imaging atherosclerosis and vulnerable plaque
EP1389209B1 (en) 2001-04-24 2009-04-08 Purdue Research Foundation Folate mimetics and folate-receptor binding conjugates thereof
US7381535B2 (en) 2002-07-10 2008-06-03 The Board Of Trustees Of The Leland Stanford Junior Methods and compositions for detecting receptor-ligand interactions in single cells
WO2003054193A2 (en) 2001-12-21 2003-07-03 Applied Research Systems Ars Holding N.V. Raf/ras binding compounds
US8043602B2 (en) 2002-02-07 2011-10-25 Endocyte, Inc. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
US8043603B2 (en) 2002-02-07 2011-10-25 Endocyte, Inc. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
US20030170299A1 (en) 2002-02-27 2003-09-11 Lee Robert J. Therapeutic methods for acute myeloid leukemia
AU2003224989B2 (en) 2002-04-19 2008-12-04 Endocyte, Inc. Adjuvant enhanced immunotherapy
NZ536467A (en) 2002-05-06 2006-11-30 Endocyte Inc Vitamin-targeted imaging agents
US20050026866A1 (en) 2002-08-02 2005-02-03 Pawelek John M. Agents and methods for treatment of disease by oligosaccharide targeting agents
ATE382632T1 (en) * 2002-09-27 2008-01-15 Nihon Mediphysics Co Ltd COMPOUND BINDING TO LEUKOCYTES AND MEDICAL COMPOSITION CONTAINING THIS COMPOUND IN THE LABELED STATE AS AN ACTIVE INGREDIENT
US20040166058A1 (en) 2002-11-07 2004-08-26 Board Of Regents, The University Of Texas System Ethylenedicysteine (EC)-drug conjugates, compositions and methods for tissue specific disease imaging
WO2004087068A2 (en) 2003-03-27 2004-10-14 Emory University Cxcr4 antagonists and methods of their use
WO2004110250A2 (en) * 2003-05-30 2004-12-23 Purdue Research Foundation Diagnostic method for atherosclerosis
CN1914179A (en) 2003-11-13 2007-02-14 詹森药业有限公司 Immobilized n-substituted tricyclic 3-aminopyrazoles for the identification of biomolecular targets
EP1711825A4 (en) 2004-01-07 2008-01-23 Ambit Biosciences Corp Conjugated small molecules
WO2005087275A2 (en) 2004-03-11 2005-09-22 Board Of Regents, The University Of Texas System Metal radiolabeled pet imaging agents
CN101098854B (en) 2004-07-23 2012-12-05 恩多塞特公司 Bivalent linkers and conjugates thereof
US8486371B2 (en) 2004-09-17 2013-07-16 The Regents Of The University Of Michigan Quantitative two-photon flow cytometry
US7491502B2 (en) 2004-12-17 2009-02-17 The General Hospital Corporation In vivo flow cytometry system and method
EP2452695A3 (en) 2004-12-23 2013-01-23 Purdue Research Foundation Positron emission tomography imaging method
AU2006204045B2 (en) 2005-01-05 2010-10-14 Board Of Regents, The University Of Texas System Conjugates for dual imaging and radiochemotherapy: composition, manufacturing, and applications
WO2006093991A1 (en) 2005-03-02 2006-09-08 The Cleveland Clinic Foundation Compounds which bind psma and uses thereof
CN101175757B (en) 2005-03-16 2012-11-14 恩多塞特公司 Synthesis and purification of pteroic acid and conjugates thereof
WO2007001466A2 (en) 2005-06-14 2007-01-04 Kung, Hank, F. Peptidomimetic somatostatin receptor subtype 2 ligands and pet imaging agents
US8795633B2 (en) 2005-09-23 2014-08-05 Purdue Research Foundation Multiphoton in vivo flow cytometry method and device
EP2078197B1 (en) 2006-11-01 2016-03-23 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
EP2087337A4 (en) 2006-11-03 2010-09-08 Purdue Research Foundation Ex vivo flow cytometry method and device
WO2008098112A2 (en) 2007-02-07 2008-08-14 Purdue Research Foundation Positron emission tomography imaging method
CA2688308A1 (en) 2007-05-25 2008-12-04 Purdue Research Foundation Method of imaging localized infections
US20090012009A1 (en) 2007-06-01 2009-01-08 Low Philip S Composition and Method for Treating Inflammatory Disease
AU2008268432B2 (en) 2007-06-25 2015-01-15 Endocyte, Inc. Conjugates containing hydrophilic spacer linkers
PT2187965T (en) 2007-08-17 2020-01-17 Purdue Research Foundation Psma binding ligand-linker conjugates and methods for using
US20100092389A1 (en) 2008-10-10 2010-04-15 The General Hospital Corporation Detection of atherosclerosis using indocyanine green
US20120003151A1 (en) 2009-03-05 2012-01-05 Purdue Research Foundation Method for early imaging of atherosclerosis

