Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20090225566 A1
Publication typeApplication
Application numberUS 12/398,652
Publication dateSep 10, 2009
Filing dateMar 5, 2009
Priority dateMar 5, 2008
Also published asCN101978297A, EP2260341A2, US8231237, US20090225565, WO2009109974A2, WO2009109974A3
Publication number12398652, 398652, US 2009/0225566 A1, US 2009/225566 A1, US 20090225566 A1, US 20090225566A1, US 2009225566 A1, US 2009225566A1, US-A1-20090225566, US-A1-2009225566, US2009/0225566A1, US2009/225566A1, US20090225566 A1, US20090225566A1, US2009225566 A1, US2009225566A1
InventorsMicha Zimmermann, Noam Meir
Original AssigneeMicha Zimmermann, Noam Meir
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Illumination apparatus and methods of forming the same
US 20090225566 A1
Abstract
An illumination device includes a waveguide having a recess in a bottom surface thereof. Disposed beneath and in direct contact with the bottom surface of the waveguide is a sub-assembly having a raised profile complementary to the recess, the sub-assembly including a discrete light source disposed on a carrier. The discrete light source is disposed within the recess.
Images(9)
Previous page
Next page
Claims(20)
1. An illumination device comprising:
a waveguide comprising a recess in a bottom surface thereof; and
disposed beneath and in direct contact with the bottom surface of the waveguide, a sub-assembly having a raised profile complementary to the recess, the sub-assembly comprising a discrete light source disposed on a carrier,
wherein the discrete light source is disposed within the recess.
2. The illumination device of claim 1, wherein the sub-assembly comprises a cap disposed over the discrete light source.
3. The illumination device of claim 1, wherein the sub-assembly comprises:
a substrate; and
a reflector disposed over the substrate,
wherein the reflector is disposed beneath and in direct contact with the bottom surface of the waveguide proximate the recess.
4. The illumination device of claim 1, wherein a top surface of the waveguide is substantially planar.
5. The illumination device of claim 1, wherein the discrete light source comprises a bare-die light-emitting diode.
6. The illumination device of claim 1, wherein a sidewall of the carrier is reflective.
7. The illumination device of claim 1, wherein a top surface of the carrier is reflective.
8. The illumination device of claim 7, wherein the top surface of the carrier comprises an inner diffusive region surrounding the discrete light source and a specular region surrounding the inner diffusive region.
9. The illumination device of claim 7, wherein the top surface of the carrier comprises an inner specular region, a diffusive region surrounding the inner specular region, and an outer specular region surrounding the diffusive region.
10. A illumination device comprising:
a waveguide having a substantially planar bottom surface; and
disposed beneath and in direct contact with the bottom surface of the waveguide, a sub-assembly having a substantially planar top surface and a discrete light source disposed on a reflective carrier,
wherein a dimension of the reflective carrier is at least three times a dimension of the discrete light source.
11. The illumination device of claim 10, wherein the top surface of the reflective carrier comprises an inner diffusive region surrounding the discrete light source and a specular region surrounding the inner diffusive region.
12. The illumination device of claim 10, wherein the top surface of the reflective carrier comprises an inner specular region, a diffusive region disposed around the inner specular region, and an outer specular region disposed around the diffusive region.
13. A method of forming an illumination device, the method comprising:
providing a waveguide comprising a recess in a bottom surface thereof;
providing a sub-assembly having a raised profile complementary to the recess, the sub-assembly comprising a discrete light source disposed on a carrier; and
mating the waveguide and the sub-assembly such that the discrete light source is disposed within the recess.
14. The method of claim 13, wherein a top surface of the waveguide is substantially planar.
15. The method of claim 13, wherein the discrete light source comprises a bare-die light-emitting diode.
16. A plurality of sub-assemblies, each of which comprises:
a plurality of discrete lighting devices disposed over a carrier;
carrier interconnections disposed on the carrier and electrically connected to the discrete lighting devices; and
a substrate disposed beneath the carrier and comprising substrate interconnections disposed on the substrate and electrically connected to the carrier interconnections,
wherein the plurality of discrete lighting devices on a first sub-assembly is connected in series, the plurality of discrete lighting devices on a second sub-assembly is connected in parallel, and the carrier interconnections of the first sub-assembly is substantially identical to the carrier interconnections of the second sub-assembly.
17. The plurality of sub-assemblies of claim 16, wherein each sub-assembly is joined to a waveguide.
18. The plurality of sub-assemblies of claim 17, wherein each sub-assembly comprises a contour complementary to a recess in the waveguide to which it is joined.
19. The plurality of sub-assemblies of claim 16, wherein the series connection on the first sub-assembly is defined by the substrate interconnections on the first sub-assembly.
20. The plurality of sub-assemblies of claim 16, wherein the parallel connection on the second sub-assembly is defined by the substrate interconnections on the second sub-assembly.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/033,876, filed Mar. 5, 2008; U.S. Provisional Patent Application No. 61/059,932, filed Jun. 9, 2008; and U.S. Provisional Patent Application No. 61/085,576, filed on Aug. 1, 2008. The entire disclosure of each of these applications is incorporated by reference herein.
  • TECHNICAL FIELD
  • [0002]
    In various embodiments, the present invention relates to illumination apparatuses for artificial lighting, and in particular to illumination apparatuses including discrete light sources such as light-emitting diodes.
  • BACKGROUND
  • [0003]
    Utilizing a discrete light source, such as a light-emitting diode (LED) to create a large, efficient, uniformly emitting illumination device is difficult. Light from the light source may be obstructed or absorbed by any number of structures between the light source and the region of desired illumination; such structures may include LED packaging, wiring circuitry, and even parts of the sub-assembly supporting the light source. In devices utilizing multiple light sources, e.g., devices for the illumination of white light produced by color mixing, emitted light may even be obstructed or absorbed by neighboring light sources. Further, attempts to harness most of the light from the light source may require complicated fabrication processes that are expensive and not mass-producible.
  • [0004]
    Typical illumination devices incorporating discrete light sources also disregard the fact that light emitted downward from the light source (or light back-reflected toward the light source) is often lost, reducing the efficiency of the device. This drop in efficiency may be severe, particularly for devices incorporating multiple light sources. Clearly, a need exists for illumination devices (and components thereof) designed for the efficient in-coupling of light emitted from discrete light sources, as well as for the minimization of light obstructed or absorbed by other components or even other light sources.
  • SUMMARY
  • [0005]
    Embodiments of the present invention include sub-assemblies for the support and connectivity of discrete light sources, as well as illumination devices incorporating such sub-assemblies, and a waveguide for the controlled propagation and emission of light. In general, sub-assemblies in accordance with embodiments of the invention position discrete light sources above substantially all other components of the sub-assembly in order to minimize the amount of light obstructed or absorbed by such structures. In some embodiments, the sub-assemblies mate with the waveguide; for example, the sub-assembly (or portion thereof) may have a geometric contour or envelope complementary to a recess in the waveguide, thus facilitating manufacturability and enabling the “embedding” of the light source into the waveguide (rather than positioning the light source at the waveguide edge, for example). In addition to providing a superior optical interface for discrete light sources, sub-assemblies in accordance with the present invention may provide mechanical support, electrical connectivity, and thermal management.
  • [0006]
    In an aspect, embodiments of the invention feature a sub-assembly matable to a waveguide having a recess therein. The sub-assembly includes a structure that itself includes a discrete light source disposed on a carrier. The structure has a contour complementary to the recess such that, when the sub-assembly is joined to the waveguide, the discrete light source is within the waveguide. A substrate and a heat spreader are disposed beneath the structure.
  • [0007]
    One or more of the following features may be included. The structure may fit snugly within the recess. The discrete light source may include a bare-die light-emitting diode. A dimension of the top surface of the carrier may be at least three times a dimension of the discrete light source. The top surface of the carrier may have an area at least three times an area of the discrete light source. The top surface of the carrier may be reflective, and may include an inner diffusive region surrounding the discrete light source and a specular region surrounding the inner diffusive region. The top surface of the carrier may include an inner specular region surrounding the discrete light source, a diffusive region surrounding the inner specular region, and an outer specular region surrounding the diffusive region.
  • [0008]
    A reflector may be disposed over the substrate. The discrete light source may be disposed in a recess in the carrier, and a top surface of the discrete light source may be substantially coplanar with the top surface of the carrier. The top surface of the carrier may include a step complementary to the bottom surface of the discrete light source. The structure may include a cap disposed over the discrete light source, and a shape of the cap may at least partially define the contour of the structure complementary to the recess in the waveguide. The shape of the carrier may define the contour of the structure complementary to the recess in the waveguide.
  • [0009]
    The discrete light source may be electrically connected to the carrier. A contact on the discrete light source may be in direct contact with a contact on the carrier. The discrete light source may be electrically connected to the carrier and/or the substrate by at least one wire. A contact on the carrier may be in direct contact with a contact on the substrate. The substrate and/or the carrier may include an electrical connector for connection to an external power source.
  • [0010]
    In another aspect, embodiments of the invention feature a sub-assembly including a discrete light source, where substantially all of the light emitted from the discrete light source is emitted from its top surface. A reflective carrier is disposed beneath and in direct contact with the discrete light source. A top surface of the reflective carrier includes an inner diffusive region surrounding the discrete light source and a specular region surrounding the inner diffusive region.
  • [0011]
    In yet another aspect, embodiments of the invention feature a sub-assembly including a discrete light source, where substantially all of the light emitted from the discrete light source is emitted from its top surface and at least one side surface. A reflective carrier is disposed beneath and in direct contact with the discrete light source. A top surface of the reflective carrier includes an inner specular region surrounding the discrete light source, a diffusive region surrounding the inner specular region, and an outer specular region surrounding the diffusive region.
  • [0012]
    In another aspect, embodiments of the invention feature a method of forming a sub-assembly matable to a waveguide having a recess. The method includes providing a structure that includes a discrete light source disposed on a carrier, the structure having a contour complementary to the recess such that, when the structure is mated to the waveguide, the discrete light source is within the waveguide. The method also includes disposing the structure over a substrate and a heat spreader. Providing the structure may include providing a cap over the discrete light source, the shape of the cap at least partically defining the contour of the structure complementary to the recess in the waveguide. The shape of the carrier may at least partially define the contour of the structure complementary to the recess in the waveguide.
  • [0013]
    In an aspect, embodiments of the invention feature an illumination device including a waveguide having a recess in a bottom surface thereof. Disposed beneath and in direct contact with the bottom surface of the waveguide is a sub-assembly having a raised profile complementary to the recess. The sub-assembly includes a discrete light source disposed on a carrier, and the discrete light source is disposed in the recess.
  • [0014]
    One or more of the following features may be included. The sub-assembly may include a cap disposed over the discrete light source. The sub-assembly may include a substrate and a reflector disposed over the substrate, and the reflector may be disposed beneath and in direct contact with the bottom surface of the waveguide proximate the recess. The top surface of the waveguide may be substantially planar. The discrete light source may include a bare-die light-emitting diode. At least one sidewall and/or the top surface of the carrier may be reflective. The top surface of the carrier may include an inner diffusive region surrounding the discrete light source and a specular region surrounding the inner diffusive region. The top surface of the carrier may include an inner specular region, a diffusive region surrounding the inner specular region, and an outer specular region surrounding the diffusive region.
  • [0015]
    In another aspect, embodiments of the invention feature an illumination device including a waveguide having a substantially planar bottom surface. Disposed beneath and in direct contact with the bottom surface is a sub-assembly having a substantially planar top surface and a discrete light source disposed on a reflective carrier. A dimension of the reflective carrier may be at least three times a dimension of the discrete light source. The top surface of the carrier may include an inner diffusive region surrounding the discrete light source and a specular region surrounding the inner diffusive region. The top surface of the carrier may include an inner specular region, a diffusive region surrounding the inner specular region, and an outer specular region surrounding the diffusive region.
  • [0016]
    In yet another aspect, embodiments of the invention feature a method of forming an illumination device including providing a waveguide comprising a recess in a bottom surface thereof. A sub-assembly having a raised profile complementary to the recess is provided, the sub-assembly including a discrete light source disposed on a carrier. The waveguide and the sub-assembly are mated such that the discrete light source is disposed within the recess. A top surface of the waveguide may be substantially planar. The discrete light source may include a bare-die light-emitting diode.
  • [0017]
    In a further aspect, embodiments of the invention feature a plurality of sub-assemblies, each of which includes a plurality of discrete lighting devices disposed over a carrier, carrier interconnections disposed on the carrier and electrically connected to the discrete lighting devices, and a substrate disposed beneath the carrier and including substrate interconnections. The substrate interconnections are disposed on the substrate and are electrically connected to the carrier interconnections. The plurality of discrete lighting devices on a first sub-assembly is connected in series, the plurality of discrete lighting devices on a second sub-assembly is connected in parallel, and the carrier interconnections of the first sub-assembly is substantially identical to the carrier interconnections of the second sub-assembly. Each sub-assembly may be joined to a waveguide, and each sub-assembly may include a contour complementary to a recess in the waveguide to which it is joined. The series connection on the first sub-assembly may be defined by the substrate interconnections on the first sub-assembly. The parallel connection on the second sub-assembly may be defined by the substrate interconnections on the second sub-assembly.
  • [0018]
    These and other objects, along with advantages and features of the present invention herein disclosed, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0019]
    In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
  • [0020]
    FIG. 1A is a top view of a sub-assembly, according to various exemplary embodiments of the present invention;
  • [0021]
    FIG. 1B is a sectional view, taken along the line A-A′, of the sub-assembly shown in FIG. 1A;
  • [0022]
    FIGS. 2A-2C are, respectively, a top view (FIG. 2A), an exploded sectional view (FIG. 2B), and a sectional view (FIG. 2C) of an illumination device incorporating the sub-assembly of FIGS. 1A-1B;
  • [0023]
    FIGS. 3, 4A, and 4B are sectional views of sub-assemblies according to various alternative embodiments of the present invention;
  • [0024]
    FIGS. 5A and 5B are top views of a top surface of a carrier utilized in a sub-assembly, according to various exemplary embodiments of the present invention;
  • [0025]
    FIGS. 6A and 6B are schematic wiring diagrams for light sources utilized in various embodiments of the present invention;
  • [0026]
    FIGS. 7A-7C are schematic illustrations of carriers with various surface topographies utilized in various embodiments of the present invention; and
  • [0027]
    FIG. 8 is a sectional view of an illumination device having a substantially planar interface between a sub-assembly and a waveguide, according to various embodiments of the present invention.
  • DETAILED DESCRIPTION
  • [0028]
    Referring to FIGS. 1A and 1B, a sub-assembly 100 includes or consists essentially of a carrier 110, a substrate 120, heat spreader 130, and electrical connection means 140. Carrier 110 is typically formed of an electrically insulating, e.g., ceramic, material, and supports one or more discrete light sources (e.g., LEDs) 150. In an embodiment, carrier 110 is thermally conductive (and may therefore even be electrically conductive) in order to provide better heat dissipation. Substrate 120 may be formed of any rigid or flexible material, e.g., Bakelite or polycarbonate. In an embodiment, substrate 120 includes or consists essentially of a printed circuit board (PCB). Substrate 120 may have a thickness ranging from approximately 25 μm to approximately 50 μm. Additional active and/or passive electrical components may be present on substrate 120, and may be electrically connected to discrete light source 150 by means of wires, printed conductive traces or the like. Heat spreader 130 is disposed beneath carrier 110 and includes or consists essentially of a thermally conductive material, e.g., a metal such as aluminum or copper. Heat spreader 130 conducts heat away from carrier 110 and discrete light source 150 during operation thereof. Exposed top portions of substrate 120 surrounding carrier 120 are preferably coated with a reflective material to form a reflector 160, e.g., a specular mirror. Reflector 160 functions to contain light within a waveguide coupled to sub-assembly 100 (as further described below), and may be attached to substrate 120 via an adhesive such as VHB cold-pressing tape available from 3M. The adhesive preferably is compatible with and may mediate thermal expansion-related stresses between waveguide 210, reflector 160, and substrate 120. Discrete light source 150 is, e.g., a bare-die light-emitting diode (LED), i.e., a substantially unpackaged LED. Preferably (and as described further below), carrier 110 has a geometric profile complementary to that of a recess in a waveguide, such that when sub-assembly 100 is mated to the waveguide, discrete light source 150 is disposed within the waveguide. The top surface 180 of carrier 110 is preferably reflective, e.g., diffusive and/or specular, as further described below.
  • [0029]
    Electrical conduction means 140 is a conventional electrical interface to an external power source (not shown), and is electrically connected to discrete light source 150 through substrate 120 and carrier 110. In an embodiment, discrete light source 150 is a flip-chip LED having two electrodes coupled to electrical contacts disposed between carrier 110 and discrete light source 150; for example, the electrical contacts may pads on the surface of carrier 110 and connected to wires extending through the thickness of the carrier. In this way, the electrical contacts are electrically coupled to contact pads 170 on substrate 120 beneath carrier 110. Contact pads 170, in turn, are coupled (on and/or through substrate 120) to electrical conduction means 140. In an embodiment, electrical conduction means 140 includes or consists essentially of a flexible “PCB tail” connector attached to substrate 120. In another embodiment, electrical conduction means 140 is directly connected to carrier 110 rather than substrate 120.
  • [0030]
    Referring to FIGS. 2A, 2B, and 2C, illumination device 200 includes or consists essentially of sub-assembly 100 disposed in direct contact with (i.e., mated to) a waveguide 210 having a recess 220 with a geometric profile complementary to the geometric profile of carrier 110. FIG. 2C is a sectional view (through line B-B′ in FIG. 2A) of waveguide 210 with the raised portion of the carrier 110 of sub-assembly 100 received within the recess 220 and reflector 160 flush against the bottom surface of waveguide 210. The exploded view of FIG. 2B illustrates recess 220 and its geometric complemetarity to carrier 110. As shown in FIG. 2C, when sub-assembly 100 is mated to waveguide 210, the raised portion of carrier 110 fits snugly within (and may be in mechanical contact with) recess 220; any gap therebetween is preferably filled with, e.g., transparent optical encapsulation material, e.g., an epoxy, silicone, or polyurethane. An adhesive (which is preferably transparent) may be utilized to retain reflector 160 against the waveguide 210. Thus, discrete light source 150 is disposed within the thickness of waveguide 210, and substantially all (i.e., more than approximately 90% of) light from discrete light source 150 is emitted into (and may be coupled into) waveguide 210 during operation of illumination device 200. Reflector 160, in direct contact with the bottom surface of waveguide 210, reflects light that would otherwise be lost back into waveguide 210. In an alternative embodiment, reflector 160 is not present, and the portions of the bottom surface of waveguide 210 in contact with sub-assembly 100 are coated with a reflective material, e.g., aluminum or silver. In this way, once again, light from discrete light source 150 is retained within waveguide 210.
  • [0031]
    Waveguide 210 may include or consist of a rigid or flexible polymeric material, may have a substantially planar top surface (that includes at least one region from which light is emitted during operation). Assembly of illumination device 200 is facilitated by the complementary geometric profiles of carrier 110 and recess 220, since, e.g., it is unnecessary to mold waveguide 210 around carrier 110 and discrete light source 150. Although carrier 110 and recess 220 (and cap 310 described below) are depicted as having a particular geometric profile, any number of complementary geometric profiles are compatible with embodiments of the present invention.
  • [0032]
    Referring to FIG. 3, in an embodiment, discrete light source 150 has at least one contact electrically connected to carrier 110 by a wire 300. For example, in an embodiment, discrete light source 150 is a “vertical” LED and has one bottom contact electrically connected to carrier 110 as described above with reference to FIG. 1C. Additionally, vertical discrete light source 150 has a top contact electrically connected to carrier 110 via wire 300 bonded between the top contact and a bonding pad on the top surface of carrier 110. Wire 300 includes or consists essentially of an electrically conductive material, e.g., a metal such as copper or gold. An encapsulating cap 310 may be disposed over carrier 110, discrete light source 150, and wire 300, and may include or consist essentially of an optically transparent material (e.g., epoxy, silicone, or polyurethane) such that light from discrete light source 150 efficiently couples into waveguide 210 during operation. Cap 310 and/or carrier 110 may have a geometric profile complementary to that of recess 220 in waveguide 210, such that there is substantially no gap therebetween when sub-assembly 100 is mated to waveguide 210. Further, wire 300 is the only opaque component present in illumination device 210 between discrete light source 150 and waveguide 210, thus enabling efficient in-coupling of light. In order to prevent absorptive light loss, wire 300 may be inherently reflective or coated with a reflective coating such that light striking wire 300 may reflect into waveguide 210. In some embodiments, discrete light source 150 has two top contacts electrically connected to carrier 110 via wires 300.
  • [0033]
    FIG. 4A illustrates an embodiment similar to that depicted in FIG. 3, but in which the electrical connection between carrier 110 and substrate 120 is via another wire 300. In order to substantially prevent light loss in such an embodiment, gap 320 between carrier 110 and substrate 120 may be filled or covered by a reflective material, e.g., a white solder mask such as PSR-400 LEW1 available from Taiyo America. Cap 310 is disposed over all wires 300 and preferably has a geometric profile complementary to that of recess 220 in waveguide 210.
  • [0034]
    Referring to FIG. 4B, in another embodiment, wires 300 may connect at least one contact of discrete light source 150 directly to substrate 120 (thereby bypassing carrier 110). In this embodiment, a portion of reflector 160 may be removed in order to expose the electrical connection to substrate 120 (e.g., a bonding pad). Any exposed area around the bonding pad may be covered by a reflective material, e.g., a white solder mask such as PSR-400 LEW1.
  • [0035]
    Referring to FIGS. 5A and 5B, top surface 180 of carrier 110 is preferably reflective, in order to prevent absorptive light loss into carrier 110. Moreover, at least one dimension of top surface 180 is as much as two, three, five, or even ten times as large as a dimension of discrete light source 150 in order to provide more efficient in-coupling of light into waveguide 210. The area of top surface 180 may be as much as three, five, ten, twenty-five, or even one hundred times as large as the top surface area of discrete light source 150. Moreover, top surface 180 may include discrete diffusive regions 500 and specular regions 510, arranged according to the type of discrete light source 150 disposed thereon. For example, FIG. 5A depicts an embodiment in which substantially all light from discrete light source 150 is emitted from a top surface thereof (i.e., the surface of discrete light source opposite carrier 110). Diffusive region 500 immediately surrounding discrete light source 150 diffusively reflects substantially all light emitted from discrete light source 150 that back-reflects toward discrete light source 150. Specular region 510 surrounding diffusive region 500 specularly reflects light into waveguide 210, essentially mimicking the total internal reflectance (and light-confining) behavior of waveguide 210.
  • [0036]
    FIG. 5B depicts an embodiment in which discrete light source 150 emits light from not only its top surface but its side surfaces. In such an embodiment, top surface 180 of carrier 110 includes a specular region 510 immediately surrounding discrete light source 150, such that laterally emitted light is reflected into waveguide 210. Surrounding this specular region 510 are the diffusive region 500 and additional specular region 510 described above in reference to FIG. 5A. The diffusive region 500 again diffuses back-reflected light and the outer specular region 510 reflects light into waveguide 210. The arrangements of diffusive regions 500 and specular regions 510 depicted in FIGS. 5A and 5B facilitate the in-coupling of substantially all of the light emitted by discrete light source 150 into waveguide 210.
  • [0037]
    In embodiments of the invention having multiple discrete light sources 150 disposed on carrier 110, the discrete light sources 150 (and/or other discrete lighting devices such as packaged light-emitting diodes) may be connected either in series or in parallel, depending upon the demands of the application. FIGS. 6A and 6B schematically depict series and parallel connections, respectively, among three discrete light sources 150. In both embodiments depicted in FIGS. 6A and 6B, the electrical interconnections 600 (which may be disposed in or on carrier 110 and substrate 120) associated with carrier 110 are identical, and the series or parallel connectivity is defined by the electrical interconnections 600 present on substrate 120. That is, it is unnecessary to vary the production or configuration of carrier 110 based on whether discrete light sources 150 are to be ultimately connected in series or in parallel. FIGS. 6A and 6B are schematic drawings, and do not include features such as reflector 160, electrical connection means 140, diffusive regions 500, and specular regions 510, and do not indicate any geometric profile of carrier 110. Enabling different connectivities of a plurality of discrete light sources 150 via changes only in the electrical interconnections 600 on substrate 120 facilitates the production of a plurality of illumination devices 200 that include substantially identical carriers 110 (and, perhaps, discrete light sources 150) but which facilitate serial, parallel, or mixed serial and parallel connections among the illumination devices 200.
  • [0038]
    Carrier 110 may, if desired, have a top surface topography shaped to maximize the amount of light in-coupled into waveguide 210 and to minimize the amount of light absorbed or obstructed by the discrete light sources 150 themselves. FIG. 7A depicts a carrier 110 that includes a plurality of cavities 700 in the top surface thereof. The cavities 700 are sized and shaped such that the top surfaces 710 of discrete light sources 150, which have different thicknesses, are substantially coplanar when placed on carrier 110. In such an embodiment, the top surfaces 710 are disposed above all other components associated with sub-assembly 100 (except for any wires connected to discrete light sources 150, if present), enabling the efficient in-coupling of light into a waveguide 210 with substantially no light from one discrete light source 150 being absorbed or obstructed by any other discrete light sources 150 present on carrier 110.
  • [0039]
    FIG. 7B depicts a plurality of top-emitting discrete light sources 150 disposed in cavities 700 in a carrier 110. Since the light from such discrete light sources 150 is emitted from only top surfaces 710, only a small amount of the thickness of the discrete light sources 150 protrudes above top surface 180 of carrier 110. In some embodiments, cavities 700 are sized and shaped such that top surfaces 710 of discrete light sources 150 are substantially coplanar with top surface 180 of carrier 110, i.e., substantially none of the thickness of discrete light sources 150 protrudes above top surface 180.
  • [0040]
    FIG. 7C depicts a carrier 110 having a top surface 180 with a “step” 720 (or other suitable topographical feature) sized and shaped to enable “flip chip”-type bonding of a discrete light source 150 having two top contacts. Such discrete light sources 150, also termed “horizontal” light sources, require contacts made to two vertically stacked layers therein. Thus, the two “top” contacts are actually made at slightly different heights, and the discrete light source 150 has a stepped shape to enable contact with the lower of the two layers. Embodiments of the invention may include such horizontal discrete light sources 150 flipped over and electrically coupling to contact pads 730 disposed to either side of step 720. Thus, one or more horizontal discrete light sources 150 may be electrically connected to carrier 110 without the use of wires that might obstruct or block emitted light.
  • [0041]
    Referring to FIG. 8, embodiments of the invention also include an illumination device 200 having a substantially planar interface between waveguide 210 and sub-assembly 100. In particular, waveguide 210 may substantially lack any recess 220. In this embodiment, top surface 180 of carrier 110 is disposed below the top surface of substrate 120 and/or reflector 160 such that discrete light source 150 is not disposed within waveguide 210. In some embodiments, an optically transparent cap 310 may be disposed over discrete light source 150 and top surface 180 of carrier 110. The top surface of cap 310 may be substantially coplanar with the top surface of substrate 120 and/or reflector 160 such that the interface between waveguide 210 and sub-assembly 100 is substantially completely planar. In such embodiments, sub-assembly 100 may be attached to waveguide 210 via an adhesive, e.g., transparent optical glue. Further, sidewalls 800 of substrate 120 and/or reflector 160 disposed proximate carrier 110 may also be reflective (or coated with a reflective material) so as to reflect rather than obstruct or absorb light from discrete light source 150.
  • [0042]
    The terms and expressions employed herein are used as terms and expressions of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof. In addition, having described certain embodiments of the invention, it will be apparent to those of ordinary skill in the art that other embodiments incorporating the concepts disclosed herein may be used without departing from the spirit and scope of the invention. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3261356 *Oct 21, 1963Jul 19, 1966American Cystoscope Makers IncSuction and illumination device
US4669467 *Mar 22, 1985Jun 2, 1987Massachusetts Institute Of TechnologyMode mixer for a laser catheter
US4762381 *Nov 3, 1986Aug 9, 1988Sumitomo Electric Industries, Ltd.Optical element integrated optical waveguide and production of the same
US4829192 *Mar 26, 1987May 9, 1989Kabushiki Kaisha Tokai Rika Denki SeisakushoPhoto-coupler with delay function using a fluorescent substance as the delay means
US4853593 *Sep 8, 1987Aug 1, 1989Siemens AktiengesellschaftLight emitting diode (LED) display
US4906062 *Oct 31, 1988Mar 6, 1990The General Electric Company, P.L.C.Integrated optical waveguide bend
US5048913 *Dec 26, 1989Sep 17, 1991United Technologies CorporationOptical waveguide embedded transverse spatial mode discrimination filter
US5139420 *Sep 4, 1990Aug 18, 1992Walker William SDental mirror system
US5211467 *Jan 7, 1992May 18, 1993Rockwell International CorporationFluorescent lighting system
US5281134 *Nov 19, 1991Jan 25, 1994Schultz Allen JFiber optic illumination system for dental instruments
US5425730 *Feb 16, 1994Jun 20, 1995Luloh; K. P.Illumination cannula system for vitreous surgery
US5535105 *Dec 10, 1993Jul 9, 1996Koenen; H. PeterWork glove and illuminator assembly
US5559358 *May 23, 1994Sep 24, 1996Honeywell Inc.Opto-electro-mechanical device or filter, process for making, and sensors made therefrom
US5718666 *Feb 29, 1996Feb 17, 1998Bioenterics CorporationTransilluminating bougie
US5813752 *May 27, 1997Sep 29, 1998Philips Electronics North America CorporationUV/blue LED-phosphor device with short wave pass, long wave pass band pass and peroit filters
US5813753 *May 27, 1997Sep 29, 1998Philips Electronics North America CorporationUV/blue led-phosphor device with efficient conversion of UV/blues light to visible light
US5899552 *Mar 11, 1997May 4, 1999Enplas CorporationSurface light source device
US5959316 *Sep 1, 1998Sep 28, 1999Hewlett-Packard CompanyMultiple encapsulation of phosphor-LED devices
US6031511 *Jun 10, 1997Feb 29, 2000Deluca; Michael J.Multiple wave guide phosphorous display
US6079838 *Jan 2, 1997Jun 27, 2000Lumitex, Inc.Light emitting panel assemblies
US6226440 *Dec 22, 1997May 1, 2001Whelen Engineering Company, Inc.Optical coupler and illumination system employing the same
US6275512 *Nov 25, 1998Aug 14, 2001Imra America, Inc.Mode-locked multimode fiber laser pulse source
US6278106 *Jul 27, 1998Aug 21, 2001Shinzo MutoOptical sensor and sensing method
US6351069 *Feb 18, 1999Feb 26, 2002Lumileds Lighting, U.S., LlcRed-deficiency-compensating phosphor LED
US6356691 *Dec 1, 1999Mar 12, 2002Iljin Corp.Optical waveguide display having embedded light source
US6408123 *Nov 9, 2000Jun 18, 2002Canon Kabushiki KaishaNear-field optical probe having surface plasmon polariton waveguide and method of preparing the same as well as microscope, recording/regeneration apparatus and micro-fabrication apparatus using the same
US6417616 *May 30, 2001Jul 9, 2002Micron Technology, Inc.Field emission display devices with reflectors, and methods of forming field emission display devices with reflectors
US6522065 *Mar 27, 2000Feb 18, 2003General Electric CompanySingle phosphor for creating white light with high luminosity and high CRI in a UV led device
US6530670 *Oct 29, 2001Mar 11, 2003Sharp Kabushiki KaishaPlanar illumination device
US6549709 *Jun 13, 2000Apr 15, 2003Jds Uniphase Inc.Method of making a polymeric optical waveguide device provided with fibre ends, and free-standing, flexible waveguide sheets used therein
US6551346 *Mar 20, 2001Apr 22, 2003Kent CrossleyMethod and apparatus to prevent infections
US6554462 *Apr 9, 2001Apr 29, 2003Federal-Mogul World Wide, Inc.Optical waveguide structures
US6608332 *Dec 15, 2000Aug 19, 2003Nichia Kagaku Kogyo Kabushiki KaishaLight emitting device and display
US6614179 *Dec 10, 1999Sep 2, 2003Nichia Kagaku Kogyo Kabushiki KaishaLight emitting device with blue light LED and phosphor components
US6621211 *May 15, 2000Sep 16, 2003General Electric CompanyWhite light emitting phosphor blends for LED devices
US6680004 *Jun 22, 2001Jan 20, 2004Sumitomo Chemical Company LimitedMethod of producing aluminate fluorescent substance, a fluorescent substance and a diode containing a fluorescent substance
US6687010 *Sep 7, 2000Feb 3, 2004Olympus CorporationRapid depth scanning optical imaging device
US6694069 *Oct 30, 2001Feb 17, 2004Kyocera CorporationOptical integrated circuit substrate and optical module
US6754408 *Oct 23, 2001Jun 22, 2004Sony CorporationOptical switch and display unit
US6765237 *Jan 15, 2003Jul 20, 2004Gelcore, LlcWhite light emitting device based on UV LED and phosphor blend
US6850665 *Feb 11, 2002Feb 1, 2005Sabeus PhotonicsWavelength-selective optical fiber components using cladding-mode assisted coupling
US6853131 *Nov 12, 2002Feb 8, 2005General Electric CompanySingle phosphor for creating white light with high luminosity and high CRI in a UV LED device
US6871982 *Jan 22, 2004Mar 29, 2005Digital Optics International CorporationHigh-density illumination system
US6890234 *May 3, 2004May 10, 2005General Electric CompanyLED cross-linkable phosphor coating
US6908205 *Apr 28, 2004Jun 21, 2005Koninklijke Philips Electronics N.V.Lighting device with linear light sources
US6917057 *Dec 31, 2002Jul 12, 2005Gelcore LlcLayered phosphor coatings for LED devices
US6939481 *Jul 11, 2003Sep 6, 2005General Electric CompanyWhite light emitting phosphor blends for LED devices
US6941069 *Jan 20, 2004Sep 6, 2005Pentax CorporationLight-projecting device
US6982522 *Sep 23, 2003Jan 3, 2006Sharp Kabushiki KaishaLED device including phosphor layers on the reflecting surface
US7005086 *Nov 6, 2003Feb 28, 2006Seiwa Electric Mfg. Co., Ltd.Fluorescent substance, light-emitting diode and method for producing fluorescent substance
US7006306 *Jul 29, 2004Feb 28, 2006Light Prescriptions Innovators, LlcCircumferentially emitting luminaires and lens-elements formed by transverse-axis profile-sweeps
US7015510 *Nov 18, 2002Mar 21, 2006General Electric CompanyWhite light emitting phosphor blend for LED devices
US7026756 *Oct 3, 2003Apr 11, 2006Nichia Kagaku Kogyo Kabushiki KaishaLight emitting device with blue light LED and phosphor components
US7038246 *Jul 24, 2003May 2, 2006Toyoda Gosei Co., Ltd.Light emitting apparatus
US7045826 *Mar 26, 2004May 16, 2006Korea Research Institute Of Chemical TechnologyStrontium silicate-based phosphor, fabrication method thereof, and LED using the phosphor
US7066623 *Dec 19, 2003Jun 27, 2006Soo Ghee LeeMethod and apparatus for producing untainted white light using off-white light emitting diodes
US7071616 *Jul 1, 2003Jul 4, 2006Nichia Kagaku Kogyo Kabushiki KaishaLight emitting device with blue light led and phosphor components
US7193248 *Mar 23, 2005Mar 20, 2007Visteon Global Technologies, Inc.LED backlighting system
US7218824 *Sep 18, 2003May 15, 2007University Of Technology SydneyLight emitting device
US7251389 *Sep 26, 2005Jul 31, 2007Intel CorporationEmbedded on-die laser source and optical interconnect
US7382091 *Jul 27, 2005Jun 3, 2008Lung-Chien ChenWhite light emitting diode using phosphor excitation
US7513669 *Aug 1, 2005Apr 7, 2009Avago Technologies General Ip (Singapore) Pte. Ltd.Light source for LCD back-lit displays
US7719022 *May 6, 2008May 18, 2010Palo Alto Research Center IncorporatedPhosphor illumination optics for LED light sources
US7736044 *May 26, 2006Jun 15, 2010Avago Technologies General Ip (Singapore) Pte. Ltd.Indirect lighting device for light guide illumination
US7738054 *Feb 21, 2008Jun 15, 2010Fujifilm CorporationLiquid crystal display device
US20050100288 *Mar 30, 2004May 12, 2005Sunplus Technology Co., Ltd.Light guide module having embedded LED
US20050116667 *Apr 21, 2004Jun 2, 2005Color Kinetics, IncorporatedTile lighting methods and systems
US20060008205 *Jun 21, 2005Jan 12, 2006Noam MeirHigh efficacy waveguide coupler
US20060092346 *Oct 28, 2005May 4, 2006Moon Jeong MLight emitting diode backlight unit and liquid crystal display device using the same
US20060131924 *Nov 17, 2005Jun 22, 2006Cts Fahrzeug-Dachsysteme GmbhAdjustable vehicle roof having a fabric cover
US20060203502 *Mar 2, 2006Sep 14, 2006Stevens Peter MTotal internal reflection license plate frame
US20070019439 *Feb 9, 2006Jan 25, 2007Chuan-Pei YuBack light unit and method of adjusting spectral distribution thereof
US20070057626 *Sep 14, 2006Mar 15, 2007Matoko KuriharaIllumination device and display device provided with the same
US20070086211 *Oct 18, 2005Apr 19, 2007Goldeneye, Inc.Side emitting illumination systems incorporating light emitting diodes
US20070133210 *Dec 12, 2006Jun 14, 2007Watson David AIlluminating device and assembly for illuminating enclosed spaces using the same
US20070133935 *Dec 9, 2003Jun 14, 2007Eran FineFlexible optical device
US20080049445 *Aug 25, 2006Feb 28, 2008Philips Lumileds Lighting Company, LlcBacklight Using High-Powered Corner LED
US20080061683 *Sep 19, 2005Mar 13, 2008Koninklijke Philips Electronics, N.V.Illumination System
US20080094348 *Oct 1, 2007Apr 24, 2008Innocom Technology (Shenzhen) Co., Ltd.Liquid crystal display device with light sensor on light guide plate thereof
US20080122365 *Nov 1, 2007May 29, 2008Hella KgaaMethod of Supplying Pulsed Power to Light Bulbs in Motor Vehicles
US20080151576 *Dec 18, 2007Jun 26, 2008Benzion InditskyUltra-Thin Backlight
US20080158907 *Nov 8, 2007Jul 3, 2008Fitipower Integrated Technology, IncBacklight module having light guide plate with fluorescent layer thereon
US20080192458 *Jul 13, 2007Aug 14, 2008Intematix CorporationLight emitting diode lighting system
US20080212315 *Sep 18, 2006Sep 4, 2008Koninklijke Philips Electronics, N.V.Illumination System for Illumination Display Devices, and Display Device Provided with Such an Illumination System
US20090001397 *May 29, 2008Jan 1, 2009Oree, Advanced Illumiation Solutions Inc.Method and device for providing circumferential illumination
US20090027588 *Jul 29, 2007Jan 29, 2009Medendorp Jr Nicholas WLed backlight system for lcd displays
US20090046453 *May 11, 2006Feb 19, 2009Regine KramerSpotlight for shooting films and videos
US20090046978 *Jun 3, 2008Feb 19, 2009Hiroki YasudaMirror-Embedded Optical Waveguide and Fabrication Method of Same
US20090051268 *Aug 6, 2008Feb 26, 2009Samsung Sdi Co., Ltd.White phosphor, light emission device including the same, and display device
US20090052205 *Dec 26, 2007Feb 26, 2009Ching-Chung ChenLight source module of scanning device
US20090059553 *May 7, 2008Mar 5, 2009Tai-Yen LinLight guiding structure and manufacturing of the same
US20090151575 *Dec 14, 2007Jun 18, 2009Benjamin Cardozo EisendrathElevated rotisserie for grill assembly
US20090161340 *Feb 28, 2008Jun 25, 2009Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.White light illuminator and reading lamp using the same
US20090168395 *Dec 26, 2007Jul 2, 2009Lumination LlcDirectional linear light source
US20100060157 *Mar 11, 2010Wei ShiPhosphor layer arrangement for use with light emitting diodes
US20100195306 *Aug 5, 2010Rene HelbingLight emitting diode lamp with phosphor coated reflector
US20100201611 *Aug 12, 2010Illumitex, Inc.Led displays
US20100208469 *Feb 10, 2010Aug 19, 2010Yosi ShaniIllumination surfaces with reduced linear artifacts
US20100208470 *Aug 19, 2010Yosi ShaniOverlapping illumination surfaces with reduced linear artifacts
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7826698Nov 2, 2010Oree, Inc.Elimination of stitch artifacts in a planar illumination area
US7929816Nov 26, 2008Apr 19, 2011Oree, Inc.Waveguide sheet containing in-coupling, propagation, and out-coupling regions
US8064743Sep 23, 2010Nov 22, 2011Oree, Inc.Discrete light guide-based planar illumination area
US8128272Jun 7, 2006Mar 6, 2012Oree, Inc.Illumination apparatus
US8172447Nov 26, 2008May 8, 2012Oree, Inc.Discrete lighting elements and planar assembly thereof
US8182128Nov 26, 2008May 22, 2012Oree, Inc.Planar white illumination apparatus
US8215815Nov 26, 2008Jul 10, 2012Oree, Inc.Illumination apparatus and methods of forming the same
US8231237Mar 5, 2009Jul 31, 2012Oree, Inc.Sub-assembly and methods for forming the same
US8238703Aug 7, 2012Oree Inc.Waveguide sheet containing in-coupling, propagation, and out-coupling regions
US8272758Jun 25, 2009Sep 25, 2012Oree, Inc.Illumination apparatus and methods of forming the same
US8297786Oct 30, 2012Oree, Inc.Slim waveguide coupling apparatus and method
US8301002Jul 10, 2009Oct 30, 2012Oree, Inc.Slim waveguide coupling apparatus and method
US8328406May 12, 2010Dec 11, 2012Oree, Inc.Low-profile illumination device
US8414174Nov 4, 2011Apr 9, 2013Oree, Inc.Illumination apparatus
US8459856Apr 18, 2012Jun 11, 2013Oree, Inc.Planar white illumination apparatus
US8542964 *Jul 5, 2012Sep 24, 2013Oree, Inc.Waveguide sheet containing in-coupling, propagation, and out-coupling regions
US8550684Nov 26, 2008Oct 8, 2013Oree, Inc.Waveguide-based packaging structures and methods for discrete lighting elements
US8579466Aug 24, 2012Nov 12, 2013Oree, Inc.Illumination apparatus and methods of forming the same
US8591072Feb 17, 2012Nov 26, 2013Oree, Inc.Illumination apparatus confining light by total internal reflection and methods of forming the same
US8624527Mar 29, 2010Jan 7, 2014Oree, Inc.Independently controllable illumination device
US8641254Mar 7, 2013Feb 4, 2014Oree, Inc.Illumination apparatus
US8727597Jun 23, 2010May 20, 2014Oree, Inc.Illumination apparatus with high conversion efficiency and methods of forming the same
US8840276Oct 22, 2013Sep 23, 2014Oree, Inc.Illumination apparatus confining light by total internal reflection and methods of forming the same
US9006751Jan 24, 2011Apr 14, 2015Saint-Gobain Glass FranceLuminous vehicle glazing and manufacture thereof
US9039244Aug 20, 2014May 26, 2015Oree, Inc.Illumination apparatus confining light by total internal reflection and methods of forming the same
US9164218Sep 5, 2014Oct 20, 2015Oree, Inc.Slim waveguide coupling apparatus and method
CN103025580A *Jan 24, 2011Apr 3, 2013法国圣-戈班玻璃公司Flashing glass panel for a vehicle, and method for manufacturing same
Classifications
U.S. Classification362/555, 362/457, 362/581
International ClassificationG02B6/00
Cooperative ClassificationG02B6/0085, G02B6/0083, G02B6/0021, Y10S362/80, G02B6/0091
European ClassificationG02B6/00L6U6R, G02B6/00L6I4S4
Legal Events
DateCodeEventDescription
May 8, 2009ASAssignment
Owner name: OREE INC., ISRAEL
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZIMMERMANN, MICHA;MEIR, NOAM;REEL/FRAME:022660/0236
Effective date: 20090426
Nov 25, 2009ASAssignment
Owner name: KREOS CAPITAL III LIMITED
Free format text: AMENDMENT TO AMENDED AND RESTATED U.S. INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:OREE, ADVANCED ILLUMINATION SOLUTIONS INC.;REEL/FRAME:023565/0454
Effective date: 20091116
Owner name: KREOS CAPITAL III LIMITED, JERSEY
Free format text: AMENDMENT TO AMENDED AND RESTATED U.S. INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:OREE, ADVANCED ILLUMINATION SOLUTIONS INC.;REEL/FRAME:023565/0454
Effective date: 20091116