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713249A (en) * 1981-11-12 1987-12-15 Schroeder Ulf Crystallized carbohydrate matrix for biologically active substances, a process of preparing said matrix, and the use thereof
US5266333A (en) * 1985-03-06 1993-11-30 American Cyanamid Company Water dispersible and water soluble carbohydrate polymer compositions for parenteral administration of growth hormone
US5108921A (en) * 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5416016A (en) * 1989-04-03 1995-05-16 Purdue Research Foundation Method for enhancing transmembrane transport of exogenous molecules
US5688488A (en) * 1989-04-03 1997-11-18 Purdue Research Foundation Composition and method for tumor imaging
US5417982A (en) * 1994-02-17 1995-05-23 Modi; Pankaj Controlled release of drugs or hormones in biodegradable polymer microspheres
US20020192157A1 (en) * 2001-05-02 2002-12-19 Low Philip S. Treatment and diagnosis of macrophage mediated disease
US20070231266A1 (en) * 2001-05-02 2007-10-04 Low Philip S Diagnosis of macrophage mediated disease
US20080138396A1 (en) * 2001-05-02 2008-06-12 Low Philip S Treatment and diagnosis of macrophage mediated disease
US20030086900A1 (en) * 2001-09-28 2003-05-08 Low Philip S. Method of treatment using ligand-immunogen conjugates
US20050002942A1 (en) * 2003-01-27 2005-01-06 Vlahov Iontcho R. Vitamin receptor binding drug delivery conjugates
US20060204565A1 (en) * 2003-05-06 2006-09-14 Low Philip S Conjugates and use thereof
US20050261170A1 (en) * 2004-01-22 2005-11-24 Immunomedics, Inc. Folate conjugates and complexes
US20070003152A1 (en) * 2005-06-30 2007-01-04 Microsoft Corporation Multi-level image stack of filtered images
US20070009434A1 (en) * 2005-07-05 2007-01-11 Low Philip S Imaging and therapeutic method using monocytes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Merck Manuals Online Medical Library, [online]. Whitehouse Station, NJ: Merck Research Laboratories, 2010-2013. [retrieved on 05/26/2014]. Retrieved from the Internet: < URL: http://www.merckmanuals.com/professional/musculoskeletal_and_connective_tissue_disorders/joint_disorders/osteoarthritis_oa.html?qt=osteoarthritis&alt=sh. Osteoarthritis *

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192157A1 (en) * 2001-05-02 2002-12-19 Low Philip S. Treatment and diagnosis of macrophage mediated disease
US20080138396A1 (en) * 2001-05-02 2008-06-12 Low Philip S Treatment and diagnosis of macrophage mediated disease
US7740854B2 (en) 2001-05-02 2010-06-22 Purdue Research Foundation Treatment of macrophage mediated disease
US20100173014A1 (en) * 2007-05-24 2010-07-08 Nanosolutions, Llc Methods of making and using nano scale particles
US10828282B2 (en) 2007-08-17 2020-11-10 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10646581B2 (en) 2007-08-17 2020-05-12 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US11369590B2 (en) 2007-08-17 2022-06-28 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US11318121B2 (en) 2007-08-17 2022-05-03 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US11298341B2 (en) 2007-08-17 2022-04-12 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US11083710B2 (en) 2007-08-17 2021-08-10 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10406240B2 (en) 2007-08-17 2019-09-10 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US11504357B2 (en) 2007-08-17 2022-11-22 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10624969B2 (en) 2007-08-17 2020-04-21 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10624970B2 (en) 2007-08-17 2020-04-21 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US11717514B2 (en) 2007-08-17 2023-08-08 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10624971B2 (en) 2007-08-17 2020-04-21 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10517957B2 (en) 2007-08-17 2019-12-31 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10517956B2 (en) 2007-08-17 2019-12-31 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10485878B2 (en) 2007-08-17 2019-11-26 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10046054B2 (en) 2007-08-17 2018-08-14 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US9670280B2 (en) 2010-02-24 2017-06-06 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US9670279B2 (en) 2010-02-24 2017-06-06 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US9598490B2 (en) 2010-02-24 2017-03-21 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US10301385B2 (en) 2010-02-24 2019-05-28 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US10752683B2 (en) 2010-02-24 2020-08-25 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US8557966B2 (en) 2010-02-24 2013-10-15 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US9657100B2 (en) 2010-02-24 2017-05-23 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US9133275B2 (en) 2010-02-24 2015-09-15 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US9670278B2 (en) 2010-02-24 2017-06-06 Immunogen, Inc. Folate receptor 1 antibodies and immunoconjugates and uses thereof
US11155800B2 (en) 2010-02-25 2021-10-26 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US10557128B2 (en) 2010-02-25 2020-02-11 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
US11185505B2 (en) 2010-05-28 2021-11-30 Purdue Research Foundation Delivery of agents to inflamed tissues using folate-targeted liposomes
WO2011150392A1 (en) * 2010-05-28 2011-12-01 Purdue Research Foundation Delivery of therapeutic agents to inflamed tissues using folate-targeted agents
US8709432B2 (en) 2011-04-01 2014-04-29 Immunogen, Inc. Methods for increasing efficacy of FOLR1 cancer therapy
US11135305B2 (en) 2011-04-01 2021-10-05 Immunogen, Inc. Methods for increasing efficacy of FOLR1 cancer therapy
US9702881B2 (en) 2012-08-31 2017-07-11 Immunogen, Inc. Diagnostic assays and kits for detection of folate receptor 1
US10613093B2 (en) 2012-08-31 2020-04-07 Immunogen, Inc. Diagnostic assays and kits for detection of folate receptor 1
US9200073B2 (en) 2012-08-31 2015-12-01 Immunogen, Inc. Diagnostic assays and kits for detection of folate receptor 1
US10180432B2 (en) 2012-08-31 2019-01-15 Immunogen, Inc. Diagnostic assays and kits for detection of folate receptor 1
US10912840B2 (en) 2012-11-15 2021-02-09 Endocyte, Inc. Conjugates for treating diseases caused by PSMA expressing cells
US10544230B2 (en) 2013-08-30 2020-01-28 Immunogen, Inc. Methods of using antibodies to detect folate receptor 1 (FOLR1)
US11198736B2 (en) 2013-08-30 2021-12-14 Immunogen, Inc. Method for identifying an ovarian cancer in a subject likely to respond to anti-folate receptor 1 (FOLR1) antibody
US11932701B2 (en) 2013-08-30 2024-03-19 Immunogen, Inc. Method for increasing the efficacy of cancer therapy by administering an anti-FOLR1 immunoconjugate
US10017578B2 (en) 2013-08-30 2018-07-10 Immunogen, Inc. Methods of treating cancer in a patient by administering anti-folate-receptor-1 (FOLR1) antibodies
US9637547B2 (en) 2013-08-30 2017-05-02 Immunogen, Inc. Monoclonal antibodies for detection of folate receptor 1
US10398791B2 (en) 2013-10-18 2019-09-03 Deutsches Krebsforschungszentrum Labeled inhibitors of prostate specific membrane antigen (PSMA), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer
US11045564B2 (en) 2013-10-18 2021-06-29 Deutsches Krebsforschungszentrum Labeled inhibitors of prostate specific membrane antigen (PSMA) as agents for the treatment of prostate cancer
US10471160B2 (en) 2013-10-18 2019-11-12 Deutsches Krebsforschungszentrum Labeled inhibitors of prostate specific membrane antigen (PSMA), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer
US11931430B2 (en) 2013-10-18 2024-03-19 Novartis Ag Labeled inhibitors of prostate specific membrane antigen (PSMA) as agents for the treatment of prostate cancer
US11951190B2 (en) 2013-10-18 2024-04-09 Novartis Ag Use of labeled inhibitors of prostate specific membrane antigen (PSMA), as agents for the treatment of prostate cancer
EP3069147A4 (en) * 2013-11-14 2017-10-11 Endocyte, Inc. Compounds for positron emission tomography
EA035171B1 (en) * 2013-11-14 2020-05-08 Эндосайт, Инк. Conjugates based on psma binding ligands or psma inhibitors for positron emission tomography
WO2015073678A1 (en) * 2013-11-14 2015-05-21 Endocyte, Inc. Compounds for positron emission tomography
CN108514646A (en) * 2013-11-14 2018-09-11 恩多塞特公司 Compound for positron emission fault art
US10898596B2 (en) 2015-01-07 2021-01-26 Endocyte, Inc. Conjugates for imaging
US10172875B2 (en) 2015-09-17 2019-01-08 Immunogen, Inc. Therapeutic combinations comprising anti-FOLR1 immunoconjugates
US11033564B2 (en) 2015-09-17 2021-06-15 Immunogen, Inc. Therapeutic combinations comprising anti-FOLR1 immunoconjugates

Also Published As

Publication number Publication date
WO2007006041A2 (en) 2007-01-11
EP1904183B1 (en) 2014-10-15
US20070009434A1 (en) 2007-01-11
WO2007006041A8 (en) 2007-07-12
JP5175723B2 (en) 2013-04-03
WO2007006041A3 (en) 2007-05-31
US9731035B2 (en) 2017-08-15
US20140065066A1 (en) 2014-03-06
JP2009500613A (en) 2009-01-08
EP1904183A2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
US9731035B2 (en) Method of imaging osteoarthritis using a folate conjugate
US20130266964A1 (en) Method of detecting endothelial progenitor cells
US7740854B2 (en) Treatment of macrophage mediated disease
US8765096B2 (en) Methods and compositions for treating and diagnosing kidney disease
US20080119475A1 (en) Conjugates And Use Thereof
US8795633B2 (en) Multiphoton in vivo flow cytometry method and device
CA2405299C (en) Method of treatment using ligand-immunogen conjugates
US20090012009A1 (en) Composition and Method for Treating Inflammatory Disease
Gupta et al. Vitamin B 12-mediated transport: a potential tool for tumor targeting of antineoplastic drugs and imaging agents
Lu et al. Folate-targeted dinitrophenyl hapten immunotherapy: effect of linker chemistry on antitumor activity and allergic potential
US8168164B2 (en) Targeted conjugates and radiation
Tyagi et al. Folate conjugates: a boon in the anti-cancer therapeutics
AU2007229371C1 (en) Treatment and diagnosis of macrophage mediated disease

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